
On deep learning as a remedy for the curse of
dimensionality in nonparametric regression ∗

Benedikt Bauer† and Michael Kohler
Fachbereich Mathematik, Technische Universität Darmstadt, Schlossgartenstr. 7, 64289

Darmstadt, Germany, email: bbauer@mathematik.tu-darmstadt.de,

kohler@mathematik.tu-darmstadt.de

March 23, 2017

Abstract

Assuming that a smoothness condition and a suitable restriction on the structure of
the regression function hold, it is shown that least squares estimates based on multi-
layer feedforward neural networks are able to circumvent the curse of dimensionality in
nonparametric regression. The proof is based on new approximation results concerning
multilayer feedforward neural networks with bounded weights and a bounded number
of hidden neurons. The estimates are compared with various other approaches by using
simulated data.
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1 Introduction

1.1 Nonparametric regression

In regression analysis, a random vector (X,Y ) with values in Rd×R satisfying EY 2 <∞
is considered, and an estimation of the relation between X and Y is attempted, i.e., it
is tried to predict the value of the response variable Y from the value of the observation
vector X. Usually, the aim is to minimize the mean squared error or L2 risk. Thus, the
construction of a (measurable) function m∗ : Rd → R, which satis�es

E{|Y −m∗(X)|2} = min
f :Rd→R

E{|Y − f(X)|2},

is of interest. In the following, letm : Rd → R, m(x) = E{Y |X = x} denote the so-called
regression function. Since m satis�es

E{|Y − f(X)|2} = E{|Y −m(X)|2}+

∫
|f(x)−m(x)|2PX(dx)
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(cf., e.g., Section 1.1 in Györ� et al. (2002)), it is the optimal predictor m∗. Moreover, a
good estimate f : Rd → R (in the L2 risk minimization sense) has to keep the so�called
L2 error ∫

|f(x)−m(x)|2PX(dx)

small.
In applications, the distribution of (X,Y ) and m are usually unknown, but a set of data

Dn = {(X1, Y1), . . . , (Xn, Yn)}

can often be observed, where (X,Y ), (X1, Y1),. . . ,(Xn, Yn) are independent and identi-
cally distributed random variables. Given this data set the aim is to construct regression
estimates mn(·) = mn(·,Dn) such that their L2 errors∫

|mn(x)−m(x)|2PX(dx)

are small. In contrast to parametric estimation, where a �xed structure of the regression
function that depends only on �nitely many parameters is assumed, in the nonparametric
approach the regression function is not claimed to be describable by �nitely many param-
eters and the whole function is estimated from the data. Györ� et al. (2002) provided
a systematic overview of di�erent approaches and nonparametric regression estimation
results.

1.2 Universal consistency

A sequence of estimates mn is called weakly universally consistent if

E

∫
Rd
|mn(x)−m(x)|2PX(dx)→ 0 (n→∞)

for every distribution of (X,Y ) with EY 2 <∞. The sequence is called strongly univer-

sally consistent if ∫
Rd
|mn(x)−m(x)|2PX(dx)→ 0 a.s.

for every distribution of (X,Y ) with EY 2 <∞.
Stone (1977) showed for the �rst time that weakly universally consistent estimates

exist. Later, this result, which was proven for nearest neighbor estimates, was extended
by many additional results concerning weak and strong universal consistency of various
estimates. Györ� et al. (2002) provide a list of references.

1.3 Slow rate

Universal consistency implies that the L2 error of the estimate converges to zero for all
distributions as the sample size tends to in�nity. However, it says nothing about the rate
of convergence of the L2 error towards zero. In view of applications, where one has a
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�nite sample size, it would be very interesting to have results which imply that the L2

error converges to zero with some given rate of convergence for all distributions.
Unfortunately, such results do not exist. Theorem 7.2 and Problem 7.2 in Devroye,

Györ� and Lugosi (1996) and Section 3 in Devroye and Wagner (1980) imply the following
slow rate of convergence result: Let {an} be a sequence of positive numbers converging
to zero with 1/64 ≥ a1 ≥ a2 ≥ · · · . Then, for every sequence of regression estimates,
a distribution of (X,Y ) exists such that X is uniformly distributed, Y = m(X) and
E
∫
|mn(x)−m(x)|2PX(dx) ≥ an for all n.

1.4 Rate of convergence

As we have seen above, one has to restrict the class of regression functions that one
considers to obtain non-trivial results for the rate of convergence. For that purpose, we
introduce the following de�nition of (p, C)-smoothness.

De�nition 1. Let p = q + s for some q ∈ N0 and 0 < s ≤ 1. A function m : Rd → R
is called (p, C)-smooth, if for every α = (α1, . . . , αd) ∈ Nd0 with

∑d
j=1 αj = q the partial

derivative ∂qm
∂x
α1
1 ...∂x

αd
d

exists and satis�es∣∣∣∣ ∂qm

∂xα1
1 . . . ∂xαdd

(x)− ∂qm

∂xα1
1 . . . ∂xαdd

(z)

∣∣∣∣ ≤ C · ‖x− z‖s
for all x, z ∈ Rd, where ‖ · ‖ denotes the Euclidean norm.

Stone (1982) determined the optimal minimax rate of convergence in nonparametric
regression for (p, C)-smooth functions. Here a sequence of (eventually) positive numbers
(an)n∈N is called a lower minimax rate of convergence for the class of distributions
D if

lim inf
n→∞

inf
mn

sup
(X,Y )∈D

E
∫
|mn(x)−m(x)|2PX(dx)

an
= C1 > 0.

The sequence is said to be an achievable rate of convergence for the class of distri-
butions D if

lim sup
n→∞

sup
(X,Y )∈D

E
∫
|mn(x)−m(x)|2PX(dx)

an
= C2 <∞.

The sequence is called an optimal minimax rate of convergence if it is both a lower
minimax and an achievable rate of convergence.
Stone (1982) showed that the optimal minimax rate of convergence for the estimation

of a (p, C)-smooth regression function is

n
− 2p

2p+d .
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1.5 Curse of dimensionality

Despite the fact that it is optimal, the rate n
− 2p

2p+d su�ers from a characteristic feature
in case of high-dimensional functions: If d is relatively large compared with p, then this
rate of convergence can be extremely slow. This phenomenon is well-known and is often
called the curse of dimensionality. Unfortunately, in many applications, the problems are
high-dimensional and hence very hard to solve. The only way to circumvent this curse of
dimensionality is to impose additional assumptions on the regression function to derive
better rates of convergence.
Stone (1985) assumed an additivity condition for the structure of the regression func-

tion, which said

m(x(1), . . . , x(d)) = m1(x(1)) + · · ·+md(x
(d)) (x = (x(1), . . . , x(d))T ∈ Rd)

for (p, C)-smooth univariate functions m1, . . . ,md : R → R. Stone (1985) showed that
in this case n−2p/(2p+1) is the optimal minimax rate of convergence. This approach has
been generalized to so-called interaction models in Stone (1994). These models impose
for some d∗ ∈ {1, . . . , d} the structure

m(x) =
∑

I⊆{1,...,d},|I|=d∗
mI(xI) (x = (x(1), . . . , x(d))T ∈ Rd)

on the regression function, where all mI are (p, C)-smooth functions de�ned on R|I| and
for I = {i1, . . . , id∗} with 1 ≤ i1 < · · · < id∗ ≤ d the abbreviation xI = (x(i1), . . . , x(id∗ ))T

is used. Then the optimal minimax rate of convergence becomes n−2p/(2p+d∗).
Another idea involves so-called single index models, in which

m(x) = g(aTx) (x ∈ Rd)

is assumed to hold, where g : R → R is a univariate function and a ∈ Rd is a d-
dimensional vector (cf., e.g., Härdle, Hall and Ichimura (1993), Härdle and Stoker (1989),
Yu and Ruppert (2002) and Kong and Xia (2007)). This concept is even extended in
the so-called projection pursuit, where the regression function is assumed to be a sum of
functions of the above form, i.e.,

m(x) =

K∑
k=1

gk(a
T
k x) (x ∈ Rd)

forK ∈ N, gk : R→ R and ak ∈ Rd (cf., e.g., Friedman and Stuetzle (1981)). If we assume
that the univariate functions in these postulated structures are (p, C)-smooth, adequately
chosen regression estimates can achieve the above univariate rates of convergence up to
some logarithmic factor (cf., e.g., Chapter 22 in Györ� et al. (2002)).
Horowitz and Mammen (2007) studied the case of a regression function, which satis�es

m(x) = g

 L1∑
l1=1

gl1

 L2∑
l2=1

gl1,l2

. . . Lr∑
lr=1

gl1,...,lr(x
l1,...,lr)

 ,
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where g, gl1 , . . . , gl1,...,lr are (p, C)-smooth univariate functions and xl1,...,lr are single com-
ponents of x ∈ Rd (not necessarily di�erent for two di�erent indices (l1, . . . , lr)). With
the use of a penalized least squares estimate for smoothing splines, they proved the rate
n−2p/(2p+1).
These estimates achieve good rates of convergence only if the imposed assumptions

are satis�ed. Thus, it is useful to derive rates of convergence for more general types of
functions, with which the regression functions in real applications comply more often
(at least approximately) and ideally contain the simpler models as well. Our research
is motivated by applications in connection with complex technical systems, which are
constructed in a modular form. In this case, modeling the outcome of the system as a
function of the results of its modular parts seems reasonable, where each modular part
computes a function depending only on a few of the components of the high-dimensional
input. The modularity of the system can be extremely complex and deep. Thus, a
recursive application of the described relation makes sense and leads to the following
assumption about the structure of m, which was introduced in Kohler and Krzy»ak
(2016).

De�nition 2. Let d ∈ N, d∗ ∈ {1, . . . , d} and m : Rd → R.
a) We say that m satis�es a generalized hierarchical interaction model of order

d∗ and level 0, if there exist a1, . . . , ad∗ ∈ Rd and f : Rd∗ → R such that

m(x) = f(aT1 x, . . . , a
T
d∗x) for all x ∈ Rd.

b)We say that m satis�es a generalized hierarchical interaction model of order d∗

and level l + 1, if there exist K ∈ N, gk : Rd∗ → R (k = 1, . . . ,K) and f1,k, . . . , fd∗,k :
Rd → R (k = 1, . . . ,K) such that f1,k, . . . , fd∗,k (k = 1, . . . ,K) satisfy a generalized

hierarchical interaction model of order d∗ and level l and

m(x) =

K∑
k=1

gk (f1,k(x), . . . , fd∗,k(x)) for all x ∈ Rd.

c) We say that the generalized hierarchical interaction model de�ned above is

(p, C)-smooth, if all functions occurring in its de�nition are (p, C)�smooth according to
De�nition 1.

This de�nition includes all the other types of structures of m mentioned earlier. Func-
tions complying with the single index model belong to the class of generalized hierarchical
interaction models of the order 1 and level 0, the additive model and projection pursuit
correspond to order 1 and level 1. In addition, the interaction model is in conformity
with order d∗ and level 1, whereas the assumptions of Horowitz and Mammen (2007) are
consistent with order 1 and level r + 1.

1.6 Neural networks

For many years the use of neural networks has been one of the most promising approaches
in connection with applications related to approximation and estimation of multivariate
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functions (see, e.g., the monographs Hertz, Krogh and Palmer (1991), Devroye, Györ�
and Lugosi (1996), Anthony and Bartlett (1999), Györ� et al. (2002), Haykin (2008)
and Ripley (2008)). Recently, the focus is on multilayer neural networks, which use
many hidden layers, and the corresponding techniques are called deep learning (cf., e.g.,
Schmidhuber (2015) and the literature cited therein).
Multilayer feedforward neural networks with sigmoidal function σ : R → [0, 1] can be

de�ned recursively as follows: A multilayer feedforward neural network with l hidden
layers, which has K1, . . . , Kl ∈ N neurons in the �rst, second, . . . , l-th hidden layer,
respectively, and uses the activation function σ, is a real-valued function de�ned on Rd
of the form

f(x) =

Kl∑
i=1

c
(l)
i · f

(l)
i (x) + c

(l)
0 , (1)

for some c
(l)
0 , . . . , c

(l)
Kl
∈ R and for f

(l)
i recursively de�ned by

f
(r)
i (x) = σ

Kr−1∑
j=1

c
(r−1)
i,j · f (r−1)

j (x) + c
(r−1)
i,0

 (2)

for some c
(r−1)
i,0 , . . . , c

(r−1)
i,Kr−1

∈ R and r = 2, . . . , l and

f
(1)
i (x) = σ

 d∑
j=1

c
(0)
i,j · x

(i) + c
(0)
i,0

 (3)

for some c
(0)
i,0 , . . . , c

(0)
i,d ∈ R. Neural network estimates often use an activation function

σ : R→ [0, 1] that is nondecreasing and satis�es

lim
x→−∞

σ(x) = 0 and lim
x→∞

σ(x) = 1,

e.g., the so-called sigmoidal or logistic squasher

σ(x) =
1

1 + exp(−x)
(x ∈ R).

Most existing theoretical results concerning neural networks consider neural networks
using only one hidden layer, i.e., functions of the form

f(x) =

K∑
j=1

cj · σ

(
d∑

k=1

cj,k · x(k) + ci,0

)
+ c0. (4)

Consistency of neural network regression estimates has been studied by Mielniczuk and
Tyrcha (1993) and Lugosi and Zeger (1995). The rate of convergence has been analyzed
by Barron (1991, 1993, 1994), McCa�rey and Gallant (1994) and Kohler and Krzy»ak
(2005, 2017). For the L2 error of a single hidden layer neural network, Barron (1994)
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proves a dimensionless rate of n−1/2 (up to some logarithmic factor), provided the Fourier
transform has a �nite �rst moment (which basically requires that the function becomes
smoother with increasing dimension d of X). McCa�rey and Gallant (1994) showed a

rate of n
− 2p

2p+d+5
+ε

for the L2 error of suitably de�ned single hidden layer neural network
estimate for (p, C)-smooth functions, but their study was restricted to the use of a certain
cosine squasher as the activation function.
The rate of convergence of neural network regression estimates based on two layer

neural networks has been analyzed in Kohler and Krzy»ak (2005). Therein, interaction
models were studied, and for (p, C)-smooth interaction models with p ≤ 1 it was shown
that suitable neural network estimates achieve a rate of convergence of n−2p/(2p+d∗) (up to
some logarithmic factor), which is again a convergence rate independent of d. In Kohler
and Krzy»ak (2017), this result was extended to (p, C)-smooth generalized hierarchical
interaction models of the order d∗. It was shown that for such models suitably de�ned
multilayer neural networks (in which the number of hidden layers depends on the level
of the generalized interaction model) achieve the rate of convergence n−2p/(2p+d∗) (up
to some logarithmic factor) in case p ≤ 1. Nevertheless, this result cannot generate
extremely good rates of convergence, because, even in case of p = 1 and a value of d∗ = 5
(for a modular technical system not large), it leads to n−

2
7 .

Given the successful application of multilayer feedforward neural networks, the current
focus in the theoretical analysis of approximation properties of neural networks is also
on a possible theoretical advantage of multilayer feedforward neural networks in contrast
to neural networks with only one hidden layer (cf., e.g., Eldan and Shamir (2015) and
Mhaskar and Poggio (2016)).

1.7 Main results in this article

In this article, we analyze the rate of convergence of suitable multilayer neural network
regression estimates when the regression function satis�es a (p, C)-smooth generalized
hierarchical interaction model of given order d∗ and given level l. Here p > 0 might
be arbitrarily large. Thus, unlike Kohler and Krzy»ak (2005, 2017), we also allow the
case p > 1; this leads to far better rates of convergence. We de�ne sets of multilayer
feedforward neural networks that correspond to such a generalized hierarchical interaction
model and de�ne our regression estimates as least squares estimates based on this class
of neural networks. Our main �nding is that the L2 errors of these least squares neural
network regression estimates achieve the rate of convergence

n
− 2p

2p+d∗

(up to some logarithmic factor), which does not depend on d. Furthermore, by ap-
plying our estimate to simulated data we demonstrate that these estimates outperform
other nonparametric regression estimates for a large d, provided the regression function
satis�es a generalized hierarchical interaction model. To prove our theoretical result, we
derive new approximation results for neural networks with several hidden layers, bounded
weights, and a bounded number of hidden neurons.
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1.8 Notation

Throughout the paper, the following notation is used: The sets of natural numbers,
natural numbers including 0, integers, non-negative real numbers and real numbers are
denoted by N, N0, Z, R+ and R, respectively. For z ∈ R, we denote the smallest integer
greater than or equal to z by dze, and bzc denotes the largest integer that is less than or
equal to z. Let D ⊆ Rd and let f : Rd → R be a real-valued function de�ned on Rd. We
write x = arg minz∈D f(z) if minz∈D f(z) exists and if x satis�es

x ∈ D and f(x) = min
z∈D

f(z).

The Euclidean and the supremum norms of x ∈ Rd are denoted by ‖x‖ and ‖x‖∞,
respectively. For f : Rd → R

‖f‖∞ = sup
x∈Rd

|f(x)|

is its supremum norm, and the supremum norm of f on a set A ⊆ Rd is denoted by

‖f‖∞,A = sup
x∈A
|f(x)|.

Let A ⊆ Rd, let F be a set of functions f : Rd → R and let ε > 0. A �nite collection
f1, . . . , fN : Rd → R is called an ε�‖ · ‖∞,A� cover of F if for any f ∈ F there exists
i ∈ {1, . . . , N} such that

‖f − fi‖∞,A = sup
x∈A
|f(x)− fi(x)| < ε.

The ε�‖ · ‖∞,A- covering number of F is the size N of the smallest ε�‖ · ‖∞,A� cover of
F and is denoted by N (ε,F , ‖ · ‖∞,A).
If not otherwise stated, then any ci with i ∈ N symbolizes a real nonnegative constant,

which is independent of the sample size n.

1.9 Outline

In Section 2 we present our main result on the rate of convergence of nonparametric
regression estimates using special types of multilayer feedforward neural networks in the
case of generalized hierarchical interaction models. The �nite sample size behavior of
these estimates is analyzed by applying the estimates to simulated data in Section 3.
Section 4 contains the proofs.

2 Nonparametric regression estimation by multilayer

feedforward neural networks

Motivated by the generalized hierarchical interaction models, we de�ne so-called spaces
of hierarchical neural networks with parameters K, M , N , d∗, d and level l as follows.
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For M ∈ N, N ∈ N0, d ∈ N, d∗ ∈ {1, . . . , d} and α > 0, we denote the set of all functions
f : Rd → R that satisfy

f(x) =

(d
∗+N
d∗ )·(N+1)·(M+1)d

∗∑
i=1

µi · σ

(
4d∗∑
l=1

λi,l · σ

(
d∑

m=1

θi,l,m · x(m) + θi,l,0

)
+ λi,0

)
+ µ0

(x ∈ Rd) for some µi, λi,l, θi,l,m ∈ R, where

|µi| ≤ α, |λi,l| ≤ α, |θi,l,m| ≤ α

for all i ∈ {0, 1, . . . ,
(
d∗+N
d∗

)
· (N + 1) · (M + 1)d

∗
}, l ∈ {0, . . . , 4d∗}, m ∈ {0, . . . , d}, by

F (neural networks)
M,N,d∗,d,α . In the �rst and the second hidden layer we use 4 ·d∗ ·

(
d∗+N
d∗

)
· (N + 1) ·

(M + 1)d
∗
and

(
d∗+N
d∗

)
· (N + 1) · (M + 1)d

∗
neurons, respectively. However, the neural

network has only

W
(
F (neural networks)
M,N,d∗,d,α

)
:=

(
d∗ +N

d∗

)
· (N + 1) · (M + 1)d

∗
+ 1

+

(
d∗ +N

d∗

)
· (N + 1) · (M + 1)d

∗
· (4d∗ + 1)

+

(
d∗ +N

d∗

)
· (N + 1) · (M + 1)d

∗
· 4d∗ · (d+ 1)

=

(
d∗ +N

d∗

)
· (N + 1) · (M + 1)d

∗
· (4d∗ · (d+ 2) + 2) + 1 (5)

weights, because the �rst and the second hidden layer of the neural network are not
fully connected. Instead, each neuron in the second hidden layer is connected with 4d∗

neurons in the �rst hidden layer, and this is done in such a way that each neuron in the
�rst hidden layer is connected with exactly one neuron in the second hidden layer.
For l = 0, we de�ne our space of hierarchical neural networks by

H(0) = F (neural networks)
M,N,d∗,d,α .

For l > 0, we de�ne recursively

H(l) =

{
h : Rd → R : h(x) =

K∑
k=1

gk (f1,k(x), . . . , fd∗,k(x)) (x ∈ Rd)

for some gk ∈ F
(neural networks)
M,N,d∗,d∗,α and fj,k ∈ H(l−1)

}
. (6)

The class H(0) is a set of neural networks with two hidden layers and a number of weights
given by (5). From this one can conclude (again recursively) that for l > 0 the class H(l)

is a set of neural networks with 2 · l+ 2 hidden layers. Furthermore, let N
(
H(l)

)
denote
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the number of linked two-layered neural networks from F (neural networks)
M,N,d∗,d,α that de�ne the

functions from H(l). Then the recursion

N
(
H(0)

)
= 1

N
(
H(l)

)
= K +K · d∗ ·N

(
H(l−1)

)
(l ∈ N)

holds, yielding the solution

N
(
H(l)

)
=

l∑
t=1

d∗t−1 ·Kt + (d∗ ·K)l . (7)

Consequently, a function from H(l) has at most

N
(
H(l)

)
·W

(
F (neural networks)
M,N,d∗,d,α

)
(8)

variable weights.
We de�ne m̃n as the least squares estimate

m̃n(·) = arg min
h∈H(l)

1

n

n∑
i=1

|Yi − h(Xi)|2. (9)

For our result we need to truncate this estimate. We de�ne the truncation operator TL
as

TLu =

{
u if |u| ≤ L,
L · sign(u) otherwise.

Regarding the sigmoidal function σ within the neural networks our results require a few
additional properties, which are satis�ed by several common activation functions (e.g.,
the sigmoidal squasher). We summarize them in the next de�nition.

De�nition 3. A nondecreasing and Lipschitz continous function σ : R→ [0, 1] is called
N-admissible, if the following three conditions are satis�ed.

(i) The function σ is N + 1 times continously di�erentiable with bounded derivatives.

(ii) A point tσ ∈ R exists, where all derivatives up to the order N of σ are di�erent

from zero.

(iii) If y > 0, the relation |σ(y)− 1| ≤ 1
y holds. If y < 0, the relation |σ(y)| ≤ 1

|y| holds.

Our main result is the following theorem.

Theorem 1. Let (X,Y ), (X1, Y1), (X2, Y2),. . . , (Xn, Yn) be independent and identically
distributed random variables with values in Rd × R such that supp(X) is bounded and

E exp
(
c1 · Y 2

)
<∞ (10)
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for some constant c1 > 0. Let m be the corresponding regression function, which satis�es

a (p, C)-smooth generalized hierarchical interaction model of order d∗ and �nite level l
with p = q + s for some q ∈ N0 and s ∈ (0, 1]. Let N ∈ N0 with N ≥ q. Furthermore,

assume that in De�nition 2 b) all partial derivatives of order less than or equal to q of

the functions gk, fj,k are bounded, i.e., assume that each such function f satis�es

max
j1,...,jd∈{0,1,...,q},

j1+···+jd≤q

∥∥∥∥ ∂j1+···+jdf

∂j1x(1) · · · ∂jdx(d)

∥∥∥∥
∞
≤ c2, (11)

and let all functions gk be Lipschitz continuous with Lipschitz constant L > 0 (which

follows from (11) if q > 0). Let ηn = log(n)
3·(N+3)
N+q+3 · n−

2·(N+1)·p+2d∗
2p+d∗ . Let H(l) be de�ned

as in (6) with K, d, d∗ as in the de�nition of m, M = Mn =
⌈
n

1
2p+d∗

⌉
, α = log(n) ·

M
d∗+p·(2N+3)+1
n

ηn
, and using a N -admissible σ : R → [0, 1] according to De�nition 3. Let

m̃n be the least squares estimate de�ned by (9) and de�ne mn = Tc3·log(n)m̃n. Then

E

∫
|mn(x)−m(x)|2PX(dx) ≤ c4 · log(n)3 · n−

2p
2p+d∗

holds for su�ciently large n.

Remark 1. For p ≥ 1 and C ≥ 1, the class of (p, C)-smooth generalized hierarchi-
cal interaction models of order d∗ satisfying the assumptions of Theorem 1 contains all
(p, C)-smooth functions, which depend at the most on d∗ of its input components. This
is because in the de�nition of generalized hierarchical interaction models all functions
that occur in De�nition 2 might be chosen as projections. Consequently, the rate of con-
vergence in Theorem 1 is optimal up to some logarithmic factor according to Stone (1982).

3 Application to simulated data

To illustrate how the introduced nonparametric regression estimate based on our special
type of multilayer feedforward neural networks behaves in case of �nite sample sizes, we
apply it to simulated data and compare the results with conventional estimates using
the software MATLAB. Particularly in connection with small sample sizes, the number
of di�erent approaches for the estimation of high-dimensional functions is rather limited.
All the examined approaches (including ours) contain some parameters that have an
in�uence on their behavior. In the following, we choose these parameters in a data-
dependent way by splitting of the sample. This means that ntrain = d4

5 · ne realizations
are used to train the estimate several times with di�erent choices for the parameters
each time, whereas ntest = n − ntrain realizations are used to test by comparison of the
empirical L2 risk on this set, which parameter assignment leads to the best estimate
according to this criterion.
The �rst alternative approach we consider is a simple nearest neighbor estimate (abbr.

neighbor). This means that the function value at a given point x is approximated by
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the average of the values Y1, . . . , Ykn observed for the data points X1, . . . , Xkn , which are
closest to x with respect to the Euclidean norm (choosing the smallest index in case of
ties). The parameter kn ∈ N, which denotes the number of involved neighbors, is chosen
adaptively from {1, 2, 3} ∪

{
4, 8, 12, 16, . . . , 4 ·

⌊
ntrain

4

⌋}
in our simulations.

The second competitive approach we examine is interpolation with radial basis func-
tions (abbr. RBF ). With regard to the variety of modi�cations of this approach known
in the literature, we focus on the version in Lazzaro and Montefusco (2002), where Wend-
land's compactly supported radial basis function φ(r) = (1−r)6

+ ·(35r2 +18r+3) is used.
The radius that scales the basis functions is also chosen adaptively in our implementation,
because doing so improved the RBF approach in the simulations.
The parameters l, K, d∗, N and Mn of our neural network estimate (abbr. neural-x )

de�ned in Theorem 1 are selected in a data-dependent way as well. The selected values
of these parameters to be tested include values up to 2 for l, up to 5 for K, up to d for d∗,

and up to 50 for the outer summation bound in the de�nition of F (neural networks)
Mn,N,d∗,d,α

(where
N andMn are involved), although the set of possible choices is reduced for some settings
if several test runs show that the whole range of choices is not needed. To solve the
least squares problem in (9), we use the quasi-Newton method of the function fminunc

in MATLAB to approximate its solution.
Furthermore, we compare our neural network estimate, which is characterized by the

data-dependent choice of its structure and not completely connected neurons, to more
ordinary fully connected neural networks with prede�ned numbers of layers but adap-
tively chosen numbers of neurons per layer. In this context we examine structures with
one hidden layer that consists of 5, 10, 25, 50 or 75 neurons (abbr. neural-1 ), three
hidden layers that consist of 3, 6, 9, 12 or 15 neurons (abbr. neural-3 ), and six hidden
layers that consist of 2, 4, 6, 8 or 10 neurons (abbr. neural-6 ).
The functions we use in the illustrative simulated settings to compare the di�erent

approaches are listed below.

m1(x) = cot

(
π

1 + exp
(
x2

1 + 2 · x2 + sin
(
6 · x3

4

)
− 3
))

+ exp
(
3 · x3 + 2 · x4 − 5 · x5 +

√
x6 + 0.9 · x7 + 0.1

) (
x ∈ R7

)
,

m2(x) =
2

x1 + 0.008
+ 3 · log(x7

2 · x3 + 0.1) · x4

(
x ∈ R7

)
,

m3(x) = 2 · log(x1 · x2 + 4 · x3 + | tan(x4)|) + x4
3 · x2

5 · x6 − x4 · x7

+ (3 · x2
8 + x9 + 2)0.1+4·x2

10
(
x ∈ R10

)
,

m4(x) = x1 + tan(x2) + x3
3 + log(x4) + 3 · x5 + x6 +

√
x7

(
x ∈ R7

)
,

m5(x) = exp(‖x‖)
(
x ∈ R7

)
.

The examples m1, m2, and m3 represent some ordinary general hierarchical interaction
models (cf., De�nition 2), whereas m4 and m5 carry the de�nition to the extremes, such
that m4 is just an additive model, i.e. d∗ = 1, and m5 is an interaction model with
d∗ = d. The n observations (for n ∈ {100, 200}) of the type (X,Y ), which are available

12



for all estimates, are generated by

Y = mi(X) + σj · λi · ε (i ∈ {1, 2, 3, 4, 5} , j ∈ {1, 2})

for σj ≥ 0 and λi ≥ 0, where X is uniformly distributed on [0, 1]d (here an additional
index i at d, X, and Y is neglected) and ε is standard normally distributed and indepen-
dent of X. For reasons of comparability we choose λi in a way that respects the range
covered by mi in the most common situations based on the distribution of X. This range
is determined empirically as the interquartile range of 105 independent realizations of
mi(X) (and stabilized by taking the median of a hundred repetitions of this procedure),
which leads to λ1 = 9.11, λ2 = 5.68, λ3 = 13.97, λ4 = 1.94, and λ5 = 1.64 (rounded
to two decimal places). The parameters scaling the noise are �xed as σ1 = 5% and
σ2 = 20%.
To examine the quality of an estimatemn,i for a correct functionmi in one of the above

settings, we consider an empirical L2 risk, which is motivated by the desired properties
of a regression estimate from Section 1.1 and Theorem 1. We de�ne it as

εL2,N̄ (mn,i) =
1

N̄

N̄∑
k=1

(mn,i(Xk)−mi(Xk))
2 ,

where X1, X2, . . . , XN̄ are independent realizations of the random variable X. Here, we
choose N̄ = 105. Since this error strongly depends on the behavior of the correct function
mi, we consider it in relation to the error of the simplest estimate for mi we can think of,
a completely constant function (whose value is the average of the observed data according
to the least squares approach). Thus, the scaled error measure we use for evaluation of the
estimates is εL2,N̄ (mn,i)/ε̄L2,N̄ (avg), where ε̄L2,N̄ (avg) is the median of 50 independent
realizations of the value you obtain if you plug the average of n observations into εL2,N̄ (·).
To a certain extent, this quotient can be interpreted as the relative part of the error of
the constant estimate that is still contained in the more sophisticated approaches.
In view of the fact that simulation results depend on the randomly chosen data points,

we compute the estimates 50 times for repeatedly generated realizations ofX and examine
the median (plus interquartile range IQR) of εL2,N̄ (mn,i)/ε̄L2,N̄ (avg). The results can
be found in Tables 1 and 2.
We observe that our estimate outperforms the other approaches in the three typical

examples for generalized hierarchical interaction models m1, m2, and m3. Especially in
the nested case with the highest dimension, m3, the error of our estimate is roughly seven
to ten times smaller than the error of the second best approach for n = 200. A remarkable
fact is that in these cases, the relative improvement of our estimate with an increasing
sample size is often much larger than the improvement of the other approaches. This
result is a plausible indicator of a better rate of convergence.
With regard to the extreme cases of m4 and m5, our approach is not always the best

although it surprisingly performs well even here in some situations. For the additive
model m4, our estimate is better than the others in case of little noise and only slightly
worse in case of heavy noise. However, the functionm5, which is rather densely connected
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in the sense of interaction models because all components interact in only one function,
is not perfectly imitated by our sparsely connected neural network estimate.
Furthermore, it makes sense that in some of the examined test settings where our

estimate leads to good approximations, one of the fully connected neural network ap-
proaches is reasonably good as well. This happens because some of our sparse networks
can be expressed by fully connected networks (e.g., by �xing the weights of unnecessary
connections to zero), but the data-dependent adjustment of a smaller number of weights,
as in the case of our estimate, is statistically easier.

4 Proofs

4.1 Outline of the proof of Theorem 1

In the proof of Theorem 1 we will use the following bound on the expected L2 error of
least squares estimates.

Lemma 1. Let βn = c5 · log(n) for some constant c5 > 0. Assume that the distribution
of (X,Y ) satis�es

E
(
ec6·|Y |

2
)
<∞ (12)

for some constant c6 > 0 and that the regression function m is bounded in absolute value.

Let m̃n be the least squares estimate m̃n(·) = arg minf∈Fn
1
n

∑n
i=1 |Yi − f(Xi)|2 based on

some function space Fn and de�ne mn = Tβnm̃n using the truncation operator de�ned

prior to Theorem 1. Then mn satis�es

E

∫
|mn(x)−m(x)|2µ(dx) ≤

c7 · log(n)2 · log
(
N
(

1
n·βn ,Fn, ‖ · ‖∞,supp(X)

))
n

+ 2 · inf
f∈Fn

∫
|f(x)−m(x)|2PX(dx)

for n > 1 and some constant c7 > 0, which does not depend on n, βn or the parameters

of the estimate.

Proof. This lemma follows in a straightforward way from the proof of Theorem 1 in
Bagirov et al. (2009). A complete version of the proof is available from the authors on
request. �
From Lemma 1, we see that we need to bound the covering number

N
(

1

n · βn
,H(l), ‖ · ‖∞,supp(X)

)
and the approximation error

inf
f∈H(l)

∫
|f(x)−m(x)|2PX(dx) (13)
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m1

noise 5% 10%

sample size n = 100 n = 200 n = 100 n = 200

ε̄L2,N̄ (avg) 596.52 597.61 596.51 597.63

approach median (IQR) median (IQR) median (IQR) median (IQR)

neural-1 0.2622 (2.7248) 0.1064 (0.3507) 0.3004 (2.1813) 0.1709 (3.8163)

neural-3 0.1981 (0.4732) 0.0609 (0.1507) 0.2784 (0.4962) 0.0848 (0.1239

neural-6 0.2953 (0.9293) 0.1207 (0.1672) 0.2663 (0.5703 0.1106 (0.2412)

neural-x 0.0497 (0.2838) 0.0376 (0.2387) 0.0596 (0.2460) 0.0200 (0.1914)

RBF 0.3095 (0.4696) 0.1423 (0.0473) 0.3182 (0.5628) 0.1644 (0.0639)

neighbor 0.6243 (0.1529) 0.5398 (0.1469) 0.6303 (0.1014) 0.5455 (0.1562)

m2

noise 5% 20%

sample size n = 100 n = 200 n = 100 n = 200

ε̄L2,N̄ (avg) 407.56 408.34 407.45 408.47

approach median (IQR) median (IQR) median (IQR) median (IQR)

neural-1 0.9135 (4.6170) 0.3644 (1.4536) 0.7563 (0.9990) 0.6935 (2.8923)

neural-3 0.7010 (0.8556) 0.1000 (0.1471) 0.6871 (0.6646) 0.3456 (0.4573)

neural-6 0.5809 (1.0208) 0.1468 (0.5747) 0.8678 (1.2043) 0.3128 (0.4199)

neural-x 0.4838 (1.0463) 0.1049 (0.1574) 0.5271 (1.4364) 0.1682 (0.2816)

RBF 0.9993 (0.1301) 0.9232 (0.2180) 0.9823 (0.2503) 0.8873 (0.2316)

neighbor 0.8681 (0.0646) 0.8299 (0.0640) 0.8807 (0.0682) 0.8519 (0.0611)

m3

noise 5% 20%

sample size n = 100 n = 200 n = 100 n = 200

ε̄L2,N̄ (avg) 5469.53 5423.18 5469.45 5422.36

approach median (IQR) median (IQR) median (IQR) median (IQR)

neural-1 0.6651 (0.6241) 0.4396 (0.6350) 0.7203 (0.7029) 0.3913 (0.9014)

neural-3 0.9326 (0.6135) 0.5123 (0.9669) 0.8983 (0.6746) 0.4068 (0.8176)

neural-6 1.0526 (0.6522) 0.8187 (0.7144) 1.0208 (0.5141) 0.7446 (0.7475)

neural-x 0.4673 (1.0027) 0.0403 (0.0731) 0.2004 (0.7023) 0.0589 (0.5533)

RBF 0.8177 (0.3828) 0.6546 (0.4650) 0.8872 (0.3648) 0.6713 (0.4398)

neighbor 0.8794 (0.0728) 0.8294 (0.0993) 0.8679 (0.1094) 0.8118 (0.1043)

Table 1: Median and interquartile range of the scaled empirical L2 risk of estimates for
m1, m2, and m3
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m4

noise 5% 20%

sample size n = 100 n = 200 n = 100 n = 200

ε̄L2,N̄ (avg) 2.25 2.24 2.25 2.24

approach median (IQR) median (IQR) median (IQR) median (IQR)

neural-1 0.7969 (26.5904) 0.1653 (1.4011) 13.6267 (462.1001) 6.1392 (436.0140)

neural-3 0.2158 (0.4857) 0.1247 (0.2770) 1.0037 (2.7410) 0.2354 (0.5351)

neural-6 0.1942 (0.2214) 0.0772 (0.1128) 0.3004 (0.6797) 0.1338 (0.2052)

neural-x 0.0837 (0.3036) 0.0313 (0.0764) 0.3161 (0.9427) 0.2422 (0.5064)

RBF 0.1029 (0.0433) 0.0812 (0.0215) 0.2207 (0.0583) 0.2006 (0.0473)

neighbor 0.3820 (0.0692) 0.3072 (0.0395) 0.3757 (0.0818) 0.3092 (0.0565)

m5

noise 5% 20%

sample size n = 100 n = 200 n = 100 n = 200

ε̄L2,N̄ (avg) 1.49 1.49 1.49 1.49

approach median (IQR) median (IQR) median (IQR) median (IQR)

neural-1 0.7246 (9.3962) 0.0648 (0.0879) 2.0865 (75.4682) 0.6659 (26.0015)

neural-3 0.3954 (0.9887) 0.1087 (0.1909) 1.5671 (7.0394) 0.2370 (1.4065)

neural-6 0.1023 (0.3572) 0.0716 (0.0760) 0.2482 (0.6611) 0.0836 (0.1646)

neural-x 0.1386 (0.4205) 0.0637 (0.0499) 0.3699 (1.3039) 0.1854 (0.3660)

RBF 0.0127 (0.0044) 0.0112 (0.0033) 0.1445 (0.0671) 0.1352 (0.0298)

neighbor 0.3263 (0.0842) 0.2471 (0.0381) 0.3360 (0.0707) 0.2620 (0.0464)

Table 2: Median and interquartile range of the scaled empirical L2 risk of estimates for
m4 and m5

for our class of hierarchical neural networks H(l). Given that we assume that our sig-
moidal function is Lipschitz continuous, deriving a bound on the covering number is easy.
The next lemma summarizes the result.

Lemma 2. Assume that the assumptions of Theorem 1 hold. Let εn ≥ 1
nc8 and let

Mn
ηn
≤ nc9 for large n. Then

log
(
N
(
εn,H(l), ‖ · ‖∞,[−an,an]d

))
≤ c10 · log(n) ·Md∗

n

holds for su�ciently large n and a constant c10 > 0 independent of n.

Proof. The assertion follows by a straightforward modi�cation of the proof of Lemma 8
in Kohler and Krzy»ak (2017). A complete proof is available from the authors on request.

�

The main di�culty in the proof is to bound the approximation error (13). Here we
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will show that under the assumptions of Theorem 1 we have

inf
f∈H(l)

∫
|f(x)−m(x)|2PX(dx) ≤ c11 · log(n)3 · n−

2p
2p+d∗ .

For this purpose, we derive a new result concerning the approximation of (p, C)�smooth
functions by multilayer feedforward neural networks with two hidden layers in Theorem
2 below.

4.2 Approximation of smooth functions by multilayer feedforward neural
networks

The aim of this subsection is to prove the following result concerning the approximation
of (p, C)�smooth function by multilayer feedforward neural networks with two hidden
layers.

Theorem 2. Let a ≥ 1 and p = q+ s for some q ∈ N0 and s ∈ (0, 1], and let C > 0. Let
m : Rd → R be a (p, C)-smooth function, which satis�es

max
j1,...,jd∈{0,1,...,q},

j1+···+jd≤q

∥∥∥∥ ∂j1+···+jdm

∂j1x(1) · · · ∂jdx(d)

∥∥∥∥
∞,[−2a,2a]d

≤ c12. (14)

Let ν be an arbitrary probability measure on Rd. Let N ∈ N0 be chosen such that N ≥ q
and let σ : R→ [0, 1] be N -admissible according to De�nition 3. Then, for any η ∈ (0, 1)
and M ∈ N su�ciently large (independent of the size of a and η, but a ≤M must hold),

a neural network of the type

t(x) =

(d+Nd )·(N+1)·(M+1)d∑
i=1

µi · σ

(
4d∑
l=1

λi,l · σ

(
d∑

m=1

θi,l,m · x(m) + θi,l,0

)
+ λi,0

)
(15)

exists such that

|t(x)−m(x)| ≤ c13 · aN+q+3 ·M−p

holds for all x ∈ [−a, a]d up to a set of ν-measure less than or equal to η. The coe�cients

of t(x) can be bounded by

|µi| ≤ c14 · aq ·MN ·p

|λi,l| ≤Md+p·(N+2)

|θi,l,m| ≤ 6 · d · 1

η
·Md+p·(2N+3)+1

for all i ∈
{

1, . . . ,
(
d+N
d

)
· (N + 1) · (M + 1)d

}
, l ∈ {0, . . . , 4d}, and m ∈ {0, . . . , d}.

In the proof of Theorem 2, we will need several auxiliary results, which we formulate
and prove next.
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For our �rst auxiliary result we need to introduce the following notations: Let N ∈ N
and d ∈ N. For

α =
(
α(0), . . . , α(d)

)
∈ Rd+1

set

fα(x) =

(
α(0) +

d∑
k=1

α(k) · x(k)

)N
(x ∈ Rd).

Obviously we have

fα(x) =
∑

r0,...,rd∈N0,
r0+···+rd=N

(
N

r0, . . . , rd

)
·
d∏

k=0

(
α(k)

)rk
·
d∏

k=1

(
x(k)

)rk
. (16)

Let PN be the linear span of all monomials of the form

d∏
k=1

(
x(k)

)rk
(17)

for some r1, . . . , rd ∈ N0, r1 + · · ·+rd ≤ N . Then, PN is a linear vector space of functions
of dimension

dimPN =
∣∣∣{(r0, . . . , rd) ∈ Nd+1

0 : r0 + · · ·+ rd = N
}∣∣∣ =

(
d+N

d

)
,

and we have fα ∈ PN for all α ∈ Rd+1.

Lemma 3. Set K = dimPN . For almost all α1, . . . , αK ∈ Rd+1 (with respect to the

Lebesgue measure in R(d+1)·K) we have that fα1, . . . , fαK is a basis of the linear vector

space PN .

Proof. It su�ces to show that fα1 , . . . , fαK are linearly independent. To do this, let
β1, . . . , βK ∈ R be such that

K∑
k=1

βk · fαk = 0. (18)

The monomials (17) are linearly independent. Thus, equation (18) implies

K∑
k=1

βk ·
d∏
j=0

(
α

(j)
k

)rj
= 0 for all r = (r0, . . . , rd) ∈ R, (19)

where
R =

{
(r0, . . . , rd) ∈ Nd+1

0 : r0 + · · ·+ rd = N
}
.

It su�ces to show that the matrix

A =

 d∏
j=0

(
α

(j)
k

)rj
r∈R,k∈{1,...,K}
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is regular, which is equivalent to the assertion that the matrix

AT =

 d∏
j=0

(
α

(j)
k

)rj
k∈{1,...,K},r∈R

is regular. To prove this, it su�ces to show that for arbitrary γr ∈ R (r ∈ R), we have
that ∑

r∈R
γr ·

d∏
j=0

(
α

(j)
k

)rj
= 0 for k = 1, . . . ,K (20)

implies
γr = 0 for all r ∈ R. (21)

Thus, let γr ∈ R (r ∈ R) be arbitrary and assume that (20) holds. Then the polynomial

p(x) =
∑
r∈R

γr ·
d∏

k=1

(
x(k)

)rk
,

which is contained in PN , satis�es

p(αk) = 0 for k = 1, . . . ,K. (22)

Proposition 4 in Sauer (2006) implies that the condition (22) has the only solution p = 0
in PN for Lebesgue almost all α1, . . . αK ∈ Rd+1, which in turn implies (21). The proof
is complete. �

Lemma 4. Let σ : R→ [0, 1] satisfy the properties (i) and (ii) of De�nition 3. Then for

any R > 0 coe�cients γ1, . . . , γN+1 ∈ R and β1, . . . , βN+1 with

|γk| ≤ c15 ·RN and |βk| ≤
N

R
(23)

for all 1 ≤ k ≤ N + 1 exist, such that for all x ∈ [−a, a]∣∣∣∣∣
N+1∑
k=1

γk · σ (βk · x+ tσ)− xN
∣∣∣∣∣ ≤ c16 ·

aN+1

R

holds, where c15 and c16 depend on N but not on a and R.

Proof. The rather technical proof of this lemma is mainly based on a Taylor series
expansion and follows from the proof of Theorem 2 in Scarselli and Tsoi (1998). A
complete version is available from the authors on request. �

Lemma 5. Let p ∈ PN for N ∈ N0. Let m1, . . . ,m(d+Nd ) denote all monomials in PN .

De�ne ri ∈ R (i = 1, . . . ,
(
d+N
d

)
) by

p(x) =

(d+Nd )∑
i=1

ri ·mi(x) (x ∈ Rd), (24)
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and set r̄(p) = max
i=1,...,(d+Nd ) |ri|. Let σ : R → [0, 1] be N -admissible according to

De�nition 3. Then for any R, a > 0 a neural network of the type

s(x) =

(d+Nd )∑
j=1

dj

N+1∑
k=1

bk · σ

(
d∑

m=1

aj,k,m · x(m) + aj,k,0

)

exists such that

|s(x)− p(x)| ≤ c17 · r̄(p) ·
aN+1

R

holds for all x ∈ [−a, a]d, and the coe�cients of this neural network satisfy

|dj | ≤ c18 · r̄(p),
|bk| ≤ c15 ·RN ,

|aj,k,m| ≤
N ·max {1, a}
R · (d+ 1)

+ |tσ|

for j ∈
{

1, . . . ,
(
d+N
d

)}
, k ∈ {1, . . . , N + 1}, and m ∈ {0, . . . , d}, where c18 and c15

depend on N and d but not on a, R and p.

Proof. It follows from Lemma 3 that we can reconstruct all of the mi by a sum of the
form

mi(x) =

(d+Nd )∑
j=1

d̄i,j ·

(
d∑

m=1

α
(m)
j · x(m) + α

(0)
j

)N
, (25)

where we can choose α
(m)
j ∈

[
− 1
d+1 ,

1
d+1

]
and α

(0)
j ∈

[
− a
d+1 ,

a
d+1

]
for j ∈

{
1, . . . ,

(
d+N
d

)}
andm ∈ {1, . . . , d}, because these alternatives form a set with positive Lebesgue measure.

Then
∑d

m=1 α
(m)
j · x(m) + α

(0)
j ∈ [−a, a] holds for all j ∈

{
1, . . . ,

(
d+N
d

)}
. After selecting

a possible assignment of this type for all these inner coe�cients, we can bound the
maximum absolute value of the coe�cients d̄i,j by a constant

max
i,j∈{1,...,(d+Nd )}

d̄i,j = c19. (26)

If we replace the subfunction g(z) = zN in (25) by its neural network approximation
from Lemma 4, we obtain

∣∣∣∣mi(x)−
(d+Nd )∑
j=1

d̄i,j ·

(
N+1∑
k=1

γk · σ

(
βk

(
d∑

m=1

α
(m)
j · x(m) + α

(0)
j

)
+ tσ

))∣∣∣∣
≤

(d+Nd )∑
j=1

|d̄i,j | ·

∣∣∣∣∣
(

d∑
m=1

α
(m)
j · x(m) + α

(0)
j

)N
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−

(
N+1∑
k=1

γk · σ

(
d∑

m=1

βk · α
(m)
j · x(m) + βk · α

(0)
j + tσ

))∣∣∣∣∣
≤
(
d+N

d

)
· c19 · c16 ·

aN+1

R
.

By using representation (24), we conclude

∣∣∣∣p(x)−
(d+Nd )∑
i=1

ri

(d+Nd )∑
j=1

d̄i,j ·

(
N+1∑
k=1

γk · σ

(
d∑

m=1

βk · α
(m)
j · x(m) + βk · α

(0)
j + tσ

))∣∣∣∣
≤

(d+Nd )∑
i=1

|ri| ·
∣∣∣∣mi(x)−

(d+Nd )∑
j=1

d̄i,j ·

(
N+1∑
k=1

γk · σ

(
d∑

m=1

βk · α
(m)
j · x(m) + βk · α

(0)
j + tσ

))∣∣∣∣
≤
(
d+N

d

)
· r̄(p) ·

(
d+N

d

)
· c19 · c16 ·

aN+1

R
.

Thus, dj =
∑(d+Nd )

i=1 d̄i,j · ri, bk = γk, aj,k,m = βk · α
(m)
j and aj,k,0 = βk · α

(0)
j + tσ satisfy

the assertion of the lemma, because they are bounded in the required way due to (26),
(23), and the choice of the coe�cients subsequent to (25). �

Remark 2. We notice that we can rewrite s(x) in Lemma 5 as

s(x) =

(d+Nd )·(N+1)∑
l=1

b̃l · σ

(
d∑

m=1

ãl,m · x(m) + ãl,0

)
,

if we de�ne b̃(j−1)·(N+1)+k = dj · bk and ã(j−1)·(N+1)+k,m = aj,k,m for j = 1, . . . ,
(
d+N
d

)
and k = 1, . . . , N + 1. This allows us to bound these coe�cients by

|b̃l| ≤ c20 · r̄(p) ·RN ,

|ãl,m| ≤
N ·max {1, a}
R · (d+ 1)

+ |tσ| = c21 ·
max {1, a}

R
+ |tσ|

for all l = 1, . . . ,
(
d+N
d

)
· (N + 1) and m = 0, . . . , d.

Our next lemma is a modi�cation of Proposition 3.8 in Mhaskar (1993).

Lemma 6. Let K ⊆ Rd be a polytope bounded by hyperplanes vj · x + wj ≤ 0 (j =
1, . . . ,H), where v1, . . . , vH ∈ Rd and w1, . . . , wH ∈ R. For δ > 0 set

K0
δ :=

{
x ∈ Rd : vj · x+ wj ≤ −δ for all j ∈ {1, . . . ,H}

}
and

Kc
δ :=

{
x ∈ Rd : vj · x+ wj ≥ δ for some j ∈ {1, . . . ,H}

}
.

21



Let σ : R→ [0, 1] be a sigmoidal function, which satis�es

|σ(y)− 1| ≤ 1

y
if y > 0 and |σ(y)| ≤ 1

|y|
if y < 0. (27)

Let ε, δ ∈ (0, 1] be arbitrary. Then a neural network of the form

f(x) =
H∑
j=1

σ

(
d∑

k=1

aj,k · x(k) + aj,0

)
exists, satisfying

|f(x)| ≤ H for x ∈ Rd,
|f(x)| ≤ H · ε for x ∈ K0

δ ,

f(x) ≥ 1− ε for x ∈ Kc
δ . (28)

The weights above can be chosen such that

|aj,k| ≤
1

ε · δ
·max{‖v1‖∞, |w1|, . . . , ‖vH‖∞, |wH |} for all j = 1, . . . ,H; k = 0, . . . , d.

Proof. We set

aj,k =
1

ε · δ
· v(k)
j and aj,0 =

1

ε · δ
· wj for all j = 1, . . . ,H; k = 1, . . . , d.

So for x ∈ K0
δ

d∑
k=1

aj,k · x(k) + aj,0 ≤ −
1

ε
for all j = 1, . . . ,H,

which implies∣∣∣∣∣
H∑
j=1

σ

(
d∑

k=1

aj,k · x(k) + aj,0

)∣∣∣∣∣ ≤
H∑
j=1

∣∣∣∣∣σ
(

d∑
k=1

aj,k · x(k) + aj,0

)∣∣∣∣∣ ≤ H · ε
due to (27). For x ∈ Kc

δ we know that there is a j∗ ∈ {1, . . . ,H}, which satis�es

d∑
k=1

aj∗,k · x(k) + aj∗,0 ≥
1

ε
.

This leads to

H∑
j=1

σ

(
d∑

k=1

aj,k · x(k) + aj,0

)
≥ σ

(
d∑

k=1

aj∗,k · x(k) + aj∗,0

)
≥ 1− ε

because of (27) and σ(y) ≥ 0 for all y ∈ R. Furthermore, ‖σ‖∞ ≤ 1 implies |f(x)| ≤ H
and the announced bound for the coe�cients follows immediately from their de�nition
above. �
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Lemma 7. Let K ⊆ Rd be a polytope bounded by hyperplanes vj · x + wj ≤ 0 (j =
1, . . . ,H), where v1, . . . , vH ∈ Rd and w1, . . . , wH ∈ R, and let a ≥ 1. Let M ∈ N be

su�ciently large (independent of the size of a, but a ≤ M must hold). For δ > 0 de�ne

K0
δ and Kc

δ as in Lemma 6. Let p : Rd → R be a polynomial from PN with r̄(p) de�ned
as in Lemma 5 and let σ : R→ [0, 1] be N -admissible according to De�nition 3. Then a

function

t(x) =

(d+Nd )·(N+1)∑
j=1

µj · σ

(
2d+H∑
l=1

λj,l · σ

(
d∑

m=1

θl,m · x(m) + θl,0

)
+ λj,0

)

exists, such that

|t(x)− p(x)| ≤ c22 · r̄(p) · aN+3 ·M−p for x ∈ K0
δ ∩ [−a, a]d,

|t(x)| ≤ c23 · r̄(p) ·M−d−2p for x ∈ Kc
δ ∩ [−a, a]d,

|t(x)| ≤ c24 · r̄(p) ·MN ·p for x ∈ Rd

hold. Here the coe�cients can be chosen such that they satisfy

|µj | ≤ c20 · r̄(p) ·MN ·p,

|λj,l| ≤Md+p·(N+2),

|θl,m| ≤ max

{
|tσ|,

Md+p·(2N+3)

δ
·max{‖v1‖∞, |w1|, . . . , ‖vH‖∞, |wH |}

}
,

for j ∈
{

1, . . . ,
(
d+N
d

)
· (N + 1)

}
, l ∈ {0, . . . , 2d+H}, and m ∈ {0, . . . , d}.

Proof. Let tσ, c21 and c15 be de�ned as in Remark 2 and Lemma 4 and set R = Mp,
R̃ = Mp·(N+1), B = Md+p·(N+2), ε = M−d−p·(2N+3). For a su�ciently large M ∈ N, we
have(

c21 ·
a

Mp
+ |tσ|

)
·
(

2 · c15 ·Mp·(N+1) + 1
)
≤Md+p·(N+2) ·

(
3

4
−M−d−p·(2N+3)

)
,

because a ≤M . Consequently R, R̃, B, and ε satisfy(
c21 ·

a

R
+ |tσ|

)
·
(

2 · c15 · R̃+ 1
)
≤ B ·

(
3

4
− ε
)
. (29)

Let

s(x) =

(d+Nd )·(N+1)∑
j=1

b̃j · σ

(
d∑
l=1

ãj,l · x(l) + ãj,0

)
,
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be chosen as the approximation in Remark 2 using the above R. At �rst, we replace the
terms x(l) by their approximation from Lemma 4 using N = 1 and R̃ therein and insert
an additional term of the type f(x) in Lemma 6 multiplied by −B. This leads to

t(x) =

(d+Nd )·(N+1)∑
j=1

b̃j · σ

(
d∑
l=1

ãj,l ·
2∑

k=1

γk · σ
(
βk · x(l) + tσ

)
(30)

−B ·
H∑
l=1

σ

(
d∑

k=1

al,k · x(k) + al,0

)
+ ãj,0

)
.

Since the properties of σ entail Lipschitz continuity with a Lipschitz constant L > 0,
Lemma 4, Lemma 6 respecting the above ε, and Remark 2 imply for x ∈ K0

δ ∩ [−a, a]d

|t(x)− p(x)| ≤

∣∣∣∣∣t(x)−
(d+Nd )·(N+1)∑

j=1

b̃j · σ

(
d∑
l=1

ãj,l ·
2∑

k=1

γk · σ
(
βk · x(l) + tσ

)
+ ãj,0

)∣∣∣∣∣
+

∣∣∣∣∣
(d+Nd )·(N+1)∑

j=1

b̃j · σ

(
d∑
l=1

ãj,l ·
2∑

k=1

γk · σ
(
βk · x(l) + tσ

)
+ ãj,0

)
− s(x)

∣∣∣∣∣
+ |s(x)− p(x)|

≤
(d+Nd )·(N+1)∑

j=1

∣∣b̃j∣∣ · L ·B ·
∣∣∣∣∣
H∑
l=1

σ

(
d∑

k=1

al,k · x(k) + al,0

)∣∣∣∣∣
+

(d+Nd )·(N+1)∑
j=1

∣∣b̃j∣∣ · L · d∑
l=1

∣∣ãj,l∣∣ ·
∣∣∣∣∣

2∑
k=1

γk · σ
(
βk · x(l) + tσ

)
− x(l)

∣∣∣∣∣
+ |s(x)− p(x)|

≤
(
d+N

d

)
· (N + 1) · c20 · r̄(p) ·RN · L ·B ·H · ε

+

(
d+N

d

)
· (N + 1) · c20 · r̄(p) ·RN · L · d ·

(
c21 ·

a

R
+ |tσ|

)
· c16 ·

a2

R̃

+ c17 · r̄(p) ·
aN+1

R

≤ c25 · r̄(p) ·
(
RN ·B · ε+

( a
R

+ |tσ|
)
·RN · a

2

R̃
+
aN+1

R

)
≤ c22 · r̄(pi) · aN+3 ·M−p.

For x ∈ Kc
δ ∩ [−a, a]d we know for the same reason and from the monotonicity of σ that

|t(x)| ≤
(d+Nd )·(N+1)∑

j=1

∣∣b̃j∣∣ · σ( d∑
l=1

ãj,l ·
2∑

k=1

γk · σ
(
βk · x(l) + tσ

)
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−B ·
H∑
l=1

σ

(
d∑

k=1

al,k · x(k) + al,0

)
+ ãj,0

)

≤
(d+Nd )·(N+1)∑

j=1

∣∣b̃j∣∣ · σ ((c21 ·
a

R
+ |tσ|

)
· 2 · c15 · R̃ · 1

−B · (1− ε) + c21 ·
a

R
+ |tσ|

)
≤

(d+Nd )·(N+1)∑
j=1

∣∣b̃j∣∣ · σ(−B
4

)

≤
(
d+N

d

)
· (N + 1) · c20 · r̄(p) ·RN ·

4

B

≤ c23 · r̄(p) ·
RN

B
≤ c23 · r̄(p) ·M−d−2p,

where (29) and property (iii) in De�nition 3 were used in the third and fourth inequality,
respectively. Moreover, the property ‖σ‖∞ ≤ 1 implies

|t(x)| ≤
(d+Nd )·(N+1)∑

j=1

∣∣b̃j∣∣ · 1 ≤ (d+N

d

)
· (N + 1) · c20 · r̄(p) ·RN

≤ c24 · r̄(p) ·RN ≤ c24 · r̄(p) ·MN ·p

for all x ∈ Rd.
Next we observe that we can condense the representation of t(x) in (30) into

t(x) =

(d+Nd )·(N+1)∑
j=1

µj · σ

(
2d∑
l=1

λj,l · σ

(
d∑

m=1

θl,m · x(m) + θl,0

)

+

2d+H∑
l=2d+1

λj,l · σ

(
d∑

m=1

θl,m · x(m) + θl,0

)
+ λj,0

)

=

(d+Nd )·(N+1)∑
j=1

µj · σ

(
2d+H∑
l=1

λj,l · σ

(
d∑

m=1

θl,m · x(m) + θl,0

)
+ λj,0

)
,

if we choose

µj = b̃j

λj,l =


ãj,0 if l = 0

ãj,d l
2
e · γ2−l+2·b l

2
c if l ∈ {1, . . . , 2d}

−B if l ∈ {2d+ 1, . . . , 2d+H}
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θl,m =


tσ if l ∈ {1, . . . , 2d} ,m = 0

β2−l+2·b l
2
c · 1{d l2 e=m} if l ∈ {1, . . . , 2d} ,m ∈ {1, . . . , d}

al−2d,m if l ∈ {2d+ 1, . . . , 2d+H}
.

For su�ciently large M , this leads to

|µj | ≤ c20 · r̄(p) ·RN = c20 · r̄(p) ·MN ·p,

|λj,l| ≤ max
{
c21 ·

a

R
+ |tσ|,

(
c21 ·

a

R
+ |tσ|

)
· c15 · R̃, B

}
= Md+p·(N+2),

|θl,m| ≤ max

{
|tσ|,

1

R̃
,

1

ε · δ
·max{‖v1‖∞, |w1|, . . . , ‖vH‖∞, |wH |}

}
= max

{
|tσ|,

Md+p·(2N+3)

δ
·max{‖v1‖∞, |w1|, . . . , ‖vH‖∞, |wH |}

}
,

which completes the proof. �

Lemma 8. Let p = q+ s for some q ∈ N0 and s ∈ (0, 1], and let C > 0. Let f : Rd → R
be a (p, C)-smooth function, let x0 ∈ Rd and let pq be the Taylor polynomial of total

degree q around x0, i.e.,

pq(x) =
∑

j1,...,jd∈{0,1,...,q},
j1+···+jd≤q

1

j1! · · · jd!
· ∂j1+···+jdf

∂j1x(1) · · · ∂jdx(d)
(x0)·

(
x(1) − x(1)

0

)j1
· · ·
(
x(d) − x(d)

0

)jd
.

Then for any x ∈ Rd
|f(x)− pq(x)| ≤ c26 · C · ‖x− x0‖p

holds for some constant c26 > 0 depending only on q and d.

Proof. See Lemma 1 in Kohler (2014). �

Proof of Theorem 2. We subdivide
[
−a− 2a

M , a
]d

into (M + 1)d cubes of side length
2a/M and for comprehensibility, we number these cubes Ci by
i ∈ {1, . . . ,M + 1}d, such that index i = (i1, . . . , id) corresponds to the cube[
−a+ (i1 − 2) · 2a

M
,−a+ (i1 − 1) · 2a

M

]
× · · · ×

[
−a+ (id − 2) · 2a

M
,−a+ (id − 1) · 2a

M

]
.

Moreover, we denote the corners of these cubes by xi for i ∈ {1, . . . ,M + 2}d in the same
way, such that for all Ci the point xi means the "bottom left" corner of this cube and the
additional indices result from the right border of the whole grid. Therefore, each cube
Ci can be written as a polytope de�ned by

−x(j) + x
(j)
i ≤ 0 and x(j) − x(j)

i −
2a

M
= x(j) − x(j)

i+1 ≤ 0 (j = 1, . . . , d), (31)
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where i + 1 means that each component of i is increased by 1.
Let pi denote the Taylor polynomial of m with order q around the center of Ci. For each
i ∈ {1, . . . ,M + 1}d, we treat Ci as K in Lemma 7. This implies H = 2d therein and we
choose N ∈ N0 with N ≥ q and δ = a · η/(2 · d ·M). Lemma 7 says that for a su�ciently
large M neural networks ti(x) of the type

ti(x) =

(d+Nd )·(N+1)∑
j=1

(µj)i · σ

(
4d∑
l=1

(λj,l)i · σ

(
d∑

m=1

(θl,m)i · x
(m) + (θl,0)i

)
+ (λj,0)i

)
exist, with coe�cients bounded as therein, such that

|ti(x)− pi(x)| ≤ c22 · r̄(pi) · aN+3 ·M−p for x ∈ (Ci)
0
δ ∩ [−a, a]d,

|ti(x)| ≤ c23 · r̄(pi) ·M−d−2p for x ∈ (Ci)
c
δ ∩ [−a, a]d,

|ti(x)| ≤ c24 · r̄(pi) ·MN ·p for x ∈ Rd

hold for the corresponding cube with index i ∈ {1, . . . ,M + 1}d. Assumption (14) and a
transformation of the Taylor polynomial

pi(x) =
∑

j1,...,jd∈{0,1,...,q},
j1+···+jd≤q

1

j1! · · · jd!
· ∂j1+···+jdm

∂j1x(1) · · · ∂jdx(d)
(xi) ·

(
x(1) − x(1)

i

)j1
· · ·
(
x(d) − x(d)

i

)jd
(cf., Lemma 8) into a representation with monomials allow us to bound all values r̄(pi)
by

max
i∈{1,...,M+1}d

r̄(pi) ≤ c27 · aq (32)

for a constant c27 > 0 which depends on q but not on a. Set

t(x) =
∑

i∈{1,...,M+1}d
ti(x).

Then, we obtain (from the inequalities above and Lemma 8) for x ∈ (Ci)
0
δ ∩ [−a, a]d

|t(x)−m(x)| ≤ |ti(x)− pi(x)|+ |pi(x)−m(x)|+

∣∣∣∣∣ ∑
j∈{1,...,M+1}d\{i}

tj(x)

∣∣∣∣∣
≤ c22 · r̄(pi) · aN+3 ·M−p + c26 · C · d

p
2 ·
( a
M

)p
+
(

(M + 1)d − 1
)
· c23 · r̄(pi) ·M−d−2p

≤ c13 · aN+q+3 ·M−p. (33)

Arguing in the same way for all i ∈ {1, . . . ,M + 1}d we can conclude that this bound
holds for all x ∈ [−a, a]d which are not contained in⋃

j=1,...,d

⋃
i∈{1,...,M+2}d

{
x ∈ Rd : |x(j) − x(j)

i | < δ
}
. (34)
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By slightly shifting the whole grid of cubes along the jth component (i.e. modifying all

x
(j)
i by the same additional summand which is less than 2a

M ) for �xed j ∈ {1, . . . , d} we
can construct ⌊

2a/M

2δ

⌋
=

⌊
2a

M
· 2 · d ·M

2 · a · η

⌋
=

⌊
2 · d
η

⌋
≥ d/η

di�erent versions of t, that still satisfy (33) for all x ∈ [−a, a]d up to corresponding
disjoint versions of ⋃

i∈{1,...,M+2}d

{
x ∈ Rd : |x(j) − x(j)

i | < δ
}
,

within (34), and because the sum of the ν-measures of these sets is less than or equal
to one, at least one of them must have measure less than or equal to η/d. Consequently
we can shift the xi such that (34) has ν�measure less than or equal to η. This �nding
implies the �rst assertion of the theorem.
Furthermore, we can bound the coe�cients of t(x), if we use the bounds provided by
Lemma 7 and observe that due to (31) in this case vj ∈ {−em, em : m ∈ {1, . . . , d}}
(where em denotes the mth unit vector) and wj ∈

{
x

(m)
i ,−x(m)

i+1 : m ∈ {1, . . . , d}
}
hold

for each Ci and j = 1, . . . , 2d. From (32) and the fact that M is su�ciently large, this
leads to

| (µj)i | ≤ c20 · r̄(p) ·MN ·p ≤ c20 · c27 · aq ·MN ·p

| (λj,l)i | ≤M
d+p·(N+2)

| (θl,m)i | ≤ max

{
|tσ|,

Md+p·(2N+3)

δ
·max{‖v1‖∞, |w1|, . . . , ‖vH‖∞, |wH |}

}

≤ max

{
|tσ|,

2 · d ·Md+p·(2N+3)+1

a · η
·max

{
1, a+

2a

M

}}

≤ max

{
|tσ|, 2 · d ·Md+p·(2N+3)+1 · 1

η
·max

{
1

a
, 3

}}
≤ 6 · d · 1

η
·Md+p·(2N+3)+1

for all i ∈ {1, . . . ,M + 1}d, j ∈
{

1, . . . ,
(
d+N
d

)
· (N + 1)

}
, l ∈ {0, . . . , 4d}, and m ∈

{0, . . . , d}, which completes the proof. �

4.3 Approximation of smooth generalized hierarchical interaction models
by multilayer feedforward neural networks

In this subsection we use Theorem 2 to derive the following result concerning the ap-
proximation of (p, C)�smooth generalized hierarchical interaction models by multilayer
feedforward neural networks.
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Theorem 3. Let X be a Rd-valued random variable and let m : Rd → R satisfy a

(p, C)-smooth generalized hierarchical interaction model of order d∗ and �nite level l with
p = q + s, where q ∈ N0 and s ∈ (0, 1]. Let N ∈ N0 with N ≥ q. Assume that in

De�nition 2 b), all partial derivatives of the order less than or equal to q of the functions
gk, fj,k are bounded, that is, let us assume that each such function f satis�es

max
j1,...,jd∈{0,1,...,q},

j1+···+jd≤q

∥∥∥∥ ∂j1+···+jdf

∂j1x(1) · · · ∂jdx(d)

∥∥∥∥
∞
≤ c28, (35)

and let all functions gk be Lipschitz continuous with Lipschitz constant L > 0 (which

follows from (35) if q > 0). Let Mn ∈ N and let 1 ≤ an ≤ Mn be increasing such that

aN+q+3
n ≤ Mp

n is satis�ed for n su�ciently large. Let ηn ∈ (0, 1]. Let H(l) be de�ned as

in (6) with K, d, d∗ as in the de�nition of m, M = Mn, α = log(n) · M
d∗+p·(2N+3)+1
n

ηn
, and

using an N -admissible σ : R→ [0, 1] according to De�nition 3. Then, for arbitrary c > 0
and all n greater than a certain n0(c) ∈ N, t ∈ H(l) exists such that outside of a set of

PX-measure less than or equal to c · ηn we have

|t(x)−m(x)| ≤ c29 · aN+q+3
n ·M−pn

for all x ∈ [−an, an]d and with c29 independent of the other factors on the right side (that

are variabe by n), but depending on �xed values (like c, d, d∗). Furthermore, this t can
be chosen in such a way, that

|t(x)| ≤ c30 · aqn ·Md∗+N ·p
n

holds for all x ∈ Rd.

Proof. We will prove the result by induction and ignore the case c · ηn ≥ 1, which is
trivially true. For a function m(x) = f(aT1 x, . . . , a

T
d∗x), which satis�es a generalized hier-

archical interaction model of order d∗ and level l = 0, let s : Rd → Rd∗ be characterized
by s(x) = (aT1 x, . . . , a

T
d∗x)T and let āmax denote maxk=1,...,d∗ ‖ak‖∞. Applying Theorem

2 (which is possible because of the assumptions of this theorem) for the probability mea-
sure Ps(X), the function f : Rd∗ → R in m can be approximated by a two-layered neural

network f̂ for all x ∈ [−d · āmax · an, d · āmax · an]d
∗
, except for a set D̃0 of Ps(X)�measure

less than or equal to c · ηn > 0, with an error of∣∣f̂(x)− f(x)
∣∣ ≤ c13 · (d · āmax · an)N+q+3 ·M−pn ≤ c29 · aN+q+3

n ·M−pn .

If we plug s(x) into that approximation and condense the inner coe�cients per summand,
this leads (using the notation of Theorem 2) to the approximation t(x) = f̂(s(x)) of the
form

t(x) =

(d
∗+N
d∗ )·(N+1)·(Mn+1)d

∗∑
i=1

µi · σ

(
4d∗∑
l=1

λi,l · σ

(
d∗∑
k=1

θi,l,k · aTk x+ θi,l,0

)
+ λi,0

)
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=

(d
∗+N
d∗ )·(N+1)·(Mn+1)d

∗∑
i=1

µi · σ

(
4d∗∑
l=1

λi,l · σ

(
d∑

m=1

d∗∑
k=1

a
(m)
k · θi,l,k · x(m) + θi,l,0

)
+ λi,0

)

=:

(d
∗+N
d∗ )·(N+1)·(Mn+1)d

∗∑
i=1

µi · σ

(
4d∗∑
l=1

λi,l · σ

(
d∑

m=1

θ̃i,l,m · x(m) + θi,l,0

)
+ λi,0

)
,

where

|µi| ≤ c14 · (d · āmax · an)q ·MN ·p
n ≤ α,

|λi,l| ≤Md∗+p·(N+2)
n ≤ α,

|θ̃i,l,m| ≤ d∗ · āmax · 6 · d∗ ·
1

ηn
·Md∗+p·(2N+3)+1

n ≤ α

are satis�ed for a su�ciently large n, such that t ∈ H(0) is valid. Since Ps(X)

{
D̃0

}
=

PX

{
s−1

(
D̃0

)}
and s

(
[−an, an]d

)
⊆ [−d · āmax · an, d · āmax · an]d

∗
,

|t(x)−m(x)| ≤ c29 · aN+q+3
n ·M−pn

holds for all x ∈ [−an, an]d outside of the set D0 = s−1
(
D̃0

)
of PX�measure less than

or equal to c · ηn, which proves the �rst part of the assertion for l = 0. Furthermore,
since ‖σ‖∞ ≤ 1 holds according to our assumptions, we know that

|t(x)| ≤
(
d∗ +N

d∗

)
· (N + 1) · (Mn + 1)d

∗
· max
i=1,...,(d

∗+N
d∗ )·(N+1)·(Mn+1)d

∗
|µi|

≤ c31 · aqn ·Md∗+N ·p
n

is valid for all x ∈ Rd.
When l > 0, we consider the following bound of the di�erence betweenm(x) =

∑K
k=1 gk (f1,k (x) , . . . , fd∗,k (x))

and an estimate m̂(x) =
∑K

k=1 ĝk

(
f̂1,k (x) , . . . , f̂d∗,k (x)

)
at a point x ∈ [−an, an]d:

|m(x)− m̂(x)| ≤

∣∣∣∣∣
K∑
k=1

gk (f1,k (x) , . . . , fd∗,k (x))−
K∑
k=1

gk

(
f̂1,k (x) , . . . , f̂d∗,k (x)

) ∣∣∣∣∣
+

∣∣∣∣∣
K∑
k=1

gk

(
f̂1,k (x) , . . . , f̂d∗,k (x)

)
−

K∑
k=1

ĝk

(
f̂1,k (x) , . . . , f̂d∗,k (x)

) ∣∣∣∣∣
≤

K∑
k=1

L ·
d∗∑
j=1

|fj,k(x)− f̂j,k(x)|

+

K∑
k=1

∣∣∣gk (f̂1,k (x) , . . . , f̂d∗,k (x)
)
− ĝk

(
f̂1,k (x) , . . . , f̂d∗,k (x)

) ∣∣∣.
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All the fj,k satisfy a (p, C)-smooth generalized hierarchical interaction model of order d∗

and level l − 1 and respect the requirements of this theorem. Thus, we can choose the
approximations f̂j,k ∈ H(l−1) according to the induction hypothesis with ηn replaced by
ηn

2·d∗·K . Then each of the terms |fj,k(x)− f̂j,k(x)| can be bounded by c32 · aN+q+3
n ·M−pn

for all n su�ciently large and x ∈ [−an, an]d outside of a set Dj,k of PX�measure less
than or equal to c

2·d∗·K · ηn.

Furthermore, let f̂k : Rd → Rd∗ be characterized by f̂k(x) =
(
f̂1,k(x), . . . , f̂d∗,k(x)

)T
and

set f̄k,max = maxj=1,...,d∗ ‖fj,k‖∞ for all k = 1, . . . ,K. Given that c32 ·aN+q+3
n ·M−pn ≤ c32

for all su�ciently large n because of the assumptions of Theorem 3, f̂k(x) falls into

F̂k =
[
−f̄k,max − c32, f̄k,max + c32

]d∗
for all x ∈ [−an, an]d outside of the union of the sets Dj,k (j = 1, . . . , d∗, k = 1, . . . ,K)
and n su�ciently large. Applying Theorem 2 (if the condition f̄k,max + c32 ≥ 1 is not
satis�ed, modify c32 adequately) with η = c·ηn

2·K , it is possible to choose a neural network
ĝk for every gk in the second sum with a maximum approximation error of

c13 ·
(
f̄k,max + c32

)N+q+3 ·M−pn ≤ c33 ·M−pn

on F̂k outside of a set D̃k that satis�es Pf̂k(X)(D̃k) ≤ ηn
2·K . For n su�ciently large, the

weights of ĝk according to the notation of Theorem 2 satisfy

|µi| ≤ c14 ·
(
f̄k,max + c32

)q ·MN ·p
n ≤ α,

|λi,l| ≤Md∗+p·(N+2)
n ≤ α,

|θi,l,m| ≤ 6 · d · 1

ηn
·Md∗+p·(2N+3)+1

n ≤ α,

which implies ĝk ∈ F
(neural networks)
Mn,N,d∗,d∗,α

. Since Pf̂k(X)

(
D̃k

)
= PX

(
f̂−1
k

(
D̃k

))
, ĝk

(
f̂k (x)

)
approximates gk

(
f̂k (x)

)
with the above maximum error for all

x ∈ [−an, an]d \
⋃

j=1,...,d∗

Dj,k

outside of a set Dk = f̂−1
k

(
D̃k

)
of PX�measure less than or equal to c·ηn

2·K . Choosing

t(x) = m̂(x) =
∑K

k=1 ĝk

(
f̂1,k (x) , . . . , f̂d∗,k (x)

)
as described, we can conclude from

ĝk ∈ F
(neural networks)
Mn,N,d∗,d∗,α

and f̂j,k ∈ H(l−1) for all j = 1, . . . , d∗ and k = 1, . . . ,K that

t ∈ H(l) is valid and that for a su�ciently large n

|t(x)−m(x)| ≤ K · L · d∗ · c32 · aN+q+3
n ·M−pn +K · c33 ·M−pn ≤ c29 · aN+q+3

n ·M−pn
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holds for all x ∈ [−an, an]d outside of the union of all exceptional sets so far. The
PX -measure of this union satis�es

PX

 ⋃
j=1,...,d∗,
k=1,...,K

Dj,k ∪
⋃

k=1,...,K

Dk

 ≤ ∑
j=1,...,d∗,
k=1,...,K

PX (Dj,k) +
∑

k=1,...,K

PX (Dk)

≤
∑

j=1,...,d∗,
k=1,...,K

c · ηn
2 · d∗ ·K

+
∑

k=1,...,K

c · ηn
2 ·K

= c · ηn,

which proves the �rst assertion of the theorem when l > 0. The second assertion can be
shown analogously to the case of l = 0 by

|t(x)| ≤ K ·
(
d∗ +N

d∗

)
· (N + 1) · (Mn + 1)d

∗
· max
k=1,...,K

c14 ·
(
f̄k,max + c32

)q ·MN ·p
n

≤ c34 ·Md∗+N ·p
n

for all x ∈ Rd, which is an even stronger bound than the announced. �

4.4 Proof of Theorem 1

Let an = log(n)
3

2·(N+q+3) . For a su�ciently large n the relation supp(X) ⊆ [−an, an]d

holds, which implies N
(
δ,G, ‖ · ‖∞,supp(X)

)
≤ N

(
δ,G, ‖ · ‖∞,[−an,an]d

)
for an arbitrary

function space G and δ > 0. Then applying Lemma 1 leads to

E

∫
|Tc3·log(n)mn(x)−m(x)|2PX(dx)

≤
c7 · log(n)2 · log

(
N
(

1
n·c3·log(n) ,H

(l), ‖ · ‖∞,supp(X)

))
n

+ 2 · inf
h∈H(l)

∫
|h(x)−m(x)|2PX(dx).

Given that 1
n·c3·log(n) ≥

1
nc8 and Mn

ηn
≤ nc9 hold, Lemma 2 allows us to bound the �rst

summand by

c7 · log(n)2 · c10 · log(n) ·Md∗
n

n
≤ c35 · log(n)3 · n−

2p
2p+d∗

for a su�ciently large n. If we choose a h∗ ∈ H(l), which satis�es the approximation
properties of Theorem 3 using the above an, and denote the exception set with measure
ηn therein by Dn, we can bound infh∈H(l)

∫
|h(x)−m(x)|2PX(dx) by∫

|h∗(x)−m(x)|2 · 1DCnPX(dx) +

∫
|h∗(x)−m(x)|2 · 1DnPX(dx)
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≤
(
c29 · a(N+q+3)

n ·M−pn
)2

+
(

2 · c30 · aqn ·Md∗+N ·p
n

)2
· ηn

≤ c36 · log(n)3 · n−
2p

2p+d∗ + c37 · log(n)
3q

N+q+3 · n
2d∗+2N·p

2p+d∗ · log(n)
3·(N+3)
N+q+3 · n−

2·(N+1)·p+2d∗
2p+d∗

≤ c11 · log(n)3 · n−
2p

2p+d∗ ,

where we assumed m(x) ≤ c30 · aqn ·Md∗+N ·p
n on supp(X) in the second integral, which

is true for a su�ciently large n because of the assumptions of the theorem. This proves
the theorem. �
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Supplementary material for the referees

Proof of Lemma 1. In the proof we use the following error decomposition:∫
|mn(x)−m(x)|2µ(dx)

=
[
E
{
|mn(X)− Y |2|Dn

}
−E

{
|m(X)− Y |2

}
−E
{
|mn(X)− TβnY |2|Dn

}
−E

{
|mβn(X)− TβnY |2

}]
+

[
E
{
|mn(X)− TβnY |2|Dn

}
−E

{
|mβn(X)− TβnY |2

}
−2 · 1

n

n∑
i=1

(
|mn(Xi)− TβnYi|2 − |mβn(Xi)− TβnYi|2

)]

+

[
2 · 1

n

n∑
i=1

|mn(Xi)− TβnYi|2 − 2 · 1

n

n∑
i=1

|mβn(Xi)− TβnYi|2

−

(
2 · 1

n

n∑
i=1

|mn(Xi)− Yi|2 − 2 · 1

n

n∑
i=1

|m(Xi)− Yi|2
)]

+

[
2

(
1

n

n∑
i=1

|mn(Xi)− Yi|2 −
1

n

n∑
i=1

|m(Xi)− Yi|2
)]

=
4∑
i=1

Ti,n,

where TβnY is the truncated version of Y and mβn is the regression function of TβnY ,
i.e.,

mβn(x) = E
{
TβnY |X = x

}
.

We start with bounding T1,n. By using a2 − b2 = (a− b)(a+ b) we get

T1,n = E
{
|mn(X)− Y |2 − |mn(X)− TβnY |2

∣∣∣Dn}
−E
{
|m(X)− Y |2 − |mβn(X)− TβnY |2

}
= E

{
(TβnY − Y )(2mn(X)− Y − TβnY )

∣∣∣Dn}
−E
{(

(m(X)−mβn(X)) + (TβnY − Y )
)(
m(X) +mβn(X)− Y − TβnY

)}
= T5,n + T6,n.

With the Cauchy-Schwarz inequality and

I{|Y |>βn} ≤
exp(c1/2 · |Y |2)

exp(c1/2 · β2
n)

(36)
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we conclude

|T5,n| ≤
√
E
{
|TβnY − Y |2

}
·
√
E
{
|2mn(X)− Y − TβnY |2

∣∣Dn}
≤

√
E
{
|Y |2 · I{|Y |>βn}

}
·
√
E
{

2 · |2mn(X)− TβnY |2 + 2 · |Y |2
∣∣Dn}

≤

√√√√E

{
|Y |2 · exp(c1/2 · |Y |2)

exp(c1/2 · β2
n)

}

·
√
E
{

2 · |2mn(X)− TβnY |2
∣∣Dn}+ 2E

{
|Y |2

}
≤

√
E
{
|Y |2 · exp(c1/2 · |Y |2)

}
· exp

(
−c1 · β2

n

4

)
·
√

2(3βn)2 + 2E
{
|Y |2

}
.

With x ≤ exp(x) for x ∈ R we get

|Y |2 ≤ 2

c1
· exp

(c1

2
· |Y |2

)
and hence

√
E
{
|Y |2 · exp(c1/2 · |Y |2)

}
is bounded by

E

(
2

c1
· exp

(
c1/2 · |Y |2

)
· exp(c1/2 · |Y |2)

)
≤ E

(
2

c1
· exp

(
c1 · |Y |2

))
≤ c38

which is less than in�nity by the assumptions of the lemma. Furthermore the third term
is bounded by

√
18β2

n + c39 because

E(|Y |2) ≤ E(1/c1 · exp(c1 · |Y |2) ≤ c39 <∞, (37)

which follows again as above. With the setting βn = c26 · log(n) it follows for some
constants c40, c41 > 0 that

|T5,n| ≤
√
c38 · exp

(
−c40 · log(n)2

)
·
√

(18 · c26 · log(n)2 + c39) ≤ c41 ·
log(n)

n
.

From the Cauchy-Schwarz inequality we get

T6,n ≤

√√√√2 ·E

{
|(m(X)−mβn(X))|2

}
+ 2 ·E

{
|(TβnY − Y )|2

}

·

√√√√E

{∣∣∣m(X) +mβn(X)− Y − TβnY
∣∣∣2},

where we can bound the second factor on the right-hand side in the above inequality
in the same way we have bounded the second factor from T5,n, because by assumption
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||m||∞ is bounded and furthermoremβn is bounded by βn. Thus we get for some constant
c42 > 0 √√√√E

{∣∣∣m(X) +mβn(X)− Y − TβnY
∣∣∣2} ≤ c42 · log(n).

Next we consider the �rst term. With Jensen's inequality it follows that

E
{
|m(X)−mβn(X)|2

}
≤ E

{
E
(
|Y − TβnY |2

∣∣∣X)} = E
{
|Y − TβnY |2

}
.

Hence we get

T6,n ≤
√

4 ·E {|Y − TβnY |2} · c42 · log(n)

and therefore with the calculations from T5,n it follows that T6,n ≤ c43 · log(n)/n for some
constant c43 > 0. Altogether we get

T1,n ≤ c44 ·
log(n)

n

for some constant c44 > 0.
Next we consider T2,n and conclude for t > 0

P{T2,n > t} ≤ P

{
∃f ∈ Tβn,supp(X)Fn : E

(∣∣∣∣f(X)

βn
−
TβnY

βn

∣∣∣∣2
)
−E

(∣∣∣∣mβn(X)

βn
−
TβnY

βn

∣∣∣∣2
)

− 1

n

n∑
i=1

(∣∣∣∣f(Xi)

βn
−
TβnYi
βn

∣∣∣∣2 − ∣∣∣∣mβn(Xi)

βn
−
TβnYi
βn

∣∣∣∣2
)

>
1

2

(
t

β2
n

+ E

(∣∣∣∣f(X)

βn
−
TβnY

βn

∣∣∣∣2
)
−E

(∣∣∣∣mβn(X)

βn
−
TβnY

βn

∣∣∣∣2
))}

,

where Tβn,supp(X)Fn is de�ned as
{
Tβnf · 1supp(X) : f ∈ Fn

}
. Theorem 11.4 in Györ� et

al. (2002) and the relationN
(
δ,
{

1
βn
g : g ∈ G

}
, ‖ · ‖∞,supp(X)

)
≤ N

(
δ · βn,G, ‖ · ‖∞,supp(X)

)
for an arbitrary function space G and δ > 0 lead to

P{T2,n > t} ≤ 14 · N
(

t

80 · βn
,Fn, ‖ · ‖∞,supp(X)

)
· exp

(
− n

5136 · β2
n

· t
)
.

Since the covering number and the exponential factor are decreasing in t, we can conclude
for εn ≥ 80

n

E(T2,n) ≤ εn +

∫ ∞
εn

P{T2,n > t}dt

≤ εn + 14 · N
(

1

n · βn
,Fn, ‖ · ‖∞,supp(X)

)
· exp

(
− n

5136 · β2
n

· εn
)
· 5136 · β2

n

n
.
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Choosing

εn =
5136 · β2

n

n
· log

(
14 · N

(
1

n · βn
,Fn, ‖ · ‖∞,supp(X)

))
(which satis�es the necessary condition εn ≥ 80

n if the constant c5 in the de�nition of βn
is not too small) minimizes the right-hand side and implies

E(T2,n) ≤
c7 · log(n)2 · log

(
N
(

1
n·βn ,Fn, ‖ · ‖∞,supp(X)

))
n

.

By bounding T3,n similarly to T1,n we get

E(T3,n) ≤ c45 ·
log(n)

n

for some large enough constant c45 > 0 and hence we get in total

E

(
3∑
i=1

Ti,n

)
≤

c46 · log(n)2 · log
(
N
(

1
n·βn ,Fn, ‖ · ‖∞,supp(X)

))
n

for some su�cient large constant c46 > 0.
We �nish the proof by bounding T4,n. Let An be the event, that there exists i ∈
{1, ..., n} such that |Yi| > βn and let IAn be the indicator function of An. Then we get

E(T4,n) ≤ 2 ·E

(
1

n

n∑
i=1

|mn(Xi)− Yi|2 · IAn

)

+2 ·E

(
1

n

n∑
i=1

|mn(Xi)− Yi|2 · IAcn −
1

n

n∑
i=1

|m(Xi)− Yi|2
)

= 2 ·E
(
|mn(X1)− Y1|2 · IAn

)
+2 ·E

(
1

n

n∑
i=1

|mn(Xi)− Yi|2 · IAcn −
1

n

n∑
i=1

|m(Xi)− Yi|2
)

= T7,n + T8,n.

With the Cauchy-Schwarz inequality we get for T7,n

1

2
· T7,n ≤

√
E
(

(|mn(X1)− Y1|2)2
)
·
√
P(An)

≤
√
E
(

(2|mn(X1)|2 + 2|Y1|2)2
)
·
√
n ·P{|Y1| > βn}

≤
√

E (8|mn(X1)|4 + 8|Y1|4) ·

√
n · E (exp(c1 · |Y1|2))

exp(c1 · β2
n)

,

where the last inequality follows from inequality (36). With x ≤ exp(x) for x ∈ R we get

E
(
|Y |4

)
= E

(
|Y |2 · |Y |2

)
≤ E

(
2

c1
· exp

(c1

2
· |Y |2

)
· 2

c1
· exp

(c1

2
· |Y |2

))
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=
4

c2
1

·E
(
exp

(
c1 · |Y |2

))
,

which is less than in�nity by condition (12) of the theorem. Furthermore ||mn||∞ is
bounded by βn and therefore the �rst factor is bounded by

c47 · β2
n = c48 · log(n)2

for some constant c48 > 0. The second factor is bounded by 1/n, because by the as-
sumptions of the theorem E

(
exp

(
c1 · |Y1|2

))
is bounded by some constant c49 <∞ and

hence we get√
n · E (exp(c1 · |Y1|2))

exp(c1 · β2
n)

≤
√
n ·

√
c49√

exp(c1 · β2
n)
≤

√
n · √c49

exp((c1 · c2
26 · log(n)2)/2)

.

Since exp(−c · log(n)2) = O(n−2) for any c > 0, we get altogether

T7,n ≤ c50 ·
log(n)2√n

n2
≤ c51 ·

log(n)2

n
.

With the de�nition of Acn and m̃n de�ned as in the assumptions of this lemma we conclude

T8,n ≤ 2 ·E

(
1

n

n∑
i=1

|m̃n(Xi)− Yi|2 · IAcn −
1

n

n∑
i=1

|m(Xi)− Yi|2
)

≤ 2 ·E

(
1

n

n∑
i=1

|m̃n(Xi)− Yi|2 −
1

n

n∑
i=1

|m(Xi)− Yi|2
)

≤ 2 ·E

(
inf
f∈Fn

1

n

n∑
i=1

|f(Xi)− Yi|2 −
1

n

n∑
i=1

|m(Xi)− Yi|2
)
,

because |Tβz − y| ≤ |z − y| holds for |y| ≤ β. Hence

E(T4,n) ≤ c51 ·
log(n)2

n
+ 2 ·E

(
inf
f∈Fn

1

n

n∑
i=1

|f(Xi)− Yi|2 −
1

n

n∑
i=1

|m(Xi)− Yi|2
)

holds. If we choose an f∗ ∈ Fn which satis�es∫
|f∗(x)−m(x)|2PX(dx) ≤ inf

f∈Fn

∫
|f(x)−m(x)|2PX(dx) +

1

n
,

we can conclude

E

(
inf
f∈Fn

1

n

n∑
i=1

|f(Xi)− Yi|2 −
1

n

n∑
i=1

|m(Xi)− Yi|2
)

≤ E

{
1

n

n∑
i=1

|f∗(Xi)− Yi|2 −
1

n

n∑
i=1

|m(Xi)− Yi|2
}
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= E
{
|f∗(X)− Y |2

}
−E

{
|m(X)− Y |2

}
= E

{
|f∗(X)−m(X)|2

}
+ E

{
|m(X)− Y |2

}
−E

{
|m(X)− Y |2

}
≤ inf

f∈Fn

∫
|f(x)−m(x)|2PX(dx) +

1

n
.

In combination with the other considerations in the proof this implies the assertion of
Lemma 1. �

In order to prove Lemma 2, we will apply the following lemma.

Lemma 9. Let l ∈ N0 and let σr : R → R for r = 1, . . . , l + 1 be Lipschitz continuous

functions with Lipschitz constant L ≥ 1, which satisfy

|σr(x)| ≤ L ·max {|x|, 1} (x ∈ R) . (38)

Let K0 = d, Kr ∈ N for r ∈ {1, . . . , l} and Kl+1 = 1. For r ∈ {1, . . . , l + 1} and

i ∈ {1, . . . ,Kr} de�ne recursively

f
(r)
i (x) = σr

Kr−1∑
j=1

c
(r−1)
i,j · f (r−1)

j (x) + c
(r−1)
i,0


and

f̄
(r)
i (x) = σr

Kr−1∑
j=1

c̄
(r−1)
i,j · f̄ (r−1)

j (x) + c̄
(r−1)
i,0

 ,

where c
(r−1)
i,0 , c̄

(r−1)
i,0 , . . . , c

(r−1)
i,Kr−1

, c̄
(r−1)
i,Kr−1

∈ R, and f (0)
j (x) = f̄

(0)
j (x) = x(j). Furthermore,

set

C = max
r=0,...,l,i=1,...,Kr+1,

j=1,...,Kr

max
{∣∣∣c(r)

i,j

∣∣∣, ∣∣∣c̄(r)
i,j

∣∣∣, 1} .
Then∣∣f (l+1)

1 (x)− f̄ (l+1)
1 (x)

∣∣
≤ (l + 1) · Ll+1 ·

l∏
r=0

(Kr + 1) · C l ·max{‖x‖∞, 1} · max
r=0,...,l,i=1,...,Kr+1,

j=0,...,Kr

∣∣∣c(r)
i,j − c̄

(r)
i,j

∣∣∣
for any x ∈ Rd.

Proof. See Lemma 5 in Bauer et al. (2017). �

Proof of Lemma 2. At �rst, we notice the space H(l) (with l > 0) can be expressed as

H(l) =

{
h : Rd → R : h(x) =

K∑
k=1

σid (gk (σid (f1,k(x)) , . . . , σid (fd∗,k(x)))) (x ∈ Rd)
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for some gk ∈ F
(neural networks)
Mn,N,d∗,d∗,α,β,γ

and fj,k ∈ H(l−1)

}
,

where σid : R → R is the identity σid(x) = x for all x ∈ R. Furthermore, all g ∈
F (neural networks)
Mn,N,d∗,d∗,α

can be written as

g(x) =

(d
∗+N
d∗ )·(N+1)·(M+1)d

∗∑
i=1

µi · σ

(
4d∗∑
l=1

λi,l · σ

(
d∗∑
m=1

θi,l,m · x(m) + θi,l,0

)
+ λi,0

)

=

(d
∗+N
d∗ )·(N+1)·(M+1)d

∗∑
i=1

µi · σ

 ∑
l=1,...,4d∗,

ī=1,...,(d
∗+N
d∗ )·(N+1)·(M+1)d

∗

λi,̄i,l

·σ

(
d∗∑
m=1

θī,l,m · x(m) + θī,l,0

)
+ λi,̄i,0

)
where the new coe�cients are de�ned by

λi,̄i,l :=

{
λi,l if ī = i

0 otherwise

for all i, ī ∈
{

1, . . . ,
(
d∗+N
d∗

)
· (N + 1) · (M + 1)d

∗
}

and l ∈ {0, . . . , 4d∗} (which works

analogously for h ∈ H(0)). Respecting the above representations, all the functions

σid(h) = h for h ∈ H(l) comply with the structure of the functions f
(l+1)
1 in Lemma

9, if we use the following speci�cations of the parameters in that lemma: The Lipschitz
constant L is chosen as the maximum of the Lipschitz constants of σid (which is obviously
1) and of the N -admissible sigmoidal function σ. Thus, property (38) is satis�ed due to
‖σ‖∞ ≤ 1, L ≥ 1, and |σid(x)| = |x|. The parameter l in this lemma is 4l+ 2 (regarding
the l in H(l) above) and the parameters Kr with r = 0, . . . , l take repeatedly the values
d̃, 4 · d∗ ·

(
d∗+N
d∗

)
· (N + 1) · (Mn + 1)d

∗
,
(
d∗+N
d∗

)
· (N + 1) · (Mn + 1)d

∗
and K one after

another, where d̃ is equal to d∗ except for K0, where it is d. Since all the coe�cients

c
(r)
i,j with r = 0, . . . , l, i = 1, . . . ,Kr+1, j = 1, . . . ,Kr (using Kl+1 = 1 again) are 0, 1,

or one of the µi, λi,l, θi,l,m in the de�nition of F (neural networks)
Mn,N,d∗,d,α

, we can use C = α for n
su�ciently large.
Let h and h̄ be functions in H(l). Since they comply with the structure of the functions
in Lemma 9 according to the above argumentation, we can conclude

‖h− h̄‖∞,[−an,an]d

≤ (4l + 3) · L4l+3 ·
(

4 · d∗ ·
(
d∗ +N

d∗

)
· (N + 1) · (Mn + 1)d

∗
+ 1

)4l+3

· α4l+2

·max{an, 1} · max
r=0,...,l̃, i=1,...,Kr+1,

j=0,...,Kr

∣∣∣c(r)
i,j − c̄

(r)
i,j

∣∣∣

42



≤ nc52 · max
r=0,...,l̃, i=1,...,Kr+1,

j=0,...,Kr

∣∣∣c(r)
i,j − c̄

(r)
i,j

∣∣∣
for n su�ciently large and an adequately chosen c52 > 0 thanks to an ≤Mn ≤ Mn

ηn
≤ nc9 .

Thus, if we consider an arbitrary h ∈ H(l), it su�ces to choose the coe�cients c̄
(r)
i,j of a

function h̄ ∈ H(l) such that ∣∣∣c(r)
i,j − c̄

(r)
i,j

∣∣∣ ≤ εn
nc52

(39)

holds for all possible indices, in order to satisfy ‖h−h̄‖∞,[−an,an]d ≤ εn. These coe�cients

c
(r)
i,j have to take values in [−α, α], and for n su�ciently large, which is assumed in the

following, the relation α = log(n) · M
d∗+p·(2N+3)+1
n

ηn
≤ nc53 holds. Then due to εn ≥ 1

nc8 a
number of ⌈

2 · α · nc52

2 · εn

⌉
≤ nc54

di�erent c̄
(r)
i,j su�ces to guarantee, that at least one of them satis�es the relation (39) for

any c
(r)
i,j with �xed indices. Furthermore, the coe�cients c

(r)
i,j , which can actually di�er

regarding di�erent h ∈ H(l), are the ones originating from the coe�cients µi, λi,l, θi,l,m in

the de�nition of F (neural networks)
Mn,N,d∗,d,α

. Using (8), their number can be bounded by c55 ·Md∗
n .

So the logarithm of the covering number N (εn,H(l), ‖ · ‖∞,[−an,an]d) can be bounded by

log
(
N (εn,H(l), ‖ · ‖∞,[−an,an]d)

)
≤ log

(
(nc54)c55·Md∗

n

)
≤ c10 · log(n) ·Md∗

n ,

which proves the assertion. �

Proof of Lemma 4. Since due to De�nition 3 there is a point tσ ∈ R, such that none of
the derivatives up to the order N is zero in tσ, the one-layered neural network described
in the assertion of this lemma can be formulated explicitly as

N+1∑
k=1

(−1)N+k−1 · RN

σ(N)(tσ)
·
(

N

k − 1

)
· σ
(
k − 1

R
· x+ tσ

)
(40)

=
N∑
k=0

(−1)N+k · RN

σ(N)(tσ)
·
(
N

k

)
· σ
(
k

R
· x+ tσ

)

= (−1)N · RN

σ(N)(tσ)
·
N∑
k=0

(−1)k ·
(
N

k

)
· σ
(
k

R
· x+ tσ

)
(41)

Since De�nition 3 implies, that σ is N + 1 times continously di�erentiable, it can be
expanded in a Taylor series with Lagrange remainder around tσ up to order N and we
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can conclude (de�ning 00 = 1)

N∑
k=0

(−1)k ·
(
N

k

)
· σ
(
k

R
· x+ tσ

)

=
N∑
k=0

(−1)k ·
(
N

k

)
·

 N∑
j=0

σ(j) (tσ) · (xk)j

Rj · j!
+
σ(N+1) (ξk) · (xk)N+1

RN+1 · (N + 1)!


=

N∑
j=0

σ(j) (tσ) · xj

Rj · j!
·
N∑
k=0

(−1)k · kj ·
(
N

k

)

+
xN+1

RN+1 · (N + 1)!
·
N∑
k=0

(−1)k · kN+1 · σ(N+1) (ξk) ·
(
N

k

)
,

where ξk ∈
[
tσ − k

R · |x|, tσ + k
R · |x|

]
for all 0 ≤ k ≤ N . Next, we notice that

N∑
k=0

(−1)k · kj ·
(
N

k

)
= N ! · (−1)N · S(N)

j

holds, where S
(N)
j is the well-known Stirling number of the second kind, which describes

the number of options to split a set of j elements into N non-empty subsets and which is
equal to zero for 0 ≤ j < N and equal to one for j = N (cf., e.g., the recurrence relation
on page 825 in Abramovitz and Stegun (1972), which actually holds for all combinations
of j,N ∈ N0 and implies the mentioned values in connection with the binomial theorem).
This simpli�es the above sum to

σ(N) (tσ) · xN

RN
· (−1)N +

xN+1

RN+1 · (N + 1)!
·
N∑
k=0

(−1)k · kN+1 · σ(N+1) (ξk) ·
(
N

k

)
.

Plugging this into the representation of (41) leads to

(−1)N · RN

σ(N)(tσ)
·

(
σ(N) (tσ) · xN

RN
· (−1)N

+
xN+1

RN+1 · (N + 1)!
·
N∑
k=0

(−1)k · kN+1 · σ(N+1) (ξk) ·
(
N

k

))

= xN +
(−1)N · xN+1

R · σ(N)(tσ) · (N + 1)!
·
N∑
k=0

(−1)k · kN+1 · σ(N+1) (ξk) ·
(
N

k

)
.

This implies the assertion of the lemma, since the derivative of order N + 1 is bounded
on R (cf., De�nition 3) and the weights chosen in (40) satisfy the announced bounds. �
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