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Abstract

Quanti�cation of uncertainty of a technical system is often based on a surrogate model
of a corresponding simulation model. In any application the simulation model will not
describe the reality perfectly, and consequently also the surrogate model will be imperfect.
In this article we show how observed data of the real technical system can be used
to improve such a surrogate model, and we analyze the rate of convergence of density
estimates based on the improved surrogate model. The results are illustrated by applying
the estimates to simulated and real data.
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1 Introduction

Any design of complex technical systems by engineers nowadays is based on some sort
of mathematical model of the technical system. Such models are never able to describe
the reality perfectly, therefore their analysis has to take into account some kind of un-
certainty. This uncertainty might occur, e.g., because some of the parameters of the
model are not exactly known, because of the use of an imperfect mathematical model
of the technical system during the design process which does not really describe all as-
pects of the underlying technical system, or because of lack of knowledge about future
use. A good quanti�cation of the uncertainty of the system is essential in order to avoid
oversizing and to conserve resources.
In this article we quantify the uncertainty of a technical system by estimating a density

of a real random variable representing the outcome of an experiment with the technical
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system. The starting point for our estimation problem is a stochastic model of the
technical system. This stochastic model has parameters which are chosen randomly
because their exact values are uncertain and consequently not known, and it computes
the outcome of the technical system by computing the value of a function depending
on concrete values of the parameters. In case that the distribution of the parameters
is known (which we will assume from now on) and that the function, which has to be
computed, is given, Monte Carlo can be used to estimate either quantiles or the density
of the output of the technical system.
Usually, the stochastic model is evaluated using a computer program, and computer

experiments can be used to generate values for the Monte Carlo estimates. However, it
often happens that generation of the values is rather time consuming, so that standard
Monte Carlo estimates cannot be applied. Instead, one has to apply techniques which are
able to quantify the uncertainty in the computer experiment using only a few evaluations
of the computer program. There is a vast literature on the design and analysis of such
computer experiments, cf., e.g., Santner, Williams, and Notz (2003) and the literature
cited therein. Often, so�called surrogate models of the computer experiment are used in
order to analyze it. Surrogate models have been introduced and investigated with the
aid of the simulated and real data in connection with the quadratic response surfaces in
Bucher and Burgund (1990), Kim and Na (1997) and Das and Zheng (2000), in context of
support vector machines in Hurtado (2004), Deheeger and Lemaire (2010) and Bourinet,
Deheeger and Lemaire (2011), in connection with neural networks in Papadrakakis and
Lagaros (2002), and in context of kriging in Kaymaz (2005) and Bichon et al. (2008).
Consistency and rate of convergence of density estimates based on surrogate models have
been studied in Devroye, Felber and Kohler (2013), Bott, Felber and Kohler (2015) and
Felber, Kohler and Krzy»ak (2015a). A method for the adaptive choice of the smoothing
parameter of such estimates has been presented in Felber, Kohler and Krzy»ak (2015b).
Of course, in practice a stochastic model will never be able to represent the real tech-

nical system perfectly. So it is clear that the mathematical model is imperfect, and
consequently also any surrogate model based on the imperfect mathematical model will
be imperfect. In Bayesian analysis of computer experiments, Kennedy and O'Hagan
(2001), Bayarri et al. (2007), Goh et al. (2013), Han, Santner and Rawlinson (2009),
Hidgon et al. (2013) and Wang, Chen and Tsui (2009) model the discrepancy between
the computer experiments and the outcome of the technical system by a Gaussian pro-
cess. Tuo and Wu (2015) pointed out that the this approach might fail in case of an
imperfect computer model, for which there exist no values of the parameters which �t
the technical system perfectly, and suggested and analyzed non-Bayesian methods for
the choice of the parameters of such models.
In this article we quantify uncertainty outside the framework of Bayesian analysis. We

assume that we have available an additional (small) sample of the real technical system,
and we consider the problem of estimation from this sample together with the imperfect
simulation model an improved surrogate model.
The mathematical setting which we consider is as follows: Let (X,Y ), (X1, Y1),

(X2, Y2), . . . be independent and identically distributed random variables with values
in Rd×R, and let m : Rd → R be a measurable function. Here Y describes the outcome
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of an experiment with our technical system, and our aim is to predict the density g of
Y (w.r.t. the Lebesgue measure), which we assume to exist. The random vector X and
the measurable function m describe our stochastic model of the technical system, and in
this model we use m(X) as an approximation of Y . Given the data

(X1, Y1), . . . , (Xn, Yn), (Xn+1,m(Xn+1)), . . . , (Xn+Ln ,m(Xn+Ln)),

Xn+Ln+1, . . . , Xn+Ln+Nn (1)

(where Ln, Nn ∈ N) our goal is to construct an estimate for g.
The simplest way of doing this is to ignore X and m and to use only the data

Y1, . . . , Yn (2)

to de�ne a kernel density estimate

ĝY,n(y) =
1

n · hn
·
n∑
i=1

K

(
y − Yi
hn

)
. (3)

Here K : Rd → R (so-called kernel, which is assumed to be a density) and hn > 0
(so-called bandwidth) are parameters of the estimate.
In the sequel we assume that for m∗ : Rd → R de�ned by m∗(x) = E{Y |X = x} the

expected squared error occurring in approximating Y by m∗(X),

E
{
|Y −m∗(X)|2

}
,

is small. In this case an alternative way to estimate g is to use the data

(X1, Y1), . . . , (Xn, Yn), Xn+Ln+1, . . . , Xn+Ln+Nn (4)

in order to construct an estimate

m(X,Y ),n(·) = m(X,Y ),n(·, (X1, Y1), . . . , (Xn, Yn)) : Rd → R (5)

of m∗ and to de�ne the corresponding surrogate density estimate

ĝ(X,Y ),n =
1

Nn · hNn
·
Nn∑
i=1

K

(
y −m(X,Y ),n(Xn+Ln+i)

hn

)
. (6)

In this article we are interested in situations, where the sample size n is rather small
(in our application in Section 4 we will have n = 10), since the collection of the real data
(2) is rather expensive. Consequently, it might also be useful to use data from our model
to estimate g. One possibility of doing this is to de�ne an estimate of g on the basis of
the data

(Xn+1,m(Xn+1)), . . . , (Xn+Ln ,m(Xn+Ln)), Xn+Ln+1, . . . , Xn+Ln+Nn (7)
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by estimating in a �rst step a surrogate

m(X,m(X)),Ln(·) = (8)

m(X,m(X)),Ln(·, (Xn+1,m(Xn+1)), . . . , (Xn+Ln ,m(Xn+Ln))) : Rd → R

of m and by de�ning in the second step the corresponding surrogate density estimate via

ĝ(X,m(X)),Ln =
1

Nn · hNn
·
Nn∑
i=1

K

(
y −m(X,m(X)),Ln(Xn+Ln+i)

hn

)
. (9)

The main question which we want to investigate in this paper is whether there exist
situations in which suitably de�ned estimates based on the complete data (1) achieve
simultaneously better rate of convergence results than the estimates (3), (6) and (9).
In the next section we propose a novel method for improving the surrogate models (5)

and (8) by using a combination of the real data (4) and the model data (7). Our main
result is that the rate of convergence of the corresponding surrogate density estimate is at
least as good as the rates of convergence of the density estimates (3), (6) and (9), and is
in special situations better than any of the above rates of convergence. The �nite sample
size behaviour of our estimates is illustrated by using simulated data. The usefulness of
our newly proposed estimates for uncertainty quanti�cation is demonstrated by using it
to analyze the uncertainty occurring in experiments with a suspension strut.
Throughout this paper we use the following notation: N, N0 and R are the sets of

positive integers, nonnegative integers and real numbers, respectively. Let p = k + β for
some k ∈ N0 and 0 < β ≤ 1, and let C > 0. A function m : Rd → R is called (p, C)-
smooth, if for every α = (α1, . . . , αd) ∈ Nd0 with

∑d
j=1 αj = k the partial derivative

∂km
∂x
α1
1 ...∂x

αd
d

exists and satis�es∣∣∣∣ ∂km

∂xα1
1 . . . ∂xαdd

(x)− ∂km

∂xα1
1 . . . ∂xαdd

(z)

∣∣∣∣ ≤ C · ‖x− z‖β
for all x, z ∈ Rd. If X is a random variable, then PX is the corresponding distribution,
i.e., the measure associated with the random variable. Let D ⊆ Rd and let f : Rd → R
be a real-valued function de�ned on Rd. We write x = arg maxz∈D f(z) if maxz∈D f(z)
exists and if x satis�es

x ∈ D and f(x) = max
z∈D

f(z).

The outline of this paper is as follows: In Section 2 the construction of the improved
surrogate model is explained. The main results are presented in Section 3 and proven in
Section 5. The �nite sample size performance of our estimates is illustrated in Section 4
by applying it to simulated and real data.

2 A new method for improving an imperfect surrogate

model by real data

In this section we describe our ideas behind the construction of the improved surrogate
model.
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In order to construct density estimates on the basis of the data (1), we proceed as
follows: We start by de�ning a surrogate estimate

mLn(·) = mLn(·, (Xn+1,m(Xn+1)), . . . , (Xn+Ln ,m(Xn+Ln))) : Rd → R (10)

of m. In principle any kind of nonparametric regression estimate can be used at this
point. In Section 4 we will use a penalized least squares estimate de�ned by

m̃Ln,(k,λLn )(·) = arg min
f∈Wk(Rd)

(
1

Ln

n+Ln∑
i=n+1

|f(Xi)−m(Xi)|2 + λLn · J2
k (f)

)
, (11)

where k ∈ N with 2k > d, where

J2
k (f) =

∑
α1,...,αd∈N, α1+···+αd=k

k!

α1! · · · · · αd!

∫
Rd

∣∣∣∣ ∂kf

∂xα1
1 . . . ∂xαdd

(x)

∣∣∣∣2 dx
is a penalty term penalizing the roughness of the estimate and where W k(Rd) denotes
the Sobolev space{

f :
∂kf

∂xα1
1 . . . ∂xαdd

∈ L2(Rd) for all α1, . . . , αd ∈ N with α1 + · · ·+ αd = k

}
.

The condition 2k > d implies that the functions in W k(Rd) are continuous and hence
the value of a function at a point is well de�ned. In order to be able to analyze the rate
of convergence of this estimate for arbitrary distribution of X and dimension d > 1 we
will truncate this estimate at some height β > 0, i.e., we will de�ne

mLn(x) = Tβ(m̃Ln,(k,λLn )(x)) (x ∈ Rd), (12)

where

Tβz =


β, z > β

z, −β ≤ z ≤ β
−β, z < −β

for z ∈ R.
Next we compute the residuals on the data set (4) of the estimate (10), i.e., we compute

ε̂i = Yi −mLn(Xi) (i = 1, . . . , n). (13)

Then we de�ne an estimate
m̂ε̂
n(·) : Rd → R (14)

which smoothes these residuals (see below) and de�ne our �nal surrogate model (X, m̂n(X))
(where m̂n is an estimate of m∗(·) = E{Y |X = ·}) by setting

m̂n(x) = mLn(x) + m̂ε̂
n(x) (x ∈ Rd). (15)
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In order to de�ne the estimate (14) we use two kinds of data sets: A �rst data set
corresponding to the residuals of mLn on X1, . . . , Xn, i.e., the data set

{(X1, ε̂1), . . . , (Xn, ε̂n)} = {(X1, Y1 −mLn(X1))), . . . , (Xn, Yn −mLn(Xn))} . (16)

And a second data set corresponding to the residuals of mLn on the arti�cial sample with
measurement errors

{(Xn+Ln+1,mLn(Xn+Ln+1)), . . . , (Xn+Ln+Nn ,mLn(Xn+Ln+Nn))} (17)

of (X,Y ), i.e., the data set

{(Xn+Ln+1, 0), . . . , (Xn+Ln+Nn , 0)} . (18)

The second data set will be useful in particular in the case that mLn is already very close
to

m∗ : Rd → R,m∗(x) = E{Y |X = x},
since the sample size n of the data set (16) might be too small in order to detect that
0 ≈ m∗ −mLn might be the optimal choice for m̂ε̂

n.
Since both data sets are not equally trustworthy, we weight them by some weight

w(n) ∈ [0, 1], and set

m̃ε̂
n(·) = m̃ε̂

n(·, (Xn+1,m(Xn+1)), . . . , (Xn+Ln ,m(Xn+Ln)), Xn+Ln+1, . . . , Xn+Ln+Nn)

= arg min
f∈Wk(Rd)

(
w(n)

n

n∑
i=1

(ε̂i − f(Xi))
2 +

1− w(n)

Nn

Nn∑
i=1

(0− f(Xn+Ln+i))
2

+λn · J2
k (f)

)
(19)

and
m̂ε̂
n(x) = Tc1·αn(m̃ε̂

n(x)) (x ∈ Rd), (20)

where c ≥ 1 and αn > 0. Finally, we use (X, m̂n(X)) as a surrogate model for (X,Y )
and estimate the density g of Y by applying a kernel density estimate to a sample of
m̂n(X). To do this, we choose a kernel K : Rd → R and a bandwidth hNn > 0 and de�ne

ĝNn(y) =
1

Nn · hNn
·
Nn∑
i=1

K

(
y − m̂n(Xn+Ln+i)

hNn

)
. (21)

3 Main results

In the next theorem we present bounds on the rate of convergence of our surrogate
estimate, which we will use to derive bounds on the rate of convergence of our density
estimate. In principle, all of our error bounds are also valid for �nite n. In order to
simplify the presentation, we consider the case n→∞ and assume that the distribution
of (X,Y ) and also the stochastic model (X,m(X)) change for increasing n such that
Y − m∗(X) and the error m(X) − m∗(X) get smaller for increasing n. In order to
simplify the notation we write (X,Y ) and m instead of (X(n), Y (n)) and m(n), resp.
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Theorem 1 Let d, k ∈ N with 2k > d. Let (X,Y ), (X1, Y1), . . . be independent and

identically distributed Rd×R�valued random variables such that supp(X) is bounded and
E{Y 2} < ∞. Assume that Y has a density g with respect to the Lebesgue measure. Let

m∗(x) = E{Y |X = x} and let m : Rd → R be a measurable function. Let n ∈ N with

n ≥ 2 and let Ln, Nn ∈ N with n ≤ Ln ≤ Nn and let αn > α∗n ≥ 0. Assume that

E
{
|Y −m∗(X)|2

}
≤ (α∗n)2 and E

{
|Y −m∗(X)|3

}
≤ (α∗n)3, (22)

that there exists K,σ0 > 0 such that

K2 ·
(
E

{
exp

(
(Y −m∗(X))2

αn ·K

) ∣∣X}− 1

)
≤ σ0 a.s., (23)

that the regression function E{Y −m∗(X)|X = x} = (m−m∗)(x) satis�es

sup
x∈Rd

|m(x)−m∗(x)| ≤ αn (24)

and

J2
k (m−m∗) ≤ (αn)2. (25)

Furthermore, assume that

αn ≥
1

nl
for some l ∈ N (26)

and that for some c2 ∈ R+ and 1 ≤ β ≤ n+ Ln we have

|m(x)| ≤ β (x ∈ Rd) and J2
k (m) ≤ c2 <∞. (27)

De�ne mLn,(k,λ) by (11) and (12), where

λLn = c3 ·
(

logLn
Ln

) 2k
2k+d

.

De�ne m̂ε̂
n by (19) and (20) for some Nn satisfying Nn ≤ c4 · nl for some l ∈ N, choose

λn > 0 such that

log n

n
≤ λn ≤

(
log n

n

) 2k
d

,

let w(n) ∈ [0, 1] and de�ne m̂n by (15). Then there exists constants c5, . . . , c10 ∈ R+ such

that

E
{
|Y − m̂n(X)|2

}
≤ c5 · (α∗n)2 + c6 · α2

n · λn + c7 · w(n) · α2
n ·

log n

n · λd/kn

+ c8 ·
(

logLn
Ln

) 2k
2k+d

+c9 · (1− w(n)) · α2
n

(
1 +

logNn

Nn · λd/kn

)
+

c10 · α2
n

min{n,Nn}
+
c10

Ln
.
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In particular, in case w(n) = 1 and λn = c11 · ((log n)/n)2·k/(2·k+d) we get

E
{
|Y − m̂n(X)|2

}
≤ c12 ·max

{
(α∗n)2, α2

n ·
(

log n

n

) 2k
2k+d

,

(
logLn
Ln

) 2k
2k+d

}
.

Remark 1. In any application of the estimate in Theorem 1 we have to choose the pa-
rameters depending on the data. In Section 3 we will use k�fold cross validation applied
to the data (X1, Y1), . . . , (Xn, Yn) in order to choose w(n) and λn, and we choose λLn by
generalized cross validation applied the data (Xn+i,m(Xn+i)) (i = 1, . . . , Ln).

Theorem 1 implies the following corollary concerning the L1 error of the density esti-
mate (21):

Corollary 1 Assume that the density g of Y is (r, C)�smooth for some r ∈ (0, 1] and
that its support is compact. Let K : R → R be a symmetric and bounded density which

decreases monotonically on R+ and de�ne the estimate ĝNn as in Section 2, where m̂n

is de�ned as at the end of Theorem 1. Assume that the assumptions of Theorem 1 are

satsi�ed, and that, in addition,

max

{
(α∗n)2,

(
logLn
Ln

) 2k
2k+d

}
≤ α2

n ·
(

log n

n

) 2k
2k+d

holds. Set

hNn = c13 ·

(
αn ·

(
log n

n

) k
2k+d

) 1
r+1

and assume

Nn ≥
1

α
(2r+1)/(r+1)
n

·
(

n

log n

) k
2k+d

· 2r+1
r

.

Then we have for some c14 ∈ R+

E

∫
R
|gNn(y)− g(y)| dy ≤ c14 ·

(
αn ·

(
log n

n

) k
2k+d

) r
r+1

Proof. Lemma 1 in Bott, Felber and Kohler (2015) implies that for any z1, z2 ∈ R we
have ∫ ∣∣∣∣K (y − z1

hn

)
−K

(
y − z2

hn

)∣∣∣∣ dy ≤ 2 ·K(0) · |z1 − z2|.

Consequently,

ĝY,Nn(y) =
1

Nn · hNn
·
Nn∑
i=1

K

(
y − Yn+Ln+i

hNn

)
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satis�es∫
|ĝNn(y)− ĝY,Nn(y)| dy ≤ 1

Nn · hNn
·
Nn∑
i=1

2 ·K(0) · |mn(Xn+Ln+i)− Yn+Ln+i|.

From this and standard bounds on the L1 error of kernel density estimates (cf., e.g.,
proof of Theorem 1 in Felber, Kohler and Krzy»ak (2015a)) we conclude

E

∫
R
|ĝNn(y)− g(y)| dy

≤ E

∫
R
|ĝNn(y)− ĝY,Nn(y)| dy + E

∫
R
|ĝY,Nn(y)− g(y)| dy

≤ 2 ·K(0)

hNn
·E {|mn(X)− Y |}+

c15√
Nn · hNn

+ c16 · hrNn

≤ 2 ·K(0)

hNn
·
√

E {|mn(X)− Y |2}+
c15√

Nn · hNn
+ c16 · hrNn .

Application of Theorem 1 yields the assertion. �
Remark 2. It is well-known that the L1 error of the standard kernel density applied
to the data (2) achieves under the assumptions of Corollary 1 the (optimal) rate of
convergence

n−r/(2r+1).

It follows from the proof of Corollary 1 (together with standard error bounds on the L2

error of smoothing spline estimates, cf., e.g., Chapter 21 in Györ� et al. (2002)), that
the L1 error of the surrogate density estimate de�ned in (6) and (9) achieves under the
assumptions of Corollary 1 the rates of convergence(

α∗n +

(
log n

n

) k
2k+d

) r
r+1

and (αn)
r
r+1 , resp.

For αn suitably small the bound on the rate of convergence in Corollary 1 converges
faster to zero than any of the above rates of convergence, which proves, that there exists
situations in which our estimate theoretically outperforms the estimates de�ned in (3),
(6) and (9). In the next section we demonstrate with simulated data that this is also the
case for �nite sample sizes.

4 Application to simulated and real data

In this section we illustrate the �nite sample size performance of our estimates by applying
them to simulated and real data.
We start with an application to simulated data, where we illustrate how the size of the

error of the model in�uences the performance of our estimate. To do this, we choose X
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d-dimensional standard normally distributed and ε uniformly distributed on [0, 1] such
that X and ε are independent, set

Y = m(X) + σ · ε

for some m : Rd → R de�ned below and σ ∈ {0.1, 0.5, 1}, and let (X1, Y1), (X2, Y2),
. . . be independent and identically distributed random variables. Our estimate gets

(X1, Y1), . . . , (Xn, Yn)

as data from the real technical system,

(Xn+1,m(Xn+1), . . . , (Xn+Ln ,m(Xn+Ln))

as data from the (imperfect) model (where σ controls the maximal error occurring in this
model), and the additional X-values

Xn+Ln+1, . . . , Xn+Ln+Nn .

If we compare this setting with Theorem 1 we see that in the notation of Theorem 1 we
have E{Y |X = x} = m(x) and consequently α∗n = 0.
In all of our applications we choose n ∈ {10, 20, 40} and Ln = 500. As surrogate

estimate we use a thin plate spline as implemented in the routine Tps() in the statistics
software R, where we use 5�fold cross validation (applied to the data Dn) to choose the
degree of freedom df of the �tted spline from the set {4, 8, 26, . . . , 256}. In the same way
we also choose w(n) from the set {0, 0.1, . . . , 1}, i.e., we choose simultaneously the degree
of freedom df and the weight w(n) by 5�fold cross validation.
For our newly proposed density estimate we use a sample of size Nn = 500, 000 of

m̂n(X) (where m̂n is the estimate introduced in Section 2) and apply to this sample a
kernel density estimate as implemented in the routine density() in the statistics package
R.
The density of Y is the convolution of the density of m(X) and a uniform density. We

do not try to compute its exact form, instead we compute it approximately by applying
a kernel density estimate (as implemented in the routine density() in R) to a sample of
size 1, 000, 000 of Y . In order to judge the quality of our density estimates the resulting
density is treated in our simulations as if it is the real density.
We compare our estimate (est. 4) with three other density estimates. The �rst one

(est. 1) is the standard kernel density estimate as implemented in R applied to the
sample of size n of Y , cf., (3). The other two estimates are surrogate density estimate,
where the kernel density estimate of R is applied to a sample of size Nn = 500, 000 of
the surrogate model. For est. 2 the surrogate model is chosen by applying a thin plate
spline (as implemented in R) to the sample of size n of (X,Y ), cf., (6). And for est. 3

the surrogate model is computed in the same way, but using this time the sample of size
Ln = 500 of our model (X,m(X)), cf., (9).
We consider three di�erent models. In the �rst model we choose d = 2 and

m(x1, x2) = 2 · x1 + x2 + 2.
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Figure 1: Four di�erent density estimates together with the reference density (dashed-
dotted) in simulation from model 1 with parameters n = 20, σ = 0.5, Ln = 500
and Nn = 500, 000.

Figure 1 shows the plot of four di�erent density estimates together with the reference
density for a data set of model 1, where we use n = 20, σ = 0.5, Ln = 500 and
Nn = 500, 000.
In the second model we choose again d = 2, but de�ne m this time by

m(x1, x2) = x2
1 + x2

2.

Figure 2 shows the plot of four di�erent density estimates together with the reference
density for a data set of model 2, where we use n = 20, σ = 0.5, Ln = 500 and
Nn = 500, 000.
In the third model we choose d = 1 and de�ne m by

m(x) = exp(x).
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Figure 2: Four di�erent density estimates together with the reference density (dashed-
dotted) in simulation from model 1 with parameters n = 20, σ = 0.5, Ln = 500
and Nn = 500, 000.

Figure 3 shows the plot of four di�erent density estimates together with the reference
density for a data set of model 3, where we use n = 20, σ = 0.5, Ln = 500 and
Nn = 500, 000.
We compare the L1 errors of our four di�erent estimates. To do this, we approximate

the integral by a Riemann sum de�ned on an equidistant partition consisting of 8192
subintervals of the interval [−6, 10] (in model 1) or the interval [0, 10] (in models 2 and
3). Since this L1 error is random, we repeat each simulation 100 times and report in
Table 1 the median (and in brackets the interquartile range) of the 100 L1 errors for each
of our four estimates.
From Table 1 we see that our estimate outperforms all other estimates in 20 out of 27

settings, and in these cases often its error is by a factor 2 till 3 smaller than the errors
of all other estimates. And in the seven cases where it does not achieves the smallest
error, its error is approximately at the same size as the smallest error (and at most 20
percent larger). These larger error occur only in model 1, where the function m is a
linear function which can be easily estimated even from a small sample of observation,
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Figure 3: Four di�erent density estimates together with the reference density (dashed-
dotted) in simulation from model 3 with parameters n = 20, σ = 0.5, Ln = 500
and Nn = 500, 000.

and where therefore the surrogate density estimate based on an estimated surrogate is
rather good.
Next we illustrate the fact that the use of two samples with a data-dependent selected

weight w(n) improves our estimate. To do this, we do additional simulations for n = 10
and σ = 0.1 in each of the three models, and compute also an estimate which uses a
�xed weight w(n) = 1 but is otherwise de�ned as our newly introduced est. 4. In Table

13



model d σ n est. 1 est. 2 est. 3 est. 4

1 2 0.1 10 0.324 (0.179) 0.010 (0.005) 0.019 (0.003) 0.009 (0.004)
1 2 0.1 20 0.260 (0.151) 0.008 (0.003) 0.019 (0.003) 0.009 (0.003)
1 2 0.1 40 0.223 (0.114) 0.008 (0.003) 0.019 (0.003) 0.008 (0.003)
1 2 0.5 10 0.389 (0.199) 0.034 (0.028) 0.090 (0.003) 0.037 (0.029)
1 2 0.5 20 0.248 (0.139) 0.022 (0.020) 0.090 (0.003) 0.025 (0.018)
1 2 0.5 40 0.233 (0.128) 0.015 (0.010) 0.090 (0.003) 0.019 (0.012)
1 2 1 10 0.349 (0.221) 0.066 (0.070) 0.178 (0.003) 0.066 (0.048)
1 2 1 20 0.269 (0.132) 0.053 (0.050) 0.178 (0.003) 0.051 (0.039)
1 2 1 40 0.213 (0.128) 0.030 (0.026) 0.178 (0.003) 0.034 (0.020)

2 2 0.1 10 0.422 (0.189) 0.296 (0.150) 0.034 (0.002) 0.015 (0.010)
2 2 0.1 20 0.344 (0.147) 0.135 (0.072) 0.034 (0.003) 0.012 (0.008)
2 2 0.1 40 0.261 (0.102) 0.065 (0.027) 0.034 (0.002) 0.011 (0.005)
2 2 0.5 10 0.444 (0.178) 0.317 (0.167) 0.188 (0.003) 0.067 (0.046)
2 2 0.5 20 0.300 (0.115) 0.181 (0.078) 0.188 (0.003) 0.053 (0.033)
2 2 0.5 40 0.246 (0.086) 0.111 (0.050) 0.188 (0.003) 0.042 (0.018)
2 2 1 10 0.415 (0.201) 0.343 (0.164) 0.351 (0.003) 0.145 (0.086)
2 2 1 20 0.304 (0.134) 0.220 (0.083) 0.351 (0.003) 0.119 (0.049)
2 2 1 40 0.231 (0.072) 0.165 (0.054) 0.352 (0.003) 0.108 (0.024)

3 1 0.1 10 0.483 (0.192) 0.141 (0.073) 0.064 (0.003) 0.047 (0.050)
3 1 0.1 20 0.404 (0.140) 0.109 (0.078) 0.064 (0.003) 0.030 (0.034)
3 1 0.1 40 0.293 (0.096) 0.070 (0.029) 0.064 (0.003) 0.022 (0.021)
3 1 0.5 10 0.459 (0.170) 0.316 (0.182) 0.304 (0.003) 0.168 (0.118)
3 1 0.5 20 0.389 (0.131) 0.256 (0.171) 0.304 (0.003) 0.127 (0.132)
3 1 0.5 40 0.304 (0.086) 0.196 (0.090) 0.304 (0.003) 0.105 (0.084)
3 1 1 10 0.430 (0.149) 0.401 (0.211) 0.528 (0.003) 0.335 (0.213)
3 1 1 20 0.333 (0.119) 0.340 (0.178) 0.529 (0.003) 0.255 (0.192)
3 1 1 40 0.278 (0.114) 0.316 (0.134) 0.528 (0.003) 0.245 (0.159)

Table 1: Simulation results in the three di�erent models.

2 we present the medians (and in brackets the interquartile ranges) of the error of this
modi�ed est. 4 together with the errors of the original est. 4 in 100 simulations for each
of the above three settings.
From Table 2 we see that the adaptive choice of the weight slightly improves the error

of our newly proposed estimate in two out of three cases, and that our newly proposed
estimate achieves the same error as the estimate with the �xed weight in the remaining
case.
Finally we illustrate the usefulness of our newly proposed method for uncertainty

quanti�cation by using it to analyze the uncertainty occurring in experiments with a
suspension strut (cf., Figure 4), which serves as an academic demonstrator to study
uncertainty in load distributions and the ability to control vibrations, stability and load
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model 1, model 2, n = 10, model 3,
n = 10, σ = 0.1 n = 10, σ = 0.1 n = 10, σ = 0.1

est. 4 0.010 0.015 0.054
with wn = 1 ( 0.006) (0.011) (0.078)

original 0.009 0.015 0.047
est. 4 (0.004) (0.010) (0.050)

Table 2: Comparison of est. 4 with w(n) = 1 �xed and the original est. 4 with data-
dependent w(n) chosen from the set {0, 0.1, . . . , 1}.

paths in suspension struts such as aircraft landing gears. A CAD illustration of this

Figure 4: A photo of the demonstrator of a suspension strut and its experimental test
setup.

suspension strut can be found in Figure 5 (left). This suspension strut consists of an upper
and lower structure, where the lower structure contains a spring�damper component.
The spring�damper component transmits the axial forces between the upper and lower
structures of the suspension strut. The aim of our analysis is the analysis of the behaviour
of the maximum relative compression of the spring damper component in case that
the free fall height is chosen randomly. Here we assume that the free fall heights are
independent normally distributed with mean 0.05 meter and standard deviation 0.0057
meter.
We analyze the uncertainty in the maximum relative compression in our suspension

strut using a simpli�ed mathematical model of the suspension strut (cf., Figure 5 (right)),
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Mathematical modelling of a suspension strut

Figure 1 illustrates a suspension strut that has similar dynamic requirements and behaviour as an aircraft
landing gear.

upper structure

lower structure

spring and damper component

elastic foot

freefall height hf

Fig. 1 CAD illustration of a suspension strut

A) Two degree of freedom (2DOF) suspension system with linear stiffness
and axiomatic damping
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Fig. 2 Mathematical representation of a 2DOF suspension strut with linear stiffness and axiomatic
damping
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Mathematical modelling of a suspension strut

Figure 1 illustrates a suspension strut that has similar dynamic requirements and behaviour as an aircraft
landing gear.
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Fig. 2 Mathematical representation of a 2DOF suspension strut with linear stiffness and axiomatic
damping
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Figure 5: A CAD illustration of the suspension strut (left) and illustration of a simpli�ed
model of the suspension strut (right).

where the upper and the lower structures of the suspension strut are two lump masses
m and m1, the spring damper component is represented by a sti�ness parameter k and
a suitable damping coe�cient b, and the elastic foot is represented by another sti�ness
parameter kef . Using a linear sti�ness and an axiomatic damping it is possible to compute
the maximum relative compression by solving a di�erential equation using Runge-Kutta
algorithm (cf., model a) in Mallapur and Platz (2017)). We use the results of Ln = 500
corresponding computer experiments to construct a surrogate estimate mLn as described
above.
In Figure 6 we see in the upper left panel data from Ln = 500 computer experiments

together with a corresponding surrogate model (solid line), and in the upper right panel
the corresponding surrogate density estimate. In the lower left panel we see again sur-
rogate (dashed-dotted) based on the data from the computer experiments together with
n = 10 real data points from the experiment. Clearly, our (dashed-dotted) surrogate
model based only on the computer experiment is imperfect since it does not really �t the
real data. By the methodology introduced in this paper we can improve this imperfect
surrogate model, which yields the solid line in the lower left panel of Figure 6. The
corresponding surrogate density estimate is shown in the lower right panel of Figure 6,
and we see that the use of n = 10 additional data points leads in this example clearly to
a di�erent density estimate than the estimate based only on the model data in the upper
right panel of Figure 6.

5 Proofs

5.1 Auxiliary results

In this subsection we present various auxiliary results on smoothing spline estimates,
which we use in the next subsection in order to derive a new error bound on smoothing
splines applied to weighted data with additional measurement errors in the dependent
variable, cf., Theorem 2 below. This result will be used to proof Theorem 1.

16



0.03 0.05 0.07

0.
07

0.
11

x

y ●●
●● ● ●

●● ●●●●● ●● ●●
●●

●
● ●●● ● ●●● ●●● ●● ●●

● ●● ●
●

● ●● ●●●●

●
● ●●●●

● ● ●● ●●●●
●● ●●● ●●●● ● ●● ●●

●
● ●●● ●●●●●●●●● ●●●●●

● ● ●
●

●●●●
●

● ●●
●

● ●●●● ● ●
●● ● ● ●●●● ● ●● ●● ●●

●
●●● ●● ●●● ●●

●
● ●●●●●

●● ●●
● ●

●● ●●
●

●●
● ●●●● ● ●●● ●

●
● ●●● ● ●●● ● ●●● ● ●● ●●●

●●●
●●

●
●●● ●●●●●● ●● ●●

●
●●● ●●●●●● ●●●● ●

●●● ●● ●●●
●

●●
●●

●● ●●● ●●
●

●● ●●●●●●
●●● ●

●● ● ●●● ●●●● ●
●

●●
● ● ●
● ●● ●

●●
●● ●●●●● ●●●● ● ●

● ●●● ●●
●

●●●●●● ● ● ●
●

●
●

●●
●

●
● ●●● ●●

●●●● ●●● ●●●
●● ●● ●
● ●●●● ●●●●●●●● ●● ●●

●
●

●●
●

●
●

●
●

● ●●● ●● ●
● ●●● ●●●● ● ●● ●●●● ●● ●

●
●●●●● ●●● ●● ● ●

● ● ●
●● ●

● ●
●● ● ●● ●

●●
●

●● ●●●●●●●
●●●

●●● ●●●●●● ●● ●
●● ● ●● ●●●

●●●●● ●●
● ● ●

●● ●
● ●●●

●●●●● ●● ●●●●●●●●●●●●
●● ●● ●● ●●●●●●●

●
●

0.07 0.08 0.09 0.10 0.11

0
15

0

y

0.03 0.05 0.07

0.
07

0.
11

x

y

●● ● ●
● ●

●

●● ● ●
● ● ●●● ● ●● ●

0.07 0.08 0.09 0.10 0.11
0

30
0

y

Figure 6: Data from Ln = 500 computer experiments together with a corresponding
surrogate model (upper left panel), the corresponding density estimate (upper
right model), the surrogate model based only on the data from the computer
experiments (dashed-dotted) together with n = 10 experimental data points
and the corresponding surrogate model proposed in this paper (solid line) (lower
left panel) and the corresponding density estimate proposed in this paper (lower
right panel).

5.1.1 A deterministic lemma

Lemma 1 Let d,N ∈ N, t > 0, w1, . . . , wN ∈ R+, x1, . . . , xN ∈ Rd, βN ≥ L > 0,
z1, . . . , zN ∈ R and z̄1, . . . , z̄N ∈ [−L,L]. Let m : Rd → R be a function. Let FN be a set

of functions f : Rd → R and for f ∈ FN let

pen2 (f) ≥ 0

be a penalty term. De�ne

m̃N = arg min
f∈FN

(
N∑
i=1

wi · |f(xi)− z̄i|2 + pen2 (f)

)

(where we tacitly assume that the above minimum exists), and

m̂N (x) = TβN (m̃N (x)) (x ∈ Rd)
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and let m∗N ∈ FN be arbitrary. Then

N∑
i=1

wi · |m̂N (xi)−m(xi)|2 + pen2 (m̃N ) (28)

≥ 3

(
N∑
i=1

wi · |m∗N (xi)−m(xi)|2 + pen2 (m∗N )

)
+ 128

N∑
i=1

wi · |zi − z̄i|2 + t

implies

N∑
i=1

wi · (m̂N (xi)−m∗N (xi)) · (zi −m(xi))

≥ 1

24

(
N∑
i=1

wi · |m̂N (xi)−m∗N (xi)|2 + pen2 (m̃N )

)
+
t

6
. (29)

Proof. Using
N∑
i=1

wi · |m̂N (xi)− z̄i|2 ≤
N∑
i=1

wi · |m̃N (xi)− z̄i|2

the assertion follows as in the proof of Lemma 5 in Furer and Kohler (2015). A complete
proof is available from the authors upon request. �

5.1.2 A bound on a covering number

De�nition 1 Let l ∈ N and let F be a class of functions f : Rl → R. The covering

number N2(ε,F , xn1 ) is de�ned for any ε > 0 and xn1 = (x1, ..., xn) ∈ (Rl)n as the smallest

integer k such that there exist functions g1, ..., gk : Rl → R with

min
1≤i≤k

 1

n

n∑
j=1

|f(xj)− gi(xj)|2
1/2

≤ ε

for each f ∈ F .

Lemma 2 Let L,A, c > 0 and set

F =
{
TLf : f ∈W k(Rd) and J2

k (f) ≤ c
}
.

Then there exists constants c17, c18, c19 ∈ R+ depending only on A, k and d such that for

any ε > 0 and all x1, . . . , xn ∈ [−A,A]d

logN2(ε,F , xn1 ) ≤

(
c17 ·

(√
c

ε

)d/k
+ c18

)
· log

(
c19 ·

L2n

ε2

)
. (30)

Proof. See Lemma 20.6 and Problem 20.9 in Györ� et al. (2002), or Lemma 3 in Kohler,
Krzy»ak and Schäfer (2002). �
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5.1.3 A bound on the error for smoothing spline estimates for �xed design

regression

Let L ≥ 0 and
Yi = m(xi) +Wi (i = 1, . . . , n)

for some x1, . . . , xn ∈ Rd, m : Rd → R and some random variables W1, . . . , Wn which
are independent and have expectation zero. We assume that the Wi's are sub-Gaussian
in the sense that

max
i=1,...,n

K2E{eW 2
i /K

2 − 1} ≤ σ2
0 (31)

for some K,σ0 > 0. Our goal is to estimate m from (x1, Ȳ1,n), . . . , (xn, Ȳn,n), where
Ȳ1,n, . . . , Ȳn,n ∈ [−L,L] are arbitrary (bounded) random variables with the property
that the average squared measurement error

1

n

n∑
i=1

|Yi − Ȳi,n|2

is �small�. Let Fn be a set of functions f : Rd → R and consider the least squares estimate
with complexity penalty

m̃n(·) = arg min
f∈Fn

(
1

n

n∑
i=1

|f(xi)− Ȳi,n|2 + pen2
n(f)

)
and mn = Tβnm̃n, (32)

where for f ∈ Fn
pen2

n(f) ≥ 0

is a penalty term penalizing the complexity of f and where βn ≥ L. Set

‖f‖2n =
1

n

n∑
i=1

|f(xi)|2.

Lemma 3 Assume that the sub-Gaussian condition (31) holds and let the estimate be

de�ned by (32). Then there exist constants c20, c21, c22 > 0 which depend only on σ0 and

K such that for any δn > c20/n with

√
n · δ ≥ c21

∫ √48δ

δ/(12σ0)

(
logN2

(
u, {Tβnf − g : f ∈ Fn, (33)

1

n

n∑
i=1

|Tβnf(xi)− g(xi)|2 + pen2
n(f) ≤ 48 · δ}, xn1

))1/2

du

for all δ ≥ δn/6 and all g ∈ Fn we have for any m∗n ∈ Fn

P

{
‖mn −m‖2n + pen2

n(m̃n) + 4 · δn ≤
24

n
·
n∑
i=1

(mn(xi)−m∗n(xi)) ·Wi

}

≤ c22 · exp

(
−n ·min{δn, σ2

0}
c22

)
.

19



Proof. The result follows from the proof of Lemma 2 in Kohler and Krzy»ak (2012). A
detailed proof is available from the authors upon request. �

5.1.4 A bound on the deviation between the L2 error and the empirical L2 error for

smoothing splines

Let (X,Y ), (X1, Y1), . . . be independent and identically distributed Rd×R valued random
variables with EY 2 < ∞. Let m(x) = E{Y |X = x} be the corresponding regression
function. Let Ȳ1,n, . . . , Ȳn,n be R�valued random variables and de�ne the estimate mn

by

m̃n(·) = arg min
f∈Fn

(
1

n

n∑
i=1

|f(Xi)− Ȳi,n|2 + pen2
n(f)

)
,

where Fn is a set of functions f : Rd → R and for f ∈ Fn

pen2
n(f) ≥ 0

is a penalty term penalizing the complexity of f . Set

mn = Tβnm̃n

for some βn > 0. Then the following result holds.

Lemma 4 Let βn ≥ L ≥ 1 and assume that the m is bounded in absolute value by L.
Let Fn be a set of functions f : Rd → R and de�ne the estimate mn as above. Then there

exist constants c23, c24, c25, c26 > 0 such that for any δn > 0 which satis�es

δn > c23 ·
β2
n

n

and

c24

√
nδ

β2
n

≥
∫ √δ
c25δ/β2

n

(
logN2

(
u, {(Tβnf −m)2 : f ∈ Fn,

1

n

n∑
i=1

|Tβnf(xi)−m(xi)|2 ≤
δ

β2
n

, pen2
n(f) ≤ δ}, xn1

))1/2

du

for all δ ≥ δn and all x1, . . . , xn ∈ Rd, we have for n ∈ N

P

{∫
|mn(x)−m(x)|2PX(dx) > δn + 3 · pen2

n(m̃n) + 3
1

n

n∑
i=1

|mn(Xi)−m(Xi)|2
}

≤ c26 · exp

(
−n · δn
c26β2

n

)
.

Proof. The result follows from the bound on P1,n presented in the proof of Lemma 3 in
Kohler and Krzy»ak (2012). A detailed proof is available from the authors on request.

�
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5.2 A general result on penalized least squares estimates

Theorem 2 Let d, k, n, Ln ∈ N, w(n) ∈ [0, 1] with n ≥ 2 and 1 ≤ β ≤ n + Ln. Let

(X,Y ), (X1, Y1), . . . be independent and identically distributed Rd × R�valued random

variables with E{Y 2} < ∞ and with supp(X) bounded. Set m(x) = E{Y |X = x}. Let

Ȳ1,n, . . . , Ȳn+Ln,n be arbitrary R�valued random variables satisfying

max
i=1,...,n+Ln

E
{
|Ȳi,n|3

}
≤ c27 <∞. (34)

Set

wi =
w(n)

n
for i = 1, . . . , n

and

wi =
1− w(n)

Ln
for i = n+ 1, . . . , n+ Ln.

Assume 2 · k > d and de�ne the estimate mn by

m̃n(·) = arg min
f∈Wk(Rd)

(
n+Ln∑
i=1

wi · |f(Xi)− Ȳi,n|2 + λn · J2
k (f)

)
and

mn(x) = Tβm̃n(x) (x ∈ Rd).

Assume

K2 ·
(
E

{
exp

(
(Y −m(X))2

K2

) ∣∣X}− 1

)
≤ σ2

0 a.s. (35)

for some K,σ0 > 0,
|m(x)| ≤ β (x ∈ Rd) (36)

and

J2
k (m) <∞. (37)

Choose λn ∈ R+ such that

log n

n
≤ λn ≤

(
1

logLn

) 2k
d

. (38)

Assume furthermore

n ≤ Ln ≤ nl (39)

for some l ∈ N. Then there exists constants c28, c29, c30, c31 ∈ R+ such that

E

∫
|mn(x)−m(x)|2PX(dx)

≤ c28 · λn · J2
k (m) + c29 · w(n) ·

(
log n

n · λd/2kn

+ E

{
1

n
·
n∑
i=1

|Ȳi,n − Yi|2
})

+c30 · (1− w(n)) ·

(
logLn

Ln · λd/2kn

+ E

{
1

Ln
·
n+Ln∑
i=n+1

|Ȳi,n − Yi|2
})

+
c31

n
.
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Proof. Set βn = n+ Ln.
In the �rst step of the proof we show that we can assume w.l.o.g.

Ȳi,n ∈ [−βn, βn] for all i = 1, . . . , n+ Ln. (40)

To do this, we let

An =
{
|Ȳi,n| ≤ βn for all i = 1, . . . , n+ Ln

}
be the event that all Ȳi,n be bounded in absolutely value by βn. The union bound together
with Markov inequality implies

P(Acn) ≤ (n+ Ln) · max
i=1,...,n+Ln

P{|Ȳi,n| > βn} ≤ (n+ Ln) ·
maxi=1,...,n+Ln E

{
|Ȳi,n|3

}
β3
n

≤ c27

n
.

On the event An the estimate mn coincides with the estimate m
(trunc)
n de�ned by

m̃(trunc)
n (·) = arg min

f∈Wk(Rd)

(
n+Ln∑
i=1

wi · |f(Xi)− Tβn Ȳi,n|2 + λn · J2
k (f)

)

and
m(trunc)
n (x) = Tβm̃

(trunc)
n (x) (x ∈ Rd).

From this we can conclude that

E

∫
|mn(x)−m(x)|2PX(dx)

≤ E

{∫
|mn(x)−m(x)|2PX(dx) · IAn

}
+ 4 · β2 ·P(Acn)

= E

{∫
|m(trunc)

n (x)−m(x)|2PX(dx) · IAn
}

+ 4 · β2 ·P(Acn)

≤ E

∫
|m(trunc)

n (x)−m(x)|2PX(dx) + 4 · β2 · c27

n
,

which completes the �rst step of the proof.
So from now on we assume that (40) holds. Set

δn = c32 ·
log n

n · λd/(2k)
n

, δLn = c32 ·
logLn

Ln · λd/(2k)
n

, γn = w(n) · δn + (1− w(n)) · δLn

and

Tn =

∫
|mn(x)−m(x)|2PX(dx)−

(
9 · λn · J2

k (m) + 384 ·
n+Ln∑
i=1

wi · |Yi − Ȳi,n|2
)
.
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In the second step of the proof we show that the assertion follows from∫ ∞
36·γn

P{Tn > t} dt ≤ c33

n
.

To do this, we observe

E

∫
|mn(x)−m(x)|2PX(dx)

≤ E

{∫
|mn(x)−m(x)|2PX(dx)−

(
9 · λn · J2

k (m) + 384 ·
n+Ln∑
i=1

wi · |Yi − Ȳi,n|2
)}

+9 · λn · J2
k (m) + 384 ·E

{
n+Ln∑
i=1

wi · |Yi − Ȳi,n|2
}

≤ 36 · γn +

∫ ∞
36·γn

P{Tn > t} dt+ 9 · λn · J2
k (m) + 384 ·E

{
n+Ln∑
i=1

wi · |Yi − Ȳi,n|2
)}

.

The de�nition of γn and of the weights implies the assertion of step 2.
In the third step of the proof we show that we have for t > 0

P{Tn > t} ≤ P1,n(t) + P2,n(t),

where

P1,n(t) = P

{∫
|mn(x)−m(x)|2PX(dx)

>
t

2
+ 3 · λn · J2

k (m̃n) + 3 ·
n+Ln∑
i=1

wi · |mn(Xi)−m(Xi)|2
}

and

P2,n(t) = P

{
3 ·

n+Ln∑
i=1

wi · |mn(Xi)−m(Xi)|2 + 3 · λn · J2
k (m̃n)

>
t

2
+ 9 ·

(
n+Ln∑
i=1

wi · |m(Xi)−m(Xi)|2 + λnJ
2
k (m)

)

+384 ·
n+Ln∑
i=1

wi · |Yi − Ȳi,n|2
}
.

Using

Tn =

∫
|mn(x)−m(x)|2PX(dx)− 3 · λn · J2

k (m̃n)− 3 ·
n+Ln∑
i=1

wi · |mn(Xi)−m(Xi)|2
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+3 ·
n+Ln∑
i=1

wi · |mn(Xi)−m(Xi)|2 + 3 · λn · J2
k (m̃n)

−

(
9 ·

(
n+Ln∑
i=1

wi · |m(Xi)−m(Xi)|2 + λnJ
2
k (m)

)
+ 384 ·

n+Ln∑
i=1

wi · |Yi − Ȳi,n|2
)

=: T1,n + T2,n

this immediately follows from

P{Tn > t} = P{T1,n + T2,n > t} ≤ P{T1,n > t/2}+ P{T2,n > t/2}.

In the fourth step of the proof we derive a upper bound on∫ ∞
36·γn

P1,n(t) dt.

Let t ≥ 36 · γn. The de�nition of the weights together with

a+ b > c+ d ⇒ (a > c or b > d)

implies that we have

P1,n(t) ≤ P

{
w(n) ·

∫
|mn(x)−m(x)|2PX(dx) >

w(n) · δn
w(n) · δn + (1− w(n)) · δLn

· t
2

+w(n) · 3 · λn · J2
k (m̃n) + w(n) · 3 · 1

n
·
n∑
i=1

|mn(Xi)−m(Xi)|2
}

+P

{
(1− w(n)) ·

∫
|mn(x)−m(x)|2PX(dx)

>
(1− w(n)) · δLn

w(n) · δn + (1− w(n)) · δLn
· t

2
+ (1− w(n)) · 3 · λn · J2

k (m̃n)

+(1− w(n)) · 3 · 1

Ln
·
n+Ln∑
i=n+1

|mn(Xi)−m(Xi)|2
}

≤ P

{∫
|mn(x)−m(x)|2PX(dx) >

δn

w(n) · δn + (1− w(n)) · δLn
· t

2

+3 · λn · J2
k (m̃n) + 3 · 1

n
·
n∑
i=1

|mn(Xi)−m(Xi)|2
}

+P

{∫
|mn(x)−m(x)|2PX(dx) >

δLn
w(n) · δn + (1− w(n)) · δLn

· t
2

+3 · λn · J2
k (m̃n) + 3 · 1

Ln
·
n+Ln∑
i=n+1

|mn(Xi)−m(Xi)|2
}
.
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We show next that Lemma 4 is applicable to the two di�erent probabilities, where both
times βn is replaced by β and where we use sample sizes n and Ln, resp. Since t ≥
36 · γn ≥ 2 · γn implies

δn

w(n) · δn + (1− w(n)) · δLn
· t

2
≥ δn

and
δLn

w(n) · δn + (1− w(n)) · δLn
· t

2
≥ δLn ,

in order to show that Lemma 4 is applicable to the �rst probability, it su�ces to show

δn > c34 ·
β2

n

and

c35

√
nδ

β2

≥
∫ √δ
c36δ/β2

(
logN2

(
u, {(Tβf −m)2 : f ∈Wk(Rd), J2

k (f) ≤ δ

λn
}, xn1

))1/2

du

for all δ ≥ δn and all x1, . . . , xn ∈ Rd. Using |a2 − b2|2 ≤ (|a|+ |b|)2 · |a− b|2 (a, b ∈ R)
(which we apply with a = Tβf(xi) − m(xi) and b = g(xi), where g is approximating
Tβf −m), we see that we have

N2

(
u,

{
(Tβf −m)2 : f ∈Wk(Rd), J2

k (f) ≤ δ

λn

}
, xn1

)
≤ N2

(
u

16β2
,

{
Tβnf −m : f ∈Wk(Rd), J2

k (f) ≤ δ

λn

}
, xn1

)
.

Using this together with Lemma 2 we see that Lemma 4 is applicable to the �rst proba-

bility, if δn > c34 · β
2

n and the following inequality hold:

√
n · δ
β2

≥ c37 ·
∫ √δ

0

(√δ/λn
u

16β2

)d/k
+ 1

 · log(c38 · β2 · n3)

1/2

du.

The last condition is implied by

√
n · δ ≥ c39 ·

√
log(c38 · β2 · n3) ·

((
δ

λn

)d/(4k)

· δ
1
2
− d

4k +
√
δ

)
,

which in turn follows from

δ ≥ c40 ·
log n

n · λd/(2k)
n

and δ ≥ c40 ·
log n

n
.
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In case that
λn ≤ 1

the last two conditions hold for all δ ≥ δn, provided c32 is chosen large enough.
In the same way one can show that Lemma 4 is also applicable to the second probability

above.
By applying Lemma 4 to the two di�erent probabilities we get

P1,n(t) ≤ c41 · exp

(
−c42 · n ·

δn

w(n) · δn + (1− w(n)) · δLn
· t

2

)
+c41 · exp

(
−c42 · Ln ·

δLn
w(n) · δn + (1− w(n)) · δLn

· t
2

)
,

which implies∫ ∞
36·γn

P1,n(t) dt

≤ c43

n
· w

(n) · δn + (1− w(n)) · δLn
δn

· exp (−c44 · n · δn)

+
c43

Ln
· w

(n) · δn + (1− w(n)) · δLn
δLn

· exp (−c44 · Ln · δLn) ≤ c45

n
.

Here the last inequality follows from the assumptions (38) and (39), from which we can
conclude

n · δn ≥ c32 · log2(n), Ln · δLn ≥ c32 · log2(n),

w(n) · δn + (1− w(n)) · δLn
n · δn

≤ ns and
w(n) · δn + (1− w(n)) · δLn

Ln · δLn
≤ ns

for some s > 0.
In the �fth step of the proof we derive a upper bound on∫ ∞

36·γn
P2,n(t) dt.

Since |m(x)| ≤ β ≤ βn (x ∈ Rd) and wi ≥ 0 (i ∈ {1, . . . , n}) we have

n+Ln∑
i=1

wi · |mn(Xi)−m(Xi)|2 ≤
n+Ln∑
i=1

wi · |Tβnm̃n(Xi)−m(Xi)|2.

This together with (40) and Lemma 1 (applied with m∗n = m) implies

P2,n(t)

≤ P

{
3 ·

n+Ln∑
i=1

wi · |Tβn(m̃n)(Xi)−m(Xi)|2 + 3 · λn · J2
k (m̃n)
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>
t

2
+ 9 ·

(
n+Ln∑
i=1

wi · |m(Xi)−m(Xi)|2 + λnJ
2
k (m)

)
+ 384 ·

n+Ln∑
i=1

wi · |Yi − Ȳi|2
}

≤ P
{ n+Ln∑

i=1

wi · (Tβn(m̃n)(Xi)−m(Xi)) · (Yi −m(Xi)) ≥

1

24

(
n+Ln∑
i=1

wi · |Tβn(m̃n)(Xi)−m(Xi)|2 + λn · J2
k (m̄n)

)
+

t

36

}
.

Proceeding as in the proof of step 4 we can conclude from the de�nition of the weights
that the last probability is bounded by

P
{ 1

n
·
n∑
i=1

(Tβn(m̃n)(Xi)−m(Xi)) · (Yi −m(Xi)) ≥

1

n
· 1

24

(
n∑
i=1

|Tβn(m̃n)(Xi)−m(Xi)|2 + λn · J2
k (m̄n)

)

+
δn

w(n) · δn + (1− w(n)) · δLn
· t

36

}

+P
{ 1

Ln
·
n+Ln∑
i=n+1

(Tβn(m̃n)(Xi)−m(Xi)) · (Yi −m(Xi)) ≥

1

Ln
· 1

24

(
n+Ln∑
i=n+1

|Tβn(m̃n)(Xi)−m(Xi)|2 + λn · J2
k (m̄n)

)

+
δLn

w(n) · δn + (1− w(n)) · δLn
· t

36

}
,

and that Lemma 3 can be applied to both probabilities. From this we can conclude that
the above probabilities are bounded by

c46 · exp

(
−c47 · n ·

δn

w(n) · δn + (1− w(n)) · δLn
· t

36

)
+c46 · exp

(
−c47 · Ln ·

δLn
w(n) · δn + (1− w(n)) · δLn

· t
36

)
,

which implies as above∫ ∞
36·γn

P2,n(t) dt

≤ c48

n
· w

(n) · δn + (1− w(n)) · δLn
δn

· exp (−c49 · n · δn)

+
c48

Ln
· w

(n) · δn + (1− w(n)) · δLn
δLn

· exp (−c49 · Ln · δLn) ≤ c50

n
.

Summarizing the above results we get the assertion. �
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5.3 Proof of Theorem 1

Using the de�nition of m̂n, (a+ b+ c)2 ≤ 3a2 + 3b2 + 3c2 (a, b, c ∈ R), (22), the de�nition
of mn and (27) we get

E
{
|Y − m̂n(X)|2

}
= E

{∣∣∣(Y −m∗(X)) + (m∗(X)−m(X)− m̂ε̂
n(X)) + (m(X)−mLn(X))

∣∣∣2}
≤ 3 ·E

{
|Y −m∗(X)|2

}
+ 3 ·E

{∣∣∣m∗(X)−m(X)− m̂ε̂
n(X)

∣∣∣2}
+3 ·E

{
|m(X)−mLn(X)|2

}
≤ 3(α∗n)2 + 3 ·E

∫ ∣∣∣m̂ε̂
n(x)− (m∗ −m)(x)

∣∣∣2 PX(dx) + 3 ·E
∫
|mLn(x)−m(x)|2 PX(dx).

Hence in order to prove the assertion it su�ces to show

E

∫
|mLn(x)−m(x)|2 PX(dx) ≤ c51 · λLn · J2

k (m) + c52 ·
logLn

Ln · λd/(2k)
Ln

+
c53

Ln
(41)

and

E

∫ ∣∣∣m̂ε̂
n(x)− (m∗ −m)(x)

∣∣∣2 PX(dx)

≤ c54 · α2
n · λn + c55 · w(n) · α2

n ·
log n

n · λd/(2k)
n

+ c56 ·
(

logLn
Ln

) 2k
2k+d

+c57 · (1− w(n)) · α2
n ·

(
1 +

logNn

Nn · λd/kn

)
+

c58 · α2
n

min{n,Nn}
. (42)

Inequality (41) follows from Theorem 2 applied with (X,Y ) = (X,m(X)), n = Ln,
w(n) = 1 and Ȳi,Ln+L̄n = Yi = m(Xn+i) (i = 1, . . . , Ln) and suitably chosen ȲLn+1,Ln+L̄n ,
. . . ,ȲLn+L̄n,Ln+L̄n .
In order to prove (42) we �rst observe that

E{Y −m(X)|X = x} = m∗(x)−m(x),

hence m∗ − m is the regression function to (X,Y − m(X)), and (m∗ − m)/αn is the
regression function to (X, (Y −m(X))/αn). Clearly,∫ ∣∣∣m̂ε̂

n(x)− (m∗ −m)(x)
∣∣∣2 PX(dx) = α2

n ·
∫ ∣∣∣∣ 1

αn
· m̂ε̂

n(x)− 1

αn
· (m∗ −m)(x)

∣∣∣∣2 PX(dx).

By de�nition of m̂ε̂
n we have

1

αn
· m̂ε̂

n(x) =
1

αn
· Tc1·αn(m̃ε̂

n(x)) = Tc1

(
1

αn
· m̃ε̂

n(x)

)
(x ∈ Rd),
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where

1

αn
· m̃ε̂

n(·) = arg min
f∈Wk(Rd)

(
w(n)

n

n∑
i=1

(
1

αn
· ε̂i − f(Xi)

)2

+
1− w(n)

Nn

Nn∑
i=1

(0− f(Xn+Ln+i))
2 + λn · J2

k (f)

)
.

The assumptions in Theorem 1 together with (41) imply that we have

sup
x∈Rd

∣∣∣∣ 1

αn
· (m∗ −m)(x)

∣∣∣∣ ≤ 1 ≤ c1

and

max
i=1,...,n

E

{∣∣∣∣Yi −mLn(Xi)

αn

∣∣∣∣3
}

≤ 27

α3
n

·
(
E
{
|Y −m∗(X)|3

}
+ E

{
|m∗(X)−m(X)|3

}
+ E

{
|m(X)−mLn(X)|3

})

≤ (α∗n)3

α3
n

+ 1 +
c59 ·

(
logLn
Ln

) 2k
2k+d

α3
n

≤ 2 + c59

We consider

1

αn
· ε̂i =

1

αn
· (Yi −mLn(Xi)) =

1

αn
· (Yi −m(Xi)) +

1

αn
· (m(Xi)−mLn(Xi))

as an observation of (Yi −m(Xi))/αn with an additional measurement error

1

αn
· (m(Xi)−mLn(Xi))

(i = 1, . . . , n). And we consider

0 =
1

αn
· (Yn+Ln+i −m(Xn+Ln+i))−

1

αn
· (Yn+Ln+i −m(Xn+Ln+i))

as an observation of 1
αn
· (Yn+Ln+i−m(Xn+Ln+i)) with an additional measurement error

(−1) · 1

αn
· (Yn+Ln+i −m(Xn+Ln+i))

(i = 1, . . . , Nn).
From inequality (41) we can conclude

E

{
1

n

n∑
i=1

∣∣∣∣ 1

αn
· (m(Xi)−mLn(Xi))

∣∣∣∣2
}
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≤ 1

α2
n

·

(
c51 · λLn · J2

k (m) + c52 ·
logLn

Ln · λd/(2k)
Ln

+
c53

Ln

)
,

and the assumptions in Theorem 1 imply

E

{
1

Nn

Nn∑
i=1

∣∣∣∣ 1

αn
· (Yn+Ln+i −m(Xn+Ln+i))

∣∣∣∣2
}

≤ 2 ·E

{
1

Nn

Nn∑
i=1

∣∣∣∣ 1

αn
· (Yn+Ln+i −m∗(Xn+Ln+i))

∣∣∣∣2
}

+2 ·E

{
1

Nn

Nn∑
i=1

∣∣∣∣ 1

αn
· (m∗(Xn+Ln+i)−m(Xn+Ln+i))

∣∣∣∣2
}

≤ 2 · (α∗n)2

α2
n

+ 2 ≤ 4.

Application of Theorem 2 yields

E

∫ ∣∣∣∣ 1

αn
· m̂ε̂

n(x)− 1

αn
· (m∗ −m)(x)

∣∣∣∣2 PX(dx)

≤ c28 · λn · J2
k

(
1

αn
· (m∗ −m)

)
+c29 · w(n) ·

(
log n

n · λd/(2k)
n

+
1

α2
n

·

(
c51 · λLn · J2

k (m) + c52 ·
logLn

Ln · λd/(2k)
Ln

+
c53

Ln

))

+c30 · (1− w(n)) ·

(
logNn

Nn · λd/(2k)
n

+ 4

)
+

c31

min{n,Nn}
,

which implies (42). �
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Supplementary material for the referees

Proof of Lemma 1. Since |z̄i| ≤ L ≤ βn (i = 1, . . . , N) and wi ≥ 0 (i = 1, . . . , N) we
have

N∑
i=1

wi · |z̄i − m̂N (xi)|2 =
N∑
i=1

wi · |z̄i − TβN (m̃N (xi))|2

≤
N∑
i=1

wi · |z̄i − m̃N (xi)|2.

This together with the de�nition of the estimate implies

N∑
i=1

wi · |z̄i − m̂N (xi)|2 + pen2 (m̃N ) ≤
N∑
i=1

wi · |z̄i −m∗N (xi)|2 + pen2 (m∗N ) ,

hence

N∑
i=1

wi · |z̄i −m(xi)|2 + 2

N∑
i=1

wi · (m(xi)− m̂N (xi)) · (z̄i −m(xi))

+

N∑
i=1

wi · |m(xi)− m̂N (xi)|2 + pen2 (m̃N )

≤
N∑
i=1

wi · |z̄i −m(xi)|2 + 2
N∑
i=1

wi · (m(xi)−m∗N (xi)) · (z̄i −m(xi))

+
N∑
i=1

wi · |m(xi)−m∗N (xi)|2 + pen2 (m∗N ) ,

which implies

N∑
i=1

wi · |m(xi)− m̂N (xi)|2 + pen2 (m̃N )−
N∑
i=1

wi · |m(xi)−m∗N (xi)|2 − pen2(m∗N )

≤ 2

N∑
i=1

wi · (z̄i −m(xi)) · (m̂N (xi)−m∗N (xi))

= 2
N∑
i=1

wi · (z̄i − zi) · (m̂N (xi)−m∗N (xi)) + 2
N∑
i=1

wi · (zi −m(xi)) · (m̂N (xi)−m∗N (xi))

=: T1 + T2.

We show next that T1 ≤ T2. Assume to the contrary that this is not true. Then

N∑
i=1

wi · |m(xi)− m̂N (xi)|2 + pen2 (m̃N )−
N∑
i=1

wi · |m(xi)−m∗N (xi)|2 − pen2(m∗N )
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< 4

N∑
i=1

wi · (z̄i − zi) · (m̂N (xi)−m∗N (xi))

≤ 4 ·

√√√√ N∑
i=1

wi · (z̄i − zi)2 ·

√√√√ N∑
i=1

wi · (m̂N (xi)−m∗N (xi))2

≤ 4 ·

√√√√ N∑
i=1

wi · (z̄i − zi)2

·

√√√√2

N∑
i=1

wi · |m̂N (xi)−m(xi)|2 + 2pen2 (m̃N ) + 2

N∑
i=1

wi · |m∗N (xi)−m(xi)|2 + 2pen2(m∗N ).

Using (28) we see that

N∑
i=1

wi · |m̂N (xi)−m(xi)|2 + pen2 (m̃N )−
N∑
i=1

wi · |m∗N (xi)−m(xi)|2 − pen2(m∗N )

≥ 1

2
·

(
N∑
i=1

wi · |m̂N (xi)−m(xi)|2 + pen2 (m̃N )

)

+
1

2
·

(
3

(
N∑
i=1

wi · |m∗N (xi)−m(xi)|2 + pen2(m∗N )

)
+ 128 ·

N∑
i=1

wi · |zi − z̄i|2 + t

)

−
N∑
i=1

wi · |m∗N (xi)−m(xi)|2 − pen2(m∗N )

≥ 1

2
·

(
N∑
i=1

wi · |m̂N (xi)−m(xi)|2 + pen2 (m̃N ) +

N∑
i=1

wi · |m∗N (xi)−m(xi)|2 + pen2(m∗N )

)
,

which implies

1

2
·

√√√√ N∑
i=1

wi · |m̂N (xi)−m(xi)|2 + pen2 (m̃N ) +

N∑
i=1

wi · |m∗N (xi)−m(xi)|2 + pen2(m∗N )

< 4 ·
√

2 ·

√√√√ N∑
i=1

wi · |zi − z̄i|2

i.e.,

N∑
i=1

wi · |m̂N (xi)−m(xi)|2 + pen2 (m̃N ) +
N∑
i=1

wi · |m∗N (xi)−m(xi)|2 + pen2(m∗N )

< 128 ·
N∑
i=1

wi · |zi − z̄i|2
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But this is a contradiction to (28), so we have indeed proved T1 ≤ T2. As a consequence
we can conclude from (28)

4
N∑
i=1

wi · (m̂N (xi)−m∗N (xi)) · (zi −m(xi))

≥
N∑
i=1

wi · |m̂N (xi)−m(xi)|2 + pen2 (m̃N )−
N∑
i=1

wi · |m∗N (xi)−m(xi)|2 − pen2(m∗N )

≥ 1

3

(
N∑
i=1

wi · |m̂N (xi)−m(xi)|2 + pen2 (m̃N )

)

+
2

3

(
2

N∑
i=1

wi · |m∗N (xi)−m(xi)|2 + 2pen2(m∗N ) + t

)

−
N∑
i=1

wi · |m∗N (xi)−m(xi)|2 − pen2(m∗N )

=
1

3

N∑
i=1

wi · |m̂N (xi)−m(xi)|2 +
1

3
pen2 (m̃N )

+
1

3

N∑
i=1

wi · |m∗N (xi)−m(xi)|2 +
1

3
pen2(m∗N ) +

2

3
t

=
1

3

N∑
i=1

wi · | (m̂N (xi)−m∗N (xi))− (m(xi)−m∗N (xi)) |2

+
1

3
pen2 (m̃N ) +

1

3

N∑
i=1

wi · |m∗N (xi)−m(xi)|2 +
1

3
pen2(m∗N ) +

2

3
t

≥ 1

6

N∑
i=1

wi · |m̂N (xi)−m∗N (xi)|2 −
1

3

N∑
i=1

wi · |m(xi)−m∗N (xi)|2

+
1

3
pen2 (m̃N ) +

1

3

N∑
i=1

wi · |m∗N (xi)−m(xi)|2 +
1

3
pen2(m∗N ) +

2

3
t

≥ 1

6

(
N∑
i=1

wi · |m̂N (xi)−m∗N (xi)|2 + pen2 (m̃N )

)
+

2

3
t.

In the next to last inequality we have used, that a2/2 − b2 ≤ (a − b)2 (a, b ∈ R) with
a = m̂N (xi)−m∗N (xi) and b = m(xi)−m∗N (xi). �
Proof of Lemma 3. We have

P

{
‖mn −m∗n‖2n + pen2

n(m̃n) + 4δn ≤
24

n

n∑
i=1

(mn(xi)−m∗n(xi)) ·Wi

}
≤ P1 + P2
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where

P1 = P

{
1

n

n∑
i=1

W 2
i > 2σ2

0

}
and

P2 =

P

{
1

n

n∑
i=1

W 2
i ≤ 2σ2

0, ‖mn −m∗n‖2n + pen2
n(m̃n) + 4δn ≤

24

n

n∑
i=1

(mn(xi)−m∗n(xi)) ·Wi

}
.

Application of Cherno�'s exponential bounding method (cf. Cherno� (1952)) together
with (31) yields

P1 = P

{
n∑
i=1

W 2
i /K

2 > 2nσ2
0/K

2

}

≤ P

{
exp

(
n∑
i=1

W 2
i /K

2

)
> exp

(
2nσ2

0/K
2
)}

≤ exp
(
−2nσ2

0/K
2
)
·E

{
exp(

n∑
i=1

W 2
i /K

2)

}
≤ exp

(
−2nσ2

0/K
2
)
·
(
1 + σ2

0/K
2
)n

≤ exp
(
−2nσ2

0/K
2
)
· exp

(
n · σ2

0/K
2
)

= exp
(
−nσ2

0/K
2
)
.

To bound P2, we observe �rst that 1/n
∑n

i=1W
2
i ≤ 2σ2

0 together with the Cauchy-
Schwarz inequality implies

24

n

n∑
i=1

(mn(xi)−m∗n(xi)) ·Wi ≤ 24 ·

√√√√ 1

n

n∑
i=1

(mn(xi)−m∗n(xi))2 ·
√

2σ2
0

≤ 24 ·

√√√√ 1

n

n∑
i=1

(mn(xi)−m∗n(xi))2 + pen2
n(m̃n) ·

√
2σ2

0

hence inside of P2 we have

1

n

n∑
i=1

(mn(xi)−m∗n(xi))
2 + pen2

n(m̃n) ≤ 1152σ2
0.

Set
S = min{s ∈ N0 : 4 · 2sδn > 1152σ2

0}.

Application of the peeling device (cf. Section 5.3 in van de Geer (2000)) yields

P2 =
S∑
s=1

P

{
1

n

n∑
i=1

W 2
i ≤ 2σ2

0, 4 · 2s−1δn · I{s 6=1} ≤ ‖mn −m∗n‖2n + pen2
n(m̃n) < 4 · 2sδn,
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‖mn −m∗n‖2n + pen2
n(m̃n) + 4δn ≤

24

n

n∑
i=1

(mn(xi)−m∗n(xi)) ·Wi

}

≤
S∑
s=1

P

{
1

n

n∑
i=1

W 2
i ≤ 2σ2

0, ‖mn −m∗n‖2n + pen2
n(m̃n) < 4 · 2sδn,

1

12
· 2sδn ≤

1

n

n∑
i=1

(mn(xi)−m∗n(xi)) ·Wi

}

The probabilities in the above sum can be bounded by Corollary 8.3 in van de Geer
(2000) (use there R =

√
4 · 2sδn, δ = 1

12 · 2
sδn and σ =

√
2σ0). This yields

P2 ≤
∞∑
s=1

c60 exp

(
−
n · ( 1

12 · 2
sδn)2

4c60 · 4 · 2sδn

)
=
∞∑
s=1

c60 exp

(
−n · 2

s · δn
c61

)

≤
∞∑
s=1

c60 exp

(
−n · (s+ 1) · δn

c60

)
≤ c62 exp

(
−nδn
c62

)
.

�
Proof of Lemma 4. For f : Rd → R set

‖f‖2n =
1

n

n∑
i=1

|f(Xi)|2.

We have

P

{∫
|mn(x)−m(x)|2PX(dx) > δn + 3 · pen2

n(m̃n) + 3
1

n

n∑
i=1

|mn(Xi)−m(Xi)|2
}

= P

{
2

∫
|mn(x)−m(x)|2PX(dx)− 2‖mn −m‖2n

> δn + 3 · pen2
n(m̃n) +

∫
|mn(x)−m(x)|2PX(dx) + ‖mn −m‖2n

}

≤ P

{
∃f ∈ Fn :

∣∣∫ |Tβnf(x)−m(x)|2PX(dx)− ‖Tβnf −m‖2n
∣∣

δn + 3 · pen2
n(f) +

∫
|Tβnf(x)−m(x)|2PX(dx) + ‖Tβnf −m‖2n

>
1

2

}

≤
∞∑
s=1

P

{
∃f ∈ Fn : I{s 6=0} · 2s−1 · δn ≤ pen2

n(f) ≤ 2sδn,∣∣∫ |Tβnf(x)−m(x)|2PX(dx)− ‖Tβnf −m‖2n
∣∣

δn + 3 · pen2
n(f) +

∫
|Tβnf(x)−m(x)|2PX(dx) + ‖Tβnf −m‖2n

>
1

2

}

≤
∞∑
s=1

P

{
∃f ∈ Fn : pen2

n(f) ≤ 2sδn,
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∣∣∫ |Tβnf(x)−m(x)|2PX(dx)− ‖Tβnf −m‖2n
∣∣

2s−1δn +
∫
|Tβnf(x)−m(x)|2PX(dx) + ‖Tβnf −m‖2n

>
1

2

}
.

The probabilities in the above sum can be bounded by Theorem 19.2 in Györ� et al.
(2002) (which we apply with

F =
{

(Tβnf −m)2 : f ∈ Fn, pen2
n(f) ≤ 2sδn

}
,

K = 4β2
n, ε = 1/2, and α = 2s−1δn. Here in the integral of the covering number we use

the fact that for δ ≥ α · K/2 ≥ 2 · α = 2s · δn the condition pen2
n(f) ≤ 2sδn inside F

implies pen2
n(f) ≤ δ.) This yields

P1,n ≤
∞∑
s=1

15 · exp

(
−n · 2

s · δn
c63 · β2

n

)
≤ c64 · exp

(
− n · δn
c64 · β2

n

)
.

�
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