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Abstract

Let X be an Rd valued random variable, let m : Rd → R be a measurable
function and set Y = m(X). Given a sample of (X,Y ) of size n we consider
the problem of estimating the quantile of Y of a given level α ∈ (0, 1). In
this setting one promising idea is to apply a surrogate quantile estimate,
where in the �rst step the sample of (X,Y ) is used to construct a surrogate
estimate of m and in the second step the quantile is estimated by using the
surrogate estimate of m. The construction of the surrogate estimate usually
depends on a proper choice of parameters, so each parameter leads to a dif-
ferent quantile estimate. Given �nitely many such surrogate estimates, we
consider the problem of choosing the best of them in the context of quan-
tile estimation. A data-dependent way of selecting the optimal surrogate
estimate is proposed. It is shown that the pointwise error of the resulting
adaptive surrogate estimate is less than twice the maximal supremum norm
error of the given surrogate estimates except on a set of measure less than
c1 · log n/n. Furthermore it is shown that this implies that the corresponding
surrogate quantile estimate achieves the rate of convergence bounded by the
sum of the minimal rate of convergence of the quantile estimates correspond-
ing to the given surrogate estimates and a term of order log(n)/n. The �nite
sample size behaviour of this quantile estimate is illustrated by applying it
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to simulated data.

AMS classi�cation: Primary 62G05; secondary 62G20.

Key words and phrases: Adaptation, quantile estimation, rate of conver-
gence.

1 Introduction

Let Y be a real-valued random variable with cumulative distribution function
(cdf.) GY , i.e., GY (y) = P{Y ≤ y}. For α ∈ (0, 1) denote by

qY,α = min{z ∈ R : GY (z) ≥ α}

the α-quantile of Y . A simple idea to estimate qY,α from a sample Y1, . . . ,
Yn of Y is to use Y1, . . . , Yn to compute the empirical cdf.

Ĝn(y) =
1

n

n∑
i=1

I{Yi≤y} (1)

and to estimate the quantile by the corresponding plug-in estimate

q̂Y,n,α = min{z ∈ R : Ĝn(z) ≥ α}. (2)

Since q̂Y,n,α is in fact an order statistic, results from order statistics, e.g.,
Theorem 8.5.1 in Arnold, Balakrishnan and Nagaraja (1992), imply that in
case that Y has a density g which is continuous and positive at qY,α we have

√
n · g(qY,α) ·

q̂Y,n,α − qY,α√
α · (1− α)

→ N(0, 1) in distribution.

This implies

|q̂Y,n,α − qY,α| = OP

(
1√
n

)
, (3)

where we write Xn = OP(Zn) if the nonnegative random variables Xn and
Zn satisfy

lim
c→∞

lim sup
n→∞

P{Xn > c · Zn} = 0.

In this paper we consider a simulation model of a complex technical system
given by Y = m(X), where X is a Rd-valued random variable which de-
scribes uncertain parameters of the system and m : Rd → R is a function
which describes how the outcome Y of the system depends on its (random)
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parametersX. We consider the problem of estimating the α�quantile qm(X),α

of Y = m(X). We assume that we are allowed to evaluatem at any point and
that we have available random variables X1, X2, . . . which are independent
and identically distributed as X. However, since m describes a simulation
model of a complex technical system, we assume that our functionm is costly
to evaluate, and hence we are interested in estimation of the quantile using
as few evaluations of m as possible.

One simple way of estimating the above quantile would be to compute
the data

Dn = {(X1, Y1), . . . , (Xn, Yn)} = {(X1,m(X1)), . . . , (Xn,m(Xn))} , (4)

where X, X1, X2, . . . are independent and identically distributed random
variables, and to apply the simple order statistics estimate (2) to Y1 =
m(X1), . . . , Yn = m(Xn). According to (3) this results in an estimate
achieving the rate of convergence 1/

√
n, where n is the number of evalua-

tions of m needed.
There are quite a few approaches studied already in the literature for

improving the rate of convergence of the above simple quantile estimate.
These include variance reduction techniques like control variates (cf., e.g.,
Hesterberg and Nelson (1998)), controlled strati�cation (cf., e.g., Cannamela,
Garnier and Ioss (2008)) and importance sampling (cf., e.g., Glynn (1996) for
a parametric and Morio (2012) for a nonparametric approach), and Bayesian
methods, including in particular ones based on Gaussian process modelling
(cf., e.g., Santner, Williams and Notz (2003)). For the to quantile estimation
related problem of rare event simulation an extensive survey is presented in
Morio et al. (2014).

In this paper we study estimates based on so�called surrogate models.
The basic idea is to �rst construct a surrogate estimate mn of m and then
to estimate the quantile qm(X),α by a Monte Carlo estimate of the quantile
qmn(X),α, where

qmn(X),α = inf
{
y ∈ R : PX{x ∈ Rd : mn(x) ≤ y} ≥ α

}
.

More precisely, assume that besides data (4) we are also given the samples

Xn+1, . . . , Xn+Nn

for some large Nn ∈ N. The surrogate quantile estimate q̂mN (X),Nn �rst
computes

mn(Xn+1), . . . ,mn(Xn+Nn),
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and then produces the corresponding empirical cdf.

Ĝmn(X),Nn(y) =
1

Nn

Nn∑
i=1

I{mn(Xn+i)≤y} (y ∈ R),

and subsequently estimates qm(X),α by the plug-in estimate

q̂mn(X),Nn,α = inf
{
y ∈ R : Ĝmn(X),Nn(y) ≥ α

}
.

Clearly, this quantile estimate depends crucially on the chosen surrogate
model. Surrogate models have been introduced and investigated with the aid
of simulated and real data in connection with quadratic response surfaces in
Bucher and Burgund (1990), Kim and Na (1997) and Das and Zheng (2000),
in connection with support vector machines in Hurtado (2004), Deheeger and
Lemaire (2010) and Bourinet, Deheeger and Lemaire (2011), in connection
with neural networks in Papadrakakis and Lagaros (2002), and in connection
with kriging in Kaymaz (2005) and Bichon et al. (2008). As a tool to derive
various versions of importance sampling algorithms surrogate models have
been used in Dubourg, Sudret and Deheeger (2013) and in Kohler, Krzy»ak,
Tent and Walk (2014).

In Enss et al. (2016) the rate of convergence of surrogate quantile esti-
mates has been analyzed. It has been shown that they achieve in case of a
smooth function m better rates of convergence than the rate 1/

√
n of the

simple order statistics estimate in (2). However, all of these estimates de-
pend on parameters (which one can restrict without loss of generality to be
contained in a �nite set), and choosing one of them in an application imme-
diately leads to the following problem: Given surrogate quantile estimates

q̂mn,p(X),Nn,α (p ∈ Pn)

(where Pn is a �nite set of parameters) and the data (4), how to select the
best quantile estimate, i.e., a how to select a p̂ = p̂(Dn) ∈ Pn such that

|q̂mn,p̂(X),Nn,α − qm(X),α| = OP

(
min
p∈Pn

|q̂mn,p(X),Nn,α − qm(X),α|+ εn

)
(5)

for some small error term εn > 0 satisfying nδ · εn → 0 (n → ∞) for some
δ > 1/2.

In order to solve this problem we suggest in this paper a method which
enables one to choose in a data�dependent way the best surrogate estimate
from a list of �nitely many surrogate estimates using the data (4). We
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use this approach to de�ne an algorithm which does not need any tuning
parameter to be chosen in an application, which satis�es (5) with εn =
(log n)/n and which hence achieves the optimal rate of convergence up to
some additional error of order log(n)/n.

Throughout this paper we use the following notation: N, N0, Z, R and R+

are the sets of positive integers, nonnegative integers, integers, real numbers
and positive real numbers, respectively. For a real number z we denote by
bzc and dze the largest integer less than or equal to z and the smallest integer
larger than or equal to z, respectively. ‖x‖ is the Euclidean norm of x ∈ Rd,
and for f : Rd → R and A ⊆ Rd we set

‖f‖∞,A = sup
x∈A
|f(x)|.

Let p = k + s for some k ∈ N0 and 0 < s ≤ 1, and let C > 0. A function
f : Rd → R is called (p, C)-smooth, if for every α = (α1, . . . , αd) ∈ Nd0 with∑d

j=1 αj = k the partial derivative ∂kf

∂x
α1
1 ...∂x

αd
d

exists and satis�es

∣∣∣∣ ∂kf

∂xα1
1 . . . ∂xαdd

(x)− ∂kf

∂xα1
1 . . . ∂xαdd

(z)

∣∣∣∣ ≤ C · ‖x− z‖s
for all x, z ∈ Rd.

For nonnegative random variables Xn and Yn we say that Xn = OP(Yn)
if

lim
c→∞

lim sup
n→∞

P(Xn > c · Yn) = 0.

The outline of the paper is as follows: The main results are formulated in
Section 2 and proven in Section 4. Section 3 illustrates our adaptive choice
of an quantile by applying it to simulated data.

2 Main results

2.1 Adaptive choice of a surrogate model

Let X, X1, X2, . . . , be independent and identically distributed random
variables with values in Rd and let m : Rd → R be measurable function.
In this subsection we consider the problem of choosing a suitable surrogate
model for m(X). Here we assume that we have given a �nite parameter set
Pn, surrogate estimates

mn,p : Rd → R
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for each p ∈ Pn together with the data

Dn = {(X1,m(X1)), . . . , (Xn,m(Xn))} . (6)

Our aim is to choose a parameter

p̂ = p̂(Dn) ∈ Pn

such that the supremum norm error between m(x) and mn,p̂(x) on some
given set Kn ⊆ Rd is small.

To do this, we propose to minimize the maximal absolute di�erence be-
tween mn,p(Xi) and m(Xi) for those Xi that are contained in Kn, i.e., we
set

p̂ = arg min
p∈Pn

max
i=1,...,n,
Xi∈Kn

|mn,p(Xi)−m(Xi)|.

Our next result shows that the PX�measure of the set of all x ∈ Kn, where
the error of mn,p̂ is larger than two times the best supremum norm error

min
p∈Pn

‖mn,p −m‖∞,Kn ,

is small.

Theorem 1. Let X, X1, X2, . . . , be independent and identically distributed

random variables with values in Rd and let m : Rd → R be a measurable

function. Let Pn be some �nite set and assume that for each p ∈ Pn a

surrogate estimate

mn,p : Rd → R

of m is given. De�ne

mn(x) = mn,p̂(x) (x ∈ Rd)

where

p̂ = arg min
p∈Pn

max
i=1,...,n,
Xi∈Kn

|mn,p(Xi)−m(Xi)|. (7)

Assume that
|Pn|
nr
→ 0 (n→∞)

for some r > 0.
Then we have outside of an event, whose probability tends to zero for

n→∞,

PX

({
x ∈ Kn : |mn(x)−m(x)| > 2 · min

p∈Pn
‖mn,p −m‖∞,Kn

})
≤ r · log n

n
.
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Remark 1. In case that the estimates mn,p itselves are based on data
of the form (6), i.e., in case that they are based on observations of m at
random points, we can split the data (6) into two halves in order to de�ne
an adaptive estimate which uses alltogether only n evaluations of m. To do
this, set nl = bn/2c, let Kn ⊆ Rd and let Pn be a �nite set of parameters.
Assume that for each p ∈ Pn an estimate

mnl,p(·) = mnl,p(·, (X1,m(X1)), . . . , (Xnl ,m(Xnl))) : R
d → R

of m is given. Set
mn(x) = mnl,p̂(x) (x ∈ Rd),

where
p̂ = arg min

p∈Pn
max

i=nl+1,...,n,
Xi∈Kn

|mnl,p(Xi)−m(Xi)|.

As in the proof of Theorem 1 it is possible to show

PX

({
x ∈ Kn : |mn(x)−m(x)| > 2 · min

p∈Pn
‖mn,p −m‖∞,Kn

} ∣∣Xnl
1

)
≤ 2 · r · log n

n
,

where Xnl
1 = (X1, . . . , Xnl).

Remark 2. The estimate in Remark 1 uses splitting of the data in order to
choose the optimal parameter. But at the very end this parameter is applied
only with a sample of half the original size. One way to circumvent is, is to
use a kind of cross-validation instead. In the sequel we de�ne a k�fold cross-
validation to choose our parameter, where 2 ≤ k ≤ n is �xed (in Section 3
below we will use k = 5). To do this, set

nl =
⌊
l · n
k

⌋
, (l ∈ {0, . . . , k}),

and set

Dn,l =
{
(X1,m(X1)), . . . , (Xnl ,m(Xnl)), (Xnl+1+1,m(Xnl+1+1)), . . . , (Xn, Yn)

}
(l ∈ {1, . . . , k}). Then the k�fold cross-validation choice of our parameter
p ∈ Pn is

p̂ = arg min
p∈Pn

max
l=1,...,k

max
i=nl+1,...,nl+1,

Xi∈Kn

∣∣mn−(nl+1−nl),p(Xi,Dn,l)−m(Xi)
∣∣ ,
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and the corresponding surrogate estimate is

mn(x) = mn,p̂(x,Dn) (x ∈ Rd).

The �nite sample size performance of this estimate will be analyzed in Section
3 using simulated data. Whether a similar bound as the one in Theorem 1
also holds for this estimate is an open problem.

2.2 A general result for surrogate quantile estimates

Let X, X1, X2, . . . be independent and identically distributed random vari-
ables with values in Rd, let m : Rd → R be a measurable function, and for
α ∈ (0, 1) de�ne the α�quantile of m(X) by

qm(X),α = inf{y ∈ R : Gm(X)(y) ≥ α}, (8)

where
Gm(X)(y) = P{m(X) ≤ y}

is the cdf. of m(X). For n ∈ N let Kn ⊆ Rd and let Pn be a �nite set of
parameters. Assume that for each p ∈ Pn an estimate

mn,p(·) : Rd → R (9)

of m is given. Set
mn(x) = mn,p̂(x) (x ∈ Rd), (10)

where
p̂ = arg min

p∈Pn
max

i=1,...,n,
Xi∈Kn

|mn,p(Xi)−m(Xi)| (11)

is the parameter, for which the maximal error on the testing data contained
in Kn is minimal. We use mn to de�ne a corresponding surrogate quantile
estimate by

q̂mn(X),Nn,α = inf{y ∈ R : Ĝmn(X),Nn(y) ≥ α}, (12)

where

Ĝmn(X),Nn(y) =
1

Nn

Nn∑
i=1

I{mn(Xn+i)≤y} (y ∈ R). (13)

Then the following result holds.
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Theorem 2. Let X, X1, X2, . . . be independent and indentically distributed

random variables, let m : Rd → R be measurable, let α ∈ (0, 1) and let

qm(X),α be the α�quantile of m(X) de�ned by (8). For n ∈ N let Kn ⊆ Rd
and let Pn be a �nite set of parameters such that for each p ∈ Pn an estimate

(9) is given, and de�ne the corresponding quantile estimate by (10)-(13).

Assume that m(X) has a density g, which is positive and continuous at

qm(X),α. Assume furthermore that

min
p∈Pn

‖mn,p −m‖∞,Kn → 0 (n→∞), (14)

PX (Kc
n)→ 0 (n→∞), (15)

Nn →∞ (n→∞) (16)

and
|Pn|
nr
→ 0 (n→∞) (17)

for some r > 0. Then∣∣q̂mn(X),Nn,α − qm(X),α

∣∣
= OP

(
1√
Nn

+ min
p∈Pn

‖mn,p −m‖∞,Kn +PX (Kc
n) +

log n

n

)
.

2.3 Application to surrogate spline quantile estimates

In this section we choose mn as an adaptively chosen spline approximand in
the de�nition of our Monte Carlo surrogate quantile estimate.

To do this, we choose δ > 1 and set γn = (log n)δ. Next we de�ne a spline
approximand which approximates m on [−γn, γn]d. In order to do this, we
introduce polynomial splines, i.e., sets of piecewise polynomials satisfying a
global smoothness condition, and a corresponding B-spline basis consisting
of basis functions with compact support. Here our presentation is based on
Kohler (2014), which in turn is an extension of the material presented in
Chapters 14 and 15 of Györ� et al. (2002) to the case d > 2.

Choose K ∈ N and M ∈ N0, and set uk = k · γn/K (k ∈ Z). For k ∈ Z
let Bk,M : R→ R be the univariate B-spline of degreeM with knot sequence
(ul)l∈Z and support supp(Bk,M ) = [uk, uk+M+1]. In case M = 0 this means
that Bk,0 is the indicator function of the interval [uk, uk+1), and for M = 1
we have

Bk,1(x) =


x−uk

uk+1−uk , uk ≤ x ≤ uk+1,
uk+2−x

uk+2−uk+1
, uk+1 < x ≤ uk+2,

0 , else,
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(so-called hat-function). The general de�nition of Bk,M can be found, e.g.,
in de Boor (1978), or in Section 14.1 of Györ� et al. (2002). These B-splines
are basis functions of sets of univariate piecewise polynomials of degree M ,
where the piecewise polynomials are globally (M − 1)�times continuously
di�erentiable and where the M -th derivative of the functions have jump
points only at the knots ul (l ∈ Z).

For k = (k1, . . . , kd) ∈ Zd we de�ne the tensor product B-spline Bk,M :
Rd → R by

Bk,M (x(1), . . . , x(d)) = Bk1,M (x(1)) · · ·Bkd,M (x(d)) (x(1), . . . , x(d) ∈ R).

And we de�ne SK,M as the set of all linear combinations of all those of the
above tensor product B-splines, where the support has nonempty intersection
with [−γn, γn]d, i.e., we set

SK,M =

 ∑
k∈{−K−M,−K−M+1,...,K−1}d

ak ·Bk,M : ak ∈ R

 .

It can be shown by using standard arguments from spline theory, that the
functions in SK,M are in each component (M − 1)-times continuously dif-
ferentiable, that they are equal to a (multivariate) polynomial of degree less
than or equal to M (in each component) on each rectangle

[uk1 , uk1+1)× · · · × [ukd , ukd+1) (k = (k1, . . . , kd) ∈ Zd), (18)

and that they vanish outside of the set[
γn −M ·

γn
K
, γn +M · γn

K

]d
.

Next we de�ne spline approximands using so-called quasi interpolands: For
a function f : [−γn, γn]d → R we de�ne an approximating spline by

(Qf)(x) =
∑

k∈{−K−M,−K−M+1,...,K−1}d
Qkf ·Bk,M (x)

where
Qkf =

∑
j∈{0,1,...,M}d

ak,j · f(tk1,j1 , . . . , tkd,jd)

for some ak,j ∈ R and for suitably chosen points tk,j ∈ supp(Bk,M )∩[−γn, γn].
It can be shown that if we set

tk,j =
k

K
·γn+

j

K ·M
·γn =

k ·M + j

K ·M
·γn (j ∈ {0, . . . ,M}, k ∈ {−K, . . . ,K−1})
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and

tk,j = −γn+
j

K ·M
(j ∈ {0, . . . ,M}, k ∈ {−K−M,−K−M+1, . . . ,−K−1}),

then there exist coe�cients ak,j (which can be computed by solving a linear
equation system), such that

|Qkf | ≤ c2 · ‖f‖∞,[uk1 ,uk1+M+1]×···×[ukd ,ukd+M+1] (19)

for any k ∈ {−M,−M + 1, . . . ,K − 1}d, any f : [−γn, γn]d → R and some
universal constant c2, and such that Q reproduces polynomials of degree M
or less (in each component) on [−γn, γn]d, i.e., for any multivariate polyno-
mial p : Rd → R of degree M or less (in each component) we have

(Qp)(x) = p(x) (x ∈ [−γn, γn]d) (20)

(cf., e.g., Theorem 14.4 and Theorem 15.2 in Györ� et al. (2002)).
Next we want to use such a quasi interpoland as surrogate estimate for

m. To do this, we need to choose the degreeM ∈ N and the number of knots
K ∈ N. For �xed values of K and M we need to evaluate m at the points(

j1
M ·K

· γn, . . . ,
jd

M ·K
· γn
)

(j1, . . . , jd ∈ {−M ·K,−M ·K+1, . . . ,M ·K})

(21)
in order to compute the above quasi interpoland. If we restrict the number
of point evaluation to be at most dn/2e, then our choice of M and K needs
to ful�ll the condition

(2 ·M ·K + 1)d ≤ dn/2e.

Consequently there is a tradeo� between the choice of M and that of K,
which should be both large in view of approximation power of the spline
interpoland. In the sequel we use our method of Subsection 2.1 in order to
choose both values in a data dependent way.

To do this, we choose l ∈ N maximal such that(
2 · 2l + 1

)d
≤ dn/2e

and set Kmax = 2l, hence

Kmax ≈ c3 · n1/d.
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Then we observe the function values of m at all the (2Kmax + 1)d ≤ dn/2e
points of the form(

j1
Kmax

· γn, . . . ,
jd

Kmax
· γn
)

(j1, . . . , jd ∈ {−Kmax,−Kmax+1, . . . ,Kmax}).

(22)
Next we set

Pn =

{(
2M ,

Kmax

2M

)
: M ∈ {1, . . . , dlog logne}

}
and for p ∈ Pn we let mn,p be the quasi interpoland with parameters M and
K speci�ed by p. Since

2M · Kmax

2M
= Kmax

this quasi interpoland also does only need function values of m at the points
(22).

The following result holds.

Corollary 1. Let X be an Rd-valued random variable, let m : Rd → R be

a measurable function and let α ∈ (0, 1). Assume that m(X) has a density

which is continuous and positive at qm(X),α, that m is (p, C)-smooth for some
p > 0 and some C > 0 and that

E exp (c4 · ‖X‖) <∞ (23)

for some c4 > 0. Let δ > 1, set γn = (log n)δ, and de�ne the quasi inter-

polands mn,p for p ∈ Pn as above. Set

mn(x) = mn,p̂(x) (x ∈ Rd),

where

p̂ = arg min
p∈Pn

max
i=1,...,bn/2c,
Xi∈[−γn,γn]d

|mn(Xi)−m(Xi)|,

and de�ne q̂mn(X),Nn,α by (12) and (13), where Nn = n2. Then

∣∣q̂mn(X),Nn,α − qm(X),α

∣∣ = OP

(
(log n)p·δ

np/d
+

log n

n

)
.

Proof. By Theorem 2 we get∣∣q̂mn(X),Nn,α − qm(X),α

∣∣
12



= OP

(
min
p∈Pn

‖mn,p −m‖∞,[−γn,γn]d +P
{
X /∈ [−γn, γn]d

}
+

log n

n

)
.

The de�nition of our spline approximand and the (p, C)-smoothness ofm im-
ply that for 2M ≥ bpc (where M does not depend on n) and K = Kmax/2

M

we have
‖mn,(2M ,K) −m‖∞,[−γn,γn]d ≤ c5 · (log n)

δ·p · n−p/d

(cf., e.g., proof of Theorem 1 in Kohler (2014)). Furthermore, Markov in-
equality together with assumption (23) imply

P
{
X /∈ [−γn, γn]d

}
≤ P {‖X‖ > γn} ≤

E exp (c4 · ‖X‖)
exp(c4 · (log n)δ)

≤ c5 ·
log n

n
.

The proof is complete. �
Remark 3. The spline surrogate quantile estimate is constructed such that
its computation needs at most n evaluation of the function m. Compared
with the simple order statistics it achieves a better rate of convergence when-
everm is (p, C)�smooth for some p > d/2. Here the de�nition of the estimate
does not depend on p.
Remark 4. It is an open problem how to de�ne adaptive surrogate quantile
estimates capable of achieving the rates of convergence faster than 1/n in
case of a very smooth function m.

3 Application to simulated data

In this section we compare the �nite sample size behaviour of our newly
proposed adaptive surrogate quantile estimates with various other quantile
estimates.

For the surrogate estimate we use a smoothing spline (as implemented
in the routine Tps() in R). Since we apply it to data, where the function is
observed without additional error (i.e., in a noiseless regression estimation
problem), this estimate results in an interpolating spline which gives similar
result as the quasi interpoland in Subsection 2.3, but is easier to implement.
The routine Tps() in R allows to specify the degree of freedom df of the �tted
surface, which is the parameter which we choose automatically in order to
get an adaptive surrogate estimate. To do this we consider four di�erent
possibilities: For the �rst one we use the generalized L2 cross�validation as
implemented in R. The second one simply chooses the maximal degree of
freedom (which is the sample size), which may also give reasonable results
since in our data the function is observed without error. The remaining
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two methods are the new ones proposed in this paper: the third one uses
splitting of the sample as explained in Remark 1, and the fourth one k�fold
cross-validation with k = 5 as described in Remark 2.

We use these four di�erent surrogate estimates in two di�erent ways in
order to de�ne quantile estimates. The �rst way is the surrogate quantile
estimate q̂mn(X),Nn,α as introduced in Section 1. The second way uses the sur-
rogate estimate as a control variate as explained in Section 2 in Cannamela,
Garnier and Ioss (2008). Here the true quantile of the control variate is re-
placed by a Monte Carlo estimate of the quantile. Each time the Monte Carlo
estimates are based on Nn = 50, 000 evaluations of the surrogate estimate.

We compare the resulting 8 di�erent quantile estimates based on surro-
gate estimates with the simple order statistics de�ned by (1) and (2). So
we are comparing alltogether 9 di�erent quantile estimates. The �rst quan-
tile estimate (est. 1) is the estimate based on the simple order statistics.
The second (est. 2) and third (est. 3) quantile estimates are the surrogate
quantile estimate of Section 1 and the control variate quantile estimate com-
bined with the smoothing spline with parameter df chosen by generalized L2

crossvalidation, resp. In the same way we de�ne est. 4 and est. 5 by using
a smoothing spline with parameter df chosen as the sample size, est. 6 and
est. 7 by using a smoothing spline with parameter df chosen by splitting of
the sample, and est. 8 and est. 9 by using a smoothing spline with parameter
df chosen by 5�fold cross-validation.

We compare these nine quantile estimates in three di�erent models, where
in each model we estimate a quantile of level α = 0.95. In each model X
is chosen as a d-dimensional random variable with standard normal distri-
bution, where in case d > 1 all d components of X are independent random
variables with standard normal distribution. In the �rst model the dimen-
sion of X is d = 1, and we allow n ∈ {20, 200, 1000} evaluations of m. In
the second and third model the dimension of X is d = 4 and we choose
n ∈ {80, 300, 1000}.

Since the results of our simulation depend on the randomly occurring
data points, we repeat the whole procedure 100 times with independent re-
alizations of the occurring random variables and report the medians and the
interquartile ranges of the relative errors of the quantile estimates (more pre-
cisely, of the absolute values of the di�erence between the quantile estimates
and the real quantile divided by the real quantile).

For the �rst model we choose

m(x) = exp(x) (x ∈ R),

hence m(X) has lognormal distribution. The errors of nine di�erent esti-
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mates occurring in 100 simulations for each sample size are presented in
Tables 1 and 2.

n est. 1 est. 2 est. 4 est. 6. est. 8

20 0.264 0.015 0.015 0.057 0.015
( 0.246 ) ( 0.024 ) ( 0.024 ) ( 0.135 ) ( 0.026 )

200 0.082 0.006 0.006 0.006 0.006
( 0.099 ) ( 0.007 ) ( 0.007 ) ( 0.007 ) ( 0.007 )

1000 0.05 0.006 0.006 0.006 0.006
( 0.055 ) ( 0.008 ) ( 0.008 ) ( 0.008 ) ( 0.008 )

Table 1: Simulation results for model 1 and three di�erent sample sizes.
Compared are the simple order statistics with the four surrogate quantile
estimates based on di�erent methods for choosing the parameter of the sur-
rogate. Reported are the medians of the relative absolute errors of the esti-
mates (and in brackets their interquartilerange) in 100 independent simula-
tions.

n est. 1 est. 2 est. 4 est. 6. est. 8

20 0.264 0.191 0.191 0.228 0.191
( 0.246 ) ( 0.218 ) ( 0.218 ) ( 0.22 ) ( 0.218 )

200 0.082 0.035 0.035 0.035 0.035
( 0.099 ) ( 0.044 ) ( 0.044 ) ( 0.044 ) ( 0.044 )

1000 0.05 0.01 0.01 0.01 0.01
( 0.055 ) ( 0.015 ) ( 0.015 ) ( 0.015 ) ( 0.015 )

Table 2: Simulation results for model 1 and three di�erent sample sizes.
Compared are the simple order statistics with the controlled variate quan-
tile estimates based on di�erent methods for choosing the parameter of the
surrogate. Reported are the medians of the relative absolute errors of the
estimates (and in brackets their interquartilerange) in 100 independent sim-
ulations.

Looking at the errors reported in Tables 1 and 2 we see �rst that all
quantile estimates based on surrogate estimates clearly outperform the sim-
ple order statistics estimate, that second the surrogate quantile estimates
outperform the estimates using the surrogate model as control variate, and
that third the newly proposed cross-validation method for choosing the pa-
rameter of the surrogate works similar to the standard methods (generalized
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cross-validation or choosing the parameter as maximal value). The split-
ting of the sample yields for n = 20 higher errors than the other surrogate
quantile estimates, we guess this is due to the fact that the estimate is �nally
applied only to the half data size. The results for the control variate estimate
are similar.

In the second model we use dimension d = 4 and choose

m(x) =
1

1 + ‖x‖2
(x ∈ R4).

The errors of nine di�erent estimates occurring in 100 simulations for each
sample size are presented in Tables 3 and 4. This time our newly proposed
cross-validation method is not as good as the standard methods for small
sample sizes, but its performance is similar for large sample sizes. Otherwise
the results are similar.

n est. 1 est. 2 est. 4 est. 6. est. 8

80 0.085 0.024 0.023 0.054 0.04
( 0.1 ) ( 0.032 ) ( 0.025 ) ( 0.089 ) ( 0.053 )

300 0.046 0.005 0.005 0.011 0.005
( 0.054 ) ( 0.005 ) ( 0.005 ) ( 0.012 ) ( 0.005 )

1000 0.022 0.004 0.004 0.004 0.003
( 0.025 ) ( 0.004 ) ( 0.004 ) ( 0.004 ) ( 0.004 )

Table 3: Simulation results for model 2 and three di�erent sample sizes.
Compared are the simple order statistics with the four surrogate quantile
estimates based on di�erent methods for choosing the parameter of the sur-
rogate. Reported are the medians of the relative absolute errors of the esti-
mates (and in brackets their interquartilerange) in 100 independent simula-
tions.

In both models above our newly proposed method does not outperform
the generalized cross-validation or the method of choosing the degree of
freedom df simply very large. However, at least our newly proposed cross-
validation method does not perform worse than the other methods for large
sample sizes. We believe that this is due to the fact that in our models
above m is a very simple function of ‖x‖, and we show next that for a
slightly more complex function the situation is di�erent and that in this case
our newly proposed cross-validation method outperforms the other methods
for all sample sizes.
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n est. 1 est. 2 est. 4 est. 6. est. 8

80 0.085 0.039 0.039 0.086 0.053
( 0.1 ) ( 0.052 ) ( 0.053 ) ( 0.104 ) ( 0.067 )

300 0.046 0.013 0.013 0.016 0.013
( 0.054 ) ( 0.015 ) ( 0.015 ) ( 0.017 ) ( 0.014 )

1000 0.022 0.005 0.005 0.006 0.005
( 0.025 ) ( 0.006 ) ( 0.006 ) ( 0.006 ) ( 0.007 )

Table 4: Simulation results for model 2 and three di�erent sample sizes.
Compared are the simple order statistics with the controlled variate quan-
tile estimates based on di�erent methods for choosing the parameter of the
surrogate. Reported are the medians of the relative absolute errors of the
estimates (and in brackets their interquartilerange) in 100 independent sim-
ulations.

In the third model we choose

m(x) =

{
1 , ‖x‖ ≤ 3,

1 + 10 ·
√
‖x‖2 − 9) , elsewhere

(x ∈ R4).

The errors of nine di�erent estimates occurring in 100 simulations for each
sample size are presented in Tables 5 and 6.

n est. 1 est. 2 est. 4 est. 6. est. 8

80 0.875 0.34 0.344 0.343 0.288
( 0.548 ) ( 0.241 ) ( 0.242 ) ( 0.329 ) ( 0.229 )

300 0.301 0.238 0.24 0.26 0.184
( 0.552 ) ( 0.122 ) ( 0.12 ) ( 0.214 ) ( 0.138 )

1000 0.22 0.179 0.18 0.177 0.136
( 0.233 ) ( 0.055 ) ( 0.055 ) ( 0.094 ) ( 0.059 )

Table 5: Simulation results for model 3 and three di�erent sample sizes.
Compared are the simple order statistics with the four surrogate quantile
estimates based on di�erent methods for choosing the parameter of the sur-
rogate. Reported are the medians of the relative absolute errors of the esti-
mates (and in brackets their interquartilerange) in 100 independent simula-
tions.

Looking at the errors reported in Tables 5 and 6 we see that again all
quantile estimates based on surrogate estimates clearly outperform the sim-
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n est. 1 est. 2 est. 4 est. 6. est. 8

80 0.875 0.349 0.357 0.467 0.33
( 0.548 ) ( 0.529 ) ( 0.663 ) ( 0.621 ) ( 0.524 )

300 0.301 0.195 0.196 0.191 0.171
( 0.552 ) ( 0.2 ) ( 0.195 ) ( 0.355 ) ( 0.194 )

1000 0.22 0.186 0.186 0.159 0.122
( 0.233 ) ( 0.104 ) ( 0.088 ) ( 0.148 ) ( 0.12 )

Table 6: Simulation results for model 3 and three di�erent sample sizes.
Compared are the simple order statistics with the controlled variate quan-
tile estimates based on di�erent methods for choosing the parameter of the
surrogate. Reported are the medians of the relative absolute errors of the
estimates (and in brackets their interquartilerange) in 100 independent sim-
ulations.

ple order statistics estimate but that this time the estimates using the sur-
rogate model as control variate slightly outperform the surrogate quantile
estimates. We see furthermore that for model 3 our newly proposed cross-
validation method clearly outperforms the other methods, and that for the
very large sample size also the splitting of the sample outperforms the gen-
eralized cross-validation or the method in which we choose the degree of
freedom df simply very large.

Summarizing the above simulation results we see that our newly proposed
cross-validation method never works worse than the other methods in case
of large sample sizes but for model 3 clearly outperforms the other methods
for all sample sizes. Here it is useful not only in combination with surrogate
quantile estimates but also with quantile estimates using surrogate models
as control variate.

4 Proofs

4.1 Proof of Theorem 1

We need the following in the proof of Theorem 1.

Lemma 1. Let X, X1, . . . , Xn be independent and identically distributed

random variables with values in Rd, let m : Rd → R be measurable function,

let Kn ⊆ Rd and let Pn be a �nite set of parameters satisfying

|Pn|
nr
→ 0 (n→∞) (24)
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for some r > 0. Assume that for each p ∈ Pn an estimate

mn,p(·) = mn,p(·) : Rd → R

of m is given. Set

p̂ = arg min
p∈Pn

max
i=1,...,n,
Xi∈Kn

|mn,p(Xi)−m(Xi)| , (25)

mn(x) = mn,p̂(x) (x ∈ Rd) (26)

and

β̂ = max
i=1,...,n,
Xi∈Kn

|mn(Xi)−m(Xi)| = min
p∈Pn

max
i=1,...,n,
Xi∈Kn

|mn,p(Xi)−m(Xi)| .

Then we have outside of an event, whose probability tends to zero for n→∞,

PX

({
x ∈ Kn : |mn(x)−m(x)| > 2 · β̂

})
≤ r · log n

n
.

Proof. Using (25), (26) and the de�nition of β̂ we get

PX

({
x ∈ Kn : |mn(x)−m(x)| > 2 · β̂

})
= PX

x ∈ Kn : |mn,p̂(x)−m(x)| > 2 · max
i=1,...,n,
Xi∈Kn

|mn,p̂(Xi)−m(Xi)|




≤ max
p∈Pn

PX

({
x ∈ Kn : |mn,p(x)−m(x)| > 2 · β̂p

})
,

where
β̂p = max

i=1,...,n,
Xi∈Kn

|mn,p(Xi)−m(Xi)| (p ∈ Pn).

Hence it su�ces to show that we have outside of an event, whose probability
tends to zero for n→∞,

max
p∈Pn

PX

({
x ∈ Kn : |mn,p(x)−m(x)| > 2 · β̂p

})
≤ r · log n

n
. (27)

Let P∗n be the subset of Pn containing all those p ∈ Pn for which

PX ({x ∈ Kn : |mn,p(x)−m(x)| > 0}) > r · log n
n
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holds. Since

PX

({
x ∈ Kn : |mn,p(x)−m(x)| > 2 · β̂p

})
≤ PX ({x ∈ Kn : |mn,p(x)−m(x)| > 0}) ,

inequality (27) is implied by

max
p∈P∗n

PX

({
x ∈ Kn : |mn,p(x)−m(x)| > 2 · β̂p

})
≤ r · log n

n
. (28)

For p ∈ P∗n choose βp > 0 such that

PX ({x ∈ Kn : |mn,p(x)−m(x)| > 2 · βp})

≤ r · log n
n
≤ PX ({x ∈ Kn : |mn,p(x)−m(x)| > βp}) . (29)

Here such a choice of βp is possible, since

β 7→ PX ({x ∈ Kn : |mn,p(x)−m(x)| > β})

is monotonically decreasing on R+, converges to zero for β → ∞ and con-
verges to a value greater than r · (log n)/n for β → 0. Hence if we start with
some βp,0 > 0 such that

PX ({x ∈ Kn : |mn,p(x)−m(x)| > βp,0}) > r · log n
n

and set successively βp,i+1 = 2 ·βp,i for i ∈ N0, we will �nally �nd some value
βp such that (29) holds.

Set
Sp = {x ∈ Kn : |mn,p(x)−m(x)| > βp} (p ∈ P∗n).

If for some p ∈ P∗n and j ∈ {1, . . . , n} we have

Xj ∈ Sp,

then

β̂p = max
i=1,...,n,
Xi∈Kn

|mn,p(Xi)−m(Xi)| ≥ |mn,p(Xj)−m(Xj)| > βp,

which implies together with the choice of βp

PX

({
x ∈ Kn : |mn,p(x)−m(x)| > 2 · β̂p

})
20



≤ PX ({x ∈ Kn : |mn,p(x)−m(x)| > 2 · βp})

≤ r · log n
n

.

Hence on the event

An = ∩p∈P∗n {Xi ∈ Sp for some 1 ≤ i ≤ n}

the condition (28) holds, and thus it su�ces to show

P (Acn)→ 0 (n→ 0).

To this end, we observe

P (Acn) = P
(
∪p∈P∗n {Xi /∈ Sp for all 1 ≤ i ≤ n}

)
≤

∑
p∈P∗n

P {Xi /∈ Sp for all 1 ≤ i ≤ n}

≤ |Pn| · max
p∈P∗n

P {Xi /∈ Sp for all 1 ≤ i ≤ n} .

For arbitrary p ∈ P∗n the independence and identically distribution of our
data imply

P {Xi /∈ Sp for all 1 ≤ i ≤ n} =

n∏
i=1

(1−PX(Sp))

≤
(
1− r · log n

n

)n
,

where the last inequality follows from our de�nition of Sp and (29). Conse-
quently,

P (Acn) ≤ |Pn| ·
(
1− r · log n

n

)n
≤ |Pn| · exp

(
−r · n · log(n)

n

)
≤ |Pn|

nr
.

Finally (24) implies the assertion. �
Proof of Theorem 1. Since

β̂ = max
i=1,...,n,
Xi∈Kn

|mn(Xi)−m(Xi)|

= min
p∈Pn

max
i=1,...,n,
Xi∈Kn

|mn,p(Xi)−m(Xi)|
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≤ min
p∈Pn

‖mn,p −m‖∞,Kn ,

we have

PX

({
x ∈ Kn : |mn(x)−m(x)| > 2 · min

p∈Pn
‖mn,p −m‖∞,Kn

})
≤ PX

({
x ∈ Kn : |mn(x)−m(x)| > 2 · β̂

})
.

Application of Lemma 1 yields the assertion. �

4.2 Proof of Theorem 2

In the proof we will apply the following lemmatas.

Lemma 2. For y ∈ R set Gmn(X)(y) = P{mn(X) ≤ y}, and for a set

An ⊆ Rd set
βn = sup

x∈An
|mn(x)−m(x)|.

Then the following inequality holds for all y ∈ R:

Gm(X)(y − βn)−PX (Acn) ≤ Gmn(X)(y) ≤ Gm(X)(y + βn) +PX (Acn)

Proof. By the de�nition of βn we have for all x ∈ An

m(x) ≤ y − βn =⇒ mn(x) ≤ y

and
mn(x) ≤ y =⇒ m(x) ≤ y + βn.

This implies

Gm(X)(y − βn) ≤ PX ({x ∈ An : m(x) ≤ y − βn}) +PX (Acn)

≤ PX

({
x ∈ Rd : mn(x) ≤ y

})
+PX (Acn)

= Gmn(X)(y) +PX (Acn)

and

Gmn(X)(y) ≤ PX ({x ∈ An : mn(x) ≤ y}) +PX (Acn)

≤ PX

({
x ∈ Rd : m(x) ≤ y + βn

})
+PX (Acn)

= Gm(X)(y + βn) +PX (Acn) .

�
Our next lemma is the consequence of the Dvoretzky-Kiefer-Wolfowitz

inequality.
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Lemma 3.

sup
y∈R

∣∣∣Gmn(X)(y)− Ĝmn(X),Nn(y)
∣∣∣ = OP

(
1√
Nn

)
.

Proof. By the Dvoretzky-Kiefer-Wolfowitz inequality (cf., Massart (1990))
we have

P

{
sup
y∈R

∣∣∣Gmn(X)(y)− Ĝmn(X),Nn(y)
∣∣∣ > c · 1√

Nn

}
≤ 2 · exp

(
−c2

)
,

which implies the assertion. �
>From Lemma 2 and Lemma 3 we conclude

Lemma 4. Let An ⊆ Rd and set

βn = sup
x∈An

|mn(x)−m(x)|.

Let Bn ⊆ R be such that

sup
y∈R, |y−z|≤βn for some z∈Bn

g(y) ≤ c6 <∞. (30)

Then

sup
y∈Bn

∣∣∣Ĝmn(X),Nn(y)−Gm(X)(y)
∣∣∣ = OP

(
1√
Nn

+ βn +PX (Acn)

)
.

Proof. We have

sup
y∈Bn

∣∣∣Ĝmn(X),Nn(y)−Gm(X)(y)
∣∣∣

≤ sup
y∈R

∣∣∣Ĝmn(X),Nn(y)−Gmn(X)(y)
∣∣∣+ sup

y∈Bn

∣∣Gmn(X)(y)−Gm(X)(y)
∣∣

=: T1,n + T2,n.

It follows from Lemma 3 that

T1,n = OP

(
1√
Nn

)
.

Application of Lemma 2 yields

T2,n ≤ sup
y∈Bn

∣∣Gm(X)(y − βn)−PX (Acn)−Gm(X)(y)
∣∣
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+ sup
y∈Bn

∣∣Gm(X)(y + βn) +PX (Acn)−Gm(X)(y)
∣∣

≤ 2 ·PX (Acn) + sup
y∈Bn

∣∣Gm(X)(y − βn)−Gm(X)(y)
∣∣

+ sup
y∈Bn

∣∣Gm(X)(y + βn)−Gm(X)(y)
∣∣

≤ 2 ·PX (Acn) + 2 · c6 · βn,

where the last inequality follows from the mean-value theorem and assump-
tion (30). The proof is complete. �
Proof of Theorem 2. Set

δn =
1√
Nn

+ 2 · min
p∈Pn

‖mn,p −m‖∞,Kn +PX(K
c
n) + r · log n

n

and observe
δn → 0 (n→∞). (31)

In the �rst step of the proof we show that it su�ces to demonstrate that

lim
c→∞

lim sup
n→∞

P
{∣∣q̂mn(X),Nn,α − qm(X),α

∣∣ > c · δn
}
= 0. (32)

This follows from

lim
c→∞

lim sup
n→∞

P

{∣∣q̂mn(X),Nn,α − qm(X),α

∣∣ >
c ·
(

1√
Nn

+ min
p∈Pn

‖mn,p −m‖∞,Kn +PX (Kc
n) +

log n

n

)}

≤ lim
c→∞

lim sup
n→∞

P

{∣∣q̂mn(X),Nn,α − qm(X),α

∣∣ > c

max{2, r}
· δn
}

= lim
c→∞

lim sup
n→∞

P
{∣∣q̂mn(X),Nn,α − qm(X),α

∣∣ > c · δn
}
.

Because of the assumption that g is positive and continuous at qm(X),α,
there exists c7 > 0 such that for n su�ciently large we have

c7 ≤ inf
y∈[qm(X),α−c·δn,qm(X),α+c·δn]

g(y). (33)

In the second step of the proof we show that (32) is implied by
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lim
c→∞

lim sup
n→∞

P

{
sup

y∈[qm(X),α−c·δn,qm(X),α+c·δn]

∣∣∣Ĝmn(X),Nn(y)−Gm(X)(y)
∣∣∣

>
c7
2
· c · δn

}
= 0. (34)

Condition (33) implies

Gm(X)(qm(X),α − c · δn) ≤ α−
(
Gm(X)(qm(X),α)−Gm(X)(qm(X),α − c · δn)

)
≤ α− c7 · c · δn
≤ α+ c7 · c · δn
≤ α+

(
Gm(X)(qm(X),α + c · δn)−Gm(X)(qm(X),α)

)
≤ Gm(X)(qm(X),α + c · δn).

On the event{
sup

[y∈qm(X),α−c·δn,qm(X),α+c·δn]

∣∣∣Ĝmn(X),Nn(y)−Gm(X)(y)
∣∣∣ ≤ c7

2
· c · δn

}

this in turn implies

Ĝmn(X),Nn

(
qm(X),α − c · δn

)
= Gm(X)

(
qm(X),α − c · δn

)
+
(
Ĝmn(X),Nn

(
qm(X),α − c · δn

)
−Gm(X)

(
qm(X),α − c · δn

))
< α

< Gm(X)

(
qm(X),α + c · δn

)
−
(
Gm(X)

(
qm(X),α + c · δn

)
− Ĝmn(X),Nn

(
qm(X),α + c · δn

))
= Ĝmn(X),Nn

(
qm(X),α + c · δn

)
,

from which we can conclude by the de�nition of q̂m(nX),Nn,α that

qm(X),α − c · δn ≤ q̂m(nX),Nn,α ≤ qm(X),α + c · δn.

Summarizing the above results we get
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lim
c→∞

lim sup
n→∞

P
{∣∣q̂mn(X),Nn,α − qm(X),α

∣∣ > c · δn
}

≤ lim
c→∞

lim sup
n→∞

P

{
sup

[qm(X),α−c·δn,qm(X),α+c·δn]

∣∣∣Ĝmn(X),Nn(y)−Gm(X)(y)
∣∣∣

>
c7
2
· c · δn

}
,

which completes the second step of the proof.
In the third (and �nal) step of the proof we use Lemma 4 to show (34).

First we observe that for n su�ciently large we have

sup
y∈[qm(X),α−2·c·δn,qm(X),α+2·c·δn]

g(y) ≤ c8. (35)

Next we set

An = Kn \
{
x ∈ Kn : |mn(x)−m(x)| > 2 · β̂

}
,

where

β̂ = max
i=1,...,n,
Xi∈Kn

|mn(Xi)−m(Xi)|

= min
p∈Pn

max
i=1,...,n,
Xi∈Kn

|mn,p(Xi)−m(Xi)|

≤ min
p∈Pn

‖mn,p −m‖∞,Kn .

Clearly this choice of An implies

βn = sup
x∈An

|mn(x)−m(x)| ≤ 2 · β̂ ≤ 2 · min
p∈Pn

‖mn,p −m‖∞,Kn .

Furthermore we know that by Lemma 1 we have outside of an event, whose
probability tends to zero for n→∞,

PX(A
c
n) ≤ PX(K

c
n) +PX

({
x ∈ Kn : |mn(x)−m(x)| > 2 · β̂

})
≤ PX(K

c
n) + r · log n

n
.

Setting
Bn = [qm(X),α − c · δn, qm(X),α + c · δn],

we get the assertion by an application of Lemma 4.
The proof is complete. �

26



5 Acknowledgment

The �rst author would like to thank the German Research Foundation (DFG)
for funding this project within the Collaborative Research Centre 805. The
second author would like to acknowledge the support from the Natural Sci-
ences and Engineering Research Council of Canada.

References

[1] Arnold, B. C., Balakrishnan, N. and Nagaraja, H. N. (1992). A First

Course in Order Statistics. John Wiley & Sons.

[2] Bichon, B., Eldred, M., Swiler, M., Mahadevan, S. and McFarland, J.
(2008). E�cient global reliability analysis for nonlinear implicit perfor-
mance functions. AIAA Journal, 46, pp. 2459�2468.

[3] de Boor, C. (1978). A Practical Guide to Splines. Springer.

[4] Bourinte, J.-M., Deheeger, F. and Lemaire, M. (2011). Assessing small
failure probabilities by combined subset simulation and support vector
machines. Structural Safety, 33, pp. 343�353.

[5] Bucher, C. and Bourgund, U. (1990). A fast and e�cient response surface
approach for structural reliability problems. Structural Safety, 7, pp. 57-
66.

[6] Cannamela, C., Garnier, J. and Iooss, B. (2008). Controlled strati�cation
for quantile estimation. The Annals of Applied Statistics, vol. 2, no. 4,
pp. 1554-1580.

[7] Das, P.-K. and Zheng, Y. (2000). Cumulative formation of response sur-
face and its use in reliability analysis. Probabilistic Engineering Mechan-

ics, 15, pp. 309-315.

[8] Deheeger, F. and Lemaire, M. (2010). Support vector machines for e�-
cient subset simulations: 2SMART method. In: Proceedings of the 10th

International Conference on Applications of Statistics and Probability in

Civil Engineering (ICASP10), Tokyo, Japan.

[9] Dubourg, V., Sudret, B. and Deheeger, F. (2013). Metamodel-based im-
portance sampling for syructural reliability analysis. Probabilistic Engi-

neering Mechanics, 33, pp. 47�57.

27



[10] Enss, C., Kohler, M., Krzy»ak, A. and Platz, R. (2016). Nonparametric
quantile estimation based on surrogate models. IEEE Transactions on

Information Theory, 62, pp. 5727-5739.

[11] Glynn, P. (1996). Importance sampling for Monte Carlo estimation of
quantiles. In: Mathematical Methods in Stochastic Simulation and Ex-

perimental Design: Proceedings of the 2nd St. Petersburg Workshop on

Simulation, pp. 180�185. Publishing House of Saint Petersburg Univer-
sity.

[12] Györ�, L., Kohler, M., Krzy»ak, A. andWalk, H. (2002). A Distribution-
Free Theory of Nonparametric Regression. Springer-Verlag, New York.

[13] Hesterberg, T. C. and Nelson, B. L. (1998). Control variates for proba-
bility and quantile estimation. Management Science, 44, pp. 1295�1312.

[14] Hurtado, J. (2004). Structural reliability � Statistical learning perspec-

tives. Vol. 17 of lecture notes in applied and computational mechanics.
Springer.

[15] Kaymaz, I. (2005). Application of Kriging method to structural relia-
bility problems. Strutural Safety, 27, pp. 133�151.

[16] Kim, S.-H. and Na, S.-W. (1997). Response surface method using vector
projected sampling points. Structural Safety, 19, pp. 3�19.

[17] Kohler, M. (2014). Optimal global rates of convergence for noiseless
regression estimation problems with adaptively chosen design. Journal
of Multivariate Analysis, 132, pp. 197�208, 2014.

[18] Kohler, M., Krzy»ak, A., Tent, R. and Walk, H. (2014). Nonparametric
quantile estimation using importance sampling. Submitted for publica-
tion.

[19] Massart, P. (1990). The tight constant in the Dvoretzky-Kiefer-
Wolfowitz inequality. Annals of Probability 18, pp. 1269�1283.

[20] Morio, J. (2012). Extreme quantile estimation with nonparametric adap-
tive importance sampling. Simulation Modelling Practice and Theory, 27,
pp. 76�89.

[21] Morio, J., Balesdent, M., Jacquemart, D. and Verge, C. (2014). A sur-
vey of rare event simulation methods for static input-output models.
Simulation Modelling Practice and Theory, 49, pp. 287�304.

28



[22] Papadrakakis, M. and Lagaros, N. (2002). Reliability�based structural
optimization using neural networks and Monte Carlo simulation. Com-
puter Methods in Applied Mechanics and Engineering, 191, pp. 3491�
3507.

[23] Santner, T. J., Williams, B. J. and Notz, W. I. (2003). The Design and

Analysis of Computer Experiments. Springer-Verlag, New York.

29


