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Abstract
In this paper we study the problem of estimating conditional quantiles from data that
contains additional measurement errors. The only assumption on these errors is that
a weighted sum of the absolute errors tends to zero with probability one for sample
size tending to infinity. We show that the plug-in quantile estimate corresponding to
a local averaging estimate of the conditional distribution function (codf.) approaches
the quantile set asymptotically, presumed that the local averaging estimate of the codf.
is pointwise strongly consistent. Furthermore, we show that the above mentioned local
assumption on the measurement errors can not be replaced by a global one. We also
investigate the rate of convergence and show that our plug-in estimate archieves at least
the same pointwise rate of convergence as the local averaging estimate of the codf. Finally,
the results are applied in simulations and in the context of experimental fatigue tests.

AMS classification: Primary 62G05; secondary 62G20.

Key words and phrases: Conditional quantile estimation, consistency, experimental fa-
tigue tests, rate of convergence.

1. Introduction

Let (X,Y ) be a random vector, such that X is Rd- valued and Y is real-valued, with con-
ditional distribution function (codf.) F , i.e., F (y, x) = P{Y ≤ y|X = x}. Conveniently,
we write P (·|x) instead of P (·|X = x). For α ∈ (0, 1) denote by

QY,α (x) := {z ∈ R : P (Y ≤ z|x) ≥ α and P (Y ≥ z|x) ≥ 1− α}

the set of all conditional α-quantiles of Y given X = x. More precisely for x ∈ Rd fixed,
we have

QY,α (x) =
[
q

[low]
Y,α (x) , q

[up]
Y,α (x)

]
,

∗Running title: Estimation of conditional quantiles
†Corresponding author. Tel: +49-6151-16-23371
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where
q

[low]
Y,α (x) := min {z ∈ R : F (z, x) ≥ α}

is the lower α-quantile and

q
[up]
Y,α (x) := sup{z ∈ R : F (z, x) ≤ α}

is the upper α-quantile.
A brief overview on estimates of conditional quantiles is given in Yu et al. (2003).

One idea to construct estimates, approaching the quantile set QY,α (x) asymptotically
for some fixed x ∈ Rd, is to use an independent and identically distributed (i.i.d.) sample
(X1, Y1), . . . , (Xn, Yn) of (X,Y ) to compute a local averaging estimate

Fn(y, x) =
n∑
i=1

I{Yi≤y}Wn,i (x) (1)

of the codf. and to estimate the conditional quantile by the corresponding plug-in esti-
mate

q̂Y,n,α (x) = min{z ∈ R : Fn(z, x) ≥ α}. (2)

Here Wn,i (x) for i = 1, ..., n are so called subprobability weights, i.e.,

Wn,i (x) ≥ 0 for i = 1, ..., n and
n∑
i=1

Wn,i (x) ≤ 1 for all x ∈ Rd,

which can depend on the samples X1, ..., Xn.
The estimator introduced in (2) was considered by Stone (1977), in particular, he

has shown in Theorem 3, that the conditional quantile estimate converges towards the
quantile set in probability and in Lr for every r ≥ 1 under some conditions on the weights
Wn,i. These conditions are for example fullfilled by the weights of the nearest-neighbor
estimate, presumed that ties occur only with probability zero (see proof of Theorem 6.1.
in Györfi et al. (2002) for details and Chapter 6 in Györfi et al. (2002) for a definition
of the estimate). This consistency result can also be extended to the weights of the
partioning (see Chapter 4 in Györfi et al. (2002) for a definition) and kernel estimate
(cf., e.g., Samanta (1989) for a pointwise consistency result). The kernel estimate of the
codf. is defined by the weights

Wn,i (x) =
K
(
x−Xi
hn

)
n∑
i=1

K
(
x−Xi
hn

) , (3)

where 0/0 = 0 by definition (cf., e.g., Nadaraya (1964) and Watson (1964)). Here hn > 0
is the so-called bandwidth and K : Rd → R is a so-called kernel function, e.g., the
so-called naive kernel defined by

K (x) = I{||x||≤1} for all x ∈ Rd.
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Almost sure rates of convergence for the plug-in conditional quantile estimate with ker-
nel and nearest-neighbor weigths have been shown in Bhattacharya and Gangopadhyay
(1990) by deriving a Bahadur-type representation (cf., e.g., Bahadur (1966)).
Other plug-in conditional quantile estimates have for example been considered by Stute

(1986a), who showed asymptotic normality of the plug-in quantile estimates correspond-
ing to a nearest neighbor-type estimator of the codf. The asymptotic behaviour of the
mean squared error of a plug-in quantile estimate corresponding to a double-kernel local
linear estimate of the codf. has been investigated by Yu and Jones (1998). Furthermore,
Troung (1989) introduced a kernel estimator for the conditional median and showed that
it achieves the optimal global rate of convergence in the sense of Stone (1982) both
pointwise and in the Lr-norm restricted to a compact for all 1 ≤ r ≤ ∞.

Since the estimate introduced in (2) depends on an estimate of the codf., it is also of
great interest to study results concerning nonparametric estimates of the codf. But this is
actually a special type of nonparametric regression. Rates of convergence in probability
for the kernel regression estimate have been obtained in Krzyżak and Pawlak (1987)
and in Györfi (1981) for the nearest neighbor regression estimate. Uniform almost sure
rates of convergence for regression estimates have been shown in Härdle et al. (1988)
by considering a more gernal setting of kernel-type estimators of conditional functionals.
Optimal global rates of convergence for nonparametric regression estimates have been
shown by Stone (1982). Other estimates of the codf. have been proposed by Hall et al.
(1999), who studied the rate of convergence of a weighted kernel estimator. Cai (2002)
showed asymptotic normality of this estimate of the codf. and of the corresponding plug-
in conditional quantile estimate in the context of α-mixing time series. Furthermore,
Hall and Yao (2005) used a dimension reduction technique to approximate the codf. and
study the asymptotic properties. Preadjusted local averaging estimates of the codf. were
proposed by Veraverbeke et al. (2014), who proved results concerning the uniform rate
of convergence.
Another approach to obtain conditional quantile estimates, without using an estimate

of the codf., is based on the fact that the quantile set QY,α (x) consists of exactly those
points q ∈ R, that minimize the conditional risk

E {ρα (Y − q) |X = x} , (4)

where
ρα (t) = t ·

(
α− I{t<0}

)
is the so called pinball loss function. Under the assumption that the conditional quantile
is unique, i.e., that QY,α (x) consists only of one point, several authors approximated the
conditional risk in (4) and proposed a parametric conditional quantile estimate that min-
imizes the approximated conditional risk. See Koenker (2005) for a detailed overview on
this approach, which is usually referred to as quantile regression in the literature. The ap-
proximation of the conditional risk function using an i.i.d. sample (X1, Y1) , . . . , (Xn, Yn)
of (X,Y ) can for example be done by an empirical risk function (cf., e.g., Koenker and
Bassett (1978,1982), Lejeune and Sarda (1988)) or by empirical kernel weighted risk func-
tion (cf., e.g., Chaudhuri (1991), Yu and Jones (1997,1998)). Furthermore, Powell (1986)
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used the idea of minimizing an empirical risk function to estimate conditional quantiles
in a censored regression model.
In order to generalize the above technique to nonpolynomial approaches for the quantile

function, Takeuchi et al. (2006) proposed to consider the minimization problem in (4)
over a reproducing kernel Hilbert space of possible quantile functions. As an estimate
for the quantile function, they chose a function from this Hilbert space that minimizes
the empirical risk functional plus a regularity term. For this estimate Christmann and
Steinwart (2008) showed consistency results.
Usefulness and possible applications of estimates of conditional quantiles have for ex-

ample been illustrated in the context of income evaluation (cf., e.g., Hogg (1975) and Fan
and Gijbels (1996)), human medicine (cf., e.g., Cole (1988) and Cole and Green (1992))
and finance (cf., e.g., Cai and Wang (2008)). See also Yu et al. (2003) for an overview
of further applications.
In this paper we assume that instead of the i.i.d. sample (X1, Y1), . . . , (Xn, Yn) of

(X,Y ) we have available only data
(
X1, Ȳ1,n

)
, . . . ,

(
Xn, Ȳn,n

)
such that a weigthed sum

of absolute errors between Yi and Ȳi,n converges to zero almost surely, i.e., we assume
that

n∑
i=1

|Yi − Ȳi,n| ·Wn,i (x)→ 0 a.s. for PX–almost every x, (A1)

where PX is the of X induced measure on
(
Rd,Bd

)
, i.e., PX (B) = P (X ∈ B) for every

B ∈ Bd.
Here we do not assume anything on the measurement errors Ȳi,n−Yi (i = 1, . . . , n). In

particular, we do not assume that those errors have to be random and in case that they
are random they do not need to be independent or identically distributed and they do
not need to have expectation zero or a density w.r.t. the Lebesgue measure, so estimates
for convolution problems (see, e.g., Meister (2009) and the literature cited therein) are
not applicable in the context of this paper. Note also that our set-up is triangular.
Since we do not assume anything on the nature of the measurement errors besides that

they are pointwise asymptotically negligible in the sense that (A1) holds, it seems to be
a natural idea to ignore them completely and to try to use the same estimates as in the
case that an independent and identically distributed sample is given.
The investigation of additional measurement errors in the dependent variable is moti-

vated by experimental fatigue tests from the Collaborative Research Center 666 at the
Technische Universität Darmstadt, where we have to use measured data from similar
materials to obtain a sufficient large number of samples to estimate the quantiles of the
number of cycles until failure (cf., Section 3 below).
Additional measurement errors in the covariate have for example been considered in

the context of quantile regression by He and Liang (2000), who assumend that the errors
in X and Y are independent and have a common symmetric distribution, and by Wei and
Carroll (2009), who assumend that the measurement error in the sample of the covariate
Ȳi has an α-quantile of zero conditional on Xi. However, in both references the authors
assumed that X and Y fullfill a linear model. Although Schennach (2008) does not make
this linearity assumption, she also proposed only a consistent quantile regression estimate
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for measurement errors in the covariate and not in the dependent variable. Furthermore,
other non-i.i.d. data in the context of conditional quantile estimation typically occurs in
connection with autoregressive time series models and has for example been considered
by Portnoy (1991), Koenker and Zhao (1996) and Xiao and Koenker (2009).
In the context of quantile estimation additional measurement errors have been consid-

ered in Hansmann and Kohler (2016). In this paper we extend the results to conditional
quantile estimation. In particular, we investigate whether the above defined plug-in esti-
mate is strongly universally pointwise consistent for the quantile set, if the data contains
additional measurement errors fullfilling (A1). We show in Theorem 1 that this holds,
presumed that the estimate of the codf. fullfills for every y ∈ R

Fn (y, x)→ F (y, x) a.s. for PX–almost every x.

In Corollary 1 we proof that this assumption is for example fullfilled by the kernel es-
timate of the codf. and obtain a more general consistency result than Theorem 1 in
Samanta (1989) with weaker assumptions. Moreover, we show in Theorem 2 that the
local assumption in (A1) on the measurement error can not be replaced by

1

n

n∑
i=1

∣∣Yi − Ȳi,n∣∣→ 0 a.s.,

i.e., by the assumption that the average global sum of the absolute error tends to zero
with probability one.
Furthermore, we investigate how the additional measurement error influence the point-

wise rate of convergence in probability. As we show in Theorem 3, if our estimate of the
codf. archieves pointwise in x and locally uniform in y a rate of convergence of rn and if
we know a pointwise upper bound ηn (x) on the measurement error in (A1), our plug-in
estimate obtains a pointwise rate of convergence in probability of

rn +
√
ηn (x).

In particular, in Corollary 2 we show that it is possible with the kernel estimate of the
codf. to obtain the rate rn = (log (n) /n)p/(2p+d).
Throughout this paper the following notation is used: We write Vn = OP(Wn) if the

nonnegative random variables Vn and Wn satisfy

lim
c→∞

lim sup
n→∞

P{Vn > c ·Wn} = 0.

The sets of natural positive, natural nonnegative and real numbers are denoted by N, N0

and R, respectively. We write →P as an abbreviation for convergence in probability and
IA for the indicator function of the set A. We denote the Euclidian Norm on Rd by ||·||.
For z ∈ R and a set A ⊆ R, we define the distance from z to A as

dist (z,A) := inf
a∈A
|z − a| .

The outline of the paper is as follows: The main results are formulated in Section 2 and
proven in Section 4. In Section 3 we apply our estimate to simulated data to illustrate
the finite sample size performance, and we present an application of our estimates in the
context of experimental fatigue tests.
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2. Main results

Let

F̄n (y, x) =

n∑
i=1

I{Ȳi,n≤y}Wn,i (x) (6)

be a local averaging estimate of the codf. F (y, x) corresponding to the data
(
X1, Ȳ1,n

)
,

. . . ,
(
Xn, Ȳn,n

)
and let

q̂Ȳ ,n,α (x) = min{z ∈ R : F̄n(z, x) ≥ α} (7)

be the corresponding plug-in estimate.

2.1. Consistency

First of all we want to investigate, under which conditions the estimator q̂Ȳ ,n,α (x) is
pointwise strongly consistent for the quantile set QX,α (x). The following result holds.

Theorem 1. Let (X,Y ) , (X1, Y1) , (X2, Y2) . . . be independent and identically distributed
Rd×R-valued random vectors and let α ∈ (0, 1) be arbitrary. Let the subprobability weights
Wn,i be such that the local averaging estimate Fn of the codf. F as defined in (1) fullfills
for every y ∈ R

Fn (y, x)→ F (y, x) a.s. for PX–almost every x. (8)

Furthermore let Ȳ1,n, . . . , Ȳn,n be random variables, which fullfill

n∑
i=1

|Yi − Ȳi,n| ·Wn,i (x)→ 0 a.s. for PX–almost every x (A1)

and let F̄n be the local averaging estimate defined in (6) with weights Wn,i. Then the
quantile estimate q̂Ȳ ,n,α (x) defined in (7) is strongly consistent in the sense that

dist
(
q̂Ȳ ,n,α (x) , QY,α (x)

)
→ 0 a.s. for PX–almost every x.

In the following corollary we formulate sufficient conditions for the strong pointwise
consistency of the plug-in quantile estimate corresponding to a kernel estimate of the
conditional distribution function, defined by the weights in (3).

Corollary 1. Let (X,Y ) , (X1, Y1) , (X2, Y2) . . . be independent and identically distributed
Rd×R-valued random vectors and let α ∈ (0, 1) be arbitrary. Assume that K is the naive
kernel and that the bandwidth hn > 0 fullfills

hn → 0 and n · hdn/ log (n)→∞ (n→∞) . (K1)

Let Ȳ1,n, . . . , Ȳn,n be random variables, which fullfill
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n∑
i=1

|Yi − Ȳi,n| ·K
(
x−Xi
hn

)
n∑
i=1

K
(
x−Xi
hn

) → 0 a.s. for PX–almost every x. (A2)

Furthermore let F̄n be the corresponding kernel estimate of the codf. with kernel K and
bandwidth hn. Then the quantile estimate q̂Ȳ ,n,α (x) defined in (7) is strongly consistent
in the sense that

dist
(
q̂Ȳ ,n,α (x) , QY,α (x)

)
→ 0 a.s. for PX–almost every x.

Proof. Theorem 1 in Stute (1986b) implies (8) for the kernel estimate and therefore
Theorem 1 yields the assertion (see also Theorem 25.11 in Györfi et al. (2002) for an
alternative proof of (8) for the kernel estimate). �

Remark 1. Analogous results can be shown for plug-in quantile estimate correspond-
ing to the partitioning and nearest neighbor estimate of the codf., using the results of
Theorems 25.6. and 25.17. in Györfi et al. (2002), respectively.

In Theorem 1 it was assumed that (A1) holds, which says that the (locally) weighted
sum of the absolute errors tends to zero almost surely. We now want to investigate,
whether this assumption can be replaced by

1

n

n∑
i=1

∣∣Yi − Ȳi,n∣∣→ 0 a.s. (12)

i.e., by the assumption that the average (global) sum of the absolute error tends to zero
almost surely. Our next result shows that this is not possible in general.

Theorem 2. The assumption (12) is not strong enough to obtain the results of Theorem
1. More precisely, let Wn,i be the weights of the kernel estimate, with naive kernel K
and a positive bandwidth hn that fullfills the assumptions of Corollary 1. Then there exist
independent and indentically distributed random vectors (X,Y ) , (X1, Y1) , (X2, Y2) ... and
random variables Ȳ1,n, ..., Ȳn,n which fullfill (12) such that

dist
(
q̂Ȳ ,n,α (x) , QY,α (x)

)
→ 0 a.s.

does not hold for PX–almost every x.

2.2. Rate of convergence

Next we investigate the rates of convergence of our quantile estimates. The following
result holds, which relates the locally uniform rate of convergence of the estimate of the
codf. to the rate of the plug-in quantile estimate.
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Theorem 3. Let (X,Y ) , (X1, Y1) , (X2, Y2) . . . be independent and identically distributed
Rd × R-valued random vectors and let α ∈ (0, 1) be arbitrary. Assume that the codf.
F (·, x) is continuous and differentiable at q[low]

Y,α (x) with derivative greater than zero for
PX–almost every x ∈ Rd. Let Wn,i be subprobability weights, which are such that the
local averaging estimate Fn (y, x) converges to the codf. F (y, x) for PX–almost every x
locally uniform in y in probability with deterministic rate rn > 0, satisfying rn → 0 as
n→∞, in the sense that for PX–almost every x there exists γ (x) > 0 such that

sup∣∣∣y−q[low]
Y,α (x)

∣∣∣≤γ(x)

|Fn (y, x)− F (y, x)| = OP (rn) . (13)

Furthermore let Ȳ1,n, . . . , Ȳn,n be random variables, which fullfill

ηn (x) :=
n∑
i=1

|Yi − Ȳi,n| ·Wn,i (x)→P 0 for PX–almost every x, (A3)

let F̄n be the corresponding local averaging estimate of the codf. with weights Wn,i and
let q̂Ȳ ,n,α (x) by the quantile estimate defined in (7). Then∣∣∣q̂Ȳ ,n,α (x)− q[low]

Y,α (x)
∣∣∣ = OP

(
rn +

√
ηn (x)

)
for PX–almost every x.

As in Section 2.1, we will apply the above result to the quantile estimate corresponding
to the kernel estimate of the codf. Therefore we have to assume that for PX–almost all
x the codf. F (y, x) is locally Hölder continuous in x with exponent 0 < p ≤ 1, locally
uniform in y. More precisely, we assume that for PX–almost every x there exist finite
constants C (x) , κ1 (x) , κ2 (x) > 0 such that

sup∣∣∣y−q[low]
Y,α (x)

∣∣∣≤κ1(x)

|F (y, x)− F (y, z)| ≤ C (x) · ||x− z||p (15)

for all z ∈ Rd with ||z − x|| ≤ κ2 (x). The following result will we be proven in Section
4.4.

Corollary 2. Let (X,Y ) , (X1, Y1) , (X2, Y2) . . . be independent and identically distributed
Rd × R-valued random vectors and let α ∈ (0, 1) be arbitrary. Assume that the codf.
F (·, x) is continuous and differentiable at q[low]

Y,α (x) with derivative greater than zero for
PX–almost every x ∈ Rd and that F fullfills the smoothness assumption in (15) for
some 0 < p ≤ 1. Let K be the naive kernel and let the bandwidth hn > 0 fullfill (K1).
Furthermore let Ȳ1,n, . . . , Ȳn,n be random variables, which satisfy

ηn (x) :=

n∑
i=1

|Yi − Ȳi,n| ·K
(
x−Xi
hn

)
n∑
i=1

K
(
x−Xi
hn

) →P 0 for PX–almost every x. (A4)
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Let F̄n be the corresponding kernel estimate of the codf. with naive kernel K and band-
width hn and let q̂Ȳ ,n,α (x) be the quantile estimate defined in (7). Then

∣∣∣q̂Ȳ ,n,α (x)− q[low]
Y,α (x)

∣∣∣ = OP

(√
log (n)

n · hdn
+ hpn +

√
ηn (x)

)
for PX–almost every x.

In particular, the choice of hn = c̃ ·
(

log(n)
n

) 1
2p+d leads to

∣∣∣q̂Ȳ ,n,α (x)− q[low]
Y,α (x)

∣∣∣ = OP

((
log (n)

n

) p
2p+d

+
√
ηn (x)

)
for PX–almost every x.

Remark 2. Similar results can analogously be shown for the plug-in quantile estimates
corresponding to the nearest neighbor and partitioning estimate of the codf. In both cases

it is possible to archieve a rate of convergence in probability of
(

log(n)
n

) p
2p+d

+
√
ηn (x) by

choosing a sufficient number of nearest neighbors that have to be considered or special
cubic partitions, respectively.

3. Application to simulated and real data

In this section we apply the above described methods to simulated and real data and
estimate 5%−, 50%−, 90%− and 95%−quantiles. Therefore we use the kernel weights
with naive kernel in our local averaging estimate of the codf., where we choose the
bandwidth hn data-dependent from the set {0.05, 0.1, 0.2, 0.3} by cross-validation w.r.t.
the estimate of the codf. (cf. Section 8 in Györfi et al. (2002)). In order to classify
our estimates, we firstly consider distributions with known quantiles, afterwards we will
apply our estimator in the context of experimental fatigue tests.
For the first purpose we use samples of sample sizes n = 500, 1000 and 2000. The

consideration of these sample sizes is motivated by the application in the context of
experimental fatigue tests, where we have 1222 data points. We consider the maximum
absolute error

errmax := max
i=1,...,M

∣∣∣q̂Ȳ ,n,α (xi)− q[low]
Y,α (xi)

∣∣∣
on an equidistant grid x1, . . . , xM for some fixed number M ∈ N. Due to the random
number generation in our simulated data, our quantile estimates contain randomness,
therefore we repeat the quantile estimation 100 times with new random numbers and
subscript our maximum absolute errors by an upper index i. We will compare our

estimates by considering the average value 1
100

100∑
i=1

errimax of the maximum absolute error.

As a first example we choose (X,Y ) , (X1, Y1) , (X2, Y2) , . . . as independent and iden-
tically distributed random vectors such that X is uniform distributed on (0, 2) and Y is
normal-distributed with mean X · (1−X) and variance 1. As data with measurement
error we set Ȳi,n = Yi+

20
n . Observe that we get completely new samples, when n changes.
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90%-quantile 95%-quantile
size of n 500 1000 2000 500 1000 2000

average value of errmax for qY,n,α 0.5076 0.3836 0.3081 0.5632 0.4290 0.3548
average value of errmax for qȲ ,n,α 0.5767 0.4174 0.3262 0.6247 0.4644 0.3726
average value of errmax for qZ̄,n,α 1.4244 0.8121 0.5508 4.1559 1.2767 0.6661

Table 1: Average value of errmax for qY,n,α, qȲ ,n,α and qZ̄,n,α in the first example.

90%-quantile 95%-quantile
size of n 500 1000 2000 500 1000 2000

average value of errmax for qY,n,α 0.5403 0.3933 0.3513 0.7363 0.5804 0.4890
average value of errmax for qȲ ,n,α 0.7554 0.6377 0.6020 1.0396 0.8688 0.8386

Table 2: Average value of errmax for qY,n,α and qȲ ,n,α in the second example.

As a comparison to that we also consider Z̄i,n = Yi + 20
i , where the samples with bigger

measurement errors are kept by. The grid x1, . . . , x20 is chosen equidistantly on [0, 2].
Corollary 1 implies that qY,n,α (x), qȲ ,n,α (x) and qZ̄,n,α (x) are strongly consistent esti-
mates for the quantile set QY,α (x) for PX–almost all x ∈ R, which in fact only consists
of one point, that is equal to q[low]

Y,α (x) = q
[up]
Y,α (x). This result is confirmed by the average

values of the maximum absolute error in Table 1. Especially for small sample sizes the
estimator qȲ ,n,α (x) yields smaller average squared errors than the estimator qZ̄,n,α (x).
This is due to the fact that the samples with bigger measurement errors are kept by.
Furthermore, we can observe that the main part of the maximum error of qȲ ,n,α (x) is
not due to measurement errors, because the maximum error of the estimator qY,n,α (x)
is not much smaller.
As a second example we choose (X,Y ) , (X1, Y1) , (X2, Y2) , . . . as independent and

identically distributed random vectors such that X is normal distributed with mean
0 and variance 1 and Y is exponentially-distributed with mean

∣∣∣√X∣∣∣. As data with
measurement error we choose Ȳi,n = Yi + Ui,n where U1,n, . . . , Un,n are independent
and uniformly on (0, 1/n)-distributed random variables. The grid x1, . . . , x20 for the
evaluation of the maximum error is chosen equidistanly on [0, 1]. As in the first example,
we can conclude the strong consistency of the estimator qȲ ,n,α (x) for PX–almost all
x ∈ R by Corollary 1, which is confirmed by the average maximum errors in Table 2.
As a third example we choose (X,Y ) , (X1, Y1) , (X2, Y2) , . . . as independent and iden-

tically distributed random vectors with a discrete covariate, namely X as uniformly on
{1, 2, 3, 4, 5} distributed random variable. Furthermore we choose Y as χ2-distributed
with X degrees of freedom. As data with measurement error we set Ȳi,n = Yi + εi,n,
where ε1,n, . . . , εn,n are normal distributed random variables with mean and variance
1/n, such that ε1,n, . . . , εn,n, (X1, Y1) , . . . , (Xn, Yn) are independent. Since the covari-
ate is discrete, we change our set for the data-dependent choice of the bandwidth to
{0.5, 1, 2}. The grid points for the evaluation of the maximum error are chosen as xi = i
for i = 1, 2, 3, 4, 5. Again, Corollary 1 implies the strong consistency of the estimators
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90%-quantile 95%-quantile
size of n 500 1000 2000 500 1000 2000

average value of errmax for qY,n,α 1.1155 0.7618 0.5633 1.4971 1.1288 0.7463
average value of errmax for qȲ ,n,α 1.1165 0.7743 0.5854 1.5208 1.1752 0.7731

Table 3: Average value of errmax for qY,n,α and qȲ ,n,α in the third example.

qY,n,α (x) and qȲ ,n,α (x) for x = 1, 2, 3, 4, 5, which is confirmed by the average maximum
errors in Table 3.
As a fourth example we want to consider a setting, in which the absolute error∣∣q̂Ȳ ,n,α (x)− qY,α (x)

∣∣
for some fixed x archieves asymptotically the claimed rate of convergence of Corollary
1, which actually shows in an empirical way that this rate can not be improved. There-
fore we choose (X,Y ) , (X1, Y1) , (X2, Y2) , . . . as independent and identically distributed
random vectors such that X is uniformly distributed on (0, 1) and Y is uniformly dis-
tributed on (0, X). In this setting assumption (15) is fullfilled with a maximum value of
p = 1. We choose α = 0.5, the bandwidth hn to be the asymptotically optimal one from
Corollary 2, i.e.,

hn =
1

5
·
(

log (n)

n

) 1
3

and consider

Ȳi,n =


Yi + 10

n0.1 if K
(
Xi−0.5
hn

)
= 1, Yi ∈

[
qY,α (0.5)− 1

n0.1 , qY,α (0.5)
]
and Yi is

one of the b 1
n0.1 ·

n∑
i=1

K
(
Xi−0.5
hn

)
c biggest samples of

(Yj)j=1,...,n in
[
qY,α (0.5)− 1

n0.1 , qY,α (0.5)
]

Yi else,

where qY,α (0.5) is an abbreviation for the lower and upper α–quantile of Y conditional
on X = 0.5, which are equal in this case. Clearly, for all x ∈ R with x 6= 0.5

ηn (x) = 0

is fullfilled for all n large enough, since the measurement error in Yi does only occur, if
||Xi − 0.5|| ≤ hn and hn → 0 as n→∞. For x = 0.5 we have

ηn (0.5) =
n∑
i=1

∣∣Yi − Ȳi,n∣∣K (Xi−0.5
hn

)
n∑
i=1

K
(
Xi−0.5
hn

)
≤ 1

n∑
i=1

K
(
Xi−0.5
hn

) · 10

n0.1
· b 1

n0.1
·
n∑
i=1

K

(
Xi − 0.5

hn

)
c ≤ 10

n0.2
→ 0 a.s.

11



Figure 1: Typical asymptotic behaviour of dn =
∣∣q̂Ȳ ,n,α (0.5)− qY,α (0.5)

∣∣ in the setting
of the fourth example.

In this way we defined data with measurement errors such that the corresponding quantile
is shifted to the right by some error proportional to n−0.1 (if there are not too many
samples in the relevant interval, which is asymptotically fullfilled), but the weighted sum
of absolute errors ηn tends to zero faster than 10 · n−0.2. In order to investigate the
asymptotic behaviour of our estimate q̂Ȳ ,n,α (x), we consider the absolute error

dn =
∣∣q̂Ȳ ,n,α (0.5)− qY,α (0.5)

∣∣
of the estimated α-quantile of Y conditional on X = 0.5 for sample sizes n in steps
of 2000. As illustrated in Figure 1, the absolute error dn has approximately the same

asymptotic behaviour as the claimed rate
(

log(n)
n

)1/3
+
√
ηn (0.5) of Corollary 2. In

particular, it shows up that a rate of convergence which contains ηn instead of √ηn is too
fast in this setting. The occuring constants were chosen empirically and take the values
C1 = C2 = 0.14.
As a last example we give an application of the methods above in the context of

fatigue behaviour of steel under cyclic loading, that is motivated by experiments of
the Collaborative Research Center 666 at the Technische Universität Darmstadt, which
studies integral sheet metal design with higher order bifurcations. Here the main idea is
to obtain several advantages concerning the material properties by producing structures
out of one part by linear flow and bend splitting. Our main goal will be in the following
to study, whether this modified, splitted material shows better fatigue behavior under

12



cyclic loading than the base material. Therefore for each material m data{(
ε
(m)
1 ,

(
N

(m)
1 , σ

(m)
1

))
, ...,

(
ε
(m)
lm

,
(
N

(m)
lm

, σ
(m)
lm

))}
is obtained by a series of experiments, in which for a strain amplitude ε(m)

i the number
of cycles N (m)

i until failure and the corresponding stress amplitude σ(m)
i is determined.

We have available a database of 132 materials with 1222 of the above data points in
total. This data will be used to compare the estimated 5%–quantiles of the number
of cycles until failure from the modified and the base material of ZStE500 for different
strain amplitudes ε. Since these 5%–quantiles are equal to the lower bounds of the one-
sided 95%–level confidence intervals, we actually estimate the number of cycles such that
no failure occurs with a probability of approximately 95%. However, since the above
mentioned experiments are very time consuming, we only have available 4 to 35 data
points per material, which is not enough for a nonparametric estimation. In order to
nevertheless estimate the quantile of the number of cycles until failure, we assume that
the model

N (m) (ε) = µ(m) (ε) + σ(m) (ε) · δ(m) (17)

holds, where µ(m) (ε) is the expected number of cycles until failure, σ(m) (ε) is the standard
deviation for each material m and strain amplitude ε and where the error term δ(m) has
expectation zero for each material m. In the following we will estimate the α−quantile
of δ(m) as well as µ(m) (ε) and σ(m) (ε), so that we get an estimate of the α−quantile of
N (m) (ε) by a simple linear transformation. For this purpose we use a similar approach
as in Bott and Kohler (2015):
In order to obtain an estimate µ̂(m) (ε) of the expected number of cycles µ(m) (ε), we

apply a standard-method from the literatur (cf. Williams, Lee and Rilly (2002)), which
uses the measured data to estimate the coefficients p =

(
σ
′
f , ε

′
f , b, c

)
of the strain life

curve according to Coffin-Morrow-Manson (cf. Manson (1965)) by linear regression and
estimate µ(m) (ε) from the corresponding strain life curve.
The estimation of the standard deviation σ(m) (ε) is more complicated, since we need

to apply a nonparametric estimator to the squared deviations Y (m)
i =

(
N

(m)
i − µ̂(m)

i

)2

(i = 1, . . . , lm) for each material m, which usually needs more samples. So we augment
our data points per material m by 100 artifical ones as in Furer and Kohler (2013):
At first, we interpolate the squared deviations Y (k)

i for each material k 6= m on a grid
of 100 equidistant strain amplitudes ε. In order to genereate an artifical data point at a
fixed grid point, we only want to use interpolated values from materials, that are similar
to the material m, because we can assume that similar materials yield similar fatigue
behaviour. This simularity is measured using 5 static material properties, namely Young’s
modulus, the yield limit for 0.2% residual elongation, the tensile strength, the static
strength coefficient and the static strain hardening exponent. We apply the Nadaraya-
Watson kernel regression estimates to the static material properties as covariate and
the interpolated data as dependent variable to obtain the 100 artifical data points (one
at each grid point) per material m. Finally, the estimation of the standard deviation

13



Figure 2: Comparison of the estimated 5%−quantiles of the number of cycles until the
failure occurs q̂N,5% from the base and the modified material of ZSTE500.

σ(m) (ε) is done by weighting the Nadaraya-Watson kernel regression estimates applied
to the real and the artificial data of the squared deviations as dependent variable and
the corresponding ε-values as covariate.
Thus, we can finally determine the data samples

δ̂
(m)
i =

N
(m)
i − µ̂(m)

i

σ̂
(m)
i

for i = 1, ..., lm

of the random variables δ(m) for each material m. Notice that these samples contain
measurement errors because we only estimated µ(m) (ε) and σ(m) (ε). Since we only have
available 4 to 35 of the above data samples per material, we will use data samples from
other materials, that have similar static material properties (with the same justification
as above).
Analogously to the estimation of the standard deviation, the consideration of simi-

lar materials in the quantile estimation is done by using the plug-in quantile estimate
corresponding to the kernel estimate of the codf. with the static material properties as
covariate Xi and the data samples of δ(m) as the dependent variable. Evaluating this
quantile estimate at the static material properties x = X(m) of some material m leads
to an estimate q̂δ(m),α, which can be transformed to an estimate of the α–quantile of
N (m) (ε) by

q̂N(m),α (ε) = σ̂(m) (ε) · q̂δ(m),α + µ̂(m) (ε) .

The estimated quantiles of N (m) (ε) for ε ∈ [0, 0.25] for the modified and the base

14



material are illustrated in Figure 2, where the strain amplitude ε is divided by the length
of the material sample in the experiments. Here the material shows much better fatigue
behaviour after the flow splitting, which confirms the conjecture that the strain hardening
occuring during the flow splitting improves the fatigue behaviour of materials.

4. Proofs

In two of the proofs in this section we use the following lemma, which relates the plug-in
estimate with data containing additional measurement error to plug-in estimates with
i.i.d. data without additional measurement error.

Lemma 1. Let A > 0 be a random variable, x ∈ R be arbitrary and Wn,i (x) ≥ 0. Set

δn (x) =
n∑
i=1

I{|Yi−Ȳi,n|>A} ·Wn,i (x) .

Then it holds for α ∈ (0, 1) and the plug-in estimates defined in (2) and (7) that

q̂Y,n,α−δn(x) (x)−A ≤ q̂Ȳ ,n,α (x) ≤ q̂Y,n,α+δn(x) (x) +A.

Proof. Consider

F̄n(y, x)− Fn(y +A, x) =

n∑
i=1

(
I{Ȳi,n≤y} − I{Yi≤y+A}

)
·Wn,i (x) .

The term I{Ȳi,n≤y} − I{Yi≤y+A} becomes one, if

Ȳi,n ≤ y and Yi > y +A.

In this case
∣∣Yi − Ȳi,n∣∣ > A also holds true. SinceWn,i (x) is nonnegative, we can conclude

F̄n(y, x)− Fn(y +A, x) ≤
n∑
i=1

I{|Yi−Ȳi,n|>A} ·Wn,i (x) = δn (x) .

Analogously we can show

F̄n(y, x)− Fn(y −A, x) ≥ −
n∑
i=1

I{|Yi−Ȳi,n|>A} ·Wn,i (x) = −δn (x) .

Hence we get

q̂Ȳ ,n,α (x) = min
{
z ∈ R : F̄n (z, x) ≥ α

}
= min

{
z ∈ R : F̄n (z, x)− Fn (z +A, x) + Fn (z +A, x) ≥ α

}
≥ min {z ∈ R : δn (x) + Fn (z +A, x) ≥ α}
= min {z ∈ R : Fn (z, x) ≥ α− δn (x)} −A
= q̂Y,n,α−δn(x) (x)−A
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and

q̂Ȳ ,n,α (x) = min
{
z ∈ R : F̄n (z, x) ≥ α

}
= min

{
z ∈ R : F̄n (z, x)− Fn (z −A, x) + Fn (z −A, x) ≥ α

}
≤ min {z ∈ R : −δn (x) + Fn (z −A, x) ≥ α}
= min {z ∈ R : Fn (z, x) ≥ α+ δn (x)}+A

= q̂Y,n,α+δn(x) (x) +A,

which yields the assertion. �

4.1. Proof of Theorem 1

Let α ∈ (0, 1) be fixed. We divide the proof into three steps:
In the first step of the proof we show that if αn (x) is a (possibly random) sequence with

αn (x)→ α a.s. for PX–almost every x,

then
dist

(
q̂Y,n,αn(x) (x) , QY,α (x)

)
→ 0 a.s. for PX–almost every x.

Therefore it suffices to show for PX–almost all x ∈ Rd and for all ε > 0

(i) P
(
q̂Y,n,αn(x) (x) ≤ q[low]

Y,α (x)− ε i.o.
)

= 0, and

(ii) P
(
q̂Y,n,αn(x) (x) > q

[up]
Y,α (x) + ε i.o.

)
= 0,

where i.o. means infinitely often. Next we will show (i). Therefore let ε > 0 be arbitrary.
By the definition of q[low]

Y,α , we have

F
(
q

[low]
Y,α (x)− ε, x

)
< α.

Set
ρ1 (x) = α− F

(
q

[low]
Y,α (x)− ε, x

)
> 0.

Since (8) holds, we have

Fn

(
q

[low]
Y,α (x)− ε, x

)
→ F

(
q

[low]
Y,α (x)− ε, x

)
a.s. for PX–almost all x.

Set

N (x) := {αn (x)→ α (n→∞) and

Fn

(
q

[low]
Y,α (x)− ε, x

)
→ F

(
q

[low]
Y,α (x)− ε, x

)
(n→∞)

}
,

such that P (N (x)) = 1 for PX–almost every x ∈ Rd. So for PX–almost every x ∈ Rd it
holds (ω-wise, for all ω ∈ N (x))∣∣∣Fn (q[low]

Y,α (x)− ε, x
)
− F

(
q

[low]
Y,α (x)− ε, x

)∣∣∣ < ρ1 (x)

2
and |αn (x)− α| < ρ1 (x)

2
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for all n large enough, which implies for PX–almost every x ∈ Rd

Fn

(
q

[low]
Y,α (x)− ε, x

)
< F

(
q

[low]
Y,α (x)− ε, x

)
+
ρ1 (x)

2
= α− ρ1 (x)

2
< αn (x)

for all n large enough by the definition of ρ1. But then for PX–almost every x ∈ Rd

q̂Y,n,αn(x) (x) > q
[low]
Y,α (x)− ε

holds for all n large enough (ω-wise for all ω ∈ N (x)) by the definition of q̂Y,n,αn(x). We
finally have shown

P
(
q̂Y,n,αn(x) (x) ≤ q[low]

Y,α (x)− ε i.o.
)
≤ P (N (x)c) = 1−P (N (x)) = 0,

for PX–almost every x ∈ Rd, which was the assertion of part (i). Similarly, (ii) can be
shown, which yields the assertion of the first step of the proof.
Let ε > 0 be arbitrary and set

δn (x) =
n∑
i=1

I{|Yi−Ȳi,n|>ε} ·Wn,i (x) .

In the second step of the proof we show

δn (x)→ 0 a.s. for PX–almost all x.

Therefore observe

δn (x) ≤
n∑
i=1

∣∣Yi − Ȳi,n∣∣
ε

·Wn,i (x) ,

because the Wn,i are nonnegative. So (A1) implies the assertion.
By Lemma 1 we know

q̂Y,n,α−δn(x) (x)− ε ≤ q̂Ȳ ,n,α (x) ≤ q̂Y,n,α+δn(x) (x) + ε. (18)

In the third step of the proof we finally show the assertion. By the second step, we know
α−δn (x)→ α a.s. and α+δn (x)→ α a.s. for PX–almost every x ∈ Rd, so by choosing
αn (x) = α − δn (x) or αn (x) = α + δn (x), resp., we can conclude by (18) and by the
first step for arbitrary ε > 0

dist
(
q̂Ȳ ,n,α (x) , QY,α (x)

)
≤ dist

(
q̂Y,n,α−δn(x) (x) , QY,α (x)

)
+ ε+ dist

(
q̂Y,n,α+δn(x) (x) , QY,α (x)

)
+ ε −→ 2 · ε a.s.

for PX–almost every x ∈ Rd. Since ε > 0 was arbitrary this implies the assertion. �
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4.2. Proof of Theorem 2

LetX,Y,X1, Y1, X2, Y2, . . . be independent and identically uniformly on (0, 1) distributed
random variables and let α ∈ (0, 1) be fixed. Then

q
[up]
Y,α (x) = q

[low]
Y,α (x) for PX–almost every x. (19)

Let (hn) be a positive sequence that fullfills the assumptions of Corollary 1, i.e.

hn → 0 and n · hn/ log (n)→∞ (n→∞)

For n ∈ N there exist (uniquely determined) m ∈ N0 and k ∈ {0, 1, 2, 3, ..., 2m − 1}, such
that n = 2m + k. Set

An =

[
2k + 1

2m+1
− 3

2
· hn,

2k + 1

2m+1
+

3

2
· hn

]
and

Ȳi,n = Yi + I{Xi∈An} for i = 1, .., n and all n ∈ N.

Since

E

{
1

n

n∑
i=1

∣∣Ȳi,n − Yi∣∣} = P (X ∈ An) ,

we get for arbitrary ε > 0, using Hoeffding’s inequality (cf., e.g., Hoeffding (1963)),

∞∑
n=1

P

(∣∣∣∣∣ 1n
n∑
i=1

(∣∣Ȳi,n − Yi∣∣−P (Xi ∈ An)
)∣∣∣∣∣ > ε

)
≤
∞∑
n=1

2 · exp
(
−2nε2

)
<∞.

Together with the Lemma of Borel-Cantelli this implies

1

n

n∑
i=1

∣∣Ȳi,n − Yi∣∣− 1

n

n∑
i=1

P (Xi ∈ An)→ 0 a.s.,

and thus
1

n

n∑
i=1

∣∣Ȳi,n − Yi∣∣→ 0 a.s.,

because 1
n

n∑
i=1

P (Xi ∈ An) = P (X ∈ An) ≤ 3hn → 0 as n → ∞. For n ∈ N choose

m, k ∈ N as above and set

Bn =

[
2k + 1

2m+1
− hn

2
,
2k + 1

2m+1
+
hn
2

]
which is of one third of the length of An. Now consider x ∈ Bn. Then∣∣∣∣x− 2k + 1

2m+1

∣∣∣∣ ≤ hn
2
.
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If
|Xi − x| ≤ hn,

this yields ∣∣∣∣Xi −
2k + 1

2m+1

∣∣∣∣ ≤ |Xi − x|+
∣∣∣∣x− 2k + 1

2m+1

∣∣∣∣ ≤ 3

2
· hn

and therefore Xi ∈ An. Thus, for any x ∈ Bn we have

F̄n (y, x) =

n∑
i=1

I{
Yi+I{Xi∈An}≤y

}K (Xi−xhn

)
n∑
i=1

K
(
Xi−x
hn

) =

n∑
i=1

I{Yi+1≤y}K
(
Xi−x
hn

)
n∑
i=1

K
(
Xi−x
hn

) = Fn (y − 1, x)

and consequently,
q̂Ȳ ,n,α (x) = q̂Y,n,α (x) + 1.

Hence, it suffices to show, that

C = {x ∈ R : x ∈ Bn i.o.}

(where i.o. means infinitely often) is not a set of PX -measure zero. Because then for
every x ∈ C, we can find a subsequence nk, such that

q̂Ȳ ,nk,α (x) = q̂Y,nk,α (x) + 1 −→ q
[low]
Y,α (x) + 1 6= q

[low]
Y,α (x) a.s.

holds by Corollary 1. In the following we will proof the stronger assertion

PX (C) = 1,

which is implied by the existence of an index M , such that

[0, 1] ⊆
2m+1−1⋃
n=2m

Bn (20)

for all m ≥M . To proof this, we will show, that there exists an index M such that

(i) 2k+1
2m+1 −

h2m+k

2 ≤ 2k
2m+1 and

(ii) 2k+2
2m+1 ≤ 2k+1

2m+1 +
h2m+k

2

for all m ≥M and all k = 0, 1, . . . , 2m − 1, because in this case B2m+k covers[
2k

2m+1
,
2k + 2

2m+1

]
for k = 0, 1, . . . , 2m− 1 and therefore (20) is fullfilled. Clearly (i) and (ii) are equivalent.
So it suffices to prove (ii), which is equivalent to

1 +
k

2m
≤ (2m + k) · h2m+k.

But since 1 + k
2m ≤ 2 and l · hl →∞ as l →∞, this clearly has to be fullfilled for all m

large enough. The proof is complete. �
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4.3. Proof of Theorem 3

Since the codf. F (·, x) is differentiable at q[low]
Y,α (x) with derivative greater than zero for

PX–almost every x, the upper and lower quantile are equal in this case. So for the sake
of simplicity we just write qY,α (x).
In the first step of the proof we show that if αn (x) is a (possibly random) sequence with

αn (x)→P α for PX–almost all x,

it holds∣∣q̂Y,n,αn(x) (x)− qY,α (x)
∣∣ = OP (rn + |αn (x)− α|) for PX–almost all x. (21)

Therefore, denote by D the set of all x ∈ Rd such that (13) holds, F (·, x) is differentiable
at qY,α (x) with derivative greater than zero and αn (x)→P α. Clearly PX (D) = 1. Now
consider a fixed x ∈ D. Since F (·, x) is differentiable at qY,α (x) with derivative greater
than zero, there exist finite constants c1 = c1 (x) > 0 and ζ = ζ (x) > 0 with γ (x) ≥ ζ,
such that

c1 |qY,α (x)− y| ≤ |F (qY,α (x) , x)− F (y, x)| (22)

for all y with |qY,α (x)− y| ≤ ζ. Let c ≥ 1 be arbitrary and set

En :=

{
2c

c1
|αn (x)− α| ≤ ζ

2

}
.

and

Gn (c) :=

 sup
|y−qY,α(x)|≤γ(x)

|F (y, x)− Fn (y, x)| ≤ c · rn

 .

The assumptions αn (x)→P α and (13) imply

lim
n→∞

P (Ecn) = 0 and lim
c→0

lim sup
n→∞

P (Gn (c)c) = 0.

Now choose n0 (x) ∈ N, such that 0 < 2c·rn
c1
≤ ζ

2 is fullfilled for all n ≥ n0 (x). Assume in
the following that the events En and Gn (c) hold and consider n ≥ n0 (x). Set

θn = θn (x) = 2c · |αn (x)− α|+ 2c · rn.

The assumptions imply

0 <
1

c1
· θn =

2c

c1
· |αn (x)− α|+ 2c · rn

c1
≤ ζ

2
+
ζ

2
= ζ ≤ γ (x) ,

so we can conclude by (22) and F (qY,α (x) , x) = α

θn = c1

∣∣∣∣qY,α (x)− qY,α (x)− 1

c1
θn

∣∣∣∣ ≤ ∣∣∣∣α− F (qY,α (x) +
1

c1
θn, x

)∣∣∣∣ (23)
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and
θn = c1

∣∣∣∣qY,α (x)− qY,α (x) +
1

c1
θn

∣∣∣∣ ≤ ∣∣∣∣α− F (qY,α (x)− 1

c1
θn, x

)∣∣∣∣ . (24)

Because F (·, x) is differentiable at qY,α (x) with derivative greater than zero, we know

F

(
qY,α (x)− 1

c1
θn, x

)
< α < F

(
qY,α (x) +

1

c1
θn, x

)
.

Thus (23) and (24) imply

F

(
qY,α (x)− θn

c1
, x

)
≤ α−θn < α− θn

2
< α < α+

θn
2
< α+θn ≤ F

(
qY,α (x) +

θn
c1
, x

)
.

(25)
Since the event Gn (c) holds and 1

c1
θn ≤ γ (x), we know

Fn

(
qY,α (x)− θn

c1
, x

)
− c · rn ≤ F

(
qY,α (x)− θn

c1
, x

)
and

F

(
qY,α (x) +

θn
c1
, x

)
≤ Fn

(
qY,α (x) +

θn
c1
, x

)
+ c · rn.

Combining this with (25) and the definition of θn leads to

Fn

(
qY,α (x)− θn

c1
, x

)
< α− θn

2
+ c · rn = α− c · |αn (x)− α|

and
α+ c · |αn (x)− α| = α+

θn
2
− c · rn < Fn

(
qY,α (x) +

θn
c1
, x

)
.

The assumption c ≥ 1 implies

α− c · |αn (x)− α| ≤ αn (x) ≤ α+ c · |αn (x)− α|

and thus
Fn

(
qY,α (x)− θn

c1
, x

)
< αn (x) < Fn

(
qY,α (x) +

θn
c1
, x

)
.

So finally we have shown

P (En ∩Gn (c)) ≤ P

(
Fn

(
qY,α (x)− θn

c1
, x

)
< αn < Fn

(
qY,α (x) +

θn
c1
, x

))
for all c ≥ 1, which by the definition of q̂Y,n,αn(x) (x) leads to

lim
c→∞

lim sup
n→∞

P

(∣∣q̂Y,n,αn(x) − qY,α (x)
∣∣ ≤ 1

c1
θn

)
= lim

c→∞
lim sup
n→∞

P

(
qY,α (x)− θn

c1
≤ q̂Y,n,αn(x) ≤ qY,α (x) +

θn
c1

)
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≥ lim
c→∞

lim sup
n→∞

P

(
Fn

(
qY,α (x)− θn

c1
, x

)
< αn (x) < Fn

(
qY,α (x) +

θn
c1
, x

))
≥ lim

c→∞
lim sup
n→∞

P (En ∩Gn (c))

≥ lim
c→∞

lim sup
n→∞

(1−P (Ecn)−P (Gn (c)c)) = 1.

Since x ∈ D was arbitrary, this yields the assertion.
Set

δn (x) =
n∑
i=1

I{|Yi−Ȳi,n|>√ηn(x)
} ·Wn,i (x) .

In the second step of the proof we show

δn (x)→P 0 for PX–almost all x.

Therefore observe

δn (x) ≤
n∑
i=1

∣∣Yi − Ȳi,n∣∣√
ηn (x)

·Wn,i (x) =
ηn (x)√
ηn (x)

=
√
ηn (x), (26)

which yields the assertion because of (A3). Combining Lemma 1 with (26) leads to

q̂
Y,n,α−

√
ηn(x)

(x)−
√
ηn (x) ≤ q̂Ȳ ,n,α ≤ q̂Y,n,α+

√
ηn(x)

(x) +
√
ηn (x) (27)

for all n ∈ N and x ∈ R.
In the third step of the proof we finally show the assertion. By the first step we know∣∣∣q̂

Y,n,α−
√
ηn(x)

(x)− qY,α (x)
∣∣∣ = OP

(
rn +

√
ηn (x)

)
and ∣∣∣q̂

Y,n,α+
√
ηn(x)

(x)− qY,α (x)
∣∣∣ = OP

(
rn +

√
ηn (x)

)
.

for PX–almost every x. By (27) we can conclude∣∣q̂Ȳ ,n,α (x)− qY,α (x)
∣∣

≤
∣∣∣q̂
Y,n,α−

√
ηn(x)

(x)−
√
ηn (x)− qY,α (x)

∣∣∣+
∣∣∣q̂
Y,n,α+

√
ηn(x)

(x) +
√
ηn (x)− qY,α (x)

∣∣∣
≤
∣∣∣q̂
Y,n,α−

√
ηn(x)

(x)− qY,α (x)
∣∣∣+
∣∣∣q̂
Y,n,α+

√
ηn(x)

(x)− qY,α (x)
∣∣∣+ 2

√
ηn (x),

which completes the proof. �

4.4. Proof of Corollary 2

In order to prove Corollary 2, we need the following lemma, which extends Theorem 9.1.
in Györfi et al. (2002) to kernel weighted sums. Therefore denote by Sx,hn the closed
ball around x with radius hn and by N1 (ε,G, yn1 ) the minimal size of an ε-cover of G on
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yn1 = (y1, . . . , yn) ∈ Rn, which is defined as a finite collection of functions g1, . . . , gN :
Rd → R with the property that for every g ∈ G there is a j = j (g) ∈ {1, . . . , N}, such
that

1

n

n∑
i=1

|g (yi)− gj (yi)| < ε.

Lemma 2. Let x ∈ Rd be arbitrary, (X1, Y1) , . . . , (Xn, Yn) be independent and identically
distributed Rd+1-valued random vectors, set Y n

1 = (Y1, . . . , Yn) and let G be a set of
functions g : R→ [0, 1]. Furthermore let K be the naive kernel and let ε > 0 be arbitrary.
Then n ·PX (Sx,hn) ≥ 8/ε2 implies

P

(
∃g ∈ G :

∣∣∣∣∣ 1n
n∑
i=1

g (Yi) ·K
(
Xi − x
hn

)
−E

{
1

n

n∑
i=1

g (Yi) ·K
(
Xi − x
hn

)}∣∣∣∣∣ > ε

)

≤ E

8 ·min

N1

( ε
8
,G, Y n

1

)
· exp

− n · ε2

128 · 1
n

n∑
i=1

K
(
Xi−x
hn

)
 , 1


 .

Proof of Lemma 2. Since the proof is similar to the proof of Theorem 9.1. in Györfi
et al. (2002), we give only an outline of the proof. A complete proof is available
from the authors on request. Choose random vectors (X ′1, Y

′
1) , . . . , (X ′n, Y

′
n), such that

(X1, Y1) , . . . , (Xn, Yn) , (X ′1, Y
′

1) , . . . , (X ′n, Y
′
n) are independent and identically distributed,

and choose independent and uniformly over {−1, 1} distributed random variables U1, . . . , Un,
which are independent of all previously introduced random variables. As in the proof of
Theorem 9.1. in Györfi et al. (2002) we get

P

(
∃g ∈ G :

∣∣∣∣∣ 1n
n∑
i=1

g(Yi) ·K
(
Xi − x
hn

)
−E

{
1

n

n∑
i=1

g(Yi) ·K
(
Xi − x
hn

)}∣∣∣∣∣ > ε

)

≤ 2 ·P

(
∃g ∈ G :

∣∣∣∣∣ 1n
n∑
i=1

g(Yi) ·K
(
Xi − x
hn

)
− 1

n

n∑
i=1

g(Y ′i ) ·K
(
X ′i − x
hn

)∣∣∣∣∣ > ε

2

)

≤ 4 ·P

(
∃g ∈ G :

∣∣∣∣∣ 1n
n∑
i=1

Ui · g(Yi) ·K
(
Xi − x
hn

)∣∣∣∣∣ > ε

4

)

≤ 4 ·E

{
min

[
N1

( ε
8
,G, Y n

1

)
· max
g∈G ε

8
,(xi,yi)∈Rd×R

P

(∣∣∣∣∣ 1n
n∑
i=1

Ui · g(xi) ·K
(
xi − x
hn

)∣∣∣∣∣ > ε

8

)
, 1

]}
.

Application of Hoeffding’s inequality yields the assertion. �

Proof of Corollary 2. Choose an arbitrary x ∈ Rd such that (15) holds for some con-
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stants C (x) , κ1 (x) , κ2 (x) > 0. Set

FEn (y, x) =

E

{
n∑
i=1

I{Yi≤y} ·K
(
Xi−x
hn

)}
E

{
n∑
i=1

K
(
Xi−x
hn

)} =

∫
Sx,hn

F (y, t)PX (dt)

PX (Sx,hn)

if PX (Sx,hn) > 0 and FEn (y, x) = 0 otherwise. In order to apply Theorem 3, it remains
to show (13) for

rn =

√
log (n)

n · hdn
+ hpn.

Therefore we choose γ (x) = κ1 (x) and decompose the error into

sup
|y−qY,α(x)|≤γ(x)

|F (y, x)− Fn (y, x)|

≤ sup
|y−qY,α(x)|≤γ(x)

∣∣F (y, x)− FEn (y, x)
∣∣+ sup
|y−qY,α(x)|≤γ(x)

∣∣∣∣∣∣∣∣F
E
n (y, x)−

1
n

n∑
i=1

K
(
Xi−x
hn

)
PX (Sx,hn)

· Fn (y, x)

∣∣∣∣∣∣∣∣
+ sup
|y−qY,α(x)|≤γ(x)

|Fn (y, x)| ·

∣∣∣∣∣∣∣∣
1
n

n∑
i=1

K
(
Xi−x
hn

)
PX (Sx,hn)

− 1

∣∣∣∣∣∣∣∣
=: Jn,1 (x) + Jn,2 (x) + Jn,3 (x) .

Hence it suffices to show, that we obtain the claimed rate of convergence for all three
summands for PX–almost all x, which we will do in the following three steps.
In the first step of the proof we show

Jn,1 (x) = OP (hpn) for PX–almost every x.

Therefore we set
Ln :=

{
x ∈ Rd : PX (Sx,hn) > 0

}
,

rewrite Jn,1 (x) and use assumption (15), which is applicable since hn ≤ κ2 (x) for all n
sufficient large, to obtain for PX–almost every x

Jn,1 (x) = sup
|y−qY,α(x)|≤γ(x)


∣∣∣∣∣∣∣
∫

Sx,hn

F (y, x)− F (y, t)PX (dt)

PX (Sx,hn)

∣∣∣∣∣∣∣ I{x∈Ln} + F (y, x) · I{x∈Lcn}


≤

∣∣∣∣∣∣∣
∫

Sx,hn

C (x) · ||x− t||pPX (dt)

PX (Sx,hn)

∣∣∣∣∣∣∣ I{x∈Ln} + I{x∈Lcn} ≤ C (x) · hpn + I{x∈Lcn}
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for all n large enough. Since Lcn ⊆ supp (PX)c , and PX (supp (PX)) = 1, we have

I{x∈Lcn} = 0 for PX–almost every x. (28)

which implies the assertion.
In the second step of the proof we show

Jn,2 (x) = OP

(√
log (n)

n · hdn

)
for PX–almost every x.

Therefore, we only need to consider x ∈ Ln, since Lcn is a set of PX -measure zero by
(28). Set

G =
{
g : R→ [0, 1] : g (z) = I{z≤y} y ∈ R

}
and observe

P

(
Jn,2 (x) > c ·

√
log (n)

n · hdn

)

≤ P

sup
y∈R

∣∣∣∣∣∣∣∣
1
n

n∑
i=1

K
(
Xi−x
hn

)
PX (Sx,hn)

· Fn (y, x)− FEn (y, x)

∣∣∣∣∣∣∣∣ > c ·

√
log (n)

n · hdn


= P

(
sup
g∈G

∣∣∣∣∣ 1n
n∑
i=1

g (Yi)K

(
Xi − x
hn

)
−E

{
1

n

n∑
i=1

g (Yi)K

(
Xi − x
hn

)}∣∣∣∣∣ > εn

)
,

(29)

where

εn = c ·PX (Sx,hn) ·

√
log n

n · hdn
.

Define the event

Qn := Qn (x) =

{
1

n

n∑
i=1

K

(
Xi − x
hn

)
≤ 3

2
·PX (Sx,hn)

}
.

Lemma 24.6. in Györfi et al. (2002), which states

lim sup
n→∞

hdn
PX (Sx,hn)

<∞ for PX–almost every x, (30)

implies that for every c > 0 and PX–almost every x

n ≥ 8

ε2n
·PX (Sx,hn) =

8n · hdn
c2 · log (n) ·PX (Sx,hn)

is fullfilled for all n large enough. Thus, we can apply Lemma 2 to bound the last
probability in (29). Since G is a set of indicator functions IA with A ∈ A = {(−∞, y] :
y ∈ R}, we have

N1

( ε
8
,G, yn1

)
≤ s(A, n),
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for every yn1 = (y1, . . . , yn), where s(A, n) denotes the n-th shatter coefficient of the set
A (see Definition 9.5. in Györfi et al. (2002)). By Theorem 9.3. and Example 9.1. in
Györfi et al. (2002), it follows

s(A, n) ≤ n+ 1 ≤ 2n.

Using the bound for N1

(
ε
8 ,G, Y

n
1

)
, we finally obtain for PX–almost every x ∈ Ln

P

(
Jn,2 (x) > c ·

√
log (n)

n · hdn

)

≤ E

8 ·min

N1

( ε
8
,G, Y n

1

)
· exp

− n · c2 · log (n) ·PX (Sx,hn)2

128 · n · hdn · 1
n

n∑
i=1

K
(
Xi−x
hn

)
 , 1




≤ 16n ·E

{
exp

(
−
c2 · log (n) ·PX (Sx,hn)2

128 · hdn · 3
2 ·PX (Sx,hn)

)
IQn

}
+ 8 ·P (Qcn)

= 16n · exp

(
−
c2 · log (n) ·PX (Sx,hn)

192 · hdn

)
+ 8 ·P (Qcn)

for all n large enough. Since (30) implies

lim inf
n→∞

PX (Sx,hn)

192 · hdn
> 0,

the left term on the right hand side tends to zero as n → ∞ for c > 0 large enough.
Hence, it suffices to show for PX–almost every x ∈ Ln

P (Qcn)→ 0 (n→∞) .

Therefore observe that Chebyshev’s inequality and the independence ofX1, . . . Xn implies

P (Qcn) ≤ P

(∣∣∣∣∣ 1n
n∑
i=1

K

(
Xi − x
hn

)
−PX (Sx,hn)

∣∣∣∣∣ > 1

2
·PX (Sx,hn)

)
(31)

≤
V

{
1
n

n∑
i=1

K
(
Xi−x
hn

)}
1
4 ·PX (Sx,hn)2 ≤

4 ·E
{
K
(
Xi−x
hn

)2
}

n ·PX (Sx,hn)2 =
4

n · hdn
· hdn
PX (Sx,hn)

Thus, the assertion follows by (30) and (K1).
In the third step of the proof we show

Jn,3 (x) = OP

(√
log (n)

n · hdn

)
for PX–almost every x.

26



Therefore observe

Jn,3 (x) = sup
|y−qY,α(x)|≤γ(x)

∣∣∣∣∣∣∣∣
n∑
i=1

I{Yi≤y} ·K
(
Xi−x
hn

)
n∑
i=1

K
(
Xi−x
hn

)
∣∣∣∣∣∣∣∣ ·
∣∣∣∣∣∣∣∣

1
n

n∑
i=1

K
(
Xi−x
hn

)
PX (Sx,hn)

− 1

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣
1
n

n∑
i=1

K
(
Xi−x
hn

)
PX (Sx,hn)

− 1

∣∣∣∣∣∣∣∣ ,
since K is nonnegative. Using Chebyshev’s inequality, we finally get for x ∈ Ln

P

(
Jn,3 (x) > c ·

√
log (n)

n · hdn

)
≤ P


∣∣∣∣∣∣∣∣

1
n

n∑
i=1

K
(
Xi−x
hn

)
PX (Sx,hn)

− 1

∣∣∣∣∣∣∣∣ > c ·

√
log (n)

n · hdn



≤ V


1
n

n∑
i=1

K
(
Xi−x
hn

)
PX (Sx,hn)

 ·
n · hdn

c2 · log (n)

≤
E

{
K
(
Xi−x
hn

)2
}

n ·PX (Sx,hn)2 ·
n · hdn

c2 · log (n)
=

hdn
PX (Sx,hn)

· 1

c2 · log (n)
,

where we have used that K is the naive kernel. The assertion follows directly by the
definition of OP using (28) and (30). �
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A. Supplementary material for the referees

A.1. Proof of Theorem 2: proof of (ii)

By the definition of q[up]
Y,α , we have

α < F
(
q

[up]
Y,α (x) + ε, x

)
.

Set
ρ2 (x) = F

(
q

[up]
Y,α (x) + ε, x

)
− α > 0.

Again, (8) implies

Fn

(
q

[up]
Y,α (x) + ε, x

)
→ F

(
q

[up]
Y,α (x) + ε, x

)
a.s. for PX–almost all x.

Set

Ñ (x) := {αn (x)→ α (n→∞) and

Fn

(
q

[up]
Y,α (x) + ε, x

)
→ F

(
q

[up]
Y,α (x) + ε, x

)
(n→∞)

}
,

such that P
(
Ñ (x)

)
= 1 for PX–almost every x ∈ Rd. So for PX–almost every

x ∈ Rd it holds (ω-wise for all ω ∈ Ñ (x))∣∣∣Fn (q[up]
Y,α (x) + ε, x

)
− F

(
q

[up]
Y,α (x) + ε, x

)∣∣∣ < ρ2 (x)

2
and |αn (x)− α| < ρ2 (x)

2

for all n large enough, which implies for PX–almost every x ∈ Rd

Fn

(
q

[up]
Y,α (x) + ε, x

)
> F

(
q

[up]
Y,α (x) + ε, x

)
− ρ2 (x)

2
= α+

ρ2 (x)

2
> αn (x)

for all n large enough. But then for PX–almost every x ∈ Rd

q̂Y,n,αn(x) (x) ≤ q[up]
Y,α (x) + ε

holds (ω-wise for all ω ∈ Ñ (x)) for all n large enough by the definition of q̂Y,n,αn(x).
Finally we have shown

P
(
q̂Y,n,αn(x) (x) > q

[up]
Y,α (x) + ε i.o.

)
≤ P

(
Ñ (x)c

)
= 1−P

(
Ñ (x)

)
= 0,

for PX–almost every x ∈ Rd, which was the assertion of part (ii). �
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A.2. Proof of Lemma 2

In the following, we extend the arguments of the proof of Theorem 9.1. in Györfi et
al. (2002).

Step 1: Symmetrization by a ghost sample.
Choose random vectors (X ′1, Y

′
1) , . . . , (X ′n, Y

′
n), such that (X1, Y1) , . . . , (Xn, Yn) ,

(X ′1, Y
′

1) , . . . , (X ′n, Y
′
n) are independent and identically distributed. Let g∗ be a func-

tion g ∈ G, such that∣∣∣∣∣ 1n
n∑
i=1

g(Yi) ·K
(
Xi − x
hn

)
−E

{
1

n

n∑
i=1

g(Yi) ·K
(
Xi − x
hn

)}∣∣∣∣∣ > ε,

if there exists any such function, otherwise let g∗ be an arbitrary function in G. Set

Dn = ((X1, Y1) , . . . , (Xn, Yn))

and
D′n =

((
X ′1, Y

′
1

)
, . . . ,

(
X ′n, Y

′
n

))
.

Chebyshev’s inequality and the independence of (X ′1, Y
′

1) , . . . , (X ′n, Y
′
n) yield

P

{∣∣∣∣∣E
{

1

n

n∑
i=1

g∗(Y ′i ) ·K
(
X ′i − x
hn

) ∣∣∣∣∣Dn
}
− 1

n

n∑
i=1

g∗(Y ′i ) ·K
(
X ′i − x
hn

)∣∣∣∣∣ > ε

2

∣∣∣∣∣ Dn
}

≤ 4

ε2 · n2
·
n∑
i=1

V {g∗(Y ′i ) ·K
(
X ′i − x
hn

)∣∣∣∣ Dn}
≤ 4

ε2 · n2
·
n∑
i=1

E

{(
g∗
(
Y ′i
))2 ·K (X ′i − x

hn

)2
∣∣∣∣∣Dn

}
≤

4 ·PX (Sx,hn)

ε2 · n
,

where we have used the upper bound 1 of the functions g ∈ G and that K is the naive
kernel. Thus, for n ≥ 8 ·PX (Sx,hn) /ε2, it follows

P

{∣∣∣∣∣E
{

1

n

n∑
i=1

g∗(Y ′i ) ·K
(
X ′i − x
hn

) ∣∣∣∣∣Dn
}
− 1

n

n∑
i=1

g∗(Y ′i ) ·K
(
X ′i − x
hn

)∣∣∣∣∣ ≤ ε

2

∣∣∣∣∣ Dn
}

≥ 1

2
.

Therefore, we can conclude for n ≥ 8 ·PX (Sx,hn) /ε2

P

(
∃g ∈ G :

∣∣∣∣∣ 1n
n∑
i=1

g(Yi) ·K
(
Xi − x
hn

)
− 1

n

n∑
i=1

g(Y ′i ) ·K
(
X ′i − x
hn

)∣∣∣∣∣ > ε

2

)

≥P

(∣∣∣∣∣ 1n
n∑
i=1

g∗(Yi) ·K
(
Xi − x
hn

)
− 1

n

n∑
i=1

g∗(Y ′i ) ·K
(
X ′i − x
hn

)∣∣∣∣∣ > ε

2

)
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≥P

(∣∣∣∣∣ 1n
n∑
i=1

g∗(Yi) ·K
(
Xi − x
hn

)
−E

{
1

n

n∑
i=1

g∗(Y ′i ) ·K
(
X ′i − x
hn

)∣∣∣∣∣Dn
}∣∣∣∣∣ > ε,∣∣∣∣∣ 1n

n∑
i=1

g∗(Y ′i ) ·K
(
X ′i − x
hn

)
−E

{
1

n

n∑
i=1

g∗(Y ′i ) ·K
(
X ′i − x
hn

)∣∣∣∣∣Dn
}∣∣∣∣∣ ≤ ε

2

)

≥E

I{∣∣∣∣ 1n n∑
i=1

g∗(Yi)·K
(
Xi−x
hn

)
−E
{

1
n

n∑
i=1

g∗(Y ′i )·K
(
X′
i
−x
hn

)∣∣∣∣Dn}∣∣∣∣>ε}

· P

(∣∣∣∣∣ 1n
n∑
i=1

g∗(Y ′i ) ·K
(
X ′i − x
hn

)
−E

{
1

n

n∑
i=1

g∗(Y ′i ) ·K
(
X ′i − x
hn

)∣∣∣∣∣Dn
}∣∣∣∣∣ ≤ ε

2

∣∣∣∣∣Dn
)}

≥1

2
·P

(∣∣∣∣∣ 1n
n∑
i=1

g∗(Yi) ·K
(
Xi − x
hn

)
−E

{
1

n

n∑
i=1

g∗(Y ′i ) ·K
(
X ′i − x
hn

)∣∣∣∣∣Dn
}∣∣∣∣∣ > ε

)

=
1

2
·P

(
∃g ∈ G :

∣∣∣∣∣ 1n
n∑
i=1

g(Yi) ·K
(
Xi − x
hn

)
−E

{
1

n

n∑
i=1

g(Yi) ·K
(
Xi − x
hn

)}∣∣∣∣∣ > ε

)

Finally, we obtain for n ≥ 8 ·PX (Sx,hn) /ε2

P

(
∃g ∈ G :

∣∣∣∣∣ 1n
n∑
i=1

g(Yi) ·K
(
Xi − x
hn

)
−E

{
1

n

n∑
i=1

g(Yi) ·K
(
Xi − x
hn

)}∣∣∣∣∣ > ε

)

≤2 ·P

(
∃g ∈ G :

∣∣∣∣∣ 1n
n∑
i=1

g(Yi) ·K
(
Xi − x
hn

)
− 1

n

n∑
i=1

g(Y ′i ) ·K
(
X ′i − x
hn

)∣∣∣∣∣ > ε

2

)
.

Step 2: Introduction of additional randomness by random signs
Let U1, . . . , Un be independent and uniformly over {−1, 1} distributed random
variables, which are independent of (X1, Y1) , . . . , (Xn, Yn) , (X ′1, Y

′
1) , . . . , (X ′n, Y

′
n).

Since (X1, Y1) , . . . , (Xn, Yn) , (X ′1, Y
′

1) , . . . , (X ′n, Y
′
n) are i.i.d., the joint distribution

of Dn,D′n is not affected if one ranomly interchanges the corresponding components
of Dn and D′n. Thus,

P

(
∃g ∈ G :

∣∣∣∣∣ 1n
n∑
i=1

[
g(Yi) ·K

(
Xi − x
hn

)
− g(Y ′i ) ·K

(
X ′i − x
hn

)]∣∣∣∣∣ > ε

2

)

=P

(
∃g ∈ G :

∣∣∣∣∣ 1n
n∑
i=1

Ui ·
[
g(Yi) ·K

(
Xi − x
hn

)
− g(Y ′i ) ·K

(
X ′i − x
hn

)]∣∣∣∣∣ > ε

2

)

≤P

(
∃g ∈ G :

∣∣∣∣∣ 1n
n∑
i=1

Ui · g(Yi) ·K
(
Xi − x
hn

)∣∣∣∣∣ > ε

4

)

+ P

(
∃g ∈ G :

∣∣∣∣∣ 1n
n∑
i=1

Ui · g(Y ′i ) ·K
(
X ′i − x
hn

)∣∣∣∣∣ > ε

4

)
(32)
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=2 ·P

(
∃g ∈ G :

∣∣∣∣∣ 1n
n∑
i=1

Ui · g(Yi) ·K
(
Xi − x
hn

)∣∣∣∣∣ > ε

4

)
(33)

Step 3: Conditioning and introduction of a covering.
We condition the right probability in (33) on Dn, which is equivalent to fixing
(x1, y1) , . . . , (xn, yn) ∈ Rd+1 and to considering

P

(
∃g ∈ G :

∣∣∣∣∣ 1n
n∑
i=1

Ui · g(yi) ·K
(
xi − x
hn

)∣∣∣∣∣ > ε

4

)
. (34)

Fix g ∈ G and let G ε
8
be an L1

ε
8 -cover on yn1 = (y1, . . . , yn) of minimal size. Then

there exists ḡ ∈ G ε
8
such that

1

n

n∑
i=1

|(g(yi)− ḡ (yi)| <
ε

8
. (35)

W.l.o.g. we assume that 0 ≤ ḡ (z) ≤ 1, otherwise we truncate ḡ at 0 and 1 and observe
that (35) is still fullfilled in this case. Then∣∣∣∣∣ 1n

n∑
i=1

Ui g(yi) ·K
(
xi − x
hn

)∣∣∣∣∣ ≤
∣∣∣∣∣ 1n

n∑
i=1

Ui · ḡ(yi) ·K
(
xi − x
hn

)∣∣∣∣∣
+

1

n

n∑
i=1

|Ui| · |g(yi)− ḡ(yi)| ·
∣∣∣∣K (xi − xhn

)∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑
i=1

Ui · ḡ(yi) ·K
(
xi − x
hn

)∣∣∣∣∣+
ε

8
.

Thus, taking into account that the size of G ε
8
is N1

(
ε
8 ,G, y

n
1

)
, we finally obtain

P

(
∃g ∈ G :

∣∣∣∣∣ 1n
n∑
i=1

Ui · g(yi) ·K
(
xi − x
hn

)∣∣∣∣∣ > ε

4

)

≤ P

(
∃g ∈ G ε

8
:

∣∣∣∣∣ 1n
n∑
i=1

Ui · g(yi) ·K
(
xi − x
hn

)∣∣∣∣∣+
ε

8
>
ε

4

)

≤ min

[∣∣∣G ε
8

∣∣∣ · max
g∈G ε

8

P

(∣∣∣∣∣ 1n
n∑
i=1

Ui · g(yi) ·K
(
xi − x
hn

)∣∣∣∣∣ > ε

8

)
, 1

]

= min

[
N1

( ε
8
,G, yn1

)
· max
g∈G ε

8

P

(∣∣∣∣∣ 1n
n∑
i=1

Ui · g(yi) ·K
(
xi − x
hn

)∣∣∣∣∣ > ε

8

)
, 1

]
Step 4: Application of Hoeffding’s inequality.
Observing that U1·g(y1)·K

(
x1−x
hn

)
, . . . , Un·g(yn)·K

(
xn−x
hn

)
are independent random

variables with

−g(yi)·K
(
xi − x
hn

)
≤ Ui ·g(yi)·K

(
xi − x
hn

)
≤ g(yi)·K

(
xi − x
hn

)
for i = 1, . . . , n,
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Hoeffding’s inequality yields

P

(∣∣∣∣∣ 1n
n∑
i=1

Uig(yi) ·K
(
xi − x
hn

)∣∣∣∣∣ > ε

8

)
≤ 2 · exp

− 2 · n ·
(
ε
8

)2
4 · 1

n

n∑
i=1

g(yi)2 ·K
(
xi−x
hn

)2



≤ 2 · exp

− n · ε2

128 · 1
n

n∑
i=1

K
(
xi−x
hn

)
 ,

where we have used the upper bound 1 of g ∈ G and that K is the naive kernel.
The assertion follows by combining this with the results of the previous steps.
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