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Abstract

Nonparametric estimation of a quantile qm(X),α of a random variable m(X) is considered, where

m : Rd → R is a function which is costly to compute and X is an Rd-valued random variable with

known distribution. Monte Carlo quantile estimates are constructed by estimating m by some

estimate (surrogate) mn and then by using an initial quantile estimate together with importance

sampling to construct an importance sampling surrogate quantile estimate. A general error bound

on the error of this quantile estimate is derived which depends on the local error of the function

estimate mn, and the rates of convergence of the corresponding importance sampling surrogate

quantile estimates are analyzed for two different function estimates. The finite sample size behavior

of the estimates is investigated by applying them to simulated data.
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1 Introduction

Many physical phenomena are nowadays described and modeled with mathematical tools, and

instead of real experiments so–called computer experiments are used to analyze physical phenom-

ena. In this paper we assume that we have given a simulation model of a such a complex physical

phenomenon described by

Y = m(X).

Here X is an Rd-valued random variable with known distribution PX and m : Rd → R is a black

box function which can be computed at any point x ∈ Rd but which is costly to evaluate. The aim

of the analysis of this simulation model is the prediction of the uncertainty of the random variable

Y . Therefore we determine values which are with large probabilities upper or lower bounds on the

(random) value of Y . More precisely, let

G(y) = P{Y ≤ y} = P{m(X) ≤ y}

be the cumulative distribution function (cdf) of Y . For α ∈ (0, 1) we are interested in estimating

quantiles of the form

qm(X),α = inf{y ∈ R : G(y) ≥ α}

using at most n evaluations of the function m.

A simple idea to estimate qm(X),α is to use observations m(X1), . . . , m(Xn), where X1, . . . , Xn

is an i.i.d. sample of X, to compute the empirical cdf

Ĝm(X),n(y) =
1

n

n∑
i=1

I{m(Xi)≤y} (1)

and to estimate the quantile by the corresponding plug-in estimate

q̂m(X),n,α = inf{y ∈ R : Ĝm(X),n(y) ≥ α}. (2)

Since q̂m(X),n,α is in fact an order statistic, results from order statistics, e.g., Theorem 8.5.1 in

Arnold, Balakrishnan and Nagaraja (1992), imply that in case that m(X) has a density g which

is continuous and positive at qm(X),α we have

√
n · g(qm(X),α) ·

q̂m(X),n,α − qm(X),α√
α · (1− α)

→ N(0, 1) in distribution.
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This implies

|q̂m(X),n,α − qm(X),α| = OP

(
1√
n

)
, (3)

where we write Xn = OP(Yn) if the nonnegative random variables Xn and Yn satisfy

lim
c→∞

lim sup
n→∞

P{Xn > c · Yn} = 0.

One well-known idea in the literature for the construction of estimates which achieve better results

than the above simple order statistics is to use in a first step suitably chosen evaluations of m to

construct an estimate (surrogate) mn of m, and to use this estimate (maybe together with a few

additional evaluations of m) to construct a quantile estimate. Here most of the approaches in the

literature use a Bayesian approach to construct the surrogate mn, e.g., in connection with quadratic

response surfaces in Bucher and Burgund (1990), Kim and Na (1997) and Das and Zheng (2000),

in connection with support vector machines in Hurtado (2004), Deheeger and Lemaire (2010)

and Bourinet, Deheeger and Lemaire (2011), in connection with neural networks in Papadrakakis

and Lagaros (2002), and in connection with kriging in Kaymaz (2005) and Bichon et al. (2008).

Theoretical results concerning the rate of convergence of the corresponding estimates are not

derived in these papers.

In this paper we use instead results from non-Bayesian curve estimation in order to construct

the surrogate mn. Here in principle any kind of nonparametric regression estimate can be used.

For instance we can use kernel regression estimate (cf., e.g., Nadaraya (1964, 1970), Watson (1964),

Devroye and Wagner (1980), Stone (1977, 1982) or Devroye and Krzyżak (1989)), partitioning re-

gression estimate (cf., e.g., Györfi (1981) or Beirlant and Györfi (1998)), nearest neighbor regression

estimate (cf., e.g., Devroye (1982) or Devroye, Györfi, Krzyżak and Lugosi (1994)), orthogonal se-

ries regression estimate (cf., e.g., Rafaj lowicz (1987) or Greblicki and Pawlak (1985)), least squares

estimates (cf., e.g., Lugosi and Zeger (1995) or Kohler (2000)) or smoothing spline estimates (cf.,

e.g., Wahba (1990) or Kohler and Krzyżak (2001)).

Enss et al. (2014) considered so–called surrogate quantile estimates, where qm(X),α is estimated

by a Monte Carlo estimate of the quantile qmn(X),α, i.e., by a Monte Carlo estimate of

qmn(X),α = inf
{
y ∈ R : PX{x ∈ Rd : mn(x) ≤ y} ≥ α

}
.

It was shown there that if the local error of mn is small in areas where m(x) is close to qm(X),α,

i.e., if for some small δn > 0

|mn(x)−m(x)| ≤ δn
2

+
1

2
· |m(x)− qm(X),α| for PX -almost all x,
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then the error of the Monte Carlo estimate q
(MC)
mn(X),Nn,α

of qm(X),α is small, i.e.,

∣∣∣q(MC)
mn(X),Nn,α

− qm(X),α

∣∣∣ = OP

(
δn +

1√
Nn

)
.

Here Nn is the sample size of the Monte Carlo estimate.

In Kohler et al. (2014) the surrogate mn was used to construct so-called importance sampling

quantile estimates. Importance sampling is a technique to improve estimation of the expectation

of a function φ : Rd → R by sample averages. Instead of using an independent and identically

distributed sequence X,X1, X2, . . . and estimating Eφ(X) by

1

n

n∑
i=1

φ(Xi),

one can use importance sampling, where a new random variable Z with a density h satisfying for

all x ∈ Rd

φ(x) · f(x) 6= 0 ⇒ h(x) 6= 0

is chosen and for Z,Z1, Z2, . . . independent and identically distributed

E{φ(X)} = E

{
φ(Z) · f(Z)

h(Z)

}

is estimated by

1

n

n∑
i=1

φ(Zi) ·
f(Zi)

h(Zi)
, (4)

whereas we assume that 0
0 = 0. Here the aim is to choose h such that the variance of (4) is small

(see for instance Chapter 4.6 in Glasserman (2004), Neddermayer (2009) and the literature cited

therein).

Quantile estimation using importance sampling has been considered by Cannamela, Garnier

and Iooss (2008), Egloff and Leippold (2010) and Morio (2012). All three papers proposed new

estimates in various models, however only Egloff and Leippold (2010) investigated theoretical

properties (consistency) of their method. In Kohler et al. (2014) the rates of convergence of a

newly proposed importance sampling quantile estimate have been analyzed. The basic idea there

was to use an initial estimate of the quantile based on the order statistics of samples of m(X)

in order to determine an interval [an, bn] containing the quantile. Then an estimate mn of m

was constructed and f was restricted to the inverse image m−1
n ([an, bn]) of [an, bn] to construct a

new random variable Z, so only from an area, where the values are especially important for the

computation of the quantile, values have been sampled. The final estimate of the quantile is then
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defined as an order statistic of m(Z), where the level of the order statistics takes into account

that it was sampled only from a part of the original density f . Under suitable assumptions on

the smoothness of m and on the tails of f it was shown that this estimate achieves the rate of

convergence of order log1.5 n
n . This result requires that the supremum norm error of the estimate

mn of m is small. Furthermore the computation of the level of the quantile of m(Z) requires the

numerically exact computation of several integrals, which is in general not possible, and very time

consuming if one wants to compute these integrals with high accuracy.

In this paper we extend the results from Kohler et al. (2014) in such a way that we firstly

require only that a local error of mn is small, that secondly the integrals are replaced by corre-

sponding Monte Carlo estimates, and that thirdly for suitable smooth functions we achieve rates of

convergence which are simultaneously better than log1.5 n
n and better than the rates of convergence

proven in Enss et al. (2014).

Throughout this paper we use the following notation: N, N0, Z and R are the sets of positive

integers, nonnegative integers, integers and real numbers, respectively. For a real number z we

denote by bzc and dze the largest integer less than or equal to z and the smallest integer larger

than or equal to z, respectively. ‖x‖ is the Euclidean norm of x ∈ Rd, and the diameter of a set

A ⊆ Rd is denoted by

diam(A) = sup {‖x− z‖ : x, z ∈ A} .

For f : Rd → R and A ⊆ Rd we set

‖f‖∞,A = sup
x∈A
|f(x)|.

Let p = k + s for some k ∈ N0 and 0 < s ≤ 1, and let C > 0. A function m : Rd → R is

called (p, C)-smooth, if for every α = (α1, . . . , αd) ∈ Nd0 with
∑d
j=1 αj = k the partial derivative

∂km
∂x
α1
1 ...∂x

αd
d

exists and satisfies

∣∣∣∣ ∂km

∂xα1
1 . . . ∂xαdd

(x)− ∂km

∂xα1
1 . . . ∂xαdd

(z)

∣∣∣∣ ≤ C · ‖x− z‖s
for all x, z ∈ Rd.

For nonnegative random variables Xn and Yn we say that Xn = OP(Yn) if

lim
c→∞

lim sup
n→∞

P(Xn > c · Yn) = 0.

A general error bound on our quantile estimate is presented in Section 2 and applied to global

and local surrogate estimates in Sections 3 and 4, resp. Section 5 illustrates the finite sample
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size behaviour of our estimates by applying them to simulated data. The proofs are contained in

Section 6.

2 A general error bound

Let X, X1, X2, . . . be independent and identically distributed random variables with values in Rd,

which have a density f with respect to the Lebesgue measure. In this section we consider a general

importance sampling surrogate quantile estimate, which depends on an estimate mn of m and some

initial quantile estimate q̃m(X),n,α. Since m is costly to evaluate, we want to restrict the number

of evaluations by some natural number n. This number we split into three parts n1, n2, n3 ≥ 0

where n1 = n2 = dn/3e and n3 = n − n1 − n2. We use n1 + n2 evaluations of m to generate the

estimate mn of m and to generate q̃m(X),n,α. Eventually we use the remaining n3 evaluations to

generate our final quantile estimate. Furthermore we use additional values of X, i.e., Xn+1, Xn+2,

. . . , in particular in order to construct Monte Carlo estimates of some integrals involving mn (but

not m).

The basic assumption on the estimate mn is that it satisfies for some compact set Kn ⊆ Rd and

some δn > 0 with δn → 0 for n→∞ the relation

|mn(x)−m(x)| ≤ δn
2

+
1

2
· |qm(X),α −m(x)| for all x ∈ Kn, (5)

where we have in addition

0 <
1

δn + log(n) · ηn
·P{X /∈ Kn} → 0 (n→∞). (6)

Furthermore, we assume that the initial quantile estimate q̃m(X),n,α satisfies

∣∣q̃m(X),n,α − qm(X),α

∣∣ = OP (ηn) (7)

for some ηn > 0, where limn→∞ ηn = 0. In the sequel we use this initial quantile estimate together

with mn to construct an importance sampling surrogate quantile estimate.

Depending on mn and q̃m(X),n,α define hn : Rd → R by

hn(z) =
1

cn
·
(
I{z∈Kn : |mn(z)−q̃m(X),n,α|≤log(n)·ηn+2·δn} + I{z/∈Kn}

)
· f(z),

where

cn =

∫
Rd

(
I{z∈Kn : |mn(z)−q̃m(X),n,α|≤log(n)·ηn+2·δn} + I{z/∈Kn}

)
· f(z) dz.
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Let Z1, . . . , Zn3
be independent and identically distributed with density hn, define

Ĝ(IS)
n (y) =

1

n3

n3∑
i=1

I{m(Zi)≤y},

and set

ᾱ =
α−

∫
Rd

(
I{z∈Kn : mn(z)<q̃m(X),n,α−log(n)·ηn−2·δn}

)
· f(z) dz

cn
.

As shown in Kohler, Krzyżak, Tent and Walk (2014) a natural choice for our importance sampling

surrogate quantile estimate is inf{y ∈ R : Ĝ
(IS)
n (y) ≥ ᾱ}. Since it is hard to compute the integrals

in the definition of ᾱ exactly, we estimate ᾱ by

α̂ =
α− 1

nα̂

∑nα̂
i=1 I{z∈Kn : mn(z)<q̃m(X),n,α−log(n)·ηn−2·δn}(Xn+i)

1
nα̂

∑nα̂
i=1

(
I{z∈Kn : |mn(z)−q̃m(X),n,α|≤log(n)·ηn+2·δn}(Xn+i) + I{z/∈Kn}(Xn+i)

) ,
for some nα̂ ∈ N. Then we define our importance sampling surrogate quantile estimate by

q̂
(IS)
n,α̂ = inf{y ∈ R : Ĝ(IS)

n (y) ≥ α̂}.

Theorem 1 Let X be an Rd-valued random variable which has a density with respect to the

Lebesgue measure, let m : Rd → R be a measurable function and let α ∈ (0, 1). Let qm(X),α be

the α-quantile of m(X) and assume that m(X) has a density g with respect to the Lebesgue-Borel

measure which is continuous on R and positive at qm(X),α.

Let mn be an estimate of m and assume that (5), (6) and (7) hold for some δn, ηn > 0 satisfying

δn → 0 and log(n) · ηn → 0 (n→∞). (8)

Define the importance sampling surrogate quantile estimate q̂
(IS)
n,α as above, where

nα̂ ≥
n

(δn + ηn)2
. (9)

Then ∣∣∣q̂(IS)
n,α − qm(X),α

∣∣∣ = OP

(
δn + ηn · log(n)√

n

)
.

Remark 1. If we choose the initial quantile estimate as surrogate quantile estimate corresponding

to mn and Nn is sufficiently large, then Theorem 2 in Enss et al. (2014) implies that under suitable

assumptions on P{X /∈ Kn} condition (7) holds with ηn = δn. Hence in this case Theorem 1 implies

that our importance sampling surrogate quantile estimate improves the rate δn of the surrogate

quantile estimate to δn · log(n)/
√
n.
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Remark 2. Values of Z1, Z2, . . . can be constructed using a rejection method. To do this one

selects from values of X1, X2, . . . successively all those values x = Xi where either x ∈ Kn and

|mn(x)− q̂mn(X),Nn,αn | ≤ log(n) · ηn + 2δn hold or where x /∈ Kn holds.

3 An importance sampling surrogate quantile estimate based

on a non-adaptively chosen surrogate

In this section we choose mn as a non-adaptively chosen spline approximand in the definition of

our Monte Carlo surrogate quantile estimate.

To do this, we choose γ > 0 and set βn = log(n)γ . Next we define a spline approximand which

approximates m on [−βn, βn]d. In order to do this, we introduce polynomial splines, i.e., sets of

piecewise polynomials satisfying a global smoothness condition, and a corresponding B-spline basis

consisting of basis functions with compact support as follows:

Choose K ∈ N and M ∈ N0, and set uk = k · βn/K (k ∈ Z). For k ∈ Z let Bk,M : R → R

be the univariate B-spline of degree M with knot sequence (ul)l∈Z and support supp(Bk,M ) =

[uk, uk+M+1], see, e.g., de Boor (1978), or Section 14.1 of Györfi et al. (2002). These B-splines

are basis functions of sets of univariate piecewise polynomials of degree M , where the piecewise

polynomials are globally (M − 1)–times continuously differentiable and where the M -th derivative

of the functions have jump points only at the knots ul (l ∈ Z).

For k = (k1, . . . , kd) ∈ Zd we define the tensor product B-spline Bk,M : Rd → R by

Bk,M (x(1), . . . , x(d)) = Bk1,M (x(1)) · · ·Bkd,M (x(d)) (x(1), . . . , x(d) ∈ R).

And we define SK,M as the set of all linear combinations of all those of the above tensor product

B-splines, where the support has nonempty intersection with [−βn, βn]d, i.e., we set

SK,M =

 ∑
k∈{−K−M,−K−M+1,...,K−1}d

ak ·Bk,M : ak ∈ R

 .

It can be shown by using standard arguments from spline theory, that the functions in SK,M are in

each component (M − 1)-times continuously differentiable, that they are equal to a (multivariate)

polynomial of degree less than or equal to M (in each component) on each rectangle

[uk1 , uk1+1)× · · · × [ukd , ukd+1) (k = (k1, . . . , kd) ∈ Zd),
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and that they vanish outside of the set

[
βn −M ·

βn
K
,βn +M · βn

K

]d
.

We define spline approximands using so-called quasi interpolants: For a function m : [−βn, βn]d →

R we define an approximating spline by

(Qm)(x) =
∑

k∈{−K−M,−K−M+1,...,K−1}d
Qkm ·Bk,M

where

Qkm =
∑

j∈{0,1,...,M}d
ak,j ·m(tk1,j1 , . . . , tkd,jd)

for some ak,j ∈ R and for suitably chosen points tk,j ∈ supp(Bk,M ) ∩ [−βn, βn]. It can be shown

that if we set

tk,j =
k

K
· βn +

j

K ·M
· βn =

k ·M + j

K ·M
· βn (j ∈ {0, . . . ,M}, k ∈ {−K, . . . ,K − 1})

and

tk,j = −βn +
j

K ·M
(j ∈ {0, . . . ,M}, k ∈ {−K −M,−K −M + 1, . . . ,−K − 1}),

then there exist coefficients ak,j (which can be computed by solving a linear equation system), such

that

|Qkf | ≤ c1 · ‖f‖∞,[uk1 ,uk1+M+1]×···×[ukd ,ukd+M+1] (10)

for any k ∈ {−M,−M + 1, . . . ,K − 1}d, any f : [−βn, βn]d → R and some universal constant c1,

and such that Q reproduces polynomials of degree M or less (in each component) on [−βn, βn]d,

i.e., for any multivariate polynomial p : Rd → R of degree M or less (in each component) we have

(Qp)(x) = p(x) (x ∈ [−βn, βn]d) (11)

(cf., e.g., Theorem 14.4 and Theorem 15.2 in Györfi et al. (2002)).

Next we define our estimate mn as a quasi interpolant. We fix the degree M ∈ N and set

K = Kn =

⌊
bn1/d

1 c − 1

2 ·M

⌋
.
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Furthermore we choose x1, . . . , xn1
such that all of the (2 ·M ·K + 1)d points of the form

(
j1

M ·K
· βn, . . . ,

jd
M ·K

· βn
)

(j1, . . . , jd ∈ {−M ·K,−M ·K + 1, . . . ,M ·K})

are contained in {x1, . . . , xn1
}, which is possible since (2 ·M ·K + 1)d ≤ n1. Then we define

mn(x) = (Qm)(x),

where Qm is the above defined quasi interpolant satisfying (10) and (11). The computation of Qm

requires only function values of m at the points x1, . . . , xn1
, i.e., the estimate depends on the data

(x1,m(x1)), . . . , (xn1 ,m(xn1)),

and hence mn is well defined.

For our initial quantile estimate q̃m(X),n,α we use Xn+nα̂+1, . . . , Xn+nα̂+Nn to define a Monte

Carlo estimate of the α-quantile of mn(X) by

q̂
(MC)
mn(X),Nn,α

= inf
{
y ∈ R : Ĝ

(MC)
mn(X),Nn

(y) ≥ α
}
,

where

Ĝ
(MC)
mn(X),Nn

(y) =
1

Nn

Nn∑
i=1

I{mn(Xn+nα̂+i)≤y}.

Theorem 2 Let X be an Rd-valued random variable, let m : Rd → R be a measurable function

and let α ∈ (0, 1). Assume that m(X) has a density which is continuous on R and positive at

qm(X),α and that m is (p, C)-smooth for some p > 0 and some C > 0. Define the Monte Carlo

surrogate importance sampling quantile estimate q̂
(IS)
n,α̂ of qm(X),α as in Section 2, where mn is the

spline approximand defined above with parameter M ≥ p − 1, where q̂m(X),n,α is chosen as the

corresponding surrogate quantile estimate q̂
(MC)
mn(X),Nn,α

defined above, and where the construction

of the estimates uses the parameters

δn = ηn =
log(n)γ·p

np/d
, nα̂ = n1+2p/d and Nn = dn2p/d/ log(n)2·γ·pe. (12)

Assume

Nn ·P{X /∈ [− log(n)γ , log(n)γ ]d} → 0 (n→∞). (13)

Then ∣∣∣q̂(IS)
n,α − qm(X),α

∣∣∣ = OP

(
log(n)γ·p+1

n(1/2)+(p/d)

)
.
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Proof. By the proof of Theorem 2 in Enss et al. (2014) we know that (5) and (7) hold with δn

and ηn defined as in (12) and Kn = [− log(n))γ , log(n))γ ]d. Application of Theorem 1 yields the

desired result. �

Remark 3. In any application the smoothness of m (measured by p and C) will be unknown

hence the above choice of δn and ηn is not possible. In Section 5 we propose a data-driven choice

for the values of δn and ηn and investigate its finite sample performance using simulated data.

4 An importance sampling surrogate quantile estimate based

on an adaptively chosen surrogate

In this section we define an importance sampling surrogate quantile estimate based on an adaptive

partitioning estimate mn of m. Here mn depends on n1 + n2 evaluations of m whereas our inital

quantile estimate q̃m(X),n,α requires Nn > 0 additional evaluations of mn but none of m.

Our partitioning estimate depends on a partition Pn1+n2
= {A0, A1, . . . , An1+n2−1} of Rd and

on the evaluation of m at points xA0
∈ A0, xA1

∈ A1, . . . , xAn1+n2−1
∈ An1+n2−1, i.e., on the data

(xA0 ,m(xA0)), . . . , (xAn1+n2−1 ,m(xAn1+n2−1)). (14)

For x ∈ Rd denote by An1+n2
(x) that cell Aj ∈ Pn1+n2

which contains x. Then the partitioning

estimate mn is defined by

mn(x) := mn1+n2
(x) = m(xAn1+n2 (x)). (15)

The key trick in the definition of our adaptive partitioning estimate is the adaptive choice of the

sets A0, A1, . . . , An1+n2−1 (the values of the points xAj ∈ Aj are not important). Here our main

goal is to define mn such that

|mn(x)−m(x)| ≤ δn
2

+
1

2
· |qm(X),α −m(x)| (16)

holds for all x ∈ Kn := [− log(n), log(n)]d and for some small δn > 0.

To do this, we start by partitioning Kn = [− log(n), log(n)]d into bn1/d
1 cd equivolume cubes

of side length 2 · log(n)/bn1/d
1 c. We denote these cubes by Aj (j = 1, . . . , bn1/d

1 cd), set A0 =

Rd \Kn and let mn1 be the partitioning estimate corresponding to the partition Pn1 = {Aj : j =

0, 1, . . . , bn1/d
1 cd} of Rd, where for A ∈ Pn1 the point xA ∈ A is arbitrarily chosen.
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Assume that m is (p, C)–smooth for some p ≤ 1. Then we have for any x ∈ Kn:

|mn1
(x)−m(x)| ≤ C · ‖xAn1

(x) − x‖p ≤ C · diam(An1
(x))p ≤ log(n)p+1 · n−p/d

for n sufficiently large. We use mn1
to define the Monte Carlo surrogate quantile estimate

q̂
(MC)
mn1

(X),Nn,α
= inf{y ∈ R : Ĝ

(MC)
mn1

(X),Nn
(y) ≥ α}, (17)

where

Ĝ
(MC)
mn1

(X),Nn
(y) =

1

Nn

Nn∑
i=1

I{mn1
(Xn+i)≤y}.

If

Nn ≥ n2p/d and Nn ·P{X /∈ Kn} → 0 (n→ 0),

then the proof of Theorem 2 in Enss et al. (2014) implies that we have outside of an event whose

probability tends to zero ∣∣∣q̂(MC)
mn1

(X),Nn,α
− qm(X),α

∣∣∣ ≤ log(n)p+1

np/d
(18)

and (as already derived above)

|mn1(x)−m(x)| ≤ log(n) · diam(An1(x))p for all x ∈ Kn. (19)

Remark that until now we just used n1 data points and have n2 additional data left and that if

we had used the whole available data in our previous approach the right-hand side of (18) would

only be improved by some constant factor. Our goal is to use the remaining n2 data points more

efficiently. To this end we derive a better estimate of how big our approximation error is on each

set of our partition and use the remaining data points to refine those sets which bring the worst

results.

For this purpose we show next that for a given δn condition (5) holds, when for all x ∈ Kn we

have

|mn(x)−m(x)| ≤ δn
2

(20)

or

3 · |mn(x)−m(x)| − |q̂(MC)
mn1 (X),Nn,α

−mn(Xn+i)|+
log(n)p+1

n
p/d
1

≤ δn. (21)

Whereas condition (20) is quite obvious the usefulness of condition (21) follows for n large enough

12



from triangle inequality and (18) by

3 · |mn(x)−m(x)| ≤ δn + |q̂(MC)
mn1

(X),Nn,α
−mn(x)| − log(n)p+1

n
p/d
1

≤ δn −
log(n)p+1

n
p/d
1

+ |q̂(MC)
mn1

(X),Nn,α
− qm(X),α|

+ |qm(X),α −m(x)|+ |m(x)−mn(x)|

≤ δn + |qm(X),α −m(x)|+ |m(x)−mn(x)|,

(22)

which by rearrangement implies

|mn(x)−m(x)| ≤ δn
2

+
1

2
· |qm(X),α −m(x)|.

From this we conclude that δn can be chosen in such a way that for every x ∈ Kn at least one of

the following conditions holds:

δn ≥ 2 · log(n) · diam(An1+n2
(x))p,

δn ≥ 3 · log(n) diam(An1+n2
(x))p − |q̂(MC)

mn1 (X),Nn,α
−mn(x)|+ log(n)p+1

n
p/d
1

.

Hence in order to minimize δn the goal is to refine our partition in a way such that

sup
x∈Kn

min

{
2 · log(n) · diam(An1+n2

(x))p,

3 · log(n) · diam(An1+n2
(x))p − |q̂(MC)

mn1
(X),Nn,α

−mn(x)|+ log(n)p+1

n
p/d
1

}

is small. This can be accomplished recursively, by subdividing that cube A∗ of our partition of Kn

into 2d smaller equivolume, cubes for which

min

{
2 · log(n) · diam(A∗)p,

3 · log(n) · diam(A∗)p − |q̂(MC)
mn1

(X),Nn,α
−mn(xA∗)|+ log(n)p+1

n
p/d
1

}

is maximal. Now for each of our new formed cubes we choose one of our remaining data points to

lie in there. This procedure is repeated until more than n1 + n2 − 1− 2d data points are used.

After that we define a new surrogate quantile estimate by

q̂
(MC)
mn1+n2 (X),Nn,α

= inf{y ∈ R : Ĝ
(MC)
mn1+n2 (X),Nn

(y) ≥ α}

13



where

Ĝ
(MC)
mn1+n2

(X),Nn
(y) =

1

Nn

Nn∑
i=1

I{mn1+n2
(Xn+i)≤y},

and use this quantile estimate as quantile estimate q̃m(X),n,α in the definition of the importance

sampling surrogate quantile estimate q̂
(IS)
n,α̂ in Section 2.

Theorem 3 Let X be an Rd-valued random variable which has a density f with respect to the

Lebesgue measure, let m : Rd → R be a measurable function and let α ∈ (0, 1). Let qm(X),α

be the α-quantile of m(X) and assume that m(X) has a density g with respect to the Lebesgue-

Borel measure which is continuous on R and positive at qm(X),α. Assume furthermore that m is

(p, C)–smooth for some p ∈ (0, 1] and C > 0.

Set n1 = n2 = dn/3e and n3 = n− n1 − n2. Define the importance sampling surrogate quantile

estimate q̂
(IS)
n,α as above, where

ηn =
log(n)p

np/d
and δn =

log(n)p+1

np/d
.

Assume

Nn ≥ n2p/d and Nn ·P{X /∈ Kn} → 0 (n→∞). (23)

a) When the integrals are estimated by a Monte Carlo estimate based on nα̂ ≥ n1+2p/d ·log(n)−2p

samples, we have ∣∣∣q̂(IS)
n,α − qm(X),α

∣∣∣ = OP

(
log(n)p+1

n1/2+p/d

)
.

b) If in addition, for some ε0 > 0

{x ∈ Rd : m(x) ∈ [qm(X),α − ε, qm(X),α + ε]}

is contained in a cube of side length less than κ1 · ε1/p for all 0 < ε < ε0, and if we change

the above definitions of ηn, δn and nα̂ to

ηn =
log(n)p+3

n2p/d
, δn =

log(n)p+4

n2p/d
and nα̂ =

⌈
n1+4p/d · log(n)−2p

⌉
then ∣∣∣q̂(IS)

n,α − qm(X),α

∣∣∣ = OP

(
log(n)p+4

n1/2+2p/d

)
.

5 Application to simulated data

In this section we study the finite sample size behaviour of three different quantile estimates.

14



The first one (order stat.) is the order statistics estimate defined by (2). The second one

(sur. quant.) is the Monte Carlo surrogate quantile estimate, which was used as the initial quantile

estimate in Theorem 2 (applied to the whole sample D consisting of n data points), and evaluated

on Nn = 100, 000 additional values of X. Instead of a quasi-interpolant we use a smoothing spline

(as implemented in the routine Tps() in R with smoothing parameter chosen by the generalized

cross-validation as implemented in this routine). Since we apply it to data where the function is

observed without additional error (i.e., in a noiseless regression estimation problem), this estimate

results in an interpolating spline which gives similar result as the quasi-interpolant in Section 2,

but is easier to implement.

For our third estimate (imp. quant.) we implement our importance sampling surrogate sampling

estimate. Here we generate the values of Z by the rejection method described in Remark 2. Since

the approximation error of mn is important in the algorithm of our method but unknown in reality

this error is to be approximated. To this end D1 denotes the first bn/2c data of D. Now the data

of D1 are divided into learning and testing data of equal size. With our learning data another

surrogate of m is generated by the same method as before. This new surrogate is then evaluated

on the testing data and the absolute differences between the true values and the approximated

values are computed. The overall approximation error is then estimated by the median of these

values.

In the next step the α-quantile of mn(X) is approximated by order statistics using a data set

D2 which consists of Nn realizations of X and the evaluated data mn(D2). Here again the error of

this estimate is important in our method but unknown. So anew we estimate this error by splitting

the sample. More exactly we split D1 as well as D2 in five parts. Now for i ∈ {1, . . . 5} the estimate

m
(i)
n of m is computed as mn but using only the data D1 without the i-th part. Then only the i-th

part of D2 is given to m
(i)
n to compute an estimate of the α-quantile of m

(i)
n (X) as before. We so

achieve five new estimates of the quantile from which some are likely to be smaller than the true

quantile and some are likely to be greater. We approximate the error of our estimation by taking

the interquartile range of these five data.

In practical tests we had to realize that sometimes the simple order statistics led to a more

reliable estimation of the quantile than the sur. quant method. Since we already generated data

m(D1) which are realizations of m(X), we decided to compute the order statistics of m(D1) as well

to estimate the quantile. As before we approximate the error of this estimate by splitting m(D1)

into five parts, and computing five quantile estimates using order statistics with only one of those

partial data at a time. If the interquartile range of these estimates is lower than the corresponding

interquartile range of the above surrogate quantile estimates, the order statistics is chosen as initial

quantile estimate, otherwise the surrogate quantile estimate is used.
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The approximation of the new level ᾱ of our quantile uses integration by Monte Carlo method

with nα̂ = 200, 000 data. In order to simplify the computation, the first dn/2e feasible data points

which are generated here, are used as realizations of our random variable Z in the last step of our

method.

We compare these three quantile estimates in three different models. In the first model the

dimension of X is d = 1 and

m(x) = exp(x) (x ∈ R).

In the second model the dimension of X is d = 4 and

m(x) = 50 · exp
(
−‖x‖2

)
(x ∈ Rd).

Finally in the third model the dimension of X is again d = 4 and

m(x) =
√

1 + ‖x‖2 (x ∈ Rd).

Each time the d components of X are independent standard normally distributed random variables.

For all three estimates the sample sizes are chosen as n = 100, n = 300 and n = 1000. The

estimates are applied in all three models and with the three different sample sizes in order to

estimate quantiles of level α = 0.95 and α = 0.99. In each case the estimates are applied to 100

different independent random samples, and the median of the relative absolute errors, i.e., the

median of the absolute errors divided by the quantile (and in brackets its interquartile range), are

listed in Table 1.

From Table 1 we see that for d = 1 the surrogate quantile estimate and the importance sampling

quantile estimate perform similarly and both improve the order statistcs for n ≤ 300 substantially.

For d > 1 the surrogate quantile estimate substantially improves the order statistics in 7 out of 12

settings of the simulations, but in contrast the importance sampling quantile estimate improves

the order statistics in all 12 settings substantially.

Finally we illustrate the usefulness of our newly proposed estimate by applying it to an engi-

neering simulation model. Here we consider a physical model of a spring-mass-damper with active

velocity feedback for the purpose of vibration isolation (cf., Figure 1). The aim is to analyze the

uncertainty occuring in the maximal magnification |Vmax| of the vibration amplitude in case that

four parameters of the system, namely the system’s mass (m), the spring’s rigidity (k), the damp-

ing (b) and the active velocity feedback (g), are varied according to prespecified random processes.

Based on the physical model of the spring-mass-damper, we are able to compute for given values
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model d α n order stat. sur. quant. imp. quant.
1 1 0.95 100 0.1394 (0.1478) 0.0045 (0.0053) 0.0036 (0.0047)
1 1 0.95 300 0.0810 (0.1103) 0.0050 (0.0059) 0.0033 (0.0051)
1 1 0.95 1000 0.0480 (0.0649) 0.0043 (0.0043) 0.0045 (0.0048)
1 1 0.99 100 0.2608 (0.2364) 0.0122 (0.0210) 0.0074 (0.0123)
1 1 0.99 300 0.1341 (0.1604) 0.0061 (0.0104) 0.0050 (0.0089)
1 1 0.99 1000 0.0766 (0.0965) 0.0079 (0.0107) 0.0080 (0.0096)
2 4 0.95 100 0.1260 (0.1295) 0.0537 (0.0579) 0.0524 (0.0783)
2 4 0.95 300 0.0614 (0.0871) 0.0160 (0.0122) 0.0053 (0.0078)
2 4 0.95 1000 0.0419 (0.0460) 0.0043 (0.0045) 0.0036 (0.0038)
2 4 0.99 100 0.1190 (0.1209) 0.1302 (0.0799) 0.0345 (0.0391)
2 4 0.99 300 0.0565 (0.0630) 0.0426 (0.0210) 0.0069 (0.0085)
2 4 0.99 1000 0.0375 (0.0373) 0.0080 (0.0086) 0.0032 (0.0042)
3 4 0.95 100 0.0282 (0.0418) 0.0211 (0.0085) 0.0044 (0.0045)
3 4 0.95 300 0.0152 (0.0258) 0.0041 (0.0035) 0.0017 (0.0023)
3 4 0.95 1000 0.0110 (0.0147) 0.0012 (0.0014) 0.0014 (0.0020)
3 4 0.99 100 0.0579 (0.0612) 0.0578 (0.0173) 0.0058 (0.0082)
3 4 0.99 300 0.0299 (0.0415) 0.0233 (0.0065) 0.0043 (0.0052)
3 4 0.99 1000 0.0146 (0.0181) 0.0075 (0.0038) 0.0025 (0.0048)

Table 1: Simulation result for the three different models. Reported are the median of the relative
absolute errors of the estimates (and in brackets their interquartile range) in 100 independent
simulations.

of the above parameters the corresponding value of the maximal magnification

|Vmax| = f(m, k, b, g)

of the vibration amplitude by a MATLAB program (cf., Platz and Enss (2015)), which needs

approximately 0.2 seconds for one function evaluation. So our function |Vmax| is given by this

MATLAB program, and computation of 100 function evaluations can be easily completed in ap-

proximately 20 seconds, but computation of 100,000 values requires about 5.5 hours.

Our main interest is to predict the uncertainty of the maximal magnification of the vibration

amplitude in case of uncertainty in the parameters of the spring-mass-damper. Here we model

this uncertainty in the parameters by assuming that the parameters are realizations of normally

distributed random variables with means and standard deviations derived from conditions typically

occurring in practice. More precisely, we assume that the means of m, k, b and g are 1 kg, 1000

N/m, 0.095 Ns/m and 45 Ns/m, respectively, and their standard deviations are 0.017 kg, 33.334

N/m, 0.009 Ns/m, and 2.25 Ns/m, respectively.

We decribe the uncertainty in the corresponding (random) maximal magnification of the vi-

bration amplitude by a confidence interval which contains the random value with probability 0.95.

We estimate such a confidence interval by using 0 as a lower bound and an estimate of the 0.95
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Figure 1: Spring-mass-damper with active velocity feedback (Platz and Enss (2015)).

quantile as an upper bound of the interval. We use an order statistics with sample size n = 100, 000

to compute a reference value for this confidence interval. This results in |Vmax| ∈ [0, 0.1022] dB.

But if we want to estimate this interval using only n = 100 evaluations of our function, we get

with order statistics, the surrogate quantile estimate (with 50, 000 additional values of X) and

the importance sampling quantile estimate (with 100, 000 additional values of X) the intervals

[0, 0.0827] dB, [0, 0.1044] dB and [0, 0.1038] dB, resp. As we can see, the estimated interval of the

importance sampling quantile estimate is closer to our reference interval than the results of other

two estimates.

6 Proofs

6.1 Proof of Theorem 1

We first proof a general result about importance sampling quantile estimation. Here we consider

a general importance sampling estimate, where the importance sampling density is defined by

restricting the density f of X to a general inverse image of a function estimate mn. More precisely,

we let mn, ân, b̂n : Rd → R and Kn ⊆ Rd and set

hn(z) =
1

cn

(
I{z∈Kn : ân(z)≤mn(z)≤b̂n(z)} + I{z/∈Kn}

)
· f(z) (z ∈ Rd),

where

cn =

∫
Rd

(
I{z∈Kn : ân(z)≤mn(z)≤b̂n(z)} + I{z/∈Kn}

)
· f(z) dz.

Let Z, Z1, . . . , Zn3
be independent and identically distributed random variables with density hn.

Define

Ĝ(IS)
n (y) =

1

n3

n3∑
i=1

I{m(Zi)≤y},
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and

q̂
(IS)
n,α̂ = inf{y ∈ R : Ĝ(IS)

n (y) ≥ α̂},

where α̂ is an estimate of

ᾱ =
α−

∫
Rd I{z∈Kn :mn(z)<ân(z)} · f(z) dz

cn
.

Lemma 1 Let X be an Rd-valued random variable which has a density f with respect to the

Lebesgue measure, let m : Rd → R be a measurable function and let α ∈ (0, 1). Let qm(X),α be

the α-quantile of m(X) and assume that m(X) has a density g with respect to the Lebesgue-Borel

measure which is continuous on R and positive at qm(X),α.

Let mn, ân, b̂n : Rd → R be functions which depend on the first n1 + n2 evaluations of m, let

Kn ⊆ Rd, and let α̂ be some estimate of ᾱ. Assume that for some δn, εn > 0 the following four

conditions hold outside of an event, whose probability tends to zero for n tending to infinity:

0 < cn ≤ κ2 · (log(n) · ηn + δn) , (24)

for some constant κ2 > 0,

mn(x) < ân(x) =⇒ m(x) < qm(X),α − εn and mn(x) > b̂n(x) =⇒ m(x) > qm(X),α (25)

for all x ∈ Kn,

qm(X),α − δn − ηn ≤ m(x) ≤ qm(X),α + δn + ηn =⇒ ân(x) ≤ mn(x) ≤ b̂n(x) (26)

for all x ∈ Kn, and

|ᾱ− α̂| ≤ κ3

log2(n)
, (27)

for some constant κ3 > 0. Assume furthermore that (8) holds. Define the importance sampling

surrogate quantile estimate q̂
(IS)
n,α̂ as above. Then

∣∣∣q̂(IS)
n,α̂ − qm(X),α

∣∣∣ = OP

(
(δn + ηn · log(n)) ·

(
n−1/2 + |ᾱ− α̂|

))
.

In the proof we will need the following two lemmas.

Lemma 2 Assume that X is a Rd-valued random variable which has a density f with respect to

the Lebesgue measure. Let m : Rd → R be a measurable function. Assume that m(X) has a density

g with respect to the Lebesgue measure. Let α ∈ (0, 1) and let qm(X),α be the α-quantile of m(X).
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Assume that g is bounded away from zero in a neighborhood of qm(X),α.

Let A and B be subsets of Rd such that for some ε > 0

m(x) ≤ qm(X),α − ε for x ∈ A and m(x) > qm(X),α for x ∈ B

and

P{X /∈ A ∪B} > 0.

Set

h(x) = c5 · I{x/∈A∪B} · f(x)

where

c−1
5 = P{X /∈ A ∪B},

and set

ᾱ =
α−P{X ∈ A}
P{X /∈ A ∪B}

.

Let Z be a random variable with density h and let qm(Z),ᾱ be the ᾱ-quantile of m(Z). Then

qm(X),α = qm(Z),ᾱ.

Proof. See Lemma 2 in Kohler et al. (2014). �

Lemma 3 Assume that X is a Rd-valued random variable which has a density f with respect to

the Lebesgue measure. Let m : Rd → R be a measurable function. Assume that m(X) has a density

g with respect to the Lebesgue measure. Let A be a measurable subset of R with the property that

for all x ∈ Kn we have

m(x) ∈ A ⇒ ân(x) ≤ mn(x) ≤ b̂n(x). (28)

Let Z be defined as in Lemma 1. Then

Pm(Z){A} =
1

cn
·
∫
A

g(y) dy.
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Proof. The proof is a modification of the proof of Lemma 3 in Kohler et al. (2014). By definition

of Z and (28) we have

Pm(Z){A} =

∫
R
I{m(z)∈A} ·

1

cn

(
I{z∈Kn : ân(z)≤mn(z)≤b̂n(z)} + I{z/∈Kn}

)
· f(z) dz

=

∫
R

1

cn

(
I{m(z)∈A} · I{z∈Kn} + I{m(z)∈A} · I{z/∈Kn}

)
· f(z) dz

=
1

cn

∫
R
I{m(z)∈A} · f(z) dz

=
1

cn
·
∫
A

g(y) dy,

where the last equality follows from the facts that f is the density of X and g is the density of

m(X). �

Proof of Lemma 1. Set Gm(Z)(y) = P{m(Z) ≤ y},

qm(Z),ᾱ = inf
{
y ∈ R : Gm(Z)(y) ≥ ᾱ

}
and

qm(Z),α̂ = inf
{
y ∈ R : Gm(Z)(y) ≥ α̂

}
.

In the first step of the proof we show that outside of an event, whose probability tends to zero

for n→∞, we have

qm(X),α = qm(Z),ᾱ. (29)

Set

An := {x ∈ Kn : mn(x) < ân(x)} and Bn := {x ∈ Kn : mn(x) > b̂n(x)}.

Using these sets cn can be rewritten as

cn = P{X /∈ An ∪Bn | D}.

Here D stands for the first n1 +n2 sample points at which m is evaluated in order to generate mn,

ân and b̂n. Since the choice of these points is left open they might be chosen randomly and so the

sets An and Bn would be random themselves. In that case it is necessary to take the sample in

condition. If on the other hand these points are chosen deterministically, the above condition could

be left out but doesn’t interfere if retained, as well. Now by (25) for x ∈ An and y ∈ Bn outside

of an event whose probability goes to zero for n tending to infinity we have m(x) ≤ qm(X),α − εn
and m(y) > qm(X),α. Application of Lemma 2 yields the assertion.
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Remark as well that the assumptions above imply

P{X ∈ An | D} ≤ P{m(X) ≤ qm(X),α − εn} < α

and

P{X ∈ Bn | D} ≤ P{m(X) > qm(X),α} = 1− α,

from which we conclude

ᾱ =
α−P{X ∈ An | D}

1−P{X ∈ An | D} −P{X ∈ Bn | D}
∈ (0, 1]. (30)

In the second step of the proof we show that outside of an event, whose probability tends to

zero for n→∞, we have for all y ∈ (qm(Z),ᾱ − δn − ηn, qm(Z),ᾱ + δn + ηn)

|Gm(Z)(y)−Gm(Z)(qm(Z),ᾱ)| ≥ c1 ·
|y − qm(Z),ᾱ|

log(n) · ηn + δn
. (31)

W.l.o.g. we can assume that (26) and qm(X),α = qm(Z),ᾱ hold. Set

I = (qm(X),α − δn − ηn, qm(X),α + δn + ηn).

Then, due to (26), by applying Lemma 3 we get for any subset A ⊂ I, outside of an event, whose

probability tends to zero for n→∞,

Pm(Z)(A) = c−1
n ·

∫
A

g(y)dy ≥ c−1
n · inf

y∈A
g(y) · |A|,

where |A| denotes the Lebesgue measure of A. Let y ∈ (qm(Z),ᾱ− δn−ηn, qm(Z),ᾱ+ δn+ηn). With

A = [min{y, qm(Z),ᾱ},max{y, qm(Z),ᾱ}]

we get

|Gm(Z)(y)−Gm(Z)(qm(Z),ᾱ)| = Pm(Z)(A) ≥ c−1
n · inf

y∈A
g(y) · |y − qm(Z),ᾱ|.

Since ηn → 0 (n → ∞) and δn → 0 (n → ∞) by (8) and since g is continuous on R and positive

at qm(X),α we know from step one that

inf
y∈A

g(y) ≥ c0 > 0
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for some constant c0 > 0, on an event whose probability tends to 1 for n→∞. Together with (24)

this implies the assertion of the second step.

In the third step of the proof we show that outside of an event, whose probability tends to zero

for n→∞, we have

|qm(Z),ᾱ − qm(Z),α̂| ≤
2

c1
· (log(n) · ηn + δn) · |α̂− ᾱ|. (32)

W.l.o.g. we can assume that (27), (31) and ᾱ 6= α̂ hold. Because of (27) we can assume furthermore

that w.l.o.g. we have
2

c1
· (log(n) · ηn + δn) · |α̂− ᾱ| < ηn + δn.

By (31) we can conclude that y1 = qm(Z),ᾱ + 1
c1
· (log(n) · ηn + δn) · |α̂− ᾱ| satisfies

Gm(Z)(y1) = Gm(Z)(qm(Z),ᾱ) + |Gm(Z)(y1)−Gm(Z)(qm(Z),ᾱ)|

≥ ᾱ+ c1 ·
|y1 − qm(Z),ᾱ|

log(n) · ηn + δn
= ᾱ+ |α̂− ᾱ| ≥ α̂,

and that y2 = qm(Z),ᾱ − 2
c1
· (log(n) · ηn + δn) · |α̂− ᾱ| satisfies

Gm(Z)(y2) = Gm(Z)(qm(Z),ᾱ)− |Gm(Z)(y2)−Gm(Z)(qm(Z),ᾱ)|

≤ ᾱ− c1 ·
|y2 − qm(Z),ᾱ|

log(n) · ηn + δn
= ᾱ− 2 · |α̂− ᾱ| < α̂,

which implies the assertion.

In the fourth step of the proof we show that outside of an event, whose probability tends to

zero for n→∞, we have for all y ∈ (qm(Z),α̂ − 1
2 · (δn + ηn), qm(Z),α̂ + 1

2 · (δn + ηn))

|Gm(Z)(y)−Gm(Z)(qm(Z),α̂)| ≥ c1 ·
|y − qm(Z),α̂|

log(n) · ηn + δn
. (33)

W.l.o.g. we can assume that (27), (29), (32) and

2

c1
· (log(n) · ηn + δn) · |α̂− ᾱ| < 1

2
· (ηn + δn)

hold. Set

A = [min{y, qm(Z),α̂},max{y, qm(Z),α̂}].

Then

A ⊆ (qm(X),α − δn − ηn, qm(X),α + δn + ηn),
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from which we can conclude as in the second step of the proof that

|Gm(Z)(y)−Gm(Z)(qm(Z),α̂)| = Pm(Z)(A) ≥ c−1
n · inf

y∈A
g(y) · |y − qm(Z),α̂| ≥ c1 ·

|y − qm(Z),α̂|
log(n) · ηn + δn

.

Here the last inequality follows from condition (24).

In the fifth step of the proof we show that outside of an event, whose probability tends to zero

for n→∞, we have for all y ∈ R

|Gm(Z)(y)−Gm(Z)(qm(Z),α̂)| ≥ c1 ·
min{|y − qm(Z),α̂|, δn+ηn

4 }
log(n) · ηn + δn

. (34)

This follows directly from the fourth step, since by monotonicity of Gm(Z) we have

|Gm(Z)(y)−Gm(Z)(qm(Z),α̂)| ≥ |Gm(Z)(ȳ)−Gm(Z)(qm(Z),α̂)|

where

ȳ = min

{
max

{
y, qm(Z),α̂ −

δn + ηn
4

}
, qm(Z),α̂ +

δn + ηn
4

}
.

In the sixth step of the proof we show that outside of an event, whose probability tends to zero

for n→∞, we have

Gm(Z)(qm(Z),α̂) = α̂.

By the proof of the fourth step we know that for y ∈ (qm(Z),α̂− 1
2 · (δn+ηn), qm(Z),α̂+ 1

2 · (δn+ηn))

we have outside of an event, whose probability tends to zero for n→∞,

Gm(Z)(y)−Gm(Z)(qm(Z),α̂) =
1

cn
·
∫ max{y,qm(Z),α̂}

min{y,qm(Z),α̂}
g(y) dy.

From this we can conlude, that Gm(Z) is in a surrounding of qm(Z),α̂ continuous and strictly

increasing, which implies the assertion.

In the seventh step of the proof we show that we have outside of an event, whose probability

tends to zero for n→∞,

∣∣∣Gm(Z)(q̂
(IS)
n,α̂ )−Gm(Z)(qm(Z),α̂)

∣∣∣ ≤ 3 · sup
t∈R

∣∣∣Gm(Z)(t)− Ĝ(IS)
n (t)

∣∣∣ . (35)
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From the sixth step of the proof we deduce that we have for arbitrary ε > 0

∣∣∣Gm(Z)(q̂
(IS)
n,α̂ )−Gm(Z)(qm(Z),α̂)

∣∣∣
≤
∣∣∣Gm(Z)(q̂

(IS)
n,α̂ )− Ĝ(IS)

n (q̂
(IS)
n,α̂ )

∣∣∣+
∣∣∣Ĝ(IS)

n (q̂
(IS)
n,α̂ )− α̂

∣∣∣+
∣∣α̂−Gm(Z)(qm(Z),α̂)

∣∣
≤
∣∣∣Gm(Z)(q̂

(IS)
n,α̂ )− Ĝ(IS)

n (q̂
(IS)
n,α̂ )

∣∣∣+ Ĝ(IS)
n (q̂

(IS)
n,α̂ )− Ĝ(IS)

n (q̂
(IS)
n,α̂ − ε) +

∣∣α̂−Gm(Z)(qm(Z),α̂)
∣∣

≤
∣∣∣Gm(Z)(q̂

(IS)
n,α̂ )− Ĝ(IS)

n (q̂
(IS)
n,α̂ )

∣∣∣+
∣∣∣Ĝ(IS)

n (q̂
(IS)
n,α̂ )−Gm(Z)(q̂

(IS)
n,α̂ )

∣∣∣
+
∣∣∣Gm(Z)(q̂

(IS)
n,α̂ )−Gm(Z)(q̂

(IS)
n,α̂ − ε)

∣∣∣+
∣∣∣Gm(Z)(q̂

(IS)
n,α̂ − ε)− Ĝ

(IS)
n (q̂

(IS)
n,α̂ − ε)

∣∣∣
+
∣∣α̂−Gm(Z)(qm(Z),α̂)

∣∣
≤ 3 · sup

t∈R

∣∣∣Gm(Z)(t)− Ĝ(IS)
n (t)

∣∣∣+
∣∣∣Gm(Z)(q̂

(IS)
n,α̂ )−Gm(Z)(q̂

(IS)
n,α̂ − ε)

∣∣∣ .
Since ε was chosen arbitrarily it follows that

∣∣∣Gm(Z)(q̂
(IS)
n,α̂ )−Gm(Z)(qm(Z),α̂)

∣∣∣ ≤ 3 · sup
t∈R

∣∣∣Gm(Z)(t)− Ĝ(IS)
n (t)

∣∣∣ ,
ifGm(Z) is continuous in q̂

(IS)
n,α̂ . Since we already showed in step number six thatGm(Z) is continuous

on (qm(Z),α̂− 1
2 · (δn+ηn), qm(Z),α̂+ 1

2 · (δn+ηn)) it suffices to show that outside of an event whose

probability tends to zero for n→∞ we have

∣∣∣q̂(IS)
n,α̂ − qm(Z),α̂

∣∣∣ ≤ 1

3
· (δn + ηn).

The above inequality however is an implication of

Ĝ(IS)
n

(
qm(Z),α̂ −

1

3
· (δn + ηn)

)
< α̂ ≤ Ĝ(IS)

n

(
qm(Z),α̂ +

1

3
· (δn + ηn)

)
,

which in turn follows from

Gm(Z)

(
qm(Z),α̂ −

1

3
· (δn + ηn)

)
< α̂− log(n)

√
n3

, (36)

Gm(Z)

(
qm(Z),α̂ +

1

3
· (δn + ηn)

)
> α̂+

log(n)
√
n3

(37)

and the Dvoretzky-Kiefer-Wolfowitz inequality (cf., e.g., Dvoretzky, Kiefer and Wolfowitz (1956)

and Massart (1990)), which states that

sup
t∈R

∣∣∣Gm(Z)(t)− Ĝ(IS)
n (t)

∣∣∣ = OP

(
1
√
n3

)
.
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By steps 6 and 4 we have

α̂−Gm(Z)

(
qm(Z),α̂ −

1

3
· (δn + ηn)

)
= Gm(Z)

(
qm(Z),α̂

)
−Gm(Z)

(
qm(Z),α̂ −

1

3
· (δn + ηn)

)
≥ c1 ·

1
3 · (δn + ηn)

log(n) · ηn + δn

≥ c1
3 · log(n)

>
log(n)
√
n3

,

which proves (36). Inequality (37) can be proven analogously.

In the eighth step of the proof we prove the assertion of Lemma 1.

To do this, set

sn =
2 · c
c1
· (δn + ηn · log(n)) · (n−1/2 + |α̂− ᾱ|)

for some c ≥ 1, and let An be the event that (29), (32) and (35) hold.

Then the results of Step 1, Step 3, Step 5 and Step 7 together with the Dvoretzky-Kiefer-

Wolfowitz inequality imply for n large enough

P
{
|q̂(IS)
n,α̂ − qm(X),α| > sn

}
≤ P

{
|q̂(IS)
n,α̂ − qm(Z),α̂|+ |qm(Z),α̂ − qm(Z),ᾱ|+ |qm(Z),ᾱ − qm(X),α| > sn

}
≤ P{Acn}+ P

{
An holds and |q̂(IS)

n,α̂ − qm(Z),α̂| >
2 · c
c1
· (δn + ηn · log(n)) · n−1/2

}
≤ P{Acn}+ P

{
An holds and min

{
|q̂(IS)
n,α̂ − qm(Z),α̂|,

δn + ηn
4

}
>

2 · c
c1
· (δn + ηn · log(n)) · n−1/2

}
≤ P{Acn}+ P

{
An holds and |Gm(Z)(q̂

(IS)
n,α̂ )−Gm(Z)(qm(Z),α̂)| > 2c · n−1/2

}
≤ P{Acn}+ P

{
sup
t∈R

∣∣∣Gm(Z)(t)− Ĝ(IS)
n (t)

∣∣∣ > 2c

3
· n−1/2

}
≤ P{Acn}+ 2 · exp

(
−2 · n3 ·

(
2c

3
· n−1/2

)2
)
.

Now for n→∞ this term converges to 2 · exp
(
−8 · c2/27

)
. With c→∞ we get the assertion. �

Proof of Theorem 1. Set

ân(x) = q̃m(X),n,α − log(n) · ηn − 2 · δn and b̂n(x) = q̃m(X),n,α + log(n) · ηn + 2 · δn.
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The assertion follows from Lemma 1, provided we can show that with these definitions of ân and

b̂n the assumptions (24), (25), (26) and

|α̂− ᾱ| = OP

(
n−1/2

)
(38)

are satisfied.

Proof of (24): At first we notice that 0 < cn is fulfilled by definition of cn and condition (6). So it

suffices to show the second inequality in (24). To this end we show first that outside of an event,

whose probability tends to zero for n→∞, for all x ∈ Kn

q̃m(X),n,α − log(n) · ηn − 2 · δn ≤ mn(x) ≤ q̃m(X),n,α + log(n) · ηn + 2 · δn (39)

implies ∣∣m(x)− qm(X),α

∣∣ ≤ 5 · δn + 4 · log(n) · ηn.

To do this, observe that on the event

{∣∣q̃m(X),n,α − qm(X),α

∣∣ ≤ log(n) · ηn
}

(39) implies ∣∣mn(x)− qm(X),α

∣∣ ≤ 2 · log(n) · ηn + 2 · δn. (40)

From (5) and the triangle inequality we get furthermore

|mn(x)−m(x)| ≤ δn
2

+
1

2
· |qm(X),α −mn(x)|+ 1

2
· |mn(x)−m(x)|

from which we conclude

|mn(x)−m(x)| ≤ δn + |qm(X),α −mn(x)|

≤ 3 · δn + 2 · log(n) · ηn.

But this together with (40) in turn implies

∣∣m(x)− qm(X),α

∣∣ ≤ |m(x)−mn(x)|+
∣∣mn(x)− qm(X),α

∣∣ ≤ 5 · δn + 4 · log(n) · ηn.

Now, by (7) {|q̃m(X),n,α − qm(X),α| ≤ log(n) · ηn} is an event whose probability tends to one as n

tends to infinity and so we see that outside of an event, whose probability tends to zero for n→∞,
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we have

cn =

∫
Rd

(
I{z∈Kn : |mn(x)−q̃m(X),n,α|≤log(n)·ηn+2·δn} + I{z/∈Kn}

)
· f(z) dz

≤
∫
Rd

(
I{z∈Kn : |m(x)−qm(X),α|≤5·δn+4·log(n)·ηn} + I{z/∈Kn}

)
· f(z) dz.

According to (6) for n large enough

∫
Rd
I{z/∈Kn} · f(z)dz = P{X /∈ Kn} < log(n) · ηn + δn,

while for the first summand in the above integral we get

∫
Rd
I{z∈Kn : |m(z)−qm(X),α|≤5·δn+4·log(n)·ηn} · f(z) dz

≤
∫
Rd
I{|y−qm(X),α|≤5·δn+4·log(n)·ηn} · g(y) dy

≤ (8 · log(n) · ηn + 10 · δn) ·max
y∈In

g(y),

where In = [qm(X),α − 4 · log(n) · ηn − 5 · δn , qm(X),α + 4 · log(n) · ηn + 5 · δn]. Now since g is

assumed to be continuous and 4 · log(n) · ηn + 5 · δn tends to zero for n→∞ even the value

max
n∈N

max
y∈In

g(y)

exists, implying we can bound cn by κ2 · (log(n) · ηn + δn). So the second inequality of (24) is

fulfilled as well.

Proof of (25): In the following assume that the event

{∣∣q̃m(X),n,α − qm(X),α

∣∣ ≤ log(n) · ηn
}

holds. Furthermore let x ∈ Kn be such that

mn(x) < ân(x) = q̃m(X),n,α − log(n) · ηn − 2 · δn. (41)

Now from (5) we conclude that

m(x) ≤ mn(x) +
δn
2

+
1

2
· |qm(x),α −m(x)|,
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which together with (41) implies

m(x) < q̃m(X),n,α − log(n) · ηn − 2 · δn +
δn
2

+
1

2
· |qm(x),α −m(x)|

≤ qm(X),α −
3

2
· δn +

1

2
· |qm(x),α −m(x)|.

Here for the last inequality we used that |q̃m(X),n,α − qm(X),α| ≤ log(n) · ηn by assumption. Now

in case m(x) ≤ qm(X),α the above inequality is equivalent to

m(x) < qm(X),α − δn,

whereas in case qm(X),α < m(x) it is equivalent to

m(x) < qm(X),α − 3 · δn.

So the first implication in (25) holds for εn = δn. Similarly we proof the second assertion by

showing that for x ∈ Kn satisfying

mn(x) > b̂n(x) = q̃m(X),n,α + log(n) · ηn + 2 · δn,

we get by (5)

m(x) ≥ mn(x)− δn
2
− 1

2
· |qm(x),α −m(x)|

> q̃m(X),n,α + log(n) · ηn + 2 · δn −
δn
2
− 1

2
· |qm(x),α −m(x)|

≥ qm(X),α +
3

2
· δn −

1

2
· |qm(x),α −m(x)|.

Here again the last inequality follows from |q̃m(X),n,α − qm(X),α| ≤ log(n) · ηn. This time in case

m(x) < qm(X),α the above inequality is equivalent to

m(x) > qm(X),α + 3 · δn,

whereas in case qm(X),α ≤ m(x) we get

m(x) > qm(X),α + δn.
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Proof of (26): Assume that the event

{∣∣q̃m(X),n,α − qm(X),α

∣∣ ≤ 1

2
· log(n) · ηn

}

holds, and let x ∈ Kn be such that

qm(X),α − δn − ηn ≤ m(x) ≤ qm(X),α + δn + ηn.

Then (5) implies

|mn(x)−m(x)| ≤ δn
2

+
1

2
· |qm(X),α −m(x)| ≤ δn +

1

2
· ηn,

from which we conclude

ân(x) = q̃m(X),n,α − log(n) · ηn − 2 · δn ≤ qm(x),α −
1

2
· log(n) · ηn − 2 · δn

≤ m(x)− δn + ηn ·
(

1− 1

2
· log(n)

)
≤ mn(x) + ηn ·

(
3

2
− 1

2
· log(n)

)
,

and in the same way

b̂n(x) ≥ qm(x),α +
1

2
· log(n) · ηn + 2 · δn ≥ mn(x)− ηn ·

(
3

2
− 1

2
· log(n)

)
.

Now for 3 < log(n) this implies (26).

Proof of (38): Set

J =

∫
Rd

(
I{z∈Kn : mn(z)<q̃m(X),n,α−log(n)·ηn−2·δn}

)
· f(z) dz,

Ĵ =
1

nα̂

nα̂∑
i=1

I{z∈Kn : mn(z)<q̃m(X),n,α−log(n)·ηn−2·δn}(Xn+i),

and

ĉn =
1

nα̂

nα̂∑
i=1

(
I{z∈Kn : |mn(z)−q̃m(X),n,α|≤log(n)·ηn+2·δn}(Xn+i) + I{z/∈Kn}(Xn+i)

)
.

Then

ᾱ =
α− J
cn

and α̂ =
α− Ĵ
ĉn

.
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The inequality of Markov implies

|Ĵ − J | = OP

(
1
√
nα̂

)
and |ĉn − cn| = OP

(
1
√
nα̂

)
.

Furthermore we know by (26) and by our choice of ân(x) and b̂n(x)

cn =

∫
Rd

(
I{z∈Kn : ân(z)≤mn(z)≤b̂n(z)} + I{z/∈Kn}

)
· f(z) dz

≥
∫
Rd

(
I{z∈Kn : qm(X),α−δn−ηn≤m(z)≤qm(X),α+δn+ηn} + I{z/∈Kn}

)
· f(z) dz

≥
∫ qm(X),α+δn+ηn

qm(X),α−δn−ηn
g(y) dy

≥ c · (δn + ηn),

where the last inequality follows for large n from the fact that g is continuous on R and positive

at qm(X),α. This together with (9) implies that outside of an event whose probability tends to zero

for n→∞ we have

|cn − ĉn| ≤
1

2
· cn.

Additionally we know from the proof of Lemma 1 (cf., (30)) that 0 < α − J ≤ cn and so we

conclude
|α− Ĵ |
|ĉn|

≤ |α− J |+ |J − Ĵ |
|ĉn − cn + cn|

≤ cn + |J − Ĵ |
cn/2

.

Using (9) and

|α̂− ᾱ| =

∣∣∣∣∣α− Ĵĉn
− α− J

cn

∣∣∣∣∣ ≤ |α− Ĵ |ĉn
· |cn − ĉn|

cn
+
|Ĵ − J |
cn

we can conclude

|α̂− ᾱ| = OP

(
1

(δn + ηn) · √nα̂

)
= OP

(
1√
n

)
,

which implies the assertion.

Since most of the steps required an event of the form {|q̃m(X),n,α− qm(X),α| ≤ λ · log(n) · δn} to

hold it is important to notice that by (7) for any such event the probability to hold tends to one

for n→∞. This completes the proof. �
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6.2 Proof of Theorem 3

Proof of Theorem 3.

a) At first we show that in the given setting conditions (5), (6) and (7) are fulfilled with

ηn =
log(n)p

np/d
and δn = C̃ · ηn,

where C̃ only depends on the dimension d and the smoothness of m. Since m is Hölder-continuous

we have for n ≥ 6d and for any x ∈ Kn

|mn1+n2
(x)−m(x)| ≤ C · diam(An1+n2

(x))p ≤ C · diam(An1
(x))p

≤ C ·

(
d · 2 · log(n)

bn1/d
1 c

)p
≤ C · (12d)p · log(n)p

np/d
.

Hence condition (5) holds with C̃ = 2 · C · (12d)p and δn = C̃ · log(n)p · n−p/d. Furthermore the

assumption that Nn ·P{X /∈ Kn} tends to zero for n→∞ implies that P{Xn+1, . . . , Xn+Nn /∈ Kn}

tends to zero as n tends to infinity and so from Theorem 1 in Enss, Kohler, Krzyżak and Platz

(2014) we conclude that

|q̂(MC)
mn+n2 (X),Nn,α

− qm(X),α| ≤ C̃ ·
log(n)p

np/d
+ 2 · |q̂(MC)

m(X),Nn,α
− qm(X),α|. (42)

By (3) this in turn implies

|q̃m(X),n,α − qm(X),α| = |q̂
(MC)
mn1+n2

(X),Nn,α
− qm(X),α| = OP

(
log(n)p

np/d

)
, (43)

whenever Nn ≥ n
2p/d
1 · log(n)−2p, which implies assertion (7) with ηn = log(n)p · n−p/d as well as

condition (6). Now Theorem 1 yields the assertion.

b) Notice that the assertion follows from Theorem 1, if we can show that outside of an event,

whose probability tends to zero for n→∞, (5) and (7) hold with

δn =
log(n)p+3

n2p/d
and ηn = const · log(n)p+3

n2p/d
. (44)

In the following let En be the event that |q̂(MC)
mn1

(X),Nn,α
− qm(X),α| ≤ log(n)p+1/np/d holds and

define

Ccritical,n :=

{
x ∈ Rd : m(x) ∈

[
qm(X),α − 6 · log(n)p+2

np/d
, qm(X),α + 6 · log(n)p+2

np/d

]}
.

Now the verification that outside of an event, whose probability tends to zero for n→∞, (5) and
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(7) hold with δn and ηn as in (44), follows in three steps.

In the first step of our proof we show that we have on En for n large enough and for all

x ∈ Kn \ Ccritical,n

3 · log(n) · diam(A(x))p +
log(n)p+1

np/d
− |q̂(MC)

mn1
(X),Nn,α

−mn(x)| ≤ 0. (45)

To do this we observe that triangle inequality and the Hölder-continuity of m imply that we have

on En and for n large

|qm(X),α −m(x)| ≤ log(n)p+1

np/d
+ |q̂(MC)

mn1 (X),Nn,α
−mn(x)|+ C · diam(A(x))p

≤ 2 · log(n)p+1

np/d
+ |q̂(MC)

mn1 (X),Nn,α
−mn(x)|.

This in turn implies for x ∈ Kn \ Ccritical,n and for n sufficiently large

3 · log(n) · diam(A(x))p +
log(n)p+1

np/d
− |q̂(MC)

mn1
(X),Nn,α

−mn(x)|

≤ 6 · log(n)p+2

np/d
− 6 · log(n)p+2

np/d
= 0.

In the second step of the proof we show that we have outside of an event whose probability tends

to zero for all x ∈ Ccritical,n ∩Kn

min

{
2 · log(n) · diam(A(x))p,

3 · log(n) · diam(A(x))p − |q̂(MC)
mn1

(X),Nn,α
−mn(x)|+ log(n)p+1

n
p/d
1

}

≤κ5 ·
log(n)p+3

n2p/d
,

(46)

for some constant κ5 > 0. By the results of step 1 we know that on En and for n sufficiently large

(46) holds for all x ∈ Kn\Ccritical,n. Hence as long as there exists some cube A in our partition such

that A∩Kn∩Ccritical,n is nonempty and which does not fulfill (46), our algorithm does not choose

any of those cubes which are subsets of Kn \ Ccritical,n. By the assumption of part b) of Theorem

3 we know that Ccritical,n is contained in a cube of side length less than κ1 · log(n)1+2/p/n1/d. But

after n2/2
d of the elements of the cubes of the partition, which have nonempty intersection with

Kn ∩ Ccritical,n and which do not satisfy (46), are chosen we have for all x ∈ Kn ∩ Ccritical,n

diam(A(x)) ≤ c · log(n)1+2/p

n1/d
· 1

n
1/d
2

≤ c2 ·
log(n)1+2/p

n2/d
,
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which implies the assertion of the second step.

In the third step of the proof we actually show that (44) holds. By setting

δn := max
x∈Kn

min

{
2 · log(n) · diam(A(x))p,

3 · log(n) · diam(A(x))p − |q̂(MC)
mn1

(X),Nn,α
−mn(x)|+ log(n)p+1

n
p/d
1

}

we conclude (as described in section 4) that for any x ∈ Kn

|mn(x)−m(x)| ≤ δn
2

+
1

2
· |qm(X),α −m(x)|

holds. So Theorem 1 in Enss, Kohler, Krzyżak and Platz (2014) implies that

∣∣q̃m(X),n,α − qm(X),α

∣∣ =
∣∣∣q̂(MC)
mn1+n2 (X),Nn,α

− qm(X),α

∣∣∣ = OP

(
δn +

∣∣∣q̂(MC)
m(X),Nn,α

− qm(X),α

∣∣∣) ,
provided that

P {Xn+1, . . . , Xn+Nn ∈ Kn} → 1 (n→∞) (47)

holds. (47) is a direct implication of (23), and by the same arguments as in the proof of Theorem

3 a) we see ∣∣q̃m(X),n,α − qm(X),α

∣∣ = OP

(
δn +

1√
Nn

)
. (48)

Now by step two we know that δn ≤ c6 · log(n)p+3

n2p/d , whereas 1/
√
Nn ≤ n−2p/d by assumption, which

completes the proof. �
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[20] Györfi, L., Kohler, M., Krzyżak, A. and Walk, H. (2002). A Distribution-Free Theory of

Nonparametric Regression. Springer Series in Statistics, Springer-Verlag, New York.

[21] Hurtado, J. (2004). Structural reliability – Statistical learning perspectives. Vol. 17 of lecture

notes in applied and computational mechanics. Springer.

[22] Kaymaz, I. (2005). Application of Kriging method to structural reliability problems. Strutural

Safety, 27, pp. 133–151.

[23] Kim, S.-H. and Na, S.-W. (1997). Response surface method using vector projected sampling

points. Structural Safety, 19, pp. 3–19.

[24] Kohler, M. (2000). Inequalities for uniform deviations of averages from expectations with

applications to nonparametric regression. Journal of Statistical Planning and Inference, 89,

pp. 1–23.
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