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Abstract
A simulation model with an outcome Y = m(X) is considered, where X is an Rd-
valued random variable and m : Rd → R is a smooth function. Estimates of the αn–
quantile qm(X),αn of m(X) based on surrogate model of m and on importance sampling
are constructed which use at most n evaluations of the function m. Results concerning
the rate of convergence of the estimates are derived in case that αn → 1 (n → ∞) and
n · (1 − αn) → 0 (n → ∞). Finite sample behavior of the estimate is illustrated by
simulations.

AMS classification: Primary 62G05; secondary 62G30.
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1 Introduction

Let X, X1, X2, . . . be independent and identically distributed Rd–valued random vari-
ables, let m : Rd → R be a measurable function and set Y = m(X), Y1 = m(X1), . . . Let
Gm(X) be the cumulative distribution function (cdf) of m(X), i.e.,

Gm(X)(y) = P{m(X) ≤ y} (y ∈ R).

Let αn ∈ (0, 1) be such that

αn → 1 (n→∞) and n · (1− αn)→ 0 (n→∞), (1)

and let
qm(X),αn = inf{y ∈ R : Gm(X)(y) ≥ αn}

∗Running title: Estimation of quantiles
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be the quantile of m(X) of level αn. In this paper we consider the problem of estimating
qm(X),αn using at most n evaluations of the function m at arbitrarily chosen points.
A simple idea to estimate qm(X),αn is to use m(X1), . . . ,m(Xn) to compute the empir-

ical cdf

Ĝm(X),n(y) =
1

n

n∑
i=1

I{m(Xi)≤y} (2)

and to estimate the quantile by the corresponding plug-in estimate

q̂m(X),n,αn = min{z ∈ R : Ĝm(X),n(z) ≥ αn}. (3)

Since q̂m(X),n,αn is in fact an order statistic, results from order statistics can be used to
analyze its rate of convergence. More precisely, let Y1:n, . . . , Yn:n be the order statistics
corresponding to Y1 = m(X1), . . . , Yn = m(Xn), i.e., Y1:n, . . . , Yn:n is a permutation of
Y1, . . . , Yn satisfying

Y1:n ≤ Y2:n ≤ · · · ≤ Yn:n.

Then q̂m(X),n,α = Ydn·αne:n is the dn · αne = (n − (n − dn · αne + 1) + 1)–th order
statistics, where dze is the smallest integer greater than or equal to z ∈ R. In case that
αn = α ∈ (0, 1) for n ∈ N it is a so–called central order statistics, and, e.g., Theorem
8.5.1 in Arnold, Balakrishnan and Nagaraja (1992), implies that we have

√
n · g(qm(X),α) ·

q̂m(X),n,α − qm(X),α√
α · (1− α)

→ N(0, 1) in distribution,

whenever m(X) has a density g which is continuous and positive at qm(X),α. Thus

|q̂m(X),n,α − qm(X),α| = OP

(
1√
n

)
, (4)

where we write Xn = OP(Zn) if nonnegative random variables Xn and Zn satisfy

lim
c→∞

lim sup
n→∞

P{Xn > c · Zn} = 0.

Here the rate of convergence does not depend on the distribution of m(X).
In case that αn → 1 (n→∞) and n · (1− αn)→∞ (n→∞) we have dn · αne → ∞

(n → ∞), n − dn · αne + 1 → ∞ (n → ∞) and (n − dn · αne + 1)/n → 0 (n → ∞) and
q̂m(X),n,αn is so–called an intermediate order statistics. Assume that in this case m(X)
has a density g : R→ R which is positive on R+ and which satisfies one of the so–called
von Mises-type conditions (cf., e.g., Theorem 1 in Sweeting (1985)), i.e., for which (in
this case) one of the following two conditions hold:

lim
y→∞

g(y) ·
∫∞
y (1−Gm(X)(t)) dt

(1−Gm(X)(y))2
= 1 (5)

or
lim
y→∞

y · g(y)

1−Gm(X)(y)
∈ (0,∞). (6)

2



Then, e.g., Theorem 2.1 in Falk (1989) implies that
√
n · g(qm(X),αn)
√

1− αn
· (q̂m(X),n,αn − qm(X),αn)→ N(0, 1) in distribution,

from which we can conclude that

|q̂m(X),n,αn − qm(X),αn | = OP

( √
1− αn√

n · g(qm(X),αn)

)
. (7)

Here the rate of convergence depends on αn and the rate of decay of the density g. E.g., if
m(X) is exponentially distributed with expectation 1/λ (which implies
qm(X),αn = − log(1−αn)/λ and g(qm(X),αn) = λ · (1−αn)), then the rate of convergence
is 1/(

√
n ·
√

1− αn).
In case that αn → 1 (n → ∞) and n · (1 − αn) → 0 (n → ∞) we have dn · αne → ∞

(n→∞) and n− dn · αne+ 1→ 1 (n→∞). Consequently, q̂m(X),n,αn is an example of
an extreme order statistic, and for large n it is given by

q̂m(X),n,αn = max {m(X1), . . . ,m(Xn)} .

In this case the left-hand side of (7) does not in general converge to zero (since q̂m(X),n,αn

does not adapt for large n to the specific form of αn).
In this article we study the rates of convergence of estimates of qm(X),αn based on an

initial estimate (surrogate)

mn(·) = mn(·, (x1,m(x1)), . . . , (xn,m(xn))) : Rd → R (8)

of m. Here the estimate mn uses n evaluations of m at suitably chosen points x1, . . . ,
xn ∈ Rd. In Section 2 we will use polynomial splines to construct such an estimate in
case of a smooth function m : Rd → R (e.g., in case when m is k–times continuously
differentiable). Our estimates use this estimate of m together with either a sample X1,
. . . , XNn of X of size Nn > n or a given density f : Rd → R of X to construct estimates
ĜNn of the cumulative distribution function Gm(X) of m(X) and estimate the quantile
by the corresponding plug-in quantile estimate

q̂n,αn = min{z ∈ R : ĜNn(z) ≥ αn}.

The estimate ĜNn is constructed in two different ways. For our first estimate we use the
empirical cdf of the data

mn(X1), . . . ,mn(XNn), (9)

while for the second estimate we use importance sampling to construct from the given
density f of X a new sample and define ĜNn as a properly renormalized empirical
distribution function corresponding to the values of mn evaluated at this sample.
In Theorems 1 and 2 below we analyze the rates of convergence of our newly proposed

estimates. Of course the rates of convergence depend on the quality of the surrogate of
m. If its error is small then the first estimate achieves the same rate of convergence as
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the order statistics but with the sample size n replaced by the size Nn of the additional
sample of X. In any application there is an upper bound on the sample size Nn which
can be used in computing the estimate. Consequently, it is important how the rate of
convergence of the estimate depends on the number Nn of additional samples of X. Here
our result on the second estimate is useful: Due to the use of importance sampling its rate
of convergence decreases in Nn like 1/Nn in comparison to 1/

√
Nn for the first estimate.

Furthermore we illustrate the finite sample size behaviour of our estimates by applying
them to simulated data.
Extreme quantiles can be estimated by using methods from extreme value theory. The

main idea there is to characterize the tail behaviour of the cdf using a so-called extreme
value index, to estimate this extreme value index from data and to estimate extreme
quantiles by extrapolating moderate quantiles on the basis of the estimated extreme
value index (cf., e.g., Beirlant et al. (2004) and the literature cited therein). How this
method can be applied to the simulation model studied in this paper, i.e., how the sur-
rogate model can be used to estimate the extreme value index, has not been studied in
the literature and is not investigated in this paper. Instead we use importance sampling
(IS) combined with methods from curve estimation in our simulation model to construct
completely nonparametric estimates of extreme quantiles. There is a large body of liter-
ature on importance sampling for quantile estimation. Early papers on applications of
IS to Monte Carlo simulation include Glynn (1996). Efficient importance sampling for
ruin problems has been investigated by Blanchet and Liu (2010) and Glasserman et al.
(2002). Hong (2014) applied IS to computing value at risk using Monte Carlo techniques.
Similar results for heavy tailed distributions were obtained by Hult and Svensson (2009).
Chu and Nakayama (2012) and Nakayama (2014) studied confidence intervals for quan-
tile estimates using IS and Liu and Yang (2012) provide an analysis of the bootstrap
quantile variance estimator. Importance sampling has been applied to adaptive quantile
estimation by Egloff and Leippold (2010). Morio (2012) applied nonparametric adaptive
IS to extreme quantile estimation. Both papers do not contain any results concerning
the rate of convergence of the quantile estimates. As in the current paper importance
sampling has been applied in a simulation model in Kohler et al. (2014) and in Kohler,
Krzyżak and Walk (2014), whereas in each paper the rates of convergence of the estimates
have also been studied. The basic new idea in the current paper is that we evaluate the
surrogate (and not the function of the simulation model) on the importance sampling
sample, which enables us to use for this sample a much higher sample size. This in turn
enables us to study the estimation of quantiles of level αn where n ·(1−αn)→ 0 (n→ 0).

Importance sampling has also been used as standard variance reduction technique in
rare event simulation, see, e.g., Siegmund (1976), Dupuis and Wang (2005) and Asmussen
and Kroese (2006).
In order to construct the surrogate mn any kind of nonparametric regression estimate

suffices. For instance we can use kernel regression estimate (cf., e.g., Nadaraya (1964,
1970), Watson (1964), Devroye and Wagner (1980), Stone (1977, 1982) or Devroye and
Krzyżak (1989)), partitioning regression estimate (cf., e.g., Györfi (1981) or Beirlant
and Györfi (1998)), nearest neighbor regression estimate (cf., e.g., Devroye (1982) or
Devroye, Györfi, Krzyżak and Lugosi (1994)), orthogonal series regression estimate (cf.,
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e.g., Rafajłowicz (1987) or Greblicki and Pawlak (1985)), least squares estimates (cf.,
e.g., Lugosi and Zeger (1995) or Kohler (2000)) or smoothing spline estimates (cf., e.g.,
Wahba (1990) or Kohler and Krzyżak (2001)).
In the proofs of our results we apply a general result on the rate of convergence of

surrogate quantile estimates derived in Enss et al. (2014).
The definitions of the estimates are provided in Section 2, the main results are presented

in Section 3 and proven in Section 5. In Section 4 we illustrate the finite sample size
performance of our estimates by applying them to simulated data.

2 Definition of the estimates

2.1 Definition of the spline estimate of m

In order to define spline estimates of m, we introduce polynomial splines, i.e., sets of
piecewise polynomials satisfying a global smoothness condition, and a corresponding B-
spline basis consisting of basis functions with compact support as follows:
Choose K ∈ N and M ∈ N0, and set ln = (log n)γ for some γ > 0 and uk = k · ln/K

(k ∈ Z). For k ∈ Z let Bk,M : R → R be the univariate B-spline of degree M with knot
sequence (uk)k∈Z and support supp(Bk,M ) = [uk, uk+M+1]. In case M = 0 B-spline Bk,0
is the indicator function of the interval [uk, uk+1), and for M = 1 we have

Bk,1(x) =


x−uk

uk+1−uk , uk ≤ x ≤ uk+1,
uk+2−x

uk+2−uk+1
, uk+1 < x ≤ uk+2,

0 , elsewhere,

(so-called hat-function). The general recursive definition of Bk,M can be found, e.g., in
de Boor (1978), or in Section 14.1 of Györfi et al. (2002). These B-splines are basis
functions of sets of univariate piecewise polynomials of degree M , where the piecewise
polynomials are globally (M − 1)–times continuously differentiable and where the M -th
derivatives of the functions have jump points only at the knots ul (l ∈ Z).

For k = (k1, . . . , kd) ∈ Zd we define the tensor product B-spline Bk,M : Rd → R by

Bk,M (x(1), . . . , x(d)) = Bk1,M (x(1)) · . . . ·Bkd,M (x(d)) (x(1), . . . , x(d) ∈ R).

With these functions we define SK,M as the set of all linear combinations of all those
tensor product B-splines above, whose support has nonempty intersection with Kn =
[−ln, ln]d, i.e., we set

SK,M =

 ∑
k∈{−K−M,−K−M+1,...,K−1}d

ak ·Bk,M : ak ∈ R

 .

It can be shown by using standard arguments from spline theory, that the functions in
SK,M are in each component (M − 1)-times continuously differentiable and that they
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are equal to a (multivariate) polynomial of degree less than or equal to M (in each
component) on each rectangle

[uk1 , uk1+1)× · · · × [ukd , ukd+1) (k = (k1, . . . , kd) ∈ Zd), (10)

and that they vanish outside the set[
−ln −M ·

ln
K
, ln +M · ln

K

]d
.

Next we define spline approximations using so-called quasi interpolants: For a continuous
function m : Rd → R we define an approximating spline by

(Qm)(x) =
∑

k∈{−K−M,−K−M+1,...,K−1}d
Qkm ·Bk,M

where
Qkm =

∑
j∈{0,1,...,M}d

ak,j ·m(tk1,j1 , . . . , tkd,jd)

for some ak,j ∈ R and some suitably chosen points

tk,j ∈ supp(Bk,M ) = [k · ln/K, (k +M + 1) · ln/K].

It can be shown that if we set

tk,j = k · ln
K

+
j

M
· ln
K

(j ∈ {0, . . . ,M}, k ∈ {−K,−K + 1, . . . ,K − 1})

and

tk,j = −ln +
j

M
· ln
K

(j ∈ {0, . . . ,M}, k ∈ {−K −M,−K −M + 1, . . . ,−K − 1}),

then there exist coefficients ak,j (which can be computed by solving a linear equation
system), such that

|Qkf | ≤ c1 · ‖f‖∞,[uk1
,uk1+M+1]×···×[ukd ,ukd+M+1] (11)

for any k ∈ Zd, any continuous f : Rd → R and some universal constant c1, and such that
Q reproduces polynomials of degree M or less (in each component) on Kn = [−ln, ln]d,
i.e., for any multivariate polynomial p : Rd → R of degree M or less in each component
we have

(Qp)(x) = p(x) (x ∈ Kn) (12)

(cf., e.g., Theorem 14.4 and Theorem 15.2 in Györfi et al. (2002)).
Next we define our estimate mn as a quasi interpolant. We fix the degree M ∈ N and

set

K =

⌊
bn1/dc − 1

2M

⌋
,
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where we assume that n ≥ (2M + 1)d. Furthermore we choose x1, . . . , xn such that all
of the (2M ·K + 1)d points of the form(

j1
M ·K

· ln, . . . ,
jd

M ·K
· ln
)

(j1, . . . , jd ∈ {−M ·K,−M ·K + 1, . . . ,M ·K})

are contained in {x1, . . . , xn}, which is possible since (2M ·K + 1)d ≤ n. Then we define

mn(x) = (Qm)(x),

where Qm is the above defined quasi interpolant satisfying (11) and (12). The compu-
tation of Qm requires only function values of m at the points x1, . . . , xn and hence mn

is well defined.
Let p = k + s for some k ∈ N0 and some s ∈ (0, 1]. A function m : Rd → R is called

(p, C)-smooth, if for every α = (α1, . . . , αd) ∈ Nd0 with
∑d

j=1 αj = k the partial derivative
∂km

∂x
α1
1 ...∂x

αd
d

exists and satisfies

∣∣∣∣ ∂km

∂xα1
1 . . . ∂xαdd

(x)− ∂km

∂xα1
1 . . . ∂xαdd

(z)

∣∣∣∣ ≤ C · ‖x− z‖s
for all x, z ∈ Rd. It follows from spline theory (cf., e.g., proof of Theorem 1 in Kohler
(2014)) that if m is (p, C)-smooth for some 0 < p ≤ M + 1 then the above quasi
interpolant mn satisfies for some constant c2 > 0

‖mn −m‖∞,Kn := sup
x∈Kn

|mn(x)−m(x)| ≤ c2 ·
lpn

np/d
, (13)

where
Kn = [−ln, ln]d = [−(log n)γ , (log n)γ ]d . (14)

2.2 The first quantile estimate

For our first estimate we start by estimating the cdf Gm(X) of m(X) by the empirical
cdf corresponding to the data (9), i.e., by

Ĝmn(X),Nn(y) =
1

Nn

Nn∑
i=1

I{mn(Xi)≤y} (y ∈ R). (15)

Then we construct the plug-in estimate of our quantile qm(X),αn , i.e., we define

q̂mn(X),Nn,αn = inf
{
y ∈ R : Ĝmn(X),Nn(y) ≥ αn

}
. (16)

In this case our estimate is the dNn · αne–th order statistic of the data (9).
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2.3 The second quantile estimate

For our second estimate we assume that besides our surrogate mn and the set Kn (cf.,
(14)) where it approximates mn with supremum norm error δn > 0 we are also given a
(possible random) sequence ηn ≥ 3 · δn such that

P
{∣∣q̂mn(X),Nn,αn − qm(X),αn

∣∣ > ηn/3
}
→ 0 (n→∞) (17)

and the density f : Rd → R of X (which we assume to exist). We define a new density
hn by

hn(z) =
1

cn
·
(

1{z∈Kn:|mn(z)−q̂mn(X),Nn,αn |≤ηn} + 1{z /∈Kn}

)
· f(z), (18)

where
cn =

∫
Rd

(
1{z∈Kn:|mn(z)−q̂mn(X),Nn,αn |≤ηn} + 1{z /∈Kn}

)
· f(z) dz. (19)

Let Z, Z1, Z2, . . . be independent and identically distributed Rd–valued random variables
with density hn, and set

ᾱn =
αn − bn
cn

, (20)

where
bn =

∫
Rd

1{z∈Kn:mn(z)<q̂mn(X),Nn,αn−ηn} · f(z) dz.

We estimate the cdf of m(X) using mn(Z1), . . . , mn(ZNn) by a properly renormalized
version of the corresponding empirical cdf, i.e., by

Ĝ(y) = cn ·
1

Nn

Nn∑
i=1

I{mn(Zi)≤y} + bn (y ∈ R)

and define the quantile estimate q̂(IS)
mn(Z),Nn,ᾱn

by the corresponding plug-in quantile esti-
mate, i.e., by

q̂
(IS)
mn(Z),Nn,ᾱn

= inf
{
y ∈ R : Ĝ(y) ≥ αn

}
= inf

{
y ∈ R : Ĝmn(Z),Nn(y) ≥ ᾱn

}
, (21)

where

Ĝmn(Z),Nn(y) =
1

Nn

Nn∑
i=1

I{mn(Zi)≤y} (y ∈ R). (22)

3 Main results

Our first result yields an upper bound on the rate of convergence of the surrogate quantile
estimate q̂mn(X),Nn,αn .
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Theorem 1. Let X be an Rd–valued random variable, let m : Rd → R be measurable
and assume that m(X) has a density g : R→ R which is positive on R+ and satisfies (5)
or (6). Let αn ∈ (0, 1), let Nn ∈ N be such that

αn → 1 (n→∞) and Nn · (1− αn)→∞ (n→∞). (23)

Let mn and q̂mn(X),Nn,αn be defined as in Section 2 and assume that

sup
x∈Kn

|mn(x)−m(x)| ≤ δn (24)

and
Nn ·P{X /∈ Kn} → 0 (n→∞). (25)

Then ∣∣q̂mn(X),Nn,αn − qm(X),αn

∣∣ = OP

(
δn +

√
1− αn√

Nn · g(qm(X),αn)

)
. (26)

In particular in case that we have for some ε ∈ (0, 1) and c3 > 0

g(qm(X),αn) ≥ c3 · (1− αn)1+ε (27)

for sufficiently large n it follows

∣∣q̂mn(X),Nn,αn − qm(X),αn

∣∣ = OP

(
δn +

1√
Nn · (1− αn)1/2+ε

)
. (28)

Remark 1. In case that m(X) has a Gamma distribution, condition (27) holds for any
ε > 0. Because in this case we have for any δ > 0 and suitable constants β, c4, c5 > 0

c4 · e−(β+δ)·y ≤ g(y) ≤ c5 · e−(β−δ)·y,

which implies

1− αn =

∫ ∞
qm(X),αn

g(y) dy ≤ c5

β − δ
· e−(β−δ)·qm(X),αn .

From this we conclude

g(qm(X),αn) ≥ c4 · exp

(
−(β + δ) · 1

β − δ
·
(

log
c5

β − δ
− log(1− αn)

))
≥ c6(1− αn)1+ε,

where
ε =

2

β − δ
· δ.
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Corollary 1. Let X be an Rd-valued random variable, p, C > 0 and let m : Rd → R
be a (p, C)–smooth function. Let mn be the spline interpolant defined in Subsection 2.1
with M + 1 ≥ p and ln = (log n)γ. Assume that m(X) has a density g : R→ R which is
positive on R+ and satisfies (5) or (6). Let αn ∈ (0, 1) be such that

αn → 1 (n→∞) and n2 · (1− αn)→∞ (n→∞).

Set Nn = n2 and let q̂mn(X),Nn,αn be defined as in Subsection 2.2. Assume

n2 ·P{X /∈ [−(log n)γ , (log n)γ ]d} → 0 (n→∞).

Then ∣∣q̂mn(X),Nn,αn − qm(X),αn

∣∣ = OP

(
(log n)γ·p

np/d
+

√
1− αn

n · g(qm(X),αn)

)
.

In particular it follows that

∣∣q̂mn(X),Nn,αn − qm(X),αn

∣∣ = OP

(
(log n)γ·p

np/d
+

1

n · (1− αn)1/2+ε

)
whenever (27) holds for some ε ∈ (0, 1) and c3 > 0 for sufficiently large n.

Proof. Follows directly from Theorem 1 and (13). �

Remark 2. Under the assumptions of Corollary 1 it is possible to estimate quantiles of
level

αn = 1− n−r

consistently for any 0 < r < 2/(1 + 2 · ε).

Theorem 2. Let X be an Rd–valued random variable, let m : Rd → R be measurable and
assume that m(X) has a density g : Rd → R which is positive on R+ and satisfies (5) or
(6). Let αn ∈ (0, 1) and Nn ∈ N be such that (23) holds. Let the importance sampling
surrogate quantile estimate q̂(IS)

mn(X),Nn,ᾱn
be defined as in Section 2 using some surrogate

mn and some (possibly random) ηn ≥ 3 · δn > 0 satisfying (24) and the following three
conditions:

P{|q̂mn(X),Nn,αn − qm(X),αn | > ηn/3} → 0 (n→∞), (29)

ηn ≥
P{X /∈ Kn}

sup{g(z) : |qm(X),αn − z| ≤ 3 · ηn}
(30)

and
log n√
Nn
·

sup{g(z) : |qm(X),αn − z| ≤ 3 · ηn}
inf{g(z) : |qm(X),αn − z| ≤

ηn
3 }

→ 0 in probability. (31)

Assume that outside of an event, whose probability tends to zero for n→∞,

Nn ·P{X /∈ Kn}
cn

→ 0 (n→∞) (32)

10



holds. Then∣∣∣q̂(IS)
mn(Z),Nn,ᾱn

− qm(X),αn

∣∣∣
= OP

(
log(n) · δn +

log(n) · ηn√
Nn

·
sup{g(y) : y ∈ [qm(X),αn − 3ηn, qm(X),αn + 3ηn]}
inf{g(y) : y ∈ [qm(X),αn − 3ηn, qm(X),αn + 3ηn]}

)
.

Remark 3. The techniques used in the proof of Theorem 2 in order to bound cn imply
that (32) is in particular satisfied, if

Nn ·P{X /∈ Kn}
ηn · inf{g(y) : y ∈ [qm(X),αn − ηn/3, qm(X),αn + ηn/3]}

→ 0 in probability.

Remark 4. Values of Z1, Z2, . . . can be constructed using a rejection method. To do
this one selects from values of X1, X2, . . . successively all those values x = Xi where
either x ∈ Kn and |mn(x)− q̂mn(X),Nn,αn | ≤ ηn hold or where x /∈ Kn holds. In this case
Monte Carlo estimates of bn and cn can be used in order to compute ᾱn approximately.

Remark 5. In the proof of Theorem 2 we show that the assumptions of Theorem 2 imply
that outside of an event, whose probability tends to zero for n → ∞, all Z1, . . . , ZNn
are contained in Kn. Hence if we construct the values of Z1, . . . , ZNn by the rejection
method described in Remark 4, then outside of an event, whose probability tends to zero
for n → ∞, all considered values of x = Xi satisfy x ∈ Kn. This implies that outside
of an event, whose probability tends to zero for n → ∞, the sample of size Nn of the
density hn is identical to a sample of size Nn of the density

h̄n(z) =
1

c̄n
· 1{z∈Rd:|mn(z)−q̂mn(X),Nn,αn |≤ηn} · f(z),

where
c̄n =

∫
Rd

1{z∈Rd:|mn(z)−q̂mn(X),Nn,αn |≤ηn} · f(z) dz.

But if the samples from two different distributions are equal, then also the importance
sampling quantile estimates based on the two different densities are equal. Consequently,
Theorem 2 also holds if we replace the density hn by h̄n, which has the advantage that
construction of the estimate does not require knowledge of the set Kn. We implement
the estimate in this way in the next section.

Corollary 2. Let the importance sampling surrogate quantile estimate q̂(IS)
mn(X),Nn,ᾱn

be
defined as in Section 2 using

ηn = log(n) · δn +
log n√

Nn · (1− αn)1/2+ε
(33)

and Nn ≥ n. Assume that (23), (24) and

N
3/2
n

(log n) · (1− αn)1/2
·P{X /∈ Kn} → 0 (n→∞) (34)
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hold. Assume furthermore that the density g of m(X) satisfies

lim sup
n→∞

sup{g(y) : y ∈ [qm(X),αn − 3 · ηn, qm(X),αn + 3 · ηn]}
inf{g(y) : y ∈ [qm(X),αn − 3 · ηn, qm(X),αn + 3 · ηn]}

<∞ (35)

and, for n sufficiently large and some ε > 0 and c7 > 0,

g(qm(X),αn) ≥ c7 · (1− αn)1+ε. (36)

Then ∣∣∣q̂(IS)
mn(Z),Nn,ᾱn

− qm(X),αn

∣∣∣ = OP

(
log n · δn +

log2(n)

Nn · (1− αn)1/2+ε

)
. (37)

Proof. By Theorem 1 we know that (29) is satisfied. Furthermore, (34), (35), (36) and
Remark 3 imply that (30) and (32) hold. Trivially, (35) and Nn ≥ n imply (31). Hence
the assumption of Theorem 2 are satisfied from which we conclude (via (35) and the
definition of ηn) the assertion. �

Corollary 3. Let the spline interpolant mn be defined as in Corollary 1, set Nn = n2

and let the quantile estimate q̂(IS)
mn(X),Nn,ᾱn

be defined as in Theorem 2. Assume that
m is (p, C)–smooth and that the assumption of Corollary 2 are satisfied for Kn =
[−(log n)γ , (log n)γ ]d. Then∣∣∣q̂(IS)

mn(Z),Nn,ᾱn
− qm(X),αn

∣∣∣ = OP

(
(log n)γ·p+1

np/d
+

log2(n)

n2 · (1− αn)1/2+ε

)
.

Proof. Follows directly from Corollary 2 and (13). �

Remark 6. Under the assumptions of Corollary 3 it is possible to estimate quantiles of
level

αn = 1− n−r

consistently for any 0 < r < 4/(1 + 2 · ε).

Remark 7. In any application of the above estimate we have to choose ηn in some data-
dependent way. To do this we propose to estimate separately the error of the surrogate
and the error of the Monte Carlo approximation of the quantile corresponding to the
surrogate. The error of the surrogate can be estimated by splitting the data used in
the computation of the surrogate randomly into two parts of approximately equal size,
by computing the surrogate with the first part of the data and by evaluating it on the
second part. Here we propose to estimate the error of the surrogate by 10 times the
average of the absolute pointwise errors of the surrogate on the second part of the data.
In order to estimate the error due to the Monte Carlo approximation of the quantile
corresponding to the surrogate, we propose to split the data used in the computation of
the data into five parts of approximately equal sizes, to compute with each part of the
data the quantile estimate and to use the maximal deviation between these five quantile
estimates as the estimate of the error. Then we propose to choose ηn as the sum of the
above two estimated errors. In the next section we will investigate the performance of
this data-dependent choice of ηn by applying it to simulated data.

12



4 Application to simulated data

In this section we study the finite sample size behaviour of three different quantile es-
timates. The first one (order stat.) is the order statistics estimate defined by (3). The
second one (sur. quant.) is the Monte Carlo surrogate quantile estimate of Section 2,
but instead of a quasi-interpolant we use a smoothing spline (as implemented in the rou-
tine Tps() in R with smoothing parameter chosen by the generalized cross-validation as
implemented in this routine). Since we apply it to data where the function is observed
without additional error (i.e., in a noiseless regression estimation problem), this estimate
results in an interpolating spline which gives similar result as the quasi-interpolant in
Section 2, but is easier to implement. For our third estimate (imp. quant.) we imple-
ment our importance sampling surrogate sampling estimate as described in Remarks 4
and 5, and use the data-depend choice of ηn described in Remark 7.

We compare these three quantile estimates in three different models. In the first model
the dimension of X is d = 1 and

m(x) = exp(x) (x ∈ R).

In the second model the dimension of X is d = 2 and

m(x(1), x(2)) = 50 · exp
(
−(x(1))2 − (x(2))2

)
(x(1), x(2) ∈ R).

Finally in the third model the dimension of X is d = 4 and

m(x) =
√

1 + ‖x‖2.

Each time the d components of X are independent standard normally distributed random
variables.
For all three estimates the sample sizes are chosen as n = 100, n = 300, n = 1000 and

n = 3000. For the surrogate quantile estimate we use additional Nsur.quant. = 10·n values
of X, and the importance sampling surrogate quantile estimate selects its sample of Z
from additional Nimp.samp.quant. = 5 ·Nsur.quant. = 50 · n values of X using the rejection
method of Remark 4. Here the importance sampling surrogate quantile estimate uses
a larger number of additional values of X than the surrogate quantile estimate since
it needs to store and sort only the part of this data, which is selected by the rejection
method and which is only a small part of this data, and can therefore be computed for
much larger data sets than the surrogate quantile estimate.
The estimates are applied in all three models and with the four different sample sizes

in order to estimate quantiles of level α = 0.995 and α = 0.999. In each case the
estimates are applied to 100 different independent random samples, and the average
relative absolute errors, i.e., the average of the absolute errors divided by the quantile
(and in brackets its standard deviation), are listed in Table 1.
In all simulations in Table 1 the surrogate quantile estimate is better than the simple

order statistics estimate, in the simulations with dimension d ∈ {1, 2} its error is less
than half of the error of the simple order statistics estimate and for d = 4 its error is again

13



much smaller if the sample size is greater than 300. Most of the time the importance
sampling quantile estimate is in turn much better than the surrogate quantile estimate,
especially for n = 3000 its error is less than half of the error of the surrogate quantile
estimate for d ∈ {1, 2} and still substantially better for d = 4.
In Theorems 1 and 2 the error bounds on the quantile estimates consist of a sum of two

terms, where compared to Theorem 1 in Theorem 2 only the second term is improved.
Hence if the first term (which is related to the error of the surrogate estimate of m)
dominates the sum of the two terms, we cannot expect that the importance sampling
quantile estimate improves the surrogate quantile estimate. To illustrate this effect, we
repeat the simulations of Table 1 for n = 300 with the size of the additional sample of X
drastically increased (which decreases the second part of the error bound). The results
are presented in Table 2. Here the importance sampling quantile estimate improves the
surrogate quantile estimate in four out of six cases, but in most cases only slightly. It
should be noted that the computation of the surrogate quantile estimate with such a large
amount of additional data is in general not feasible since it is extremely time consuming.
Also this effect will disappear as soon as the quality of the surrogate estimate is improved.
Finally we illustrate the usefulness of our newly proposed estimate by applying it to

an engineering simulation model which was already presented in Enss et al. (2015), but
which we present here again for the sake of completeness. Here we consider a physical
model of a spring-mass-damper with active velocity feedback for the purpose of vibration
isolation (cf., Figure 1). The aim is to analyze the uncertainty occuring in the maximal

Figure 1: Spring-mass-damper with active velocity feedback (Platz and Enss (2015)).

magnification |Vmax| of the vibration amplitude in case that four parameters of the
system, namely the system’s mass (m), the spring’s rigidity (k), the damping (b) and
the active velocity feedback (g), are varied according to prespecified random processes.
Based on the physical model of the spring-mass-damper, we are able to compute for given
values of the above parameters the corresponding value of the maximal magnification

|Vmax| = f(m, k, b, g)

of the vibration amplitude by a MATLAB program (cf., Platz and Enss (2015)), which
needs approximately 0.2 seconds for one function evaluation. So our function |Vmax|

14



is given by this MATLAB program, and computation of 300 function evaluations can
be easily completed in approximately one minute, but computation of 100,000 values
requires about 5.5 hours.
Our main interest is to predict the uncertainty of the maximal magnification of the

vibration amplitude in case of uncertainty in the parameters of the spring-mass-damper.
Here we model this uncertainty in the parameters by assuming that the parameters are
realizations of normally distributed random variables with means and standard deviations
derived from conditions typically occurring in practice. More precisely, we assume that
the means of m, k, b and g are 1 kg, 1000 N/m, 0.095 Ns/m and 45 Ns/m, respectively,
and their standard deviations are 0.017 kg, 33.334 N/m, 0.009 Ns/m, and 2.25 Ns/m,
respectively.
We decribe the uncertainty in the corresponding (random) maximal magnification of

the vibration amplitude by a confidence interval which contains the random value with
probability 0.99. We estimate such a confidence interval by using estimates of the 0.995
and 0.005 quantile as upper and lower bounds of the interval, respectively. We use
an order statistics with sample size n = 100, 000 to compute a reference value for this
confidence interval. This results in |Vmax| ∈ [0, 0.2522] dB. But if we want to estimate
this interval using only n = 300 evaluations of our function, we get with order statistics,
the surrogate quantile estimate (with 3, 000 additional values of X) and the importance
sampling quantile estimate (with 15, 000 additional values of X) the intervals [0, 0.2987]
dB, [0, 0.2168] dB and [0, 0.2386] dB, resp. As we can see, the estimated interval of the
importance sampling quantile estimate is much closer to our reference interval than the
result of other two estimates.

5 Proofs

6 Proof of Theorem 1

Since (28) is an easy consequence of (26) and (27), we only have to prove (26). Let An
be the event that X1, . . . , XNn are all contained in Kn. By (25) we know that

P(Acn) ≤ Nn ·P{X /∈ Kn} → 0 (n→∞).

If An holds, then we have for any i ∈ {1, . . . , Nn}

|mn(Xi)−m(Xi)| ≤ δn ≤
2 · δn

2
+

1

2
· |qm(X),αn −m(Xi)|,

from which we conclude by Theorem 1 in Enss et al. (2014)

|q̂mn(X),Nn,αn − qm(X),αn | ≤ 2 · δn + 2 · |q̂m(X),Nn,αn − qm(X),αn |.

This implies

lim
c→∞

lim sup
n→∞

P

{∣∣q̂mn(X),Nn,αn − qm(X),αn

∣∣ > c ·

(
δn +

√
1− αn√

Nn · g(qm(X),αn)

)}
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≤ lim
c→∞

lim sup
n→∞

(
P(Acn) + P

{
2 · δn + 2 · |q̂m(X),Nn,αn − qm(X),αn |

> c ·

(
δn +

√
1− αn√

Nn · g(qm(X),αn)

)})

≤ lim
c→∞

lim sup
n→∞

P

{
2 · |q̂m(X),Nn,αn − qm(X),αn | > c ·

√
1− αn√

Nn · g(qm(X),αn)

}
= 0,

where the last equality follows from (7). �

7 Proof of Theorem 2

Set
q̂

(IS)
m(Z),Nn,ᾱn

= inf
{
y ∈ R : Ĝm(Z),Nn(y) ≥ ᾱn

}
,

where

Ĝm(Z),Nn(y) =
1

Nn

Nn∑
i=1

I{m(Zi)≤y} (y ∈ R).

In the first step of the proof we observe that Z1, . . . , ZNn ∈ Kn implies

|q̂(IS)
mn(Z),Nn,ᾱn

− qm(Z),ᾱn | ≤ 2 · δn + 2 · |q̂(IS)
m(Z),Nn,ᾱn

− qm(Z),ᾱn |. (38)

As in the proof of Theorem 1 this follows by an application of Theorem 1 in Enss et al.
(2014).
In the second step of the proof we show that

Nn ·P{Z /∈ Kn} → 0 (n→∞) (39)

holds outside of an event, whose probability tends to zero for n → ∞. (Observe that
the distribution of Z is random because it depends on the initial quantile estimate and
therefore also the probability on the left-hand side of (39) is random).
Since

Nn ·P{Z /∈ Kn} = Nn ·
∫
Rd

1{z /∈Kn} · hn(z) dz

= Nn ·
∫
Rd

1

cn
· 1{z /∈Kn} · f(z) dz

=
Nn ·P{X /∈ Kn}

cn

the assertion of step 2 follows directly from (32).
In the third step of the proof we show that outside of an event, whose probability tends

to zero for n→∞, we have for all y ∈ [qm(X),αn −
ηn
3 , qm(X),αn + ηn

3 ]

Gm(Z)(y) =
Gm(X)(y)− bn

cn
, (40)
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where Gm(Z)(y) = P{m(Z) ≤ y} is the cdf of m(Z). Let Cn be the event that
|q̂mn(X),Nn,αn − qm(X),αn | ≤ ηn/3. By (29) we know that P{Cn} → 1 (n→∞).
Let y ∈ [qm(X),αn −

ηn
3 , qm(X),αn + ηn

3 ]. On Cn we have for any x ∈ Kn with m(x) ≤ y

mn(x) ≤ m(x) + δn ≤ y + δn ≤ qm(X),αn +
ηn
3

+ δn ≤ q̂mn(X),Nn,αn + ηn,

and for any z ∈ Kn with mn(z) < q̂mn(X),Nn,αn − ηn

m(z) ≤ mn(z) + δn ≤ q̂mn(X),Nn,αn − ηn + δn ≤ qm(X),αn −
ηn
3
≤ y.

Hence we have
1{m(x)≤y} · 1{x∈Kn :mn(x)>q̂mn(X),Nn,αn+ηn} = 0

and

1{m(x)≤y} · 1{x∈Kn :mn(x)<q̂mn(X),Nn,αn−ηn} = 1{x∈Kn :mn(x)<q̂mn(X),Nn,αn−ηn},

which implies

Gm(Z)(y)

= P{m(Z) ≤ y}

=

∫
Rd

1{m(z)≤y} · hn(z) dz

=

∫
Rd

1{m(z)≤y} ·
1

cn
·
(

1− 1{z∈Kn :mn(z)<q̂mn(X),Nn,αn−ηn}

−1{z∈Kn :mn(z)>q̂mn(X),Nn,αn+ηn}

)
· f(z) dz

=
1

cn

(∫
Rd

1{m(z)≤y} · f(z) dz −
∫
Rd

1{z∈Kn :mn(z)<q̂mn(X),Nn,αn−ηn} · f(z) dz

)
=

1

cn
·
(
Gm(X)(y)− bn

)
.

In the fourth step of the proof we show that outside of an event, whose probability
tends to zero for n→∞, we have

qm(Z),ᾱn = qm(X),αn . (41)

By the definition of qm(X),αn and by the third step we know that outside of an event,
whose probability tends to zero for n→∞, we have for y ∈ [qm(X),αn −

ηn
3 , qm(X),αn)

Gm(Z)(y) =
Gm(X)(y)− bn

cn
<
αn − bn
cn

= ᾱn

and for y ∈ [qm(X),αn , qm(X),αn + ηn
3 ]

Gm(Z)(y) =
Gm(X)(y)− bn

cn
≥ αn − bn

cn
= ᾱn.
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This implies the assertion of the fourth step.
As a consequence of the fourth step of the proof we assume from now on w.l.o.g. that

(41) holds.
In the fifth step of the proof we show that the assertion of Theorem 2 follows from∣∣∣q̂(IS)

m(Z),Nn,ᾱn
− qm(Z),ᾱn

∣∣∣ (42)

= OP

(
log(n) · δn +

log(n) · ηn√
Nn

·
sup{g(y) : y ∈ [qm(X),αn − 3ηn, qm(X),αn + 3ηn]}
inf{g(y) : y ∈ [qm(X),αn − 3ηn, qm(X),αn + 3ηn]}

)
.

This is a direct consequence of the steps 1 through 4, since by these steps we know that
outside of an event, whose probability tends to zero for n→∞, we have∣∣∣q̂(IS)

mn(Z),Nn,ᾱn
− qm(X),αn

∣∣∣ =
∣∣∣q̂(IS)
mn(X),Nn,ᾱn

− qm(Z),ᾱn

∣∣∣
≤ 2 · δn + 2 · |q̂(IS)

m(Z),Nn,ᾱn
− qm(Z),ᾱn |.

In the sixth step of the proof we show that outside of an event, whose probability tends
to zero for n→∞, we have for all y ∈ [qm(X),αn −

ηn
3 , qm(X),αn + ηn

3 ]

∣∣Gm(Z)(y)−Gm(Z)(qm(Z),ᾱn)
∣∣ =

1

cn
·
∫

[min{y,qm(X),αn},max{y,qm(X),αn}]
g(z) dz.

This follows by applying the result of the third step, which yields

∣∣Gm(Z)(y)−Gm(Z)(qm(Z),ᾱn)
∣∣ =

∣∣∣∣Gm(X)(y)− bn
cn

−
Gm(X)(qm(Z),ᾱn)− bn

cn

∣∣∣∣
=

1

cn
·
∣∣Gm(X)(y)−Gm(X)(qm(Z),ᾱn)

∣∣
=

1

cn
·
∫

[min{y,qm(X),αn},max{y,qm(X),αn}]
g(z) dz.

In the seventh step of the proof we show that outside of an event, whose probability
tends to zero for n→∞, we have∣∣∣q̂(IS)

m(Z),Nn,ᾱn
− qm(Z),ᾱn

∣∣∣ ≤ ηn
6
. (43)

(43) is implied by

Ĝm(Z),Nn

(
qm(Z),ᾱn −

ηn
6

)
< ᾱn ≤ Ĝm(Z),Nn

(
qm(Z),ᾱn +

ηn
6

)
.

Observing

sup
t∈R

∣∣∣Gm(Z)(t)− Ĝm(Z),Nn(t)
∣∣∣ = OP

(
1√
Nn

)
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which follows from the Dvoretzky-Kiefer-Wolfowitz inequality (cf., e.g., Massart (1990)),
we see that for (43) it suffices to show that we have outside of an event, whose probability
tends to zero for n→∞,

Gm(Z)

(
qm(Z),ᾱn −

ηn
6

)
< ᾱn −

log n√
Nn

(44)

and
Gm(Z)

(
qm(Z),ᾱn +

ηn
6

)
> ᾱn +

log n√
Nn

. (45)

Let Cn again be the event that |q̂mn(X),Nn,αn − qm(X),αn | ≤ ηn/3. On Cn we have by the
result of step 6 for n sufficiently large

ᾱn −Gm(Z)

(
qm(Z),ᾱn −

ηn
6

)
= Gm(Z)

(
qm(Z),ᾱn

)
−Gm(Z)

(
qm(Z),ᾱn −

ηn
6

)
=

1

cn
·
∫ qm(Z),ᾱn

qm(Z),ᾱn−
ηn
6

g(z) dz

=

∫ qm(Z),ᾱn

qm(Z),ᾱn−
ηn
6
g(z) dz∫

Rd

(
1{z∈Kn:|mn(z)−q̂mn(X),Nn,αn |≤ηn} + 1{z /∈Kn}

)
· f(z) dz

≥

∫ qm(Z),ᾱn

qm(Z),ᾱn−
ηn
6
g(z) dz∫

Rd

(
1{z∈Kn:|m(z)−qm(X),αn |≤3·ηn} + 1{z /∈Kn}

)
· f(z) dz

≥
ηn
6 · inf{g(z) : |qm(X),αn − z| ≤

ηn
6 }

6 · ηn · sup{g(z) : |qm(X),αn − z| ≤ 3 · ηn}+ P{X /∈ Kn}

≥ 1

42
·

inf{g(z) : |qm(X),αn − z| ≤
ηn
3 }

sup{g(z) : |qm(X),αn − z| ≤ 3 · ηn}
,

where the last inequality is implied by (30). Application of (31) yields (44). Analogously
we obtain (45), which completes the proof of the seventh step.
In the eighth step of the proof we show that∣∣∣Gm(Z)(q̂

(IS)
m(Z),Nn,ᾱn

)−Gm(Z)(qm(Z),ᾱn)
∣∣∣ = OP

(
1√
Nn

)
. (46)

The definition of q̂(IS)
m(Z),Nn,ᾱn

implies that we have for arbitrary ε > 0∣∣∣Gm(Z)(q̂
(IS)
m(Z),Nn,ᾱn

)−Gm(Z)(qm(Z),ᾱn)
∣∣∣

≤
∣∣∣Gm(Z)(q̂

(IS)
m(Z),Nn,ᾱn

)− Ĝm(Z),Nn(q̂
(IS)
m(Z),Nn,ᾱn

)
∣∣∣+
∣∣∣Ĝm(Z),Nn(q̂

(IS)
m(Z),Nn,ᾱn

)− ᾱn
∣∣∣

+
∣∣ᾱn −Gm(Z)(qm(Z),ᾱn)

∣∣
≤
∣∣∣Gm(Z)(q̂

(IS)
m(Z),Nn,ᾱn

)− Ĝm(Z),Nn(q̂
(IS)
m(Z),Nn,ᾱn

)
∣∣∣
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+Ĝm(Z),Nn(q̂
(IS)
m(Z),Nn,ᾱn

)− Ĝm(Z),Nn(q̂
(IS)
m(Z),Nn,ᾱn

− ε) +
∣∣ᾱn −Gm(Z)(qm(Z),ᾱn)

∣∣
≤
∣∣∣Gm(Z)(q̂

(IS)
m(Z),Nn,ᾱn

)− Ĝm(Z),Nn(q̂
(IS)
m(Z),Nn,ᾱn

)
∣∣∣

+
∣∣∣Ĝm(Z),Nn(q̂

(IS)
m(Z),Nn,ᾱn

)−Gm(Z)(q̂
(IS)
m(Z),Nn,ᾱn

)
∣∣∣

+
∣∣∣Gm(Z)(q̂

(IS)
m(Z),Nn,ᾱn

)−Gm(Z)(q̂
(IS)
m(Z),Nn,ᾱn

− ε)
∣∣∣

+
∣∣∣Gm(Z)(q̂

(IS)
m(Z),Nn,ᾱn

− ε)− Ĝm(Z),Nn(q̂
(IS)
m(Z),Nn,ᾱn

− ε)
∣∣∣+
∣∣ᾱn −Gm(Z)(qm(Z),ᾱn)

∣∣ .
The third step of the proof implies that ouside of an event, whose probability tends to
zero for n→∞, Gm(Z) is continuous in a neighborhood of qm(X),αn and satisfies

Gm(Z)(qm(Z),ᾱn) = ᾱn.

>From this and step 7 we can conclude∣∣∣Gm(Z)(q̂
(IS)
m(Z),Nn,ᾱn

)−Gm(Z)(qm(Z),ᾱn)
∣∣∣ ≤ 3 · sup

t∈R

∣∣∣Gm(Z)(t)− Ĝm(Z),Nn(t)
∣∣∣ .

Application of the Dvoretzky-Kiefer-Wolfowitz inequality (cf., e.g., Massart (1990)) com-
pletes the eighth step of the proof.
In the ninth step of the proof we complete the proof of Theorem 2. Steps 6 and 7

and arguments in the proof of step 7 imply that we have outside of an event, whose
probability tends to zero for n→∞,∣∣∣Gm(Z)

(
q̂

(IS)
m(Z),Nn,ᾱn

)
−Gm(Z)

(
qm(Z),ᾱn

)∣∣∣
=

1

cn
·
∫

[min{q̂(IS)
m(Z),Nn,ᾱn

,qm(Z),ᾱn},max{q̂(IS)
m(Z),Nn,ᾱn

,qm(Z),ᾱn}]
g(z) dz

≥
|q̂(IS)
m(Z),Nn,ᾱn

− qm(Z),ᾱn | · inf{g(z) : |qm(X),αn − z| ≤
ηn
3 }

7 · ηn · sup{g(z) : |qm(X),αn − z| ≤ 3 · ηn}
.

By step 8 we can conclude that the probability of the event |q̂
(IS)
m(Z),Nn,ᾱn

− qm(Z),ᾱn | · inf{g(z) : |qm(X),αn − z| ≤
ηn
3 }

7 · ηn · sup{g(z) : |qm(X),αn − z| ≤ 3 · ηn}
≥ log n√

Nn


tends to zero for n→∞. This implies (42). The proof is complete. �
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n model d α order stat. sur. quant. imp. quant.
100 1 1 0.995 0.3490 (0.3018) 0.1046 (0.0773) 0.0706 (0.0629)
100 1 1 0.999 0.4478 (0.1851) 0.2727 (0.1283) 0.1812 (0.1068)
100 2 2 0.995 0.0142 (0.0156) 0.0064 (0.0055) 0.0042 (0.0041)
100 2 2 0.999 0.0192 (0.0211) 0.0060 (0.0053) 0.0041 (0.0043)
100 3 4 0.995 0.0702 (0.0510) 0.0668 (0.0450) 0.0747 (0.0337)
100 3 4 0.999 0.1174 (0.0637) 0.0700 (0.0595) 0.1138 (0.0641)

300 1 1 0.995 0.2401 (0.2546) 0.0726 (0.0515) 0.0384 (0.0296)
300 1 1 0.999 0.3398 (0.2829) 0.1387 (0.0926) 0.0837 (0.0674)
300 2 2 0.995 0.0078 (0.0076) 0.0024 (0.0019) 0.0011 (0.0008)
300 2 2 0.999 0.0044 (0.0060) 0.0013 (0.0011) 0.0006 (0.0004)
300 3 4 0.995 0.0401 (0.0356) 0.0337 (0.0238) 0.0323 (0.0127)
300 3 4 0.999 0.0713 (0.0511) 0.0515 (0.0357) 0.0537 (0.0215)

1000 1 1 0.995 0.1106 (0.0806) 0.0371 (0.0299) 0.0181 (0.0134)
1000 1 1 0.999 0.2179 (0.1759) 0.0703 (0.0485) 0.0323 (0.0196)
1000 2 2 0.995 0.0039 (0.0037) 0.0012 (0.0009) 0.0005 (0.0004)
1000 2 2 0.999 0.0027 (0.0030) 0.0006 (0.0006) 0.0002 (0.0002)
1000 3 4 0.995 0.0248 (0.0185) 0.0134 (0.0087) 0.0133 (0.0051)
1000 3 4 0.999 0.0440 (0.0296) 0.0282 (0.0213) 0.0296 (0.0086)

3000 1 1 0.995 0.0675 (0.0471) 0.0225 (0.0164) 0.0086 (0.0064)
3000 1 1 0.999 0.1263 (0.0950) 0.0362 (0.0299) 0.0165 (0.0139)
3000 2 2 0.995 0.0019 (0.0014) 0.0006 (0.0005) 0.0003 (0.0002)
3000 2 2 0.999 0.0011 (0.0011) 0.0003 (0.0002) 0.0001 (0.0001)
3000 3 4 0.995 0.0149 (0.0109) 0.0065 (0.0045) 0.0046 (0.0028)
3000 3 4 0.999 0.0273 (0.0174) 0.0162 (0.0110) 0.0144 (0.0053)

Table 1: Simulation result for the three different models with Nsur.quant. = 10 · n
and Nimps.samp.quant. = 50 ∗ n. Reported are the relative absolute errors of
the estimates (and in brackets their standard deviations) in 100 independent
simulations.

n model d α order stat. sur. quant imp. quant.
300 1 1 0.995 0.1981 (0.2158) 0.0101 (0.0150) 0.0077 (0.0158)
300 1 1 0.999 0.3281 (0.2805) 0.0647 (0.0602) 0.0634 (0.0608)
300 2 2 0.995 0.0078 (0.0077) 0.0004 (0.0004) 0.0004 (0.0004)
300 2 2 0.999 0.0052 (0.0059) 0.0004 (0.0004) 0.0004 (0.0004)
300 3 4 0.995 0.0483 (0.0343) 0.0343 (0.0060) 0.0342 (0.0059)
300 3 4 0.999 0.0591 (0.0409) 0.0597 (0.0088) 0.0595 (0.0087)

Table 2: Simulation result for the three different models with Nsur.quant. = 1.000.000 and
Nimps.samp.quant. = 8.000.000.
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