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Abstract
In this paper we study the problem of estimating quantiles from data that contains ad-
ditional measurement errors. The only assumption on these errors is that the average
absolute measurement error converges to zero for sample size tending to infinity with
probability one. In particular we do not assume that the measurement errors are inde-
pendent with expectation zero. We show that the empirical measure based on the data
with measurement errors leads to an estimator which approaches the quantile set asymp-
totically. Provided the quantile is uniquely determined, this implies that this quantile
estimate is strongly consistent for the true quantile. If this assumption does not hold, we
also show that we can construct estimators for the limits of the quantile set if the average
absolute measurement error is bounded by a given sequence, which tends to zero for sam-
ple size tending to infinity with probability one. Furthermore, we show that there exists
no estimator that is consistent for every distribution of the underlying random variable
and every data containing the above mentioned measurement errors. We also derive the
rate of convergence of our estimator and show that the derived rate of convergence is
optimal. The results are applied in simulations and in the context of experimental fatigue
tests.

AMS classification: Primary 62G05; secondary 62G20.

Key words and phrases: Consistency, experimental fatigue tests, quantile estimation, rate
of convergence.

1 Introduction

Let X be a real-valued random variable with cumulative distribution function (cdf.) F ,
i.e., F (x) = P{X ≤ x}. For α ∈ (0, 1) denote by

QX,α := {z ∈ R : P (X ≤ z) ≥ α and P (X ≥ z) ≥ 1− α}

∗Running title: Quantile estimation with additional measurement errors
†Corresponding author. Tel: +49-6151-16-23371
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the set of all α-quantiles of X. It has the biggest lower bound

q
[low]
X,α := min {z ∈ R : F (z) ≥ α}

and the smallest upper bound

q
[up]
X,α := sup{z ∈ R : F (z) ≤ α}.

More precisely, we have [
q

[low]
X,α , q

[up]
X,α

)
⊆ QX,α ⊆

[
q

[low]
X,α , q

[up]
X,α

]
and

QXα =
[
q

[low]
X,α , q

[up]
X,α

]
if and only if F is continuous at q[up]

X,α.

The estimation of this set or its limits q[low]
X,α and q[up]

X,α is well researched in the literature.

For example, a simple idea to estimate q[low]
X,α from a sample X1, . . . , Xn of X is to use

X1, . . . , Xn to compute the empirical cdf.

Fn(x) =
1

n

n∑
i=1

I{Xi≤x} (1)

and to estimate the quantile by the corresponding plug-in estimate

q̂X,n,α = min{z ∈ R : Fn(z) ≥ α}, (2)

which is in fact an order statistics (c.f., e.g., Arnold et al. (1992) for general informations).
In this paper we assume that instead of the sample X1, . . . , Xn of X we have available

only data X̄1,n, . . . , X̄n,n such that the average absolute error between Xi and X̄i,n

converges to zero almost surely, i.e., we assume that

1

n

n∑
i=1

|Xi − X̄i,n| → 0 a.s. (3)

Here we do not assume anything on the measurement errors X̄i,n −Xi (i = 1, . . . , n). In
general, those errors do not need to be random and in case that they are random they
do not need to be independent or identically distributed and they do not need to have
expectation zero, so estimates for convolution problems (see, e.g., Meister (2009) and the
literature cited therein) are not applicable in the context of this paper. Note also that
our set-up is triangular.
The consideration of additional measurement errors is motivated by experimental fa-

tigue tests from the Collaborative Research Center 666 at the Technische Universität
Darmstadt, where we have to use measured data from other similar materials to esti-
mate quantiles of number of cycles until failure for a certain material (cf., Section 3
below).
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Measurement errors of the above mentioned type have been recently considered in the
context of distribution estimation (c.f. Bott et al. (2013)), nonparametric regression
with random design (c.f. Kohler (2006)) and nonparametric regression with fixed design
(c.f. Furer, Kohler and Krzyżak (2013), Furer and Kohler (2015)).
Since we do not assume anything on the nature of the measurement errors besides that

they are asymptotically negligible in the sense that (3) holds, it seems to be a natural
idea to ignore them completely and to try to use the same estimates as in the case that
an independent and identically distributed sample is given. In this paper we investigate
whether the corresponding quantile estimates are still consistent in this situation and
how their rate of convergence depends on

1

n

n∑
i=1

|Xi − X̄i,n|.

Before we describe the results with measurement error, we will in the following sum-
marize some results of the quantile estimation with i.i.d. data without additional mea-
surement errors. If the quantile is uniquely determined, i.e., if the cdf. F of X fullfills

F (x) > α if x > q
[low]
X,α ,

then q̂X,n,α is a strongly consistent estimator of q[low]
X,α , i.e.,

q̂X,n,α → q
[low]
X,α a.s.

(c.f., e.g., Theorem 2.2. in Puri and Ralescu (1986)). In this paper we show that this
result also holds if data with the above mentioned measurement error is used instead of
the i.i.d. data (see Corollary 1 below).
In case that the quantile is not uniquely determined, q̂X,n,α is no longer a strong

consistent estimate of q[low]
X,α (c.f., e.g., Theorem 1 in Feldman and Tucker (1966)), but it

is possible to find a suitable sequence αn, such that q̂X,n,αn is a strong (or weak) consistent
estimator for q[low]

X,α for all distributions of the random variable X (c.f. Theorem 4 (or 5)
in Feldman and Tucker (1966)). If we use data with measurement errors for the quantile
estimation, it will turn out in the following that it is not possible to find a sequence αn
such that q̂X̄,n,αn is a strong consistent estimator of q[low]

X,α for all distributions of X and all
corresponding data with measurement error fullfilling (3). Surprisingly, there even does
not exist any general estimator that is strongly consistent for all distributions of X and
all corresponding data with measurement error fullfilling (3) (see Theorem 3 below for
details). But if we know an upper bound on the average measurement error, which tends
to zero almost surely for sample size tending to infinity, it is possible to find sequences
αn and βn, such that q̂X̄,n,αn and q̂X̄,n,βn are a strongly consistent estimators of q[low]

X,α

and q[up]
X,α, respectively (see Theorem 2 below).

The rate of convergence of quantile estimates in case that we do not have additional
measurement errors can be derived from the asymptotic theory of order statistics (cf.,
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e.g., Mosteller (1946), Smirnov (1952) and Bahadur (1966)). A well known asymptotic
result is (c.f., e.g., Theorem A on page 77 in Serfling (1980)), that in case that the cdf. F
of X is continuous and differentiable at q[low]

X,α with derivative greater than zero we have

√
n · F ′(q[low]

X,α ) ·
q̂X,n,α − q[low]

X,α√
α · (1− α)

→ N(0, 1) in distribution. (4)

Reiss (1974) also investigated the accuracy of this normal approximation. Since (4) holds,
we have

|q̂X,n,α − q[low]
X,α | = OP

(
1√
n

)
, (5)

where we write Xn = OP(Yn) if the nonnegative random variables Xn and Yn satisfy

lim
c→∞

lim sup
n→∞

P{Xn > c · Yn} = 0.

In this paper we investigate how additional measurement errors influence the rate of
convergence of our quantile estimates. In Theorem 4 below it is shown that if the average
additional measurement error is bounded from above by some ηn ≥ 0, then our estimate
achieves a rate of convergence of order

1√
n

+
√
ηn. (6)

At this point it is surprising that additional measurement errors of order ηn increase the
error of the estimate by √ηn and not only by ηn. As we show in Theorem 5 below, it
is in general not possible to derive a better rate of convergence, hence (6) is the optimal
rate of convergence.
Throughout this paper the following notation is used: The sets of natural numbers

and real numbers are denoted by N and R, respectively. For a real number x, we denote
by bxc and dxe the largest integer less than or equal to x and the smallest integer larger
than or equal to x, respectively. We write →P as an abbreviation for convergence in
probability and IA for the indicator function on the set A.

The outline of the paper is as follows: The main results are formulated in Section 2
and proven in Section 4. In Section 3 we illustrate the finite sample size performance of
our estimates by applying them to simulated data, and we describe an application of our
estimates in the context of experimental fatigue tests.

2 Main results

Let

F̄n(x) =
1

n

n∑
i=1

I{X̄i,n≤x}

be the empirical cumulative distribution function corresponding to X̄1,n, . . . , X̄n,n, and
let

q̂X̄,n,α = min{z ∈ R : F̄n(z) ≥ α}
be the corresponding plug-in quantile estimate.
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2.1 Strong consistency

First of all we want to investigate, if the estimator q̂X̄,n,α approaches the quantile set
QX,α asymptotically. The following result holds.

Theorem 1. Let X,X1, X2 . . . be independent and identically distributed real valued
random variables and let X̄1,n, . . . , X̄n,n be random variables which satisfy

1

n

n∑
i=1

|Xi − X̄i,n| → 0 a.s. (7)

Let α ∈ (0, 1) be arbitrary. Then the above defined quantile estimate q̂X̄,n,α is strongly
consistent in the sense that

dist
(
q̂X̄,n,α, QX,α

)
→ 0 a.s.,

where
dist (x,A) := inf

a∈A
|x− a|

for x ∈ R and a set A ⊂ R.

Corollary 1. Let X,X1, X2 . . . be independent and identically distributed real valued
random variables and let X̄1,n, . . . , X̄n,n be random variables which satisfy

1

n

n∑
i=1

|Xi − X̄i,n| → 0 a.s. (8)

Let α ∈ (0, 1) be arbitrary and assume the α-quantile is uniquely determined, i.e., assume
that the cdf. F of X fullfills

F (x) > α for x > q
[low]
X,α . (9)

Then the above defined quantile estimate q̂X̄,n,α is strongly consistent for q[low]
X,α , i.e.

q̂X̄,n,α → q
[low]
X,α a.s.

Proof. By (9) we know
q

[up]
X,α = q

[low]
X,α ,

which implies
QX,α = {q[low]

X,α }.

So the assertion follows directly by Theorem 1. �

5



Remark 1. The assumption in (9) in Corollary 1 is the minimal one for obtaining

q̂X̄,n,α → q
[low]
X,α a.s.

If we drop it, the case q[low]
X,α < q

[up]
X,α with

F (x) = α for x ∈
[
q

[low]
X,α , q

[up]
X,α

)
is possible. In this case we get for i.i.d. data without measurement errors

P
(
q̂X,n,α ≤ q[low]

X,α i.o.
)

= P
(
q̂X,n,α ≥ q[up]

X,α i.o.
)

= 1,

where i.o. means infinitely often (cf., e.g., Theorem 1 in Feldman and Tucker (1966)).
This implies that

q̂X̄,n,α → q
[low]
X,α a.s.

cannot hold in this case.

Theorem 1 tells us under which conditions q̂X̄,n,α converges a.s. towards the set QXα .
Estimating the lower bound q[low]

X,α of this set by q̂X̄,n,α is only possible under a suitable
condition on the cdf. F of X. As our next result shows, it is possible to drop this
condition, if we replace α by an appropriate sequence αn and if we know an upper bound
ηn of the average absolute measurement error, which tends to zero almost surely as n
tends to infinity. This approach extends the ideas of Theorem 4 in Feldman and Tucker
(1966) to data, that contains additional measurement errors.

Theorem 2. Let X,X1, X2 . . . be independent and identically distributed real valued
random variables with cdf. F and let X̄1,n, . . . , X̄n,n be random variables which satisfy

1

n

n∑
i=1

|Xi − X̄i,n| ≤ ηn a.s. (10)

for some ηn ≥ 0 satisfying ηn → 0 a.s. Let α ∈ (0, 1) be arbitrary. Set

αn = α− 2

√
2 · log (log (n/2))

n
−√ηn and βn = α+ 2

√
2 · log (log (n/2))

n
+
√
ηn.

Then
q̂X̄,n,αn → q

[low]
X,α a.s.

and
q̂X̄,n,βn → q

[up]
X,α a.s.

Remark 2. It follows from the proof of Theorem 2 that the term 2

√
2·log(log(n/2))

n in the
definition of the sequences αn and βn in Theorem 2 can be replaced by any cn satisfying
cn → 0 as n→∞ and

cn ≥ (1 + ν) ·
√

2 · log (log (n/2))

n
for some ν > 0.
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The definition of the sequence αn from Theorem 2 can change if the average mea-
surement error changes. So it is natural to ask, if there exists a sequence αn such that
q̂X̄,n,αn is a strong consistent estimator of q[low]

X,α for all distributions of X and all random
variables X̄1,n, ..., X̄n,n satisfying

1

n

n∑
i=1

∣∣Xi − X̄i,n

∣∣→ 0 a.s. (11)

The following result gives a general answer to this question, by stating that it is not
possible to find a sequence of quantile estimates (q̂n,α)n∈N that is strongly consistent for
all distributions of X and all random variables X̄1,n, . . . , X̄n,n that fullfill (11), even if
the sample with measurement errors does not change each time when the sample size
changes, i.e., if we haven given data X̄1, . . . , X̄n instead of X̄1,n, . . . , X̄n,n.

Theorem 3. Let α ∈ (0, 1) be arbitrary. There does not exist a sequence (q̂n,α)n∈N of
quantile estimates satisfying

q̂n,α
(
X̄1, . . . , X̄n

)
→P q

[low]
X,α

for all random variables X and all random variables X̄1, . . . , X̄n satisfying

1

n

n∑
i=1

|Xi − X̄i| → 0 a.s. (12)

for some independent X1, X2, . . . that have the same distribution as X.

Remark 3. Analogously, it is possible to show that there does not exist a sequence
(q̂n,α)n∈N of quantile estimates satisfying

q̂n,α
(
X̄1, . . . , X̄n

)
→P q

[up]
X,α

for all random variables X and all random variables X̄1, . . . , X̄n satisfying

1

n

n∑
i=1

|Xi − X̄i| → 0 a.s. (13)

for some independent X1, X2, . . . that have the same distribution as X.

2.2 Rate of convergence

In view of the finite sample size in any application it is also useful that we investigate
the rate of convergence. The following result holds.
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Theorem 4. Let X,X1, X2 . . . be independent and identically distributed real valued
random variables with cdf. F and let X̄1,n, . . . , X̄n,n be random variables which satisfy

ηn :=
1

n

n∑
i=1

|Xi − X̄i,n| → 0 a.s. (14)

Let α ∈ (0, 1) be arbitrary and assume that cdf. F of X is continuous and differentiable
at q[low]

X,α with derivative greater than zero. Then∣∣∣q̂X̄,n,α − q[low]
X,α

∣∣∣ = OP

(
1√
n

+
√
ηn

)
.

The part 1√
n
of the rate of convergence from Theorem 4 is well known from rate of

convergence of the order statistics with i.i.d. data without errors (cf. (5)). Because of (4)
it is not possible to improve this part of the convergence rate by an asymptotically faster
decreasing sequence. It is also known that the order statistics is asymptotically most
concentrated about the distribution quantile in comparison with all other translation-
equivariant and asymptotically uniformly median unbiased estimators (cf. Corollary 2
in Pfanzagl (1976)).
The part √ηn of the convergence rate is due to the measurement errors of the data.

We now want to investigate, whether the rate √ηn is the best rate one can obtain or if
it is possible to find other estimators that have a faster convergence rate. The following
result holds.

Theorem 5. Let α ∈ (0, 1) be arbitrary. Under the assumptions of Theorem 3, there
does not exist an estimator, that achieves a better rate of convergence than √ηn. More
precisely, under the assumptions of Theorem 4, for every estimator q̂n,α there exists a
random variable X and random variables X̄1,n, ..., X̄n,n satisfying

ηn =
1

n

n∑
i=1

∣∣Xi − X̄i,n

∣∣→ 0 a.s.

for some independent X1, X2, ... that have the same distribution as X such that∣∣∣q̂n,α − q[low]
X,α

∣∣∣ = OP

(
1√
n

+
√
η̃n

)
does not hold, whenever η̃n is a sequence that fullfills

η̃n
ηn
→P 0.
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3 Application to simulated and real data

In this section we want to apply the above described methods to simulated and real
data and estimate 5%-, 50%-, 90%- and 95%-quantiles. First of all we will consider
distributions with known quantiles in order to classify our estimation and afterwards we
will apply our estimator in the context of emperimental fatigue tests.
For the first purpose we use n = 500, 1000 and 2000 samples. This sample size is

motivated by the above mentioned application in the context of experimental fatigue
tests, where we have 1222 samples. In order to reduce the randomness that is contained
in the quantile estimates due to the random number generation, we repeat the quantile
estimation 100 times with new random numbers and indicate the quantile estimate by
an upper index i. We will compare the quantile estimates by considering the average

value 1
100

100∑
i=1

q̂i and the average squared error 1
100

100∑
i=1

(
q̂i − q[low]

X,α

)2
.

As a first example we choose X,X1, X2, · · · as independent and identically N (0, 1)-
distributed random variables and X̄i,n = Xi + 1

nEi, where E1, . . . , En are samples from
an exponentially-distributed random variable with expectation λ = 10. Notice that we
get completly new samples, when n changes. As a comparison to that, we consider,
furthermore, Ȳi,n = Xi + 1

i · Ei, where the samples with bigger measurement errors are

kept by. We have 1
n

n∑
i=1

∣∣Xi − X̄i,n

∣∣→ 0 a.s. and 1
n

n∑
i=1

∣∣Xi − Ȳi,n
∣∣→ 0 a.s. Since the cdf.

of X is strictly increasing, we know by Corollary 1 that the estimators q̂X̄,n,α and q̂Ȳ ,n,α
are strongly consistent for q[low]

X,α . This is confirmed by the average values and average
squared errors shown in Table 1 for α = 0.9 and α = 0.95. The estimator q̂X̄,n,α shows
even for the small samples size of n = 500 estimates with a small average squared error.
In comparison to that the estimator q̂Ȳ ,n,α convergences slower since the samples with
the bigger measurement error are kept by.
As a second example, we choose X,X1, X2, . . . as independent and b(1, 1

2)-distributed
random variables, such that P (X = 0) = P (X = 1) = 1

2 . Setting α = 0.5 leads to
the lower quantile q[low]

X,α = 0. The average value and the average squared error of the
quantile estimate q̂X,n,α are shown in Table 2. As mentioned in Remark 1, the estimator
q̂X,n,α is obviously not strongly consistent for q[low]

X,α . However, by Theorem 2 we can

modify our estimate to q̂X,n,αn with αn = α − 2

√
2·log(log(n/2))

n . As illustrated in Table

1, this modification leads to a perfect estimation of q[low]
X,α . But if we use the data X̄i,n =

Xi+
Bi

5·n0.1 , where B1, ..., Bn are i.i.d. samples from a b(1, 1
2)-distributed random variable,

the estimator q̂X̄,n,αn shows much larger errors, which are illustrated in Table 2. But

since we can bound 1
n

n∑
i=1

∣∣Xi − X̄i,n

∣∣ by 1
5·n0.1 , Theorem 2 tells us again, that we can

get a consistent esimator, if we choose the sequence γn = α− 2

√
2·log(log(n/2))

n −
√

1
5·n0.1

and consider the estimator q̂X̄,n,γn . The results in Table 2 show that this estimator
approximates the quantile perfectly.
As a third example we choose X,X1, X2, . . . as independent and uniformly on (0, 1)-
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90%-quantile 95%-quantile
q

[low]
X,α = 1.2816 q

[low]
X,α = 1.6449

size of n 500 1000 2000 500 1000 2000

average value for qX̄,n,α 1.2931 1.2901 1.2894 1.6730 1.6597 1.6473
average squared error for qX̄,n,α 0.0066 0.0030 0.0013 0.0128 0.0047 0.0023
average value for qȲ ,n,α 1.4217 1.3691 1.3275 1.8289 1.7507 1.7029
average squared error for qȲ ,n,α 0.0248 0.0105 0.0036 0.0436 0.0164 0.0057

Table 1: Simulation results for X,X1, X2, ... independent and identically N (0, 1)-
distributed and X̄i,n = Xi + 1

n · Ei and Ȳi,n = Xi + 1
i · Ei, where E1, ..., En

are samples from an exponentially-distributed random variable with expecta-
tion λ = 10.

50%-quantile
q

[low]
X,α = 0

size of n 500 1000 2000

average value for qX,n,α 0.4000 0.4400 0.4800
average squared error for qX,n,α 0.4000 0.4400 0.4800
average value for qX,n,αn 0 0 0
average squared error for qX,n,αn 0 0 0
average value for qX̄,n,αn 0.1074 0.1002 0.0935
average squared error for qX̄,n,αn 0.0115 0.0100 0.0087
average value for qX̄,n,γn 0 0 0
average squared error for qX̄,n,γn 0 0 0

Table 2: Simulation results for X ∼ b(1, 1
2) and X̄i,n = Xi + Bi

5·n0.1 , where B1, ..., Bn are
i.i.d. samples from a b(1, 1

2)-distributed random variable.

distributed random variables. As our data with additional measurement error we consider
X̄i,n = Xi + 1

n0.25 , which fullfills ηn = 1
n

n∑
i=1

∣∣Xi − X̄i,n

∣∣→ 0 a.s. In order to evaluate the

asymptotic behaviour of our estimates, we compute the absolute error

dn =
∣∣q̂X̄,n,α − qX,α∣∣

for α = 0.9 and sample sizes n in steps of 200. As illustrated in Figure 1, the average
absolute error shows approximately the same asymptotic behaviour as 1√

n
+ ηn in this

case. This shows that there exists data with measurement error, such that a faster
convergence rate than 1√

n
+
√
ηn is obtained.

Furthermore, it is also possible to construct data with measurement error, such that
the absolute error of the estimator behaves asymptotically as the claimed rate 1√

n
+
√
ηn

from Theorem 4:
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Figure 1: Typical asymptotic behaviour of dn =
∣∣q̂X̄,n,α − qX,α∣∣ in the setting of the third

example.

In the fourth example, we choose α = 0.9 and X,X1, X2, . . . as in example three and

X̄i,n =


Xi + 1

n0.25 if Xi ∈
[
α− 1

n0.25 , α
]
and Xi is one of the b 1

n0.25 · nc
biggest samples of (Xj)j=1,...,n in

[
α− 1

n0.25 , α
]

Xi else.

Here

ηn =
1

n

n∑
i=1

∣∣Xi − X̄i,n

∣∣ ≤ 1

n
· b 1

n0.25
· nc · 1

n0.25
→ 0 a.s.

This leads to an absolute error dn that has approximately the same asymptotic behaviour
as 1√

n
+
√
ηn, as illustrated in Figure 2.

As a last example we want to apply the methods above in the context of fatigue
behaviour of steel under cyclic loading. This application is motivated by experiments of
the Collaborative Research Center 666 at the Technische Universität Darmstadt, which
studies integral sheet metal design with higher order bifurcations. Here the main idea is
to produce structures out of one part by linear flow and bend splitting, which has several
advantages concerning the material properties. In the following our main goal will be
to study, whether this modified, splitted material shows better fatigue behavior under
cyclic loading than the base material. Therefore for each material m data{(

ε
(m)
1 , N

(m)
1

)
, ...,

(
ε
(m)
lm

, N
(m)
lm

)}
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Figure 2: Typical asymptotic behaviour of dn =
∣∣q̂X̄,n,α − qX,α∣∣ in the setting of the

fourth example.

is obtained by a series of experiments, in which for a strain amplitude ε(m)
i the number

of cycles N (m)
i until the failure is determined. We have available a database of 132

materials with 1222 of the above data points in total. This data will be used to compare
the estimated 5%−quantiles of the number of cycles until failure from the modified and
the base material of ZStE500 for different amplitudes ε. In other words we are interested
in estimating the number of cycles such that no failure occurs with a probability of 95%.
Since the above mentioned experiments are very time consuming, we only have available
4 to 35 data points per material, which is not enough for a nonparametric estimation.
In order to nevertheless estimate the quantile of the number of cycles until failure, we
assume the model

N (m) (ε) = µ(m) (ε) + σ(m) (ε) · δ (15)

to hold, where µ(m) (ε) is the expected number of cycles until failure and σ(m) (ε) is the
standard deviation for each material m and strain amplitude ε. δ is an error term, which
has expectation zero. In the following we will estimate the α−quantile of δ as well as
µ(m) (ε) and σ(m) (ε), so that we can estimate the α−quantile of N (m) (ε) by a simple
linear transformation. For this purpose we use a similar approach as in Bott and Kohler
(2015):
In order to estimate the expected number of cycles µ(m) (ε), we apply a standard-

method from the literatur (cf. Williams, Lee and Rilly (2002)), which uses the measured
data to estimate the coefficients p =

(
σ
′
f , ε

′
f , b, c

)
of the strain life curve according to

Coffin-Morrow-Manson (cf. Manson (1965)) by linear regression and estimate µ(m) (ε)

12



Figure 3: Comparison of the estimated 5%−quantiles of the number of cycles until the
failure occurs q̂N,5% from the base and the modified material of ZSTE500. Here
the strain amplitude is divided by the length of the material sample used in
the experiments.

from the corresponding strain life curve.
The estimation of the standard deviation σ(m) (ε) is more complicated, since we need

to apply a nonparametric estimator, which usually needs more samples. So we augment
our data points for every material m by 100 artifical ones like in Furer and Kohler (2013)
and weight the Nadaraya-Watson kernel regression estimates applied to the real and the
artificial data.
Thus, we can determine the data samples

δ̂
(m)
i =

N
(m)
i − µ̂(m)

i

σ̂
(m)
i

for i = 1, ..., lm and all materials m

of the random variable δ. Notice that these samples contain measurement errors because
we only estimated µ(m) (ε) and σ(m) (ε). Since we assumed in (15) that δ does not depend
on the material m, we can use all above data samples to estimate the α−quantile q̂δ,α of
δ and get an estimation of the α−quantile of N (m) (ε) by the transformation

q̂N(m),α (ε) = σ̂(m) (ε) · q̂δ,α + µ̂(m) (ε) .

The estimated quantiles of N (m) (ε) for ε ∈ [0, 0.25] for the modified and the base
material are illustrated in Figure 3. One can see that the material shows much better

13



fatigue behaviour after the flow splitting, which confirms the conjecture that the strain
hardening occuring during the flow splitting improves the fatigue behaviour of materials.

4 Proofs

For ᾱ ∈ (0, 1) set
q̂X,n,ᾱ = min{z ∈ R : Fn(z) ≥ ᾱ},

where

Fn(x) =
1

n

n∑
i=1

I{Xi≤x}.

In three of the proofs in this section we use the following lemma, which relates the plug-in
estimate with data containing additional measurement errors to plug-in estimates with
i.i.d. data without additional measurement errors.

Lemma 1. Let a > 0 be a (possibly random) finite constant and set

δn =
1

n

n∑
i=1

I{|Xi−X̄i,n|>a}.

Then it holds for α ∈ R and the plug-in estimates defined above that

q̂X,n,α−δn − a ≤ q̂X̄,n,α ≤ q̂X,n,α+δn + a

Proof. Consider

F̄n(x)− Fn(x+ a) =
1

n

n∑
i=1

(
I{X̄i,n≤x} − I{Xi≤x+a}

)
.

The i-th summand becomes one, if

X̄i,n ≤ x and Xi > x+ a.

In this case
∣∣Xi − X̄i,n

∣∣ > a also holds true. So we can conclude

F̄n(x)− Fn(x+ a) ≤ 1

n

n∑
i=1

I{|Xi−X̄i,n|>a} = δn.

Analogously we can also show

F̄n(x)− Fn(x− a) ≥ − 1

n

n∑
i=1

I{|Xi−X̄i,n|>a} = −δn.

14



Hence we get

q̂X̄,n,α = min
{
z ∈ R : F̄n (z) ≥ α

}
= min

{
z ∈ R : F̄n (z)− Fn (z + a) + Fn (z + a) ≥ α

}
≥ min {z ∈ R : δn + Fn (z + a) ≥ α}
= min {z ∈ R : Fn (z) ≥ α− δn} − a
= q̂X,n,α−δn − a

and

q̂X̄,n,α = min
{
z ∈ R : F̄n (z) ≥ α

}
= min

{
z ∈ R : F̄n (z)− Fn (z − a) + Fn (z − a) ≥ α

}
≤ min {z ∈ R : −δn + Fn (z − a) ≥ α}
= min {z ∈ R : Fn (z) ≥ α+ δn}+ a

= q̂X,n,α+δn + a,

which yields the assertion. �

4.1 Proof of Theorem 1

Let αn ∈ (0, 1) be such that
αn → α a.s.

We divide the proof into three steps:
In the first step of the proof we show that

dist (q̂X,n,αn , QX,α)→ 0 a.s. (16)

Therefore set

N :=

{
αn → α (n→∞) and sup

t∈R
|Fn (t)− F (t)| → 0 (n→∞)

}
.

Notice that
P (N) = 1

because of the Glivenko-Catelli theorem (cf., e.g., Theorem 12.4 in Devroye et al. (1996))
and αn → α a.s. Let ε > 0 be arbitrary. We know

F
(
q

[low]
X,α − ε

)
< α < F

(
q

[up]
X,α + ε

)
. (17)

Setting
ρ1 = min

(
α− F

(
q

[low]
X,α − ε

)
, F
(
q

[up]
X,α + ε

)
− α

)
,

we can conclude
F
(
q

[low]
X,α − ε

)
+
ρ1

2
< α < F

(
q

[up]
X,α + ε

)
− ρ1

2
.

15



Assume N to hold in the following. Then we can (for all ω ∈ N) find n0, such that for
all n ≥ n0 we have

|αn − α| <
ρ1

4
and sup

t∈R
|Fn (t)− F (t)| < ρ1

4
,

which implies
Fn

(
q

[low]
X,α − ε

)
< αn < Fn

(
q

[up]
X,α + ε

)
and consequently

q
[low]
X,α − ε ≤ q̂X,n,αn ≤ q

[up]
X,α + ε.

Hence,

P

(
lim sup
n→∞

dist (q̂X,n,αn , QX,α) ≤ ε
)
≥ P (N) = 1.

Since ε > was arbitrary this implies the assertion.
Let ε > 0 again be arbitrary and set

δn =
1

n

n∑
i=1

I{|Xi−X̄i,n|>ε}.

In the second step of the proof we show

δn → 0 a.s. (18)

Therefore we observe

1

n

n∑
i=1

I{|Xi−X̄i,n|>ε} ≤
1

ε

1

n

n∑
i=1

|Xi − X̄i,n|,

which yields the assertion by (7).
Furthermore, we know by Lemma 1

q̂X,n,α−δn − ε ≤ q̂X̄,n,α ≤ q̂X,n,α+δn + ε (19)

In the third step of the proof we finally show the assertion. By the second step, we know
α− δn → α a.s. and α+ δn → α a.s., so by choosing αn = α− δn or αn = α+ δn, resp.,
we conclude by (19) and by the first step for arbitrary ε > 0

dist
(
q̂X̄,n,α, QX,α

)
≤ dist (q̂X,n,α−δn , QX,α) + ε+ dist (q̂X,n,α+δn , QX,α) + ε −→ 2 · ε a.s.

(20)

Since ε > 0 was arbitrary this implies the assertion. �

16



4.2 Proof of Theorem 2

In order to proof Theorem 2, we need the following lemma, which is a straightforward
extension of ideas in Theorem 4 in Feldman and Tucker (1966) to random sequences. For
the sake of completeness, this lemma is proven in the appendix.

Lemma 2. Let α ∈ (0, 1) be arbitrary and X,X1, X2, . . . be independent and identically
distributed real valued random variables with cdf. F .
(a) Let γn,l be a (possibly random) sequence, that satisfies

γn,l + (1 + ν) ·
√

2 · log (log (n/2))

n
< α and γn,l → α a.s.

for some ν > 0. Then it holds

q̂X,n,γn,l → q
[low]
X,α a.s. (21)

(b) Let γn,r be a (possibly random) sequence, that satisfies

γn,r − (1 + ν) ·
√

2 · log (log (n/2))

n
> α and γn,l → α a.s.

for some ν > 0. Then it holds

q̂X,n,γn,r → q
[up]
X,α a.s. (22)

Proof of Theorem 2. Set

δn =
1

n

n∑
i=1

I{|Xi−X̄i,n|>
√
ηn}

and observe that (10) implies

δn =
1

n

n∑
i=1

I{|Xi−X̄i,n|>
√
ηn} ≤

1
√
ηn

1

n

n∑
i=1

|Xi − X̄i,n| ≤
ηn√
ηn

=
√
ηn a.s. (23)

Using Lemma 1 and (23), we can conclude that for any (random) sequence γn holds

q̂X,n,γn−
√
ηn −

√
ηn ≤ q̂X̄,n,γn ≤ q̂X,n,γn+

√
ηn +

√
ηn (24)

for every n ∈ N. By setting γn = αn in (24) we know

q̂X,n,αn−
√
ηn −

√
ηn ≤ q̂X̄,n,αn ≤ q̂X,n,αn+

√
ηn +

√
ηn (25)

for all n ∈ N. Having regard to

αn + (1 + ν) ·
√

2 · log (log (n/2))

n
+
√
ηn < α

17



for all 0 < ν < 1, as well as αn → α a.s., we also know that γn,l = αn +
√
ηn and

γn,l = αn −
√
ηn fullfill the assumptions of Lemma 2a). So we get

q̂X,n,αn−
√
ηn −

√
ηn → q

[low]
X,α a.s. and q̂X,n,αn+

√
ηn +

√
ηn → q

[low]
X,α a.s.,

which yields
q̂X̄,n,αn → q

[low]
X,α a.s.

Analogously we can show
q̂X̄,n,βn → q

[up]
X,α a.s.

by using Lemma 2b), which completes the proof. �

4.3 Proof of Theorem 3

Let α ∈ (0, 1) be arbitrary. Assume to the contrary that there exists a sequence (q̂n,α)n∈N
of quantile estimates statisfying

q̂n,α
(
X̄1, . . . , X̄n

)
→P q

[low]
X,α (26)

whenever X̄1, X̄2, . . . are such that for some independent and identically as X distributed
X1, X2, . . . we have

1

n

n∑
i=1

|Xi − X̄i| → 0 a.s. (27)

Let X,X1, X2, . . . be independent and indentically distributed with cdf.

F (x) =


0 if x < 0
x if 0 ≤ x < α
α if α ≤ x < 1 + α
x− 1 if 1 + α ≤ x < 2
1 if 2 ≤ x

and α-quantile q[low]
X,α = α. For k ∈ N set

Fk (x) =


0 if x < 0
x if 0 ≤ x < α− α

k
α− α

k if α− α
k ≤ x < 1 + α− α

k
x− 1 if 1 + α− α

k ≤ x < 2
1 if 2 ≤ x

and

X
(k)
i =

{
Xi if Xi /∈

[
α− α

k , α
]

Xi + 1 if Xi ∈
[
α− α

k , α
] .

18



Then X(k)
1 , X

(k)
2 , . . . are independent and identically distributed random variables with

cdf. Fk and α-quantile q[low]
k,α = 1 + α. So if we set X̄i = X

(k)
i for all i ≥ N with N ∈ N

arbitrary, (27) is fullfilled (with Xi replaced by X(k)
i ) and we know by (26) that

q̂n,α
(
X̄1, . . . , X̄n

)
→P q

[low]
k,α (28)

Next we define for suitably chosen deterministic n0 := 0 < n1 < n2 < . . . (where ni ∈ N
for all i ∈ N) our data with measurement error by

X̄i = X
(k)
i if nk−1 < i ≤ nk (k ∈ N) .

For all i ∈ N we have

P
(
|Xi − X̄i| = 0

)
≥ 1− α and P

(
|Xi − X̄i| = 1

)
≤ α

and hence

0 ≤ E
{
|Xi − X̄i|

}
≤ α and V

{
|Xi − X̄i|

}
≤ E

{
|Xi − X̄i|2

}
≤ α.

So
∞∑
i=1

V{|Xi − X̄i|}
i2

≤
∞∑
i=1

α

i2
<∞.

By a criterion which is sometimes called the Kolmogorov criterion (cf., e.g., Theorem
14.5 in Burckel and Bauer (1996)), we get

1

n

n∑
i=1

(
|Xi − X̄i| −E{|Xi − X̄i|}

)
→ 0 a.s. (29)

But since |Xi −X(k)
i | ≥ |Xi −X(l)

i | for all l ≥ k and i ∈ N, we can conclude

0 ≤ 1

n

n∑
i=1

E{|Xi − X̄i|} =
1

n

nk∑
i=1

E{|Xi − X̄i|}+
1

n

n∑
i=nk+1

E{|Xi − X̄i|}

≤ 1

n

nk∑
i=1

α+
1

n

n∑
i=nk+1

E{|Xi −X(k)
i |}

=
nk
n
· α+

1

n

n∑
i=nk+1

α

k

≤ nk
n
· α+

α

k
−→ α

k
(n→∞),

for every k ∈ N, which implies

1

n

n∑
i=1

E{|Xi − X̄i|} → 0
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and finally by (29)
1

n

n∑
i=1

∣∣Xi − X̄i

∣∣→ 0 a.s.

So it suffies to show, that for some ε > 0

lim sup
n→∞

P
(∣∣∣q̂n,α (X̄1, . . . , X̄n

)
− q[low]

X,α

∣∣∣ > ε
)
> 0. (30)

To do this we will choose nk such that (30) holds. Let 0 < ε < 1 be fixed and choose n1

such that
P
(∣∣∣q̂n1,α

(
X̄

(1)
1 , . . . , X̄(1)

n1

)
− q[low]

1,α

∣∣∣ > ε
)
<

1

2
.

This is possible because of (28). Given n1, . . . , nk−1, we choose nk > nk−1 such that

P
(∣∣∣q̂nk,α (X̄1, . . . , X̄nk−1

, X̄
(k)
nk−1+1, . . . , X̄

(k)
nk

)
− q[low]

k,α

∣∣∣ > ε
)
<

1

2
,

which is again possible because of (28). The choice of n1, n2, . . . implies

P
(∣∣∣q̂nk,α (X̄1, . . . , X̄nk

)
− q[low]

k,α

∣∣∣ > ε
)
<

1

2

and accordingly

P
(∣∣∣q̂nk,α (X̄1, . . . , X̄nk

)
− q[low]

k,α

∣∣∣ ≤ ε) ≥ 1

2

for k ∈ N. Using the triangle inequality, we know

1 =
∣∣∣q[low]
k,α − q

[low]
X,α

∣∣∣ ≤ ∣∣∣q̂nk,α (X̄1, . . . , X̄nk

)
− q[low]

k,α

∣∣∣+
∣∣∣q̂nk,α (X̄1, . . . , X̄nk

)
− q[low]

X,α

∣∣∣ .
Thereby, we can conclude for any k ∈ N

P
(∣∣∣q̂nk,α (X̄1, . . . , X̄nk

)
− q[low]

X,α

∣∣∣ > 1− ε
)

≥ P
(

1−
∣∣∣q̂nk,α (X̄1, . . . , X̄nk

)
− q[low]

k,α

∣∣∣ > 1− ε
)

= P
(∣∣∣q̂nk,α (X̄1, . . . , X̄nk

)
− q[low]

k,α

∣∣∣ < ε
)

≥ 1

2
,

(31)

which completes the proof. �

4.4 Proof of Theorem 4

For the sake of simplicity we write qX,α for the lower α-quantile of X instead of q[low]
X,α .

We divide the proof into two steps:
In the first step of the proof we show that if αn is a (possibly random) sequence with

αn → α a.s.
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it holds
|q̂X,n,αn − qX,α| = OP

(
1√
n

+ |αn − α|
)
. (32)

Therefore it suffices to show

lim sup
n→∞

P

(
|q̂X,n,αn − qX,α| ≤

2 · c1

c2
·
(

1√
n

+ |αn − α|
))
≥ 1− 2 · exp

(
−2 · c2

1

)
for every c1 ≥ 1, with some finite constant c2 > 0.

Since F is differentiable at qX,α with derivative greater than zero, there exist finite
constants c2 > 0 and ζ > 0, such that

c2 |qX,α − x| ≤ |F (qX,α)− F (x)| (33)

for all x with |qX,α − x| ≤ ζ.
Now set

Bn :=

{
2c1

c2
|αn − α| ≤

ζ

2

}
and

Cn :=

{
sup
t∈R
|F (t)− Fn (t)| ≤ c1√

n

}
.

We know
P (Bc

n)→ 0 (n→∞) and P (Ccn) ≤ 2 · exp
(
−2 · c2

1

)
because of αn → α a.s. and the Dvoretzky-Kiefer-Wolfowitz inequality (cf. Dvoretzky
et al. (1956)) in combination with Corollary 1 in Massart (1990). Choose n0 ∈ N, such
that 0 < 2

c2
· c1√

n
≤ ζ

2 is fullfilled for all n ≥ n0. Assume in the following, that the events
Bn and Cn hold and consider n ≥ n0. Set θn = 2c1 · |αn − α|+ 2 · c1√

n
. The assumptions

imply

0 <
1

c2
· θn =

2c1

c2
· |αn − α|+

2

c2
· c1√

n
≤ ζ

2
+
ζ

2
= ζ

so we can conclude by (33) and F (qX,α) = α

θn = c2

∣∣∣∣qX,α − qX,α − 1

c2
θn

∣∣∣∣ ≤ ∣∣∣∣α− F (qX,α +
1

c2
θn

)∣∣∣∣ (34)

and
θn = c2

∣∣∣∣qX,α − qX,α +
1

c2
θn

∣∣∣∣ ≤ ∣∣∣∣α− F (qX,α − 1

c2
θn

)∣∣∣∣ . (35)

Because F is differentiable at qX,α with derivative greater zero, we know

F

(
qX,α −

1

c2
θn

)
< α < F

(
qX,α +

1

c2
θn

)
,

hence (34) and (35) imply

F

(
qX,α −

1

c2
θn

)
< α− θn

2
< α < α+

θn
2
< F

(
qX,α +

1

c2
θn

)
. (36)
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Since the event Cn holds, we know

Fn

(
qX,α −

1

c2
θn

)
− c1√

n
≤ F

(
qX,α −

1

c2
θn

)
and

F

(
qX,α +

1

c2
θn

)
≤ Fn

(
qX,α +

1

c2
θn

)
+

c1√
n
.

Combining this with (36) and the definition of θn leads to

Fn

(
qX,α −

1

c2
θn

)
< α− c1 · |α− αn| ≤ α+ c1 · |α− αn| < Fn

(
qX,α +

1

c2
θn

)
.

Since c1 ≥ 1 we have

α− c1 · |α− αn| ≤ αn ≤ α+ c1 · |α− αn| ,

which implies

Fn

(
qX,α −

1

c2
θn

)
< αn < Fn

(
qX,α +

1

c2
θn

)
.

So finally we have shown

P (Bn ∩ Cn) ≤ P

(
Fn

(
qX,α −

1

c2
θn

)
< αn < Fn

(
qX,α +

1

c2
θn

))
,

which by the definition of q̂X,n,αn and for n ≥ n0 leads to

P

(
|q̂X,n,αn − qX,α| ≤

1

c2
θn

)
= P

(
qX,α −

1

c2
θn ≤ q̂X,n,αn ≤ qX,α +

1

c2
θn

)
≥ P

(
Fn

(
qX,α −

1

c2
θn

)
< αn < Fn

(
qX,α +

1

c2
θn

))
≥ P (Bn ∩ Cn)

= 1−P (Bc
n ∪ Ccn)

≥ 1−P (Bc
n)−P (Ccn)→ 1− 2 exp

(
−2 · c2

1

)
(n→∞) .

This was the assertion.
Furthermore, we know (see proof of Theorem 2 in combination with (14))

δn =
1

n

n∑
i=1

I{|Xi−X̂i,n|>
√
ηn} ≤

ηn√
ηn

=
√
ηn → 0 a.s. (37)

Using (37), application of Lemma 1 yields

q̂X,n,α−√ηn −
√
ηn ≤ q̂X̄,n,α ≤ q̂X,n,α+

√
ηn +

√
ηn (38)

22



for all n ∈ N.
In the second step of the proof we finally show the assertion. By the first step we can
conclude ∣∣∣q̂X,n,α−√ηn − qX,α∣∣∣ = OP

(
1√
n

+
√
ηn

)
and ∣∣∣q̂X,n,α+

√
ηn − qX,α

∣∣∣ = OP

(
1√
n

+
√
ηn

)
.

By (38) we know∣∣q̂X̄,n,α − qX,α∣∣ ≤ ∣∣∣q̂X,n,α−√ηn −√ηn − qX,α∣∣∣+
∣∣∣q̂X,n,α+

√
ηn +

√
ηn − qX,α

∣∣∣
≤
∣∣∣q̂X,n,α−√ηn − qX,α∣∣∣+

∣∣∣q̂X,n,α+
√
ηn − qX,α

∣∣∣+ 2
√
ηn,

which completes the proof. �

4.5 Proof of Theorem 5

Let α ∈ (0, 1) be arbitrary. For the sake of simplicity we write qX,α for the lower α-
quantile of X instead of q[low]

X,α . Assume to the contrary that there exists an estimator
(q̂n,α)n∈N such that for all random variables X̄1,n, X̄2,n, . . . , which are such that for some
independent and identically as X distributed X1, X2, . . . it holds

ηn =
1

n

n∑
i=1

|Xi − X̄i,n| → 0 a.s., (39)

we have

lim
c→∞

lim sup
n→∞

P

(∣∣q̂n,α (X̄1,n, . . . , X̄n,n

)
− qX,α

∣∣ > c ·
(

1√
n

+ η̃n

))
= 0, (40)

with a sequence η̃n that fullfills
η̃n√
ηn
→P 0. (41)

Let X,X1, X2, . . . be independent and identically uniformly on (0, 1) distributed, i.e.,
with cdf.

F (x) =


0 if x < 0
x if 0 ≤ x < 1
1 if x ≥ 1
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and lower α-quantile qX,α = α. For k ∈ N let Y (k) have the distribution function

Fk (x) =



0 if x < 0

x if 0 ≤ x < α−
√

1
k

α−
√

1
k if α−

√
1
k ≤ x < α

2 · (x− α) + α−
√

1
k if α ≤ x < α+

√
1
k

x if α+
√

1
k ≤ x < 1

1 if 1 ≤ x.

In other words the distribution of the random variable Y (k) is obtained by shifting all
mass, that is contained in the interval

[
α−

√
1
k , α

]
, by

√
1
k to the right. This distribution

has the lower α-quantile qY (k),α = α+ 1
2

√
1
k . Furthermore, we set

X
(k)
i,n =


Xi +

√
1
k if Xi ∈

[
α−

√
1
k , α

]
and Xi is one of the b

√
1
k · nc

biggest samples of (Xj)j=1,...,n in
[
α−

√
1
k , α

]
Xi else

and notice that this is almost surely well defined, since ties occur only with probability
zero because F is continuous. Now let Y (k)

1 , Y
(k)

2 , . . . be independet and identically as
Y (k) distributed. Then we know by (40) that for every k ∈ N

lim sup
n→∞

P

(∣∣∣q̂n,α (Y (k)
1 , . . . , Y (k)

n

)
− qY (k),α

∣∣∣ ≥ 1

4

√
1

k

)
= 0. (42)

Denote by A(k)
n the event, that there are not more than b

√
1
k ·nc of the samples (Xi)i=1,...,n

in the interval
[
α−

√
1
k , α

]
. Then the de Moivre-Laplace theorem (cf., e.g., Theorem

1 and Corollary 1 on pp. 47-48 in Chow and Teicher (1978)), which is a special case
of the central limit theorem for binomially-distributed random variables, implies for a
B
(
n,
√

1
k

)
-distributed random variable Z, and p =

√
1
k

P
(
A(k)
n

)
=

bp·nc∑
l=0

(
n

l

)
·P (X ∈ [α− p, α])l ·P (X /∈ [α− p, α])n−l

=

bp·nc∑
l=0

(
n

l

)
· pl · (1− p)n−l

= P (Z ≤ bp · nc)

= P

(
Z − bp · nc√
np (1− p)

≤ 0

)
→ 1

2
(n→∞)
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and
P
((
A(k)
n

)c)
→ 1

2
(n→∞)

for every k ∈ N. So we can conclude by (42) that for every k ∈ N

lim sup
n→∞

P

(∣∣∣q̂n,α (X(k)
1,n, . . . , X

(k)
n,n

)
− qY (k),α

∣∣∣ ≥ 1

4

√
1

k

)

≤ lim sup
n→∞

[
P

({∣∣∣q̂n,α (X(k)
1,n, . . . , X

(k)
n,n

)
− qY (k),α

∣∣∣ ≥ 1

4

√
1

k

}
∩A(k)

n

)
+ P

((
A(k)
n

)c)]
= 0 +

1

2
=

1

2
,

(43)

because if we intersect with the event A(k)
n the samples X(k)

1,n, . . . , X
(k)
n,n are in fact samples

drawn from the distribution of the random variable Y (k). So for every k ∈ N we get in
particular for n large enough

P

(∣∣∣q̂n,α (X(k)
1,n, . . . , X

(k)
n,n

)
− qY (k),α

∣∣∣ ≥ 1

4

√
1

k

)
≤ 3

4
. (44)

It suffices to show, that there exists a strictly increasing sequence (nk)k∈N and data with
measurement error X̄1,nk , . . . , X̄nk,nk , fullfilling (39), and η̃n satisfying (41), such that for
every c3 > 0

P

(∣∣q̂nk,α (X̄1,nk , . . . , X̄nk,nk

)
− qX,α

∣∣ > c3 ·
(

1
√
nk

+ η̃nk

))
≥ 1

8
(45)

for k large enough.
We will now sequentially construct such a sequence nk and the data X̄1,nk , . . . , X̄nk,nk

and show that (45) holds. Choose n1 ≥ 1 such that

P

(∣∣∣q̂n1,α

(
X

(1)
1,n1

, . . . , X(1)
n1,n1

)
− qY (1),α

∣∣∣ ≥ 1

4

√
1

1

)
≤ 3

4

holds. This is possible because of (44). Given nk−1, choose nk > nk−1 such that nk ≥ k2

and

P

(∣∣∣q̂nk,α (X(k)
1,nk

, . . . , X(k)
nk,nk

)
− qY (k),α

∣∣∣ ≥ 1

4

√
1

k

)
≤ 3

4
.

hold. This is again possible because of (44). Setting

X̄i,n = X
(1)
i,n for 0 < n ≤ n1 and i = 1, ..., n and

X̄i,n = X
(k)
i,n for nk−1 < n ≤ nk and i = 1, ..., n,

(46)
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we can conclude for nk−1 < n ≤ nk

ηn =
1

n

n∑
i=1

∣∣Xi − X̄i,n

∣∣ =
1

n

n∑
i=1

∣∣∣Xi −X(k)
i,n

∣∣∣ ≤ 1

n
·

⌊√
1

k
· n

⌋
·
√

1

k
≤ 1

k

and in particular

ηnk ≤
1

k
for all k ∈ N

and
ηn → 0 a.s.

In this way we have constructed a strictly increasing sequence (nk)k∈N and data with
measurement error X̄1,nk , ..., X̄nk,nk such that

P

(∣∣∣q̂nk,α (X̄1,nk , . . . , X̄nk,nk

)
− qY (k),α

∣∣∣ ≥ 1

4

√
1

k

)
≤ 3

4
. (47)

By the triangle inequality, we know

1

2

√
1

k
=
∣∣∣qY (k),α − qX,α

∣∣∣
≤
∣∣∣qY (k),α − q̂nk,α

(
X̄1,nk , . . . , X̄nk,nk

)∣∣∣+
∣∣q̂nk,α (X̄1,nk , . . . , X̄nk,nk

)
− qX,α

∣∣ . (48)

Thereby, we can conclude for all k ∈ N

P

(∣∣q̂nk,α (X̄1,nk , . . . , X̄nk,nk

)
− qX,α

∣∣ > c3 ·
(

1
√
nk

+ η̃nk

))
≥ P

(
1

2

√
1

k
−
∣∣∣qY (k),α − q̂nk,α

(
X̄1,nk , . . . , X̄nk,nk

)∣∣∣ > c3 ·
(

1
√
nk

+ η̃nk

))

= P

(
1

2

√
1

k
− c3 ·

(
1
√
nk

+ η̃nk

)
>
∣∣∣qY (k),α − q̂nk,α

(
X̄1,nk , . . . , X̄nk,nk

)∣∣∣) .
Since ηnk ≤ 1

k , we know by (41)

η̃nk
1
4

√
1
k

≤ 4 · η̃nk√
ηnk

→P 0 (k →∞) .

Furthermore, since nk ≥ k2 for all k ∈ N by construction, we have

1√
nk

1
4

√
1
k

≤
1√
k2

1
4

√
1
k

→ 0 (k →∞) ,
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which implies
c3

(
η̃nk + 1√

nk

)
1
4

√
1√
k

→P 0 (k →∞)

for every c3 > 0. So setting

Bk =

{
c3 ·

(
η̃nk +

1
√
nk

)
≤ 1

4

√
1

k

}

yields
P (Bk)→ 1 (k →∞)

and thus
P (Bk) ≥

7

8

for k large enough. Thereby, we finally get for every c3 > 0 and k large enough

P

(∣∣q̂nk,α (X̄1,nk , . . . , X̄nk,nk

)
− qX,α

∣∣ > c3 ·
(
η̃nk +

1
√
nk

))
≥ P

(
1

2

√
1

k
− c3 ·

(
η̃nk +

1
√
nk

)
>
∣∣∣qY (k),α − q̂nk,α

(
X̄1,nk , . . . , X̄nk,nk

)∣∣∣)

≥ P

({
1

2

√
1

k
− c3 ·

(
η̃nk +

1
√
nk

)
>
∣∣∣qY (k),α − q̂nk,α

(
X̄1,nk , . . . , X̄nk,nk

)∣∣∣} ∩Bk
)

≥ P

({
1

4

√
1

k
>
∣∣∣qY (k),α − q̂nk,α

(
X̄1,nk , . . . , X̄nk,nk

)∣∣∣} ∩Bk
)

≥ P

(
1

4

√
1

k
>
∣∣∣qY (k),α − q̂nk,α

(
X̄1,nk , . . . , X̄nk,nk

)∣∣∣)−P (Bc
k)

≥ 1

4
− 1

8
=

1

8
,

where we have used (47) in the last inequality. This yields the assertion. �
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Appendix: Proof of Lemma 2

(a) It suffices to show

(i) P
(
q̂X,n,γn,l ≤ q

[low]
X,α − ε i.o.

)
= 0 for any ε > 0, and

(ii) P
(
q̂X,n,γn,l > q

[low]
X,α i.o.

)
= 0,

where i.o. means infinitely often. First of all we show (i). Therefore let ε > 0 be arbitrary.
We know

F
(
q

[low]
X,α − ε

)
< α.

Setting
ρ2 = α− F

(
q

[low]
X,α − ε

)
,

we can conclude
F
(
q

[low]
X,α − ε

)
+
ρ2

2
< α.

Choose

N :=

{
γn,l → α (n→∞) and sup

t∈R
|Fn (t)− F (t)| → 0 (n→∞)

}
.

As in the proof of Theorem 1 we have P(N) = 1. We can (for every ω ∈ N) find n0 such
that for all n ≥ n0 it holds

|γn,l − α| ≤
ρ2

4
and sup

t∈R
|Fn (t)− F (t)| ≤ ρ2

4
.
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This implies (for every ω ∈ N)

Fn

(
q

[low]
X,α − ε

)
< γn,l

and hence
q̂X,n,γn,l > q

[low]
X,α − ε

for n large enough. So we actually have shown

1−P
(
q̂X,n,γn,l ≤ q

[low]
X,α − ε i.o.

)
≥ P (N) = 1,

which proves (i).
It remains to show (ii). Therefore set

Ui = 1− 2 · I{
Xi≤q

[low]
X,α

} for i = 1, ..., n

and
p1 = P

(
X ≤ q[low]

X,α

)
≥ α.

We know

E {Ui} = 1− 2 · p1 ≤ 1− 2 · α and s = V {Ui} = 4p1 · (1− p1)

and
n∑
i=1

Ui = n− 2n · Fn
(
q

[low]
X,α

)
.

Thus, {
q̂X,n,γn,l > q

[low]
X,α

}
=
{
Fn

(
q

[low]
X,α

)
< γn,l

}
=
{
−2n · Fn

(
q

[low]
X,α

)
> −2 · γn,l · n

}
⊆

{
n∑
i=1

Ui ≥ n− 2 · γn,l · n

)
. (49)

Set ψn = (2 · n · s · log (log (n · s)))1/2, which we will need in the subsequent application
of Kolmogorov’s law of the iterated logarithm. Observe that ψn is well-defined for n
large enough. Since 0 ≤ x · (1− x) ≤ 1

4 for x ∈ [0, 1], we have 0 ≤ s ≤ 1 and thus
(2n · log (log (n)))1/2 ≥ ψn. Because of

α− γn,l > (1 + ν) ·
√

2 · log (log (n/2))

n
,

we can conclude

α− γn,l ≥
1 + ν

2
·
√

2 · log (log (n))

n
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for all n large enough. Combining this with

1− 2 · p1 ≤ 1− 2 · α,

we get by (49)

P
(
q̂X,n,γn,l > q

[low]
X,α i.o.

)
≤ P

(
n∑
i=1

Ui ≥ n− 2 · γn,l · n i.o.

)

≤ P

(
n∑
i=1

Ui ≥ n · (1− 2 · α) + 2 · (α · n− γn,l · n) i.o.

)

≤ P

(
n∑
i=1

Ui ≥ n · (1− 2 · p1) + (1 + ν) · ψn i.o.

)
.

We know by Kolmogorov’s law of the iterated logarithm (cf., e.g., Theorem 1 on page
140 in Tucker (1967))

P

lim sup
n→∞

n∑
i=1

Ui − n · (1− 2 · p1)

ψn
= 1

 = 1,

from which we can conclude

P

(
n∑
i=1

Ui ≥ n · (1− 2 · p1) + (1 + ν) · ψn i.o.

)
= 0.

This completes the proof of (a).
(b) It suffices to show

(i) P
(
q̂X,n,γn,r > q

[up]
X,α + ε i.o.

)
= 0 for any ε > 0, and

(ii) P
(
q̂X,n,γn,r < q

[up]
X,α i.o.

)
= 0.

The proof of (i) is analogously to (i) in part (a). It remains to show (ii). Therefore set

Vi = 2 · I{
Xi<q

[up]
X,α

} − 1 for i = 1, ..., n

and
p2 = P

(
X < q

[up]
X,α

)
≤ α.

We have E {Vi} = 2p2 − 1 ≤ 2α− 1 and s̃ = V {Vi} = 4p2 · (1− p2). Observe that if

q̂X,n,γn,r < q
[up]
X,α,
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then
1

n

n∑
i=1

I{
Xi<q

[up]
X,α

} ≥ 1

n

n∑
i=1

I{Xi≤q̂X,n,γn,r} = Fn
(
q̂X,n,γn,r

)
≥ γn,r.

Thereby, we can analogously to (ii) in part (a) conclude

{
q̂X,n,γn,r < q

[up]
X,α

}
⊆

{
n∑
i=1

Vi ≥ 2 · γn,r · n− n

}
.

Again, set ψ̃ = (2 · n · s̃ · log (log (n · s̃)))1/2. Since 0 ≤ x · (1− x) ≤ 1
4 for x ∈ [0, 1], we

have (2n · log (log (n)))1/2 ≥ ψ̃n. The assumption on γn,r implies

γn,r − α ≥
1 + ν

2
·
√

2 · log (log (n))

n

for all n large enough. Thus, using 2 · α− 1 ≥ 2 · p2 − 1, we can conclude

P
(
q̂X,n,γn,l < q

[up]
X,α i.o.

)
≤ P

(
n∑
i=1

Vi ≥ n · (2 · p2 − 1) + (1 + ν) · ψ̃n i.o.

)

Again, by Kolmogorov’s law of the iterated logarithm, we get

P

(
n∑
i=1

Vi ≥ n · (2p2 − 1) + (1 + ν) · ψ̃n i.o.

)
= 0,

which completes the proof. �
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