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Abstract

Uncertainty quanti�cation of a technical system can be done using density
estimation. The starting point there is usually a stochastic model, which is
�tted to the technically system, and the density estimation is done using data
from this stochastic model. However, in any application such a stochastic
model will not be perfect, and estimation of the density should take into
account the inadequacy of the stochastic model. In this paper we show
how observed data of the real system together with an imperfect simulation
model can be used to derive con�dence bands for the density of the technical
system. Our main result is that the newly introduced con�dence bands
allow to derive lower and upper bounds on the probability of intervals in the
technical system. Furthermore, we present an upper bound on the area of
the con�dence band in case of a smooth density. The results are illustrated
by applying the estimates to simulated and real data.
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1 Introduction

Whenever complex technical systems are designed by engineers, uncertainty
has to be taken into account. This uncertainty occurs, e.g., because of the
use of an imperfect mathematical model of the technical system during the
design process, or because of lack of knowledge about future use. A good
quanti�cation of the uncertainty of the system is essential in order to avoid
oversizing and to conserve resources.

Uncertainty can be characterized by estimation of quantiles (which en-
ables the characterization of the maximal occurring values) or by estimation
of densities (which characterize the occurring randomness completely). In
this article the focus will be on density estimation.

The starting point in uncertainty quanti�cation is usually a stochastic
model of the technical system. This stochastic model often has parameters
which are chosen randomly because their exact values are uncertain and con-
sequently not known, and it computes the outcome of the technical system
by computing the value of a function depending on concrete values of the
parameters. In case that the distribution of the parameters is known (which
we will assume from now on) and that the function, which has to be com-
puted, is given, Monte Carlo can be used to estimate either quantiles or the
density of the output of the technical system.

Usually, the stochastic model is evaluated using a computer program,
and computer experiments can be used to generate values for the Monte
Carlo estimates. However, it often happens that generation of the values
is rather time consuming, so that standard Monte Carlo estimates cannot
be applied. Instead, one has to apply techniques which are able to quantify
the uncertainty in the computer experiment using only a few evaluations of
the computer program. There is a vast literature on the design and analysis
of such computer experiments, cf., e.g., Santner, Williams, and Notz (2003)
and the literature cited therein. Often, so�called surrogate models of the
computer experiment are used in order to analyze it. Surrogate models have
been introduced and investigated with the aid of the simulated and real data
in connection with the quadratic response surfaces in Bucher and Burgund
(1990), Kim and Na (1997) and Das and Zheng (2000), in context of sup-
port vector machines in Hurtado (2004), Deheeger and Lemaire (2010) and
Bourinet, Deheeger and Lemaire (2011), in connection with neural networks
in Papadrakakis and Lagaros (2002), and in context of kriging in Kaymaz
(2005) and Bichon et al. (2008). Consistency and rate of convergence of
density estimates based on surrogate models have been studied in Devroye,
Felber and Kohler (2013), Bott, Felber and Kohler (2015) and Felber, Kohler
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and Krzy»ak (2015a). A method for the adaptive choice of the smoothing pa-
rameter of such estimates has been presented in Felber, Kohler and Krzy»ak
(2015b).

Of course, in practice a stochastic model will never be able to represent
the real technical system perfectly. So it is clear that the mathematical
model is imperfect, and the question is what the consequences of this are
in view of uncertainty quanti�cation. The standard approach in science is
to make some assumptions about the reality, and to try to quantify the
uncertainty under these assumptions. E.g., in Bayesian analysis of computer
experiments, Kennedy and O'Hagan (2001), Bayarri et al. (2007), Goh et
al. (2013), Han, Santner and Rawlinson (2009), Hidgon et al. (2013) and
Wang, Chen and Tsui (2009) model the discrepancy between the computer
experiments and the outcome of the technical system by a Gaussian process.
Under the assumption that the reality is described by this Gaussian process
perfectly, the above papers use this assumption in order to derive con�dence
intervals of quantiles to be estimated. Here the user can choose a level of
the con�dence interval, which speci�es the probability that the true value
is contained in this interval. But of course the latter one is true only if the
assumptions about the reality are true, which illustrates the saying �We buy
information with assumptions� (Coombs (1964)).

Tuo and Wu (2016) pointed out that the above approach might fail in
case of an imperfect computer model, for which there exist no values of
the parameters which �t the technical system perfectly, and suggested and
analyzed non-Bayesian methods for the choice of the parameters of such
models.

Due to the fact that an error on uncertainty quanti�cation of a technical
system might result in a fatal error of the real technical system during its
usage, it is very important to avoid assumptions in uncertainty quanti�cation
as much as possible. For the problem of quantile estimation, Kohler et al.
(2017) considered a novel approach towards error estimation in uncertainty
quanti�cation, which uses only a very few and rather general assumptions.
In particular it was not assumed that the discrepancy between the computer
experiments and the outcome of the technical system is a realization of the
Gaussian process, and any parametric or nonparametric assumptions on the
optimal model describing the technical system have been avoided. Instead
observed values of the technical system have been used in order to derive
con�dence intervals on quantiles of the outcome of the technical system.

In this paper we develop similar methods for the problem of density
estimation from an imperfect model. Here the main aim is to construct
con�dence bands of the density. There are quite a few techniques available in
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the literature which enable to construct such con�dence bands of a density in
case that an independent sample of values of the technical system is available,
see, e.g., Bickel and Rosenblatt (1973), Giné and Nickl (2010), Hall (1992),
Hall and Horowitz (2013), Hall and Titterington (1988), and the literature
cited therein. The purpose of this article is to develop a con�dence band of
a density which improves its quality by using at the same time data from the
technical system and data from an imperfect simulation model. In particular
we are interested in applications where only a very few data points from the
technical system ara available (and where the sample size is so small that
nonparametric estimation of a con�dence band based alone on these very
few data points will not produce good results).

The mathematical model which we consider is as follows: Let (X,Y ),
(X1, Y1), (X2, Y2), . . . be independent and identically distributed random
variables with values in Rd × R, and let m : Rd → R be a measurable
function. Here Y describes the outcome of an experiment with our technical
system, and our aim is to predict the density g of Y (w.r.t. the Lebesgue
measure), which we assume to exist. Given

(Xn+1,m(Xn+1)), . . . , (Xn+Ln ,m(Xn+Ln)), Xn+Ln+1, . . . , Xn+Ln+Nn

(where Ln, Nn ∈ N) and the data

Dn = {(X1, Y1), . . . , (Xn, Yn)} , (1)

our main goal is to construct con�dence bands for g. More precisely we want

to construct lower and upper bounds ĝ
(lower)
n and ĝ

(upper)
n on the density g.

Ideally we would like to have

ĝ(lower)n (x) ≤ g(x) ≤ ĝ(upper)n (x) for Lebesgue almost all x ∈ R,

or equivalently∫
B
ĝ(lower)n (x) dx ≤

∫
B
g(x)dx ≤

∫
B
ĝ(upper)n (x) dx (2)

for all measurable sets B ⊆ R. The last condition stresses that we are only
interested in the density g because it can be used to determine all kinds of
probabilities.

In this article we are interested in situations, where the sample size n is
rather small (in our application in Section 4 we will have n = 20), since the
collection of the real data (1) is rather expensive. In view of this it seems hard
to construct estimates satisfying (2) for all measurable sets B ⊆ R. Here
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our model of the technical system is not really helpful, since it is imperfect.
So instead, we simplify our goal in the sequel and construct lower and upper

bounds ĝ
(lower)
n and ĝ

(upper)
n of the density g satisfying∫

I
ĝ(lower)n (x) dx ≤

∫
I
g(x)dx ≤

∫
I
ĝ(upper)n (x) dx (3)

for all intervals I with length |I| ≥ κn, where κn > 0 is a given value.
In the next section we propose a novel method for the construction of

such con�dence bands. Our main results are as follows: We show that the
newly introduced con�dence bands satisfy (3) for �nite sample size n and
with probability at least 1 − δ simultaneously for all intervals of lengths
greater than κn (where δ, κn > 0 are given). Furthermore we analyze how
the area of the con�dence band depends on the smoothness of the density
and the error of the surrogate model. The �nite sample size behaviour of our
estimates is illustrated using simulated data. The usefulness of our newly
proposed estimates for uncertainty quanti�cation is demonstrated by using it
to analyze the uncertainty occurring in experiments with a suspension strut.

Throughout this paper we use the following notation: N, N0 and R are the
sets of positive integers, nonnegative integers and real numbers, respectively.
If I ⊆ R is an interval and β ≥ 0, then we denote the length of I by |I|
and we de�ne intervals Iβ and Iβ (where the interval is either extended or
shortened on both sides by an interval of length β) by

Iβ = {x ∈ R : [x−β, x+β]∩I 6= ∅} and Iβ = {x ∈ R : [x−β, x+β] ⊆ I}.

For a, b ∈ R we set

[a, b] = {x ∈ R : a ≤ x ≤ b} and (a, b) = {x ∈ R : a < x < b},

similarly we de�ne (a, b] and [a, b). Let p = k + β for some k ∈ N0 and
0 < β ≤ 1, and let C > 0. A function m : Rd → R is called (p, C)-smooth,
if for every α = (α1, . . . , αd) ∈ Nd0 with

∑d
j=1 αj = k the partial derivative

∂km
∂x
α1
1 ...∂x

αd
d

exists and satis�es∣∣∣∣ ∂km

∂xα1
1 . . . ∂xαdd

(x)− ∂km

∂xα1
1 . . . ∂xαdd

(z)

∣∣∣∣ ≤ C · ‖x− z‖β
for all x, z ∈ Rd. If X is a random variable, then PX is the corresponding
distribution, i.e., the measure associated with the random variable.

The outline of this paper is as follows: In Section 2 the construction of the
con�dence bands is explained. The main results are presented in Section 3
and proven in Section 5. The �nite sample size perfomance of our con�dence
bands is illustrated in Section 4 by applying it to simulated and real data.
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2 A new method for the construction of con�dence

bands for densities

In this section we describe our ideas behind the construction of con�dence
bands for densities.

In order to construct con�dence bands satisfying (3), we proceed as fol-
lows: If we assume that we know the Nn outcomes Yn+Ln+1, . . . , Yn+Ln+Nn
of the experiments with the technical system corresponding to the (random)
parameters Xn+Ln+1, . . . , Xn+Ln+Nn , then we know from empirical process
theory that the empirical distribution

µ̂Y,Nn(A) =
1

Nn

n+Ln+Nn∑
i=n+Ln+1

I{Yi∈A} (A ⊆ R)

satis�es ∫
I
g(y) dy = P{Y ∈ I} ≤ µ̂Y,Nn(I) +

2 ·
√

logNn√
Nn

and ∫
I
g(y) dy = P{Y ∈ I} ≥ µ̂Y,Nn(I)− 2 ·

√
logNn√
Nn

uniformly for all intervals I ⊆ R with a large probability.
Our �rst idea is to use our simulation model to derive bounds on µ̂Y,Nn(I).

To do this, we use the data

(Xn+1,m(Xn+1), . . . , (Xn+Ln ,m(Xn+Ln))

in order to construct a surrogate estimate

mn(·) = mn(·, (Xn+1,m(Xn+1)), . . . , (Xn+Ln ,m(Xn+Ln))) : Rd → R

of m. Then we compute

mn(Xn+Ln+1), . . . ,mn(Xn+Ln+Nn) (4)

and de�ne the corresponding empirical distribution µ̂mn(X),Nn by

µ̂mn(X),Nn(A) =
1

Nn

n+Ln+Nn∑
i=n+Ln+1

I{mn(Xi)∈A} (A ⊆ R).

We use this empirical distribution in order to derive upper and lower bounds
on µ̂Y,Nn(I). The starting point here is the observation that if we de�ne for
β ≥ 0 and I ⊆ R

Iβ = {x ∈ R : [x−β, x+β]∩I 6= ∅} and Iβ = {x ∈ R : [x−β, x+β] ⊆ I},
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then we have

µ̂Y,Nn(I) ≤ µ̂mn(X),Nn(Iβ) +
1

Nn

n+Ln+Nn∑
i=n+Ln+1

I{|Yi−mn(Xi)|>β}

and

µ̂Y,Nn(I) ≥ µ̂mn(X),Nn(Iβ)− 1

Nn

n+Ln+Nn∑
i=n+Ln+1

I{|Yi−mn(Xi)|>β}

(see proof of Lemma 3 below). Hence as soon we know a bound on

1

Nn

n+Ln+Nn∑
i=n+Ln+1

I{|Yi−mn(Xi)|>β}

for a suitable value of β, we can use µ̂mn(X),Nn to derive upper and lower
bounds on µ̂Y,Nn .

In order to derive such a bound we use (X1, Y1), . . . , (Xn, Yn). Here we
apply a result from Kohler et al. (2017), which tells us that if we set

β̂ = max
i=1,...,n

|Yi −mn(Xi)|

and choose some εn > 0, then

P
{
|Y −mn(X)| > β̂

∣∣X1, . . . , Xn+Ln , Y1, . . . , Yn

}
≤ εn

holds outside of an event whose probability is bounded from above by
(1 − εn)n (cf., Lemma 2 below). Together with the inequality of Hoe�d-
ing this enables us to show that for suitable chosen εn, γn > 0

1

Nn

n+Ln+Nn∑
i=n+Ln+1

I{|Yi−mn(Xi)|>β̂} ≤ εn + γn

holds with large probability (cf., Lemma 1 below).
Finally we use the kernel density estimate

f̂mn(X),Nn,hNn
(y) =

1

Nn · hNn

n+Ln+Nn∑
i=n+Ln+1

K

(
y −mn(Xi)

hNn

)
corresponding to data (4) in order to derive upper and lower bounds on
µ̂mn(X),Nn . Since we have are given data (4), we can compute the di�er-

ence between probabilities computed via f̂mn(X),Nn,hNn
and µ̂mn(X),Nn and

include these di�erences into our upper and lower bounds.
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This way with large probability for any interval I ⊆ R the following
upper and lower bounds are valid:∫

I
g(y) dy ≤

∫
I
f̂mn(X),Nn,hNn

(y) dy + εn + γn +
2 ·
√

logNn√
Nn

+

(
µ̂mn(X),Nn(I β̂)−

∫
I
f̂mn(X),Nn,hNn

(y) dy

)
and ∫

I
g(y) dy ≥

∫
I
f̂mn(X),Nn,hNn

(y) dy − εn − γn −
2 ·
√

logNn√
Nn

−
(∫

I
f̂mn(X),Nn,hNn

(y) dy − µ̂mn(X),Nn(Iβ̂)

)
.

Finally we use these bounds to derive estimates satisfying (3). In view

of the bounds above, it su�ces to choose ĝ
(lower)
n and ĝ

(upper)
n such that we

have for any interval I ⊆ R with length |I| ≥ κn∫
I
ĝ(upper)n (y) dy ≥

∫
I
f̂mn(X),Nn,hNn

(y) dy + εn + γn +
2 ·
√

logNn√
Nn

+

(
µ̂mn(X),Nn(I β̂)−

∫
I
f̂mn(X),Nn,hNn

(y) dy

)
and∫

I
ĝ(lower)n (y) dy ≤

∫
I
f̂mn(X),Nn,hNn

(y) dy − εn − γn −
2 ·
√

logNn√
Nn

−
(∫

I
f̂mn(X),Nn,hNn

(y) dy − µ̂mn(X),Nn(Iβ̂)

)
.

To achieve this, we de�ne

ĝ(upper)n (y) = f̂mn(X),Nn,hNn
(y) +

εn + γn + 2·
√
logNn√
Nn

κn

+
1

κn
· sup
J interval, y∈J,
|J|>κn

(
µ̂mn(X),Nn(J β̂)−

∫
J
f̂mn(X),Nn,hNn

(t) dt

)
and

ĝ(lower)n (y) = f̂mn(X),Nn,hNn
(y)−

εn + γn + 2·
√
logNn√
Nn

κn

− 1

κn
· sup
J interval, y∈J,
|J|>κn

(∫
J
f̂mn(X),Nn,hNn

(t) dt− µ̂mn(X),Nn(Jβ̂)

)
.
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3 Main results

Theorem 1 Let (X,Y ), (X1, Y1), . . . be Rd×R�valued random variables and

let m : Rd → R be a measurable function. Assume that Y has a density g
with respect to the Lebesgue-Borel-measure. Let n,Nn, Ln ∈ N, hNn , κn > 0
and δ, εn ∈ (0, 1), and let

mn(·) = mn(·, (Xn+1,m(Xn+1)), . . . , (Xn+Ln ,m(Xn+Ln))) : Rd → R.

Assume (1− εn)n + 2/N2
n < δ. Set

β̂ = max
i=1,...,n

|Yi −mn(Xi)|,

and

γn =

√
− ln (δ − 2/N2

n − (1− εn)n)

2 ·Nn
.

De�ne

f̂mn(X),Nn,hNn
(y) =

1

Nn · hNn

n+Ln+Nn∑
i=n+Ln+1

K

(
y −mn(Xi)

hNn

)
,

µ̂mn(X),Nn(A) =
1

Nn

n+Ln+Nn∑
i=n+Ln+1

I{mn(Xi)∈A} (A ⊆ R),

ĝ(upper)n (y) = f̂mn(X),Nn,hNn
(y) +

1

κn
·
(
εn + γn +

2 ·
√

logNn√
Nn

)
+ sup

J interval, y∈J
|J|>κn

µ̂mn(X),Nn(J β̂)−
∫
J f̂mn(X),Nn,hNn

(t) dt

κn

and

ĝ(lower)n (y) = f̂mn(X),Nn,hNn
(y)− 1

κn
·
(
εn + γn +

2 ·
√

logNn√
Nn

)
− sup

J interval, y∈J
|J|>κn

∫
J f̂mn(X),Nn,hNn

(t) dt− µ̂mn(X),Nn(Jβ̂)

κn

Then with probability at least 1− δ, the following inequality holds simultane-
ously for all intervals I with length |I| > κn:∫

I
ĝ
(lower)
Nn

(x) dx ≤
∫
I
g(y) dy ≤

∫
I
ĝ
(upper)
Nn

(x) dx. (5)
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Remark 1. It follows from the proof of Theorem 1 that (5) holds with prob-
ability at least 1 − δ simultaneously for all intervals I with length |I| > κn
and for all bandwidths hNn > 0.

Remark 2. If g is (p, C)�smooth for some p ∈ (0, 1] we have for any interval
I ⊆ R and any y ∈ I

g(y)− C · |I|p ≤ 1

|I|
·
∫
I
g(t) dt ≤ g(y) + C · |I|p

which implies

−C · |I|p +
1

|I|
·
∫
I
g(t) dt ≤ g(y) ≤ C · |I|p +

1

|I|
·
∫
I
g(t) dt.

Consequently in this case we can conclude from (5) that we have for all y ∈ R
and all intervals I satisfying y ∈ I and |I| > κn

−C · |I|p +
1

|I|
·
∫
I
ĝ(lower)n (t) dt ≤ g(y) ≤ C · |I|p +

1

|I|
·
∫
I
ĝ(upper)n (t) dt.

From this we can conclude for any y ∈ R:

−C · κpn +
1

κn
·max

{∫ y

y−κn
ĝ(lower)n (t) dt,

∫ y+κn

y
ĝ(lower)n (t) dt

}
≤ g(y) ≤ C · κpn +

1

κn
·min

{∫ y

y−κn
ĝ(upper)n (t) dt,

∫ y+κn

y
ĝ(upper)n (t) dt

}
.

Hence in case of a (p, C)�smooth density we can derive from (5) also point-
wise bounds on the density provided we know the smoothness of the density,
i.e., the values of (p, C)).

It is an open problem whether one can derive from (5) also similar bounds
in case that (p, C) is unknown.

In our next result we analyze the area between the upper and the lower
bound on the density given in Theorem 1.

Theorem 2 Assume that the assumptions of Theorem 1 hold and that, in

addition, the density g of Y is (p, C)�smooth for some C > 0, p ∈ (0, 1] and
that the support of g is compact. Let δ > 0 be arbitrary, set

εn =
log n

n
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and

γn =

√√√√− log
(
δ − 2

N2
n
− (1− εn)n

)
2 ·Nn

,

and choose Nn and hNn such that

Nn →∞ (n→∞) and lim sup
n→∞

hNn <∞.

Let K : R → R be a symmetric and bounded density with compact support,

which is monotonically decreasing on R+, and de�ne ĝ
(upper)
n and ĝ

(lower)
n as

in Theorem 1.

Then there exists a constant c1 > 0 such that outside of an event, whose

probability tends to δ for n→∞, we have for any interval I ⊆ R with length

|I| <∞:∫
I

∣∣∣ĝ(upper)n (y)− ĝ(lower)n (y)
∣∣∣ dy (6)

≤ |I|
κn
·

(
c1 ·

(
hpNn +

1√
Nn · hNn

)
+ 8 · log n

n
+ 18 ·

√
logNn√
Nn

+
8 · (K(0) + ‖g‖∞) ·maxi=1,...,n |Yi −mn(Xi)|

min{hNn , 1}

)
.

In particular, in case that we have

max
i=1,...,n

|Yi −mn(Xi)| → 0 (n→∞), (7)

we can set

hNn = c2 ·
(

max
i=1,...,n

|Yi −mn(Xi)|
)1/(p+1)

and choose Nn su�ciently large, and can conclude from inequality (6) that∫
I

∣∣∣ĝ(upper)n (y)− ĝ(lower)n (y)
∣∣∣ dy

≤ c3 ·
|I|
κn
·

(
log n

n
+

(
max
i=1,...,n

|Yi −mn(Xi)|
)p/(p+1)

)
.

Remark 3. Assumption (7) requires that either Y = m(X) holds or that
our approximation m(X) of Y is changed with increasing sample size n and
is becoming better and better for n→∞.
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4 Application to simulated and real data

In this section we illustrate the �nite sample size performance of our esti-
mates by applying them to simulated and real data.

We start with an application to simulated data, where we illustrate how
the size of the error of the model in�uences the performance of our estimates.
To do this, we choose X d-dimensional standard normally distributed and ε
uniformly distributed on [0, 1] such that X and ε are independent, set

Y = m(X) + σ · ε

for some m : Rd → R de�ned below and σ ∈ {0.1, 0.5}, and let (X1, Y1),
(X2, Y2), . . . be independent and identically distributed random variables.
Our estimate gets

(X1, Y1), . . . , (Xn, Yn)

as data from the real technical system,

(Xn+1,m(Xn+1), . . . , (Xn+Ln ,m(Xn+Ln))

as data from the (imperfect) model (where σ controls the maximal error
occurring in this model), and the additional X-values

Xn+Ln+1, . . . , Xn+Ln+Nn .

In all of our applications we choose n = 20, Ln = 500 and Nn = 500, 000. As
surrogate estimate we use a thin plate spline as implemented in the routine
Tps() in the statistics software R, with smoothing parameter chosen by
generalized cross validation. Our estimate uses the naive kernel

K(x) =
1

2
· I{x∈[−1,1]}

and is implemented such that it considers in its computation only intervals
with endpoints on some grid consisting of 2001 points chosen equidistantly in
some interval depending on the function m (see below). For the bandwidth
hNn we choose the value produced by the procedure density() in R applied to
the Nn data points (4) (which is chosen by L2 cross validation for the kernel
density estimate). In case of the simulated data below we choose κn = 2.

The density of Y is the convolution of the density of m(X) and uniform
density. We do not try to compute its exact form, instead we compute it
approximately by applying a kernel density estimate (as implemented in the
routine density() in R) to a sample of size 1, 000, 000 of Y . In order to judge
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the quality of our con�dence band the resulting density is treated in our
simulations as if it is the real density.

In our �rst model we choose d = 2 and

m(x1, x2) = 2 · x1 + x2 + 2.

The interval on which we compute our estimate is chosen as [−5, 9]. Typical
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Model 1, sigma=0.5
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Figure 1: Typical simulations in the �rst model (with σ = 0.5 in the left
panel and σ = 0.1 in the right panel). The dashed curve is the kernel density
estimate applied only to the n = 20 real data points, the black curve a density
estimate applied to a sample of size 1, 000, 000 of Y and is considered as a
very good approximation to the true density g. The con�dence band is drawn
in blue.

simulations for σ = 0.5 and σ = 0.1 are shown in Figure 1. As can be
seen from Figure 1, in case of the smaller error of the model (i.e., σ = 0.1
instead of σ = 0.5) the con�dence band is narrower, and has about the same
distance from our reference density as the kernel density estimate applied to
the sample of size n = 20 of Y . Of course, the data points are random. To
con�rm the above observation, we repeat the above simulations 50 times and
compute the median and the interquartile range of the maximal area between
the con�dence band over any interval of length κn = 2. We compare this
value with the maximal area over any interval of length κn = 2 between the
density estimate based on the n = 20 data points of Y and our reference
density (which we consider as a lower bound on the corresponding value for

13



any con�dence band based on a kernel density estimate using n = 20 data
points of Y ). In case σ = 0.5 we get for our con�dence band as median
value 0.613 (with IQR 0.020) while the density estimate with n = 20 real
data points achieves a smaller median value 0.345 (with IQR 0.00067). But
in case of the smaller error, i.e., σ = 0.1, our estimated con�dence band
narrows and achieves with median 0.368 (and IQR 0.00061) approximately
the same value as the density estimate with n = 20 real data points.

In our second model we choose again d = 2, but this time m is de�ned
by

m(x1, x2) = x21 + x22,

and the interval on which we compute our estimate is [−1, 10]. Typical
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Model 2, sigma=0.5
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Figure 2: Typical simulations in the second model (with σ = 0.5 in the
left panel and σ = 0.1 in the right panel). The dashed curve is the kernel
density estimate applied only to the n = 20 real data points, the black curve a
density estimate applied to a sample of size 1, 000, 000 of Y and is considered
as a very good approximation to the true density g. The con�dence band is
drawn in blue.

simulations for σ = 0.5 and σ = 0.1 are shown in Figure 2. Repeating these
simulations again 50 times, we get in case of σ = 0.5 for the maximal area
between our con�dence band over any interval of length κn = 2 the median
value 0.890 (with IQR 0.205), while the density estimate with n = 20 real
data points achieves a smaller median value of 0.614 (with IQR 0.00063).
But in case of the smaller error, i.e., σ = 0.1, our estimated con�dence band

14



narrows and achieves with median 0.440 (and IQR 0.270) now a smaller value
than the density estimate with n = 20 real data points.

This e�ect is in our third model even stronger. Here we choose d = 1,
de�ne m by

m(x) = exp(x),

and compute our estimate again on the interval [−1, 10]. Typical simulations
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Figure 3: Typical simulations in the third model (with σ = 0.5 in the left
panel and σ = 0.1 in the right panel). The dashed curve is the kernel density
estimate applied only to the n = 20 real data points, the black curve a density
estimate applied to a sample of size 1, 000, 000 of Y and is considered as a
very good approximation to the true density g. The con�dence band is drawn
in blue.

for σ = 0.5 and σ = 0.1 are shown in Figure 3. Repeating these simulations
again 50 times, we get in case of σ = 0.5 for the maximal area between our
con�dence band on any interval of length κn = 2 the median value 1.010
(with IQR 0.047), while the density estimate with n = 20 real data points
achieves a smaller median value 0.756 (with IQR 0.00061). But in case of
the smaller error, i.e., σ = 0.1, our estimated con�dence band narrows and
achieves with median 0.455 (and IQR 0.014) now a much smaller value than
the density estimate with n = 20 real data points.

Summarizing the results of our simulations we see that as indicated by
the bound presented in Theorem 2 the area of our newly introduced con�-
dence band is in�uenced drastically by the size of the error of the model,
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that this e�ect is clearly visible for �nite sample size, and that for suitably
chosen functions m and small enough error of the model the newly proposed
con�dence band is closer to the true density than the kernel density esti-
mate based only on n real data points. The last point suggests that even an
imperfect simulation model is helpful in constructing con�dence bands for a
density.

Finally we illustrate the usefulness of our newly proposed method for un-
certainty quanti�cation by using it to analyze the uncertainty occurring in
experiments with a suspension strut (cf., Figure 4), which serves as an aca-
demic demonstrator to study uncertainty in load distributions and the ability
to control vibrations, stability and load paths in suspension struts such as
aircarft landing gears. A CAD illustration of this suspension strut can be

Figure 4: A photo of the demonstrator of a suspension strut and its experi-
mental test setup.

found in Figure 5 (left). This suspension strut consists of an upper and lower
structure, where the lower structure contains a spring�damper component.
The spring�damper component transmits the axial forces between the upper
and lower structures of the suspension strut. The aim of our analysis is the
analysis of the behaviour of the maximum relative compression of the spring
damper component in case that the free fall height is chosen randomly. Here
we assume that the free fall heights are independent normally distributed
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Mathematical modelling of a suspension strut

Figure 1 illustrates a suspension strut that has similar dynamic requirements and behaviour as an aircraft
landing gear.

upper structure

lower structure

spring and damper component

elastic foot

freefall height hf

Fig. 1 CAD illustration of a suspension strut

A) Two degree of freedom (2DOF) suspension system with linear stiffness
and axiomatic damping
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Fig. 2 Mathematical representation of a 2DOF suspension strut with linear stiffness and axiomatic
damping
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Figure 5: A CAD illustration of the suspension strut (left) and illustration
of a simpli�ed model of the suspension strut (right).

with mean 0.05 meter and standard deviation 0.0057 meter.
We use the results of n = 20 corresponding experiments. From this data

we can estimate the density of the maximum relative compression. In the
sequel we improve this density estimate by using, in addition, also data cor-
responding to a simpli�ed mathematical model of the suspension strut (cf.,
Figure 5 (right)). Here the upper and the lower structures of the suspen-
sion strut are two lump masses m and m1, the spring damper component is
represented by a sti�ness parameter k and a suitable damping coe�cient b,
and the elastic foot is represented by another sti�ness parameter kef . Us-
ing a nonlinear sti�ness and a velocity dependent damping it is possible to
compute the maximum relative compression by solving a di�erential equa-
tion using Runge-Kutta algorithm (cf., Mallapur and Platz (2016)). We use
the results of Ln = 500 corresponding computer experiments to construct a
surrogate estimate mn as described above. Here, our model is imperfect: if
we evaluate mn on the x�values of our experimental data, and compare the
values ofmn with the measured values of the maximum relative compression,
we observe that the maximal absolute error is β̂ = 0.00067 and is de�nitely
not equal to zero.

The techniques developed in this paper enable us to quantify the in�uence
of this error on the density estimate. Figure 6 shows the con�dence band
for the density produced by our method together with an estimate of the
density based on Nn = 500, 000 data points from the surrogate model (red).

For the computation of the con�dence band we use Nn = 500, 000,
h ∈ {0.0001, 0.0006, 0.001, 0.005, 0.01}, δ = 0.05, κ = 0.005 and ε = 0.14
and compute the minimum and the maximum of the corresponding 5 upper
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Figure 6: The con�dence band for the density together with a density esti-
mate (red) based on Nn = 500, 000 points from the surrogate model.

and lower bounds of the density, resp. We simplify the computation of the
con�dence band by considering only intervals which have endpoints on a grid
with grid size 0.00001.

From Figure 6 we see that the inadequacy of our model results in un-
certainty concerning the true density in our technical system, and we can
decide whether this uncertainty is acceptable for our application or whether
we should try to improve the model of the technical system in order to reduce
this uncertainty.

5 Proofs

5.1 Proof of Theorem 1

Lemma 1 Let (X,Y ), (X1, Y1), . . . be Rd×R�valued random variables and

let m : Rd → R be a measurable function. Let n,Nn, Ln ∈ N, hNn , ηNn > 0
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and δ, εn ∈ (0, 1), and let

mn(·) = mn(·, (Xn+1,m(Xn+1)), . . . , (Xn+Ln ,m(Xn+Ln))) : Rd → R.

Assume (1− εn)n + 2/N2
n < δ. Set

β̂ = max
i=1,...,n

|Yi −mn(Xi)|,

and

γn =

√
− ln (δ − 2/N2

n − (1− εn)n)

2 ·Nn
.

Then

P

{
1

Nn

n+Ln+Nn∑
i=n+Ln+1

I{|Yi−mn(Xi)|>β̂} > εn + γn

}
≤ δ − 2/N2

n.

In the proof we will need the following result from Kohler et al. (2017).

Lemma 2 Let (X,Z), (X1, Z1), . . . , (Xn, Zn) be independent and iden-

tically distributed Rd × R�valued random variables, let Kn ⊆ Rd and let

εn ∈ (0, 1) be arbitrary. Then

P(X,Z)

(x, z) ∈ Kn × R : z > max
i=1,...,n,
Xi∈Kn

Zi


 ≤ εn (8)

holds outside of an event, whose probability is bounded from above by

(1− εn)n.

Proof. See Lemma 3 in Kohler et al. (2017). �
Proof of Lemma 1. Set

D̄n = {(X1, Y1), . . . , (Xn, Yn), Xn+1, . . . , Xn+Ln} .

Application of Lemma 2 (with Z = |Y −mn(X)| and Kn = Rd) yields

P

{
1

Nn

n+Ln+Nn∑
i=n+Ln+1

I{|Yi−mn(Xi)|>β̂} > εn + γn

}
≤ P

{
P
{
|Y −mn(X)| > β̂

∣∣D̄n} > εn

}
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+P

{
1

Nn

n+Ln+Nn∑
i=n+Ln+1

I{|Yi−mn(Xi)|>β̂}

−P
{
|Y −mn(X)| > β̂

∣∣D̄n} > γn

}

≤ (1− εn)n + P

{
1

Nn

n+Ln+Nn∑
i=n+Ln+1

I{|Yi−mn(Xi)|>β̂}

−P
{
|Y −mn(X)| > β̂

∣∣D̄n} > γn

}
.

By the inequality of Hoe�ding (cf., e.g., Lemma A.3 in Györ� et al. (2002))
applied conditional on D̄n the last term can be bounded from above by

(1− εn)n + exp
(
−2 ·Nn · γ2n

)
= δ − 2/N2

n,

where the last equality follows from the de�nition of γn. �

Lemma 3 Let

f̂mn(X),Nn,hNn
(x) =

1

Nn · hNn

n+Ln+Nn∑
i=n+Ln+1

K

(
x−mn(Xi)

hNn

)
(x ∈ R),

µ̂mn(X),Nn(A) =
1

Nn

n+Ln+Nn∑
i=n+Ln+1

I{mn(Xi)∈A} (A ⊆ R)

and

µ̂Y,Nn(A) =
1

Nn

n+Ln+Nn∑
i=n+Ln+1

I{Yi∈A} (A ⊆ R).

Let GY (y) = P{Y ≤ y} (y ∈ R) be the cdf. of Y and let ĜY,Nn =
µ̂Y,Nn((−∞, y]) (y ∈ R) be the empirical cdf. of Y .

Then we have for any interval I ⊆ R and any β ≥ 0:

P{Y ∈ I} ≤
∫
I
f̂mn(X),Nn,hn(x) dx+

(
µ̂mn(X),Nn(Iβ)−

∫
I
f̂mn(X),Nn,hn(x) dx

)
+

1

Nn

n+Ln+Nn∑
i=n+Ln1

I{|Yi−mn(Xi)|>β} + 2 · sup
t∈R

∣∣∣ĜY,Nn(t)−GY (t)
∣∣∣

20



and

P{Y ∈ I} ≥
∫
I
f̂mn(X),Nn,hn(x) dx−

(∫
I
f̂mn(X),Nn,hn(x) dx− µ̂mn(X),Nn(Iβ)

)
− 1

Nn

n+Ln+Nn∑
i=n+Ln+1

I{|Yi−mn(Xi)|>β} − 2 · sup
t∈R

∣∣∣ĜY,Nn(t)−GY (t)
∣∣∣ .

Proof. We have

P{Y ∈ I}

= (P{Y ∈ I} − µ̂Y,Nn(I)) +
(
µ̂Y,Nn(I)− µ̂mn(X),Nn(Iβ)

)
+

(
µ̂mn(X),Nn(Iβ))−

∫
I
f̂mn(X),Nn,hn(x) dx

)
+

∫
I
f̂mn(X),Nn,hn(x) dx,

hence concerning the �rst inequality it su�ces to show

P{Y ∈ I} − µ̂Y,Nn(I) ≤ 2 · sup
t∈R

∣∣∣ĜY,Nn(t)−GY (t)
∣∣∣ (9)

and

µ̂Y,Nn(I)− µ̂mn(X),Nn(Iβ) ≤ 1

Nn

n+Ln+Nn∑
i=n+Ln+1

I{|Yi−mn(Xi)|>β}. (10)

In case I = [a, b] for some a, b ∈ R we have

P{Y ∈ I} − µ̂Y,Nn(I)

= P{Y ∈ (−∞, b]} −P{Y ∈ (−∞, a)} − µ̂Y,Nn((−∞, b]) + µ̂Y,Nn((−∞, a))

≤ |P{Y ∈ (−∞, b]} − µ̂Y,Nn((−∞, b])|+ |P{Y ∈ (−∞, a)} − µ̂Y,Nn((−∞, a))|

≤ 2 · sup
t∈R

∣∣∣ĜY,Nn(t)−GY (t)
∣∣∣

by the de�nition of the (empirical) cdf. and the continuity of the measure
from below. In the same way we get (9) in three other cases I = (a, b],I =
[a, b) or I = (a, b) for some a, b ∈ R.

In order to prove (10) we observe that x ∈ I and |x − z| ≤ β implies
z ∈ Iβ , hence

µ̂Y,Nn(I)
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≤ 1

Nn

n+Ln+Nn∑
i=n+Ln+1

I{Yi∈I,|Yi−mn(Xi)|≤β} +
1

Nn

n+Ln+Nn∑
i=n+Ln+1

I{|Yi−mn(Xi)|>β}

≤ 1

Nn

n+Ln+Nn∑
i=n+Ln+1

I{mn(Xi)∈Iβ} +
1

Nn

n+Ln+Nn∑
i=n+Ln+1

I{|Yi−mn(Xi)|>β}

= µ̂mn(X),Nn(Iβ) +
1

Nn

n+Ln+Nn∑
i=n+Ln+1

I{|Yi−mn(Xi)|>β}.

Concerning the second part of the assertion of Lemma 3 we observe

P{Y ∈ I}
= (P{Y ∈ I} − µ̂Y,Nn(I)) +

(
µ̂Y,Nn(I)− µ̂mn(X),Nn(Iβ)

)
+

(
µ̂mn(X),Nn(Iβ)−

∫
I
f̂mn(X),Nn,hn(x) dx

)
+

∫
I
f̂mn(X),Nn,hn(x) dx,

hence to prove the second inequality it su�ces to show

P{Y ∈ I} − µ̂Y,Nn(I) ≥ −2 · sup
t∈R

∣∣∣ĜY,Nn(t)−GY (t)
∣∣∣ (11)

and

µ̂Y,Nn(I)− µ̂mn(X),Nn(Iβ) ≥ − 1

Nn

n+Ln+Nn∑
i=n+Ln+1

I{|Yi−mn(Xi)|>β}. (12)

By mimicking the proof of (9) and (10) we can show (11) and (12), which
completes the proof. �
Proof of Theorem 1. Let I be an arbitrary interval of length |I| > κn.
Then ∫

I
ĝ(upper)n (x) dx

≥
∫
I
f̂mn(X),Nn,hNn

(x) dx+

(
εn + γn +

2 ·
√

logNn√
Nn

)
+

∫
I

sup
J interval, x∈J
|J|>κn

µ̂mn(X),Nn(J β̂)−
∫
J f̂mn(X),Nn,hNn

(t) dt

κn
dx

≥
∫
I
f̂mn(X),Nn,hNn

(x) dx+

(
εn + γn +

2 ·
√

logNn√
Nn

)
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+µ̂mn(X),Nn(I β̂)−
∫
I
f̂mn(X),Nn,hNn

(t) dt

and ∫
I
ĝ(lower)n (x) dx

≤
∫
I
f̂mn(X),Nn,hNn

(x) dx−
(
εn + γn +

2 ·
√

logNn√
Nn

)
−
∫
I

sup
J interval, x∈J
|J|>κn

∫
J f̂mn(X),Nn,hNn

(t) dt− µ̂mn(X),Nn(Jβ̂)

κn
dx

≤
∫
I
f̂mn(X),Nn,hNn

(x) dx−
(
εn + γn +

2 ·
√

logNn√
Nn

)
−
(∫

I
f̂mn(X),Nn,hNn

(t) dt− µ̂mn(X),Nn(Iβ̂)

)
.

Hence Lemma 3 implies that it su�ces to show that we have outside of an
event, whose probability is bounded from above by δ, that the following
inequalities hold for all intervals I of length |I| > κn:

2 · sup
t∈R

∣∣∣ĜY,Nn(t)−GY (t)
∣∣∣ ≤ 2 ·

√
logNn√
Nn

(13)

and

1

Nn

n+Ln+Nn∑
i=n+Ln+1

I{|Yi−mn(Xi)|>β} ≤ εn + γn. (14)

Using the Dvoretzky-Kiefer-Wolfowitz inequality (cf., Massart (1990)) we
can show that probability that (13) does not hold is bounded from above by

2 · exp

(
−2 ·Nn ·

logNn

Nn

)
=

2

N2
.

Together with Lemma 1 this implies that probability that (13) or (14) does
not hold is bounded from above by δ. �

5.2 Proof of Theorem 2

In the proof we will need the following Lemma from Bott, Felber and Kohler
(2015).
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Lemma 4 Let the kernel function K be a symmetric, bounded density which

is monotonically decreasing on R+ and let hn > 0. Then it holds∫ ∣∣∣∣K (y − z1hn

)
−K

(
y − z2
hn

)∣∣∣∣ dy ≤ 2 ·K(0) · |z1 − z2|

for arbitrary z1, z2 ∈ R.

Proof. See Lemma 4.1 in Bott, Felber and Kohler (2015). �
Proof of Theorem 2. Since∣∣∣ĝ(upper)n (y)− ĝ(lower)n (y)

∣∣∣
=

2

κn
·
(
εn + γn +

2 ·
√

logNn√
Nn

)
+ sup

J interval, y∈J
|J|>κn

µ̂mn(X),Nn(J β̂)−
∫
J f̂mn(X),Nn,hNn

(t) dt

κn

+ sup
J interval, y∈J
|J|>κn

∫
J f̂mn(X),Nn,hNn

(t) dt− µ̂mn(X),Nn(Jβ̂)

κn

≤ 2

κn
·
(
εn + γn +

2 ·
√

logNn√
Nn

)
+ sup

J interval,
|J|>κn

µ̂mn(X),Nn(J β̂)−
∫
J f̂mn(X),Nn,hNn

(t) dt

κn

+ sup
J interval,
|J|>κn

∫
J f̂mn(X),Nn,hNn

(t) dt− µ̂mn(X),Nn(Jβ̂)

κn
,

the de�nitions of εn and γn (from which we conclude γn ≤
√

(logNn)/Nn

for n large) imply that it su�ces to show that outside of an event, whose
probability tends to δ for n→∞ we have

sup
J interval, |J |>κn

(
µ̂mn(X),Nn(J β̂)−

∫
J
f̂mn(X),Nn,hNn

(t) dt

)
(15)

≤ c1
2
·

(
hpNn +

1√
Nn · hNn

)
+ 3 · log n

n
+ 6 ·

√
logNn√
Nn

+
4 · (K(0) + ‖g‖∞) · β̂

min{hNn , 1}
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and

sup
J interval, |J |>κn

(∫
J
f̂mn(X),Nn,hNn

(t) dt− µ̂mn(X),Nn(Jβ̂)

)
(16)

≤ c1
2
·

(
hpNn +

1√
Nn · hNn

)
+ 3 · log n

n
+ 6 ·

√
logNn√
Nn

+
4 · (K(0) + ‖g‖∞) · β̂

min{hNn , 1}
.

From the proof of Theorem 1 (cf., proof of (13) and (14)) we know that
outside of an event, whose probability is bounded from above by δ, we have

1

Nn

n+Ln+Nn∑
i=n+Ln+1

I{|Yi−mn(Xi)|>β̂} ≤ εn + γn (17)

and

sup
t∈R

∣∣∣ĜY,Nn(t)−GY (t)
∣∣∣ ≤ √logNn√

Nn
. (18)

Hence it su�ces to show that on the event, that (17) and (18) hold, we have
outside of an event, whose probability tends to zero for n → ∞, that (15)
and (16) hold. So from now on we assume that (17) and (18) hold.

In order to prove (15), let J be an arbitrary interval. Then

µ̂mn(X),Nn(J β̂)−
∫
J
f̂mn(X),Nn,hNn

(t) dt

= µ̂mn(X),Nn(J β̂)− µ̂Y,Nn(J2·β̂)

+µ̂Y,Nn(J2·β̂)−
∫
J2·β̂

g(y) dy

+

∫
J2·β̂

g(y) dy −
∫
J
g(y) dy

+

∫
J
g(y) dy −

∫
J
f̂Y,Nn,hNn (y) dy

+

∫
J
f̂Y,Nn,hNn (y) dy −

∫
J
f̂mn(X),Nn,hNn

(y) dy

=

5∑
k=1

Tk,n.
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As in the proof of Lemma 3 we see

T1,n ≤
1

Nn

n+Ln+Nn∑
i=n+Ln+1

I{|Yi−mn(Xi)|>β̂}

and
T2,n ≤ 2 · sup

t∈R

∣∣∣ĜY,Nn(t)−GY (t)
∣∣∣ ,

from which we conclude (via (17), (18) and the de�nitions of εn and γn) that
we have for n large

T1,n + T2,n ≤
log n

n
+ 3 ·

√
logNn√
Nn

.

Furthermore the boundedness of density g implies

T3,n ≤ 4 · β̂ · ‖g‖∞.

Next we derive an upper bound on T4,n. We have

T4,n ≤
∫
R
|f̂Y,Nn,hNn (y)− g(y)| dy

=

∫
R
|f̂Y,Nn,hNn (y)− g(y)| dy −E

∫
R
|f̂Y,Nn,hNn (y)− g(y)| dy

+E

∫
R
|f̂Y,Nn,hNn (y)− g(y)| dy.

By standard application of the McDiarmid's inequality (cf., e.g., Theorem
A.2 in Györ� et al. (2012) and proof Theorem 1 in Devroye et al. (2012))
we see that outside of an event, whose probability tends to zero for n→∞,
we have∫

R
|f̂Y,Nn,hNn (y)− g(y)| dy −E

∫
R
|f̂Y,Nn,hNn (y)− g(y)| dy ≤

√
logNn√
Nn

.

Since the supports of g and K are compact and since hNn is bounded there
exists a compact set A ⊆ R such that

E

∫
R
|f̂Y,Nn,hNn (y)− g(y)| dy = E

∫
A
|f̂Y,Nn,hNn (y)− g(y)| dy.

By standard arguments used in analysis of the L1 error of the density esti-
mates (cf., e.g., proof of Theorem 1 in Felber, Kohler and Krzy»ak (2015a))
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we can conclude from the (p, C)�smoothness of the density g and from the
compactness of its support that the latter term can be bounded from above
by

c1
2
·

(
hpNn +

1√
Nn · hNn

)
.

Summarizing these results we see that outside of an event, whose probability
tends to zero for n→∞, we have

T4,n ≤
√

logNn√
Nn

+
c1
2
·

(
hpNn +

1√
Nn · hNn

)
.

In order to bound T5,n, we observe

T5,n =
1

Nn · hNn
·
n+Ln+Nn∑
i=n+Ln+1

∫
J

(
K

(
Yi − y
hNn

)
−K

(
mn(Xi)− y

hNn

))
dy

≤ 1

Nn
·
n+Ln+Nn∑
i=n+Ln+1

2 · I{|Yi−mn(Xi)|>β̂}

+
1

Nn · hNn
·
n+Ln+Nn∑
i=n+Ln+1

2 ·K(0) · β̂,

where the last inequality follows from the fact that K is a density and from
Lemma 4. Application of (17) yields for large n

T5,n ≤ 2 · (εn + γn) + 2 ·K(0) · β̂

hNn
≤ 2 · log n

n
+ 2 ·

√
logNn√
Nn

+
2 ·K(0) · β̂

hNn
,

which implies (15).
In the same way one can prove (16), which completes the proof of The-

orem 2. �
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