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Abstract

A general result concering the strong universal consistency of local averging regression
estimates is presented, which is used to extend previously known results on the strong
universal consistency of kernel and partitioning regression estimates. The proof is based
on ideas from Etemadi’s (1981) proof of the strong law of large numbers, which shows that
these ideas are also useful in the context of strong laws of large numbers for conditional
expectations in Lo.
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1 Introduction

Let (X,Y), (X1,Y1), (X2,Y3),... be independent identically distributed R? x R - valued
random vectors with EY? < oo. In regression analysis we want to estimate Y after
having observed X, i.e., we want to determine a function f with f(X) “close” to Y. If
“closeness” is measured by the mean squared error, then one wants to find a function f*
such that

B{/°(X) - Y[} = minB{|(X) -V} (1)

Let m(x) := E{Y|X = x} be the regression function and denote the distribution of X
by wp. The well-known relation which holds for each measurable function f

E{|f(X) =Y} = E{lm(X) - Y|*} + /\ fx) —m(z) |* p(dz) (2)
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(cf., e.g., Section 1.1 in Gyorfi et al. (2002)) implies that m is the solution of the
minimization problem (1), E{|m( ) — Y|?} is the minimum of (2) and for an arbitrary
[, the Ly error [ | f(z) —m(z) |* p(dz) is the difference between E{|f(X) — Y |*} and
E{jm(X) - Y},

In the regression estimation problem the distribution of (X,Y") (and consequently m)
is unknown. Given a sequence D, = {(X1,Y1),...,(Xn, ¥s)} of independent observations
of (X,Y), our goal is to construct an estimate m,(z)=m,(z, D)) of m(z) such that the
Ly error [|my(z) — m(z)|*u(dz) is small.

A sequence of estimators (my,)nen is called weakly universally consistent if

/mn —m(z)]* p(dz) =0 (n— o0)

for all distributions of (X,Y) with EY? < co. It is called strongly universally con-
sistent if

/mn —m(z) p(dz) =0 (n—o0) a.s.

for all distributions of (X,Y) with EY? < oo.
C.J. Stone (1977) first pointed out that there exist weakly universally consistent esti-
mators. He considered k,-nearest neighbor estimates

=Y W) Vi (3)
i=1

where

Wm(x) = Wm(x, Xl, . ,Xn> (4)

is 1/ky, if X; is among the k,-nearest neighbors of z in {X7,..., X} and zero otherwise,
and where k,, — oo and k,/n — 0 (n — o0). The strong universal consistency of nearest
neighbor estimates has been shown in Devroye et al. (1994).

Estimates of the form (3) with weight functions (4) are called local averaging estimates.
As a basis for his result on nearest neighbor estimates, Stone (1977) established a general
theorem giving sufficient (and in some sense also necessary) conditions on weak universal
consistency of local averaging estimates.

The most popular examples of local averaging estimates are kernel estimates, where

P G
S () 7

(0/0 = 0 by definition) for some function K : R? — R, (called kernel) and some h, > 0
(called bandwidth) usually satisfying

)

hn =0 (n—00) and n-h% =00 (n— o0), (6)

e.g.,
hy, = const-n~7 for some v € R with 0 <y -d < 1. (7)



Frequently used kernels are the naive kernel (window kernel)
K(@) = Ijay<1y (v € R

(where I4 denotes the indidcator function of a set A, and ||z|| is the Euclidean norm of
r € R%), the Epanechnikov kernel

K(z) = (1= ||| - Ifuy<1y (z € RY)
and the Gaussian kernel
K(z) = exp (—||:cH2) (x € Rd).

Another example for an local averaging estimate is partitioning regression estimation
(regressogram).

Weak universal consistency of kernel estimates has been shown for so-called boxed
kernels, i.e., kernels which satisfy

1 Ijaj<ry S K(@) <o Ijgj<ry  (x €RY)

for some ¢y, co, 71,72 > 0 (e.g., the naive kernel or the Epanechnikov kernel) and band-
widths satisfying (6) independently by Devroye and Wagner (1980) and Spiegelman and
Sacks (1980). Here in the second paper a slight modification of (5) is used, where the
original denominator is replaced by the maximum of 1 and the original denominator.
Strong universal consistency of kernel estimates for the naive kernel and suitably defined
piecewise constant sequences of bandwidths has been shown by Walk (2002). Various
results concerning strong universal consistency of variants of kernel estimates can be
found in Gyorfi and Walk (1996, 1997) and Gyorfi et al. (1998). Walk (2005) treated
smooths kernels, e.g., the Gaussian kernel, using the Spiegelman-Sacks modification of
(5). Corresponding results for partitioning estimation are obtained by Gyorfi (1991),
by Gyorfi et al. (1998) and in Section 23.1 in Gyorfi et al. (2002). Results concerning
strong universal consistency of various least squares estimates are presented in Lugosi
and Zeger (1995) and Kohler (1997,1999). Kohler and Krzyzak (2001) and Kohler (2003)
showed the universal consistency of suitably defined penalized least squares estimates
and local polynomial kernel regression estimates, respectively. Further references can
be found in Gyorfi et al. (2002). Related results in connection with strong (universal)
pointwise consistency can be found in Devroye (1981), Greblicki et al. (1984), Devroye
and Krzyzak (1989), Irle (1987), Kozek et al. (1998), Walk (2001, 2008) and Biau and
Devroye (2015).

Surprisingly, despite the many existing results in the literature on strong universal con-
sistency, there is still a gap in the literature concerning the strong universal consistency
of the classical kernel regression estimate with weights (5). The only known result in this
context (Walk (2002)) requires that the kernel is the naive kernel and that the sequence
of bandwidths is piecewise constant. The purpose of this paper is to fill this gap. In
particular we show that the classical kernel regression estimate with a boxed kernel (e.g.,
the Epanechnikov kernel) and with a sequence of bandwidths satisfying

hnl0 (n—=o0) and n-hdtoo (n— o0)



(e.g., the bandwidths defined in (7)) is strongly universally consistent. Thus essentially
the general result of Devroye and Wagner (1980) is sharpened from weak to strong
universal consistency.

To achieve this result, at first a general theorem of Stone type on strong universal
consistency of local averaging estimates with subprobability weights, i.e., with weights
satisfying

n
Wai(z) >0 (z€R?) and > Wy(z) <1 (zeRY
i=1
is presented (Theorem 1). Because strong universal consistency of nearest neighbor esti-
mates is known (Devroye et al. (1994)), only applications of this result to kernel estimates
and partitioning estimates are presented. The application to kernel estimates (Corollary
1) yields the above described result for boxed kernels. And the application to partition-
ing estimates (Corollary 2) sharpens the general weak universal consistency result on
partitioning estimation of Theorem 4.2 in Gyorfi et al. (2002) to strong universal consis-
tency in the case of nested partitioning (where the sets in the partitions are subsequently
refined). In both applications the crucial step is the verification of the first condition in
the strong consistency theorem, which allows the extension from bounded Y to square
integrable Y. An essential tool is here the idea of "thinning" via majorization developed
by Etemadi (1981) for proving the strong law of large numbers, together with covering
arguments. The structure of kernel and partitioning weights allows a direct treatment of
variances via binomial and multinomial distributions, avoiding the use of the Efron-Stein
inequality (cf., e.g., Gyorfi et al. (2002), Theorem A.3), which seems to be too rough.
Throughout this paper we use the following notation: N, R and R, are the sets of
positive integers, real numbers and nonnegative real numbers, respectively. For z € R
we denote the smallest integer greater or equal to z by [z]. ||z is the Euclidean norm of
x € R% For z > 0, log(2) is the natural logarithm and logy(2) the logarithm with basis
2. For A C R? we denote the diameter of A by

diam(A) = sup ||z — z||,
z,2€A

and we let T4 be the indicator function corresponding to A (which is one on A and zero
otherwise). And for z € R? and h € R we set

x+h-A={x+h-z:2z€A}.

S, denotes a closed Euclidean ball in R? centered at 0 with radius » > 0. If P is a
partition of R? and 2 € R%, then Ap(z) is the unique set A € P with z € A.

The outline of this paper is as follows: The main results are presented in Section 2 and
proven in Section 3.

2 Main results

The following theorem is a tool for proving strong comnsistency for local averaging re-
gression function estimates and corresponds to Stone’s (1977) general theorem on weak



consistency. It will be applied to establish strong universal consistency of boxed kernel
and nested partitioning regression estimates (Corollaries 1 and 2).

Theorem 1 Let (X,Y), (X1,Y7), (X2,Y2), ... be independent and identically distributed
R? x R valued random vectors. Assume that the weights

Wnﬂ;(l‘) = Wn7i($,X1, e ,Xn)

of the local averaging regression estimate

satisfy the following five conditions:

(A1) There exists a constant ¢ > 0 such that we have for every distribution of Y with
Y >0a.s. and EY < o0

lim sup/z Wy.i(z) - Yip(dz) <c-EY a.s.
i=1

n—oo

(A2) For all § > 0:

/Z Whi(z) - Iy x,—a|>sy(dx) — 0 a.s.
i=1

(A3)

n

log(n) ( / Wmi(x)u(dx))Q L0 as.

/

(A4)

n

Z Whi(x) — 1‘u(dw) —0 a.s.
i=1

(A5) For all x € R%:
Whi(z) >0 forallie {1,...,n} and ZWTM(&:) <1
i=1
Then (my)nen 18 strongly universally consistent.

Corollary 1 Let K : R — R be a bozed kernel, i.e., assume that K satisfies

c1-Is, () < K(z) <ca-Is, () (z€ RY)



for some c1,co,71,79 > 0. Let h,, > 0 be such that

hn — 0 (n— 00) ®)
n-hi =00 (n— o) ©)

and ' max{hy, int1s-- -, hon}
h?jolip min{ iy, A1, .-, han} =0 1

Define the kernel regression estimate by

YLK () v
mp(z) = SrK (xsz) .

Then (mp)nen 18 strongly universally consistent.

Remark 1. Assumption (10) is statisfied, if (8) and (9) are sharpened to h, | 0 and
n-h 1 oo (n— o). Indeed, if hy, | 0 holds, then (10) is equivalent to

. h
lim sup —+ < oo,
n— 00 2n

and in case that this condition does not hold we can find a subsequence (ny)x of (n)y

such that 4
2. ng - h2‘nk _9. <h2-nk

d
0
ng - hgk B, ) - (n = 00),

which implies that n - h¢ 1 0o (n — o) does not hold.

Corollary 2 For n € N let P, = {A,,; : j} be a partition of R%. Assume that for all
r € R?
diam(Ap,(z)) -0 (n — o0) (11)

and that for each sphere S centered at the origin
1
ﬁ|{A€77n:AﬂS7$@}\—>O (n — 0). (12)

Assume furthermore that (Py), is nested in the sense that each set in Py, is the union
of finitely many sets in Pni1, and that there exists an L € N with the property that for
each n € N each set of P, is the union of at most L sets in Ps.,. Define the partitioning
regression estimate corresponding to P, by

>t Lap, () (Xi) - Yi

mp(x) = o
( ) Zj:l IApn(z)(Xj)

Then (my)nen is strongly universally consistent.



3 Proofs

3.1 Proof of Theorem 1

Lemma 23.3 in Gyorfi et al. (2002), which is due to Gyorfi (1991), together with the
conditions (A1) and (A5) imply that it suffices to show the assertion in case that we have

Y| < L a.s. for some L > 0. So from now on we assume that this condition holds.
We have

/ mn() — m(a)? p(de)
<orL. / () — m(z)] ulde)

<o [

S W) - (¥; — m(X,) | pu(de)

+2L - / > Wai(z) - (m(X;) — m(x))| p(da)
i=1
+2L - / (Z Whi(x) — 1) -m(z)| p(do)
i=1
=:2L-J,+2L -1, +2L-M,.
Assumption (A4) implies
M, — 0 a.s.
Hence it suffices to show
I, —0 a.s. (13)
and
Jp — 0 a.s. (14)

In order to prove (13) let € > 0 be arbitrary and choose a uniformly continuous function
m : R? — R with bounded support such that [ |m(x) —m(x)|u(dr) < € (cf., e.g., Gyorfi
et al. (2002), Theorem A.1). By assumption (A5) we get

I, < / ZWn,@(m)(m(Xl)—m(Xl)) p(dz)
i=1
+ / > Wail@) - ((X;) — m(@))| p(dw)
=1
+ [ S Was@) - (@) = m(a) | (e
=1

IN

/ S W) - m(X) — m(X0)| ()
=1



+/2Wn,z‘($) (X)) — m(x)| p(de)
/|m z))| p(dz).

Application of assumption (A1) and the choice of m yields

limsup I, < c¢- €+ lim Sup/z Whi(z) - m(X;) — m(z)| p(dz) + € a.s.

n—o0 n—oo

Because of (A5), for arbitrary § > 0 we have

fimsup [ 37 Wilo) - [(X,) — (o) n(da)
=1

n—0o0

< lim sup l/ > Waile) - [m(Xs) = m(x)| - T, —oy>spu(dz)
=1

n—o0

+/2Wn,i($) -m(X;) — m(z)] 'I{lXi—xHSd}M(dm)]
=1

< 2. sup |m(z)] - hmsup/E:VVm i x,—a|>syi(dr)

zERI n—oo

+ ( sup |m(z) — m(z)> .
z,2€RY || x—2|| <6
The first term on the right-hand side above is zero with probability one because of
assumption (A2). The second term will become arbitrary small for small § because of
the smoothness of m. From this and the above inequality we get (13).
Now (14) will be shown. For an arbitrary € > 0 choose c3 > 0 such that ¢z < €2/(2L?).

With the notation
{ (/Wnl dm) <03/log(n)}

limsupJ, = Ilimsup [Jn “Ipe + Jp - IBn] <0+ limsupJ,-Ip, a.s.

n—oo n—o0 n—oo

because of (A5) and (A3). It remains to show

we have

limsup Jy, - Ip, <€ a.s.
n—oo

Because of the lemma of Borel-Cantelli it suffices to show

ZP(JH-IB" > €) < 00.



Therefore set

n

> (i — m(X0)) - Wi(x)

i=1

F(y1,---,yn)=/

Then for every i € {1,...,n}

p(dz).

‘F(yhvyn) _F(ylv7yl—17y':7y2+177yn)’ < }yz _y;‘ /Wn,l(:r)u(dx)

Using the inequality of McDiarmid (cf., e.g., McDiarmid (1989) or Theorem A.2 in Gyorfi
et al. (2002)) we get

> P (Jy-Ip, > ¢

n=1

=> E{P(J,>€X1,...,Xn) Ip,}

n=1

[e] —262
< Z E< 2 -exp - Ip,
= 2.5 (f Wai(x)u(dz))®

i=1
< QZE {exp (‘;21;%6(3 S

< 00

The proof is complete. O
Remark 2. Assumption (A3) in Theorem 1 follows from

(A3 nf:l log(n ZE{(/WM )4}<oo

by using the lemma of Borel-Cantelli together with the inequality of Markov and Jensen’s
inequality. On the other hand, in Theorem 1 the assumption (A3) may be replaced by

gn ' ZE { (/ Wn,i(fv)ﬂ(dm)>4} <

To show this, in the proof of (14) one avoids the introduction of B,, and notices

—é? 8- Lt [ 2\ "
T S W) T <; (/ W”’i(m)“(d@))
4 n 4
n ; ( / Wn,i(x)u(d:c)>

because of 22 -e7% <1 (z € Ry).



3.2 Proof of Corollary 1

Lemma 1 Assume that the assumptions of Corollary 1 hold and set

oK)
O S ()

Then W, ; satisfies the assumption (A1) from Theorem 1.

In the proof of Lemma 1 we will need the following auxiliary results.

Lemma 2 Let n € N and p € (0,1]. Then we have:

a)
"1 /n nek 1= (1—p)ntl
gl—}—k(k)pk(l_p) ‘= n+l)-p
b)
- 1 n . 2
k:0(1+k:)2(k)pk(1_p) k—(n+1)2-p2'
c)
= 1 n - 24
2 (1+ k) (k;)pk(l_p) *< (n+1)%pt

Proof. a) We have

1 /n . 1 " (n+1 il
Z1+k(k>pk(l_p) b= (n+1).p2<k+1>pk+l(1_p) e

k=0 k=0
_ 1_(1_p)n+1
 (n+1)p
b) We have
P L P
2
2 (11 02 \k
- 2 Nk n—k
< —
_ko(k+2)'(k+1)<k>p( p)
2 —~ (n+2\ ;o 42— (k+2)
. 1_
(n+1)-(n+2)-p? 2(/64—2) (1-p)
2
< - 1.
CESVERT

10



¢) We have

24 n .
Slc:o (k+4)-(k+3)-(k+2)-(k+1) (k>pk(1_P) k

_ 24 . " /n+4 pk+4(1 _ p)n+4—(k+4)
m+1)-n+2)-(n+3)-(n+4)-p* k+4
24

<
T (n+1)tpt

- 1.

Lemma 3 Let n € N and p1,p2 > 0 such that py +p2 < 1. Then

1 n! ki ko (k1 ko)
. . . . 1 — n 1 2
2 (Lt k1) (1+ k) Fealkol(n — (ky + ko))t P17 P2 (1= (p1+p2))

= (n+1)- (nl—f— 2) - p1-p2 . (1 -(1 —pl)n+2 -1 _Pz)n+2 +(1=(p +p2))n+2) .

Proof. We have

1 n! k1 ko —(k1+k2)
. . . . 1_ n 1 2
L ) () R G P ()

k1+ko<n

_ 1 (n+2)!
T (1) (n+2)propr N Z , B+ DUk + D0+ 2 — (k1 + 14 k2 +1))!

k1+ko<n
,p/1ﬂ+1 ,p’262+1 -(1—(m +p2))n+2—(k1+1+k2+1)
(n+1)-(n+2)-p1-po ey kilka!(n 4+ 2 — (k1 + k2))!
koq+ko<n+2

-plfl .p’2€2 (11— (; +p2))n+2—(k1+k2)

From this and

(n+2)! T 2 (ke +k2)
. . . 1_ n 1 2
2 mlntz—(a sy AP0 )

k1,kg€{1,...,n+1}
k1 +ko<n+2

(n+2)! . 2 ()
= . . . 1 — n 1 2
2 hhlntz—(a sy AP0 m)

k1,ko€{0,..., n+2}
k1 +kg <n+2

11



n+2

k2=0
+(1 - (m +p2))”+2
=1~ (p1+ (1~ (p1+p2)""? = (p2+ (1= (p1 +p2)))" " + (1 = (p1 +p2))""

we get the assertion. (]

Lemma 4 a) Let P, P* be partitions of R? such that there exists an L € N with the
property that each set of P* is contained in the union of at most L sets in P. Then for

all t € RY one has: ; (2)
Ap*(t) €T
—F— u(dx) < L
[ st )
b) Let 0 < r1 < ry. Then there exists an L € N such that for alln € N and all t € R

one has I ()
t-+hn-Spy L
— 72" 7 (dx) < L
/Rd,u/(.’I}—thSTl)M( $)_
Proof. a) Choose t1,...ty such that
Ap+(t) C UL Ap(th).
Then

IN

[ A )
R

Z/ Ap(tl (x)
a pi(Ap(z)) ra ((Ap(T))
L
I T
_ Z/ A73 t] ( ),LL ) S L7
ra 1(Ap(t))
since x € Ap(t;) implies Ap(x) = Ap(t;).
b) Choose L € N and cubes Ay, ..., Ar C R? of side length rl/\/& such that

219

b= (mf

Livn,-s,, ()
/ w(x+ hy - Spy) plda)

d
) and S, CUE A

Then

L
< Z/ ItJrhn'Al (.%') (d$)
=2 ) et haSn)
< Z/ It-i—h Al (d.%')
(t+ hp Al
<L,

where the second inequality followed from = + hy, - Sy, Dt + hy, - A; for x € t + hy, - Ay
O

12



Lemma 5 Let 0 < r1 < ro. Then constants cq4,c5 > 0 exist such that for each i €

{1,...,n} 2
ISrz (%) ) o

E </ L3 e, it Isny <%) p(dz) S 3

Is,, (m;jQ) )4 o
E (/ L+ > et g} Isny (%) p(dz) < T

Proof. Because of the Cauchy-Schwarz inequality it suffices to show the second in-
equality. By using the independence of the data, by applying twice the Cauchy-Schwarz
inequality and by Lemma 2 ¢) we get for i € {1,...,n}:

Is,, (x;i() )
(dz)
E (/ 14+ Zje{l,...,n}\{i} 1'57_1 (1’ X; ) plax

n

_ s, (57)
{////HHZE{I e o (5

7777 TL

and

4

p(dzM) p(dz®) p(da®)) u(dw(4))}

4

4 0 _ x, 1
xr i
1 el () ol
=1 =11+ Zje{l,...,n}\{i} Is,, ( Fin )

w(de ) p(de®) p(da™) p(da™)

S ()

1

I=1 (1 + Zje{l,...,n}\{i} Is,, <m(l)h;Xj)>4

4 0 _ x, 4 941/4
xz i
| |I | — . | |
poiey Sra ( hn >} lzln-u(m(”—i—hn-Sﬁ)

w(de ) p(de®) p(da™) p(da™)

.Z’<l)—Xz'
f[/ b () u(dz)
=17 H (x(l) + ha - Sﬁ)

=

13

p(dz ™M) p(da®)) p(de®)) p(de®)



:?E{(/muwmf}

Application of Lemma 4 b) yields the assertion. U
Proof of Lemma 1. By rescaling the kernel, if necessary, we can assume w.l.o.g. that
we have co < 1. Let Y be such that Y > 0 a.s. and EY < 0co. For a € [0,1] and b > 0

we have
a 1 1

< <
a+b 1427 1+b

(noticing 0/0 = 0), which implies for i € {1,...,n}

K <% _ K <%) -Ig <:C—Xz>
Sk () K () Sepeana K ()TN M
3 Is,, (xﬁi()
I e K (ii>
J1 () 0

=X\’
Ut Sien o s ()

Consequently we have

n n I X ). Y.

1 Sr < n ) ?
Z Wm(x) : Y; < ; ' - - z—X;
i1 L i1+ Zje{l,...,n}\{i} ISrl (TLJ)

and it suffices to show for some cg > 0

n ISTZ (m;)Q) Y,
limsup/z - —~ Wdz) < ¢ - EY. (16)
n—reo i=1 1+ Zje{l,...,n}\{i} ISn (TJ)
Set Y;* =Y, - I1y,<;3- We show next that (16) follows from
n Is,, (I;Xz) Y
lim sup/z & wu(dz) < cg - EY. (17)
n—oo

z—X;
i=1 1+ Zje{l,.‘.,n}\{i} Is,, (ﬁ)

To do this, we observe that

ZP{Y;;&Yn}_ZP{Yn>n}§/ P{Y >t}dt =EY < 00
n=1 n=1 0

14



implies that we have with probability one that Y, # Y, holds at most for finitely many
n. For each ¢ € N, one has

Is,, (xﬁf)
/1 + 2 je(t, i gy L5y (th ) e "

which follows via the lemma of Borel-Cantelli and Markov inequality from

2
> Is,, (ﬁf) =1
ZE / x_X_),u(dx) §C4-Zﬁ<oo
n=u n=1

L+ ieqt, it 190 <‘hn :

where the first inequality is a consequence of Lemma 5.
From (18) together with Y;, — Y,* # 0 only for finitely many n almost surely and (17)

we can conclude
=X\ .y
Is,, (52%) i

hmsup/
X
n—o0 i=1 1+Z]E{1 n}\{}ISrl <$h J

< limsup

n—o0

e=X;\ | y+
/ f5, (52) X.)u(dx)

i=1 1+Z]6{1 n}\{}lsn (5

| ) (- ¥)
+ lim sup —X; p(dz)

n—00 i= 1 1+ E]e{l Sn\{e} ISTl (T)
<c-EY +0 a.s.

In the sequel we show (17). Set np = 2% (k € N). Then we have for any
ne{ngng+1,...,n511}

i IST2 (z;jﬁ) Yz*
X
<> :

z—X;
i=1 1+Zj€{1 Sne\{i} IS,1 (TJ)

Z Is,, ( T > Y

max{hnkahnk+17“~’hnk+1}
Hence in order to show (17) it suffices to show

€T Xj ’
+ZJ€{17 Sn P \{d} S’1 (mm{h"k’hnk+17"'7hnk+1})

z—X;

Nk4+1 3 . *
/ Sry (max{hnk,hnk+1,.“,hnk+1}) Y;

z—X;
i=1 1 +ZJ€{1 sni 3 \{ }ISH (mln{hnk7 P41 7hnk+1})

lim sup u(dr) < cg - EY,

k—o00

15



which is equivalent to

Nk+1 Ix—l—S (Xz) %
. max{hn, ,hy seeshm }er 7
hmsup/ Z L Ik+1 b1 2 u(dx) < cg - EY.
k—o0 i=1 I+ Zje{l ..... ng P\ {i} $+Smin{hnk,hnk+1 ,,,,, hnjpq b1 ( j)
(19)
Set ) = min{hn,, hn, 41, -+ By } -1 and vy = max{hy,, Ang g1, Ay } - T2. Let

Py, be a partition of R< into cubes of sidelength r’l/\/a Then we have for any = € R%:
Apnk+1 (':E) g x + STII

Let P

Nk+1

P P2 of P*  such that for any z € R? there exists cells A e P
d d Mk
ACY) € P9 with

be a partition of R? into cubes of sidelength 2 -7, and choose shifted versions

d
r+S5, C Ui Ap. ().

(Here the shifted partitions can be chosen by choosing first a subset of the d components
of x and by shifting then all sets in each coordinate contained in the subset by r, away
from zero.) Consequently we have

N Lovs, (X)) Y7
= T e mns Tevsyy (X5)
< T%S i IAP*(D(JC) (X3) - Y
=T et i e, @ (X))
— inlf Lo, o@ (Xi) - Y
= S et IAP%H @) (X))

This shows that it suffices to show for some ¢7 > 0

lim sup/ f : AP ¢ ) (X wu(dx) < c7-EY, (20)
Y

k00 jellmmin\{i} L4p,, @) (X5)

where P, . and P*  are partitions of R? such that for each set A € P*  there exists
k+1

Nk41 Nk+1
L € N and sets Ay, ..., Ap € Py, , with the properties
9.y 4 max{hn,, hog sty s g 2\
Acul 4 and L< 2 492 §08-< , BTk s ) )
r’l/\/a min{ i, , hnygt1, ooy By }

By independence, Lemma 2 a) and Lemma 4 a) we have

M1 Ta,. (@) (Xi)- Y7

(2

E / e p(dz)
; 142 jettymmn\(iy Tapg,, , @ (X5)

16



E {Yl . IAP?‘%_’_I (:E) (Xl)}
< [ u(da)
e (A, (@)

_ Mkl /m / IAszk+1(t) () () u(d)

U AP”k+1 (.TU))
max{fn,, hngt1, o5 Py }
§2.08-< e ’““)/mtudt
mln{hnk,hnk+1, .. 7hnk+1} ( ) ( )
— 2. cq- (max{h”mh“k“’ ’hnk“}) -EY.
mln{hnk, hnk—i-la . hnk+1}

Hence, because of (10), it suffices to show

k41 (z) (XZ) : Y;*
Z / ( ”k+1

1+ Zye{l i Lap,, @) (X5)

L L\
-E wldx) =0 a.s.
L4 2 jett, iy e, @ (X))

An application of the lemma of Borel-Cantelli and the inequality of Chebychev yields
that this in turn follows from

o0

MNk41 737bk+1
ZV Z/ 1+

jellymm (it Tap,, | @) (X5)

)

wu(dz) » < oco. (21)

So in order to finish the proof of Lemma 1, it remains to show (21), what we will do in
the sequel.

We have
IAP* (@) (X5)- Y

(2

MNEk41
k41
p(dz)
{ 2 / L+ D et mn iy Larn, @ (X5)
"k IAPr*LkJrl (z) (Xl) ’ Y;*
Z IE - o ld)
pa + et (it TApn,, , @) (X5)

Lo, (X)) Y7
o (o e

l,re{1,..., nk+1} 1 + Zje{lvvnk}\{l} IAPnk+1 (173) (X])
l#Tr

/ IAPr*Lkﬂ (x) (Xr) - YT

u(dx)}
L+ 2 e mnir Lp,, @ (X5)

17



Lips @ PO
- {/ L+ 3 et me N1} Tap,, . @) (X5) M(dx)}
L, (@ (Xr) Y7
E {/ L+ 2 jetmnir Lo, @ (X5) M(dx)} )
_—

=: Z Bi,k + Z Dkz,l,ra
=1 )

l#r

hence it suffices to show
oo Mk+41

SN B <o (22)

k=1 i=1
and

Y > Dpiy<co. (23)

k=1 l,re{1,..., ”k+1}

l#Tr
By the independence of the data, by the inequality of Cauchy-Schwarz and by an appli-
cation of Lemma 2 b) and Lemma 4 a) we get

Nk+1
Z B;x
i—1
. 2
. "iél 5 / IAP;é,c+1 (x) (Xi) - Y; ()
< w(dx
P L+ 2 jeqtmniy Lar, @) (X5)

niél / / {( )2 IAP’*%H (@) (Xi)
; 1+ Eje{l,...,nk}\{i} IAPnk+1 (2) (X5)

=1
. w(dz) p(dx
L4 Yt mn gy L, (2) (X))
S [y Bl Tt
- B{(Y)X; =1} B +1
i—1 L4 2 jettymaniiy Lapn, @) (X5)

IAP;{}C-Q-l (Z) (t)

' p(dt) p(dz) p(dz)
L4 2 jettymmn(iy Tarn, () (X5) }

Nk+1

< ; ///E{(Yz*)?]Xz =t}- [Ap;kﬂ(x) (t) - IAP%H () (1)

(1 + et iy Tapa, ) (Xj))

18



1
E{ 5 } p(dt) p(dz) p(dz)
(1 T2 N i} Tap,, . () (Xj>>

< nkz-él 2.¢2- maX{hnk» hnk-i-l’ s hnk+1} “ E{(Y;*)z}
- 8 min{hnk, hnk+17 ey hnk+1} '

This implies

oo Mk41 oo Mk41
S musey Y MO
k=1 i=1 k=1 i=1

Since

iZ E{(Y;'*)Q} et Vo))

k=1 i—1 " k=1 Mk
E{(Y;i:1)*} = 1
=4 Z%Z*E Y2 Dyewny g
k=1 k=1
> 1 1
_ 2 _ 2
= 4-EqY?. ) CIEs! _8-E{Y W}
k=[log, Y]—1

< 8-EY < oo,

this proves (22).
So it remains to prove (23). To do this, we observe that the independence of the data
implies

Dy
I X)) Yy EST Y
// { Apf*llﬁul ( l) l } { Apﬁk 1(z)( ) r }

1 1
{E
< {1+Zje{l,...,nk}\{z,r}IAv»nM(z)(Xj) 142 et e i} Apnk+1<)(Xj)}

1
—E
{ L3 et N0 Tap,, @ (X;) }

1
E p(dz)p(dz)
{ L 2 et (7} L, () (X5) } )

19



- /Rd /Rd\Am (2) ("')“(d@“)u(d»’«‘)
/Rd /Apn 8 ("‘)de)ﬂ(dz)

(2)
= Dklr+Dklr

Let x,z € R? and set p; = u(Apnk+1 (x)) and py = u(Apnk+1 (2)). It is easy to see that
in case p1 = 0 or po = 0 we have

1 1
E .
{ L4 D jettmnir} Lap,, , @(X5) 1+ 2 en, iy Lap, , ()(X5) }

1 1
_E E
{ L4 D jetmniy Lap,,,, @(X5) } { L2 jeqtmnirt Lap,,,, ()(X5) }

hence we assume in the sequel w.l.o.g. that we have p; > 0 and ps > 0.
In case = ¢ Ap,, . (z) we have Ap,, .\ ()N Ap,, ., (z) = 0, and we can conclude by
Lemma 2 a) and Lemma 3

1 1
E
{sze{l,..m}\{z,r} Lap,, @ (X;) I D Lap,,,, (= )(Xj)}

1 1
—-E -E
{ L4 ieqt, om0 Tap,, @) (X;) } { L+ et} Lap,, . () (X;) }
1

T g (nk — 1) -p1-p2 (=@ =p)™ = (L =p2)™ + (1= (p1+p2))™)

1 kY . . — — Nk
A= Q)™ (= (L))

ng —ng - (1—p1)™ —ng - (1 —p2)™ +nyg - (1= (p1+p2))"™*
nk? - (g — 1) - p1-po
(=1 (=1 =p)™ = (1 —p2)™ 4+ (1 —p1)"™ - (1 —p2)™)
nk? - (g — 1) - p1-po
IL—(1—=p)™ —(1=p2)™ +np- (L= (p1 +p2))™ — (ng — 1) - (1 = p1)™ - (1 — po)™

ng? - (g — 1) - p1-po
1—(1—=p1)™ — (1 —p2)™ 4+ (1 —(p1 +p2))™*
nk? - (ng — 1) - p1-po

1
n? - (g — 1) - p1-p2’
where the first inequality followed from (1 — (p1+p2)) < (1 —p1)- (1 —p2). Consequently
application of Lemma 4 a) yields

(1)
Dl,k,r

20



< E{I (X)) YV B (X)) Y
Lo (Bl ) i n)

1
.nk (g —1) - '“(AP%H () - M(Apnk+1 (Z))>u(dx) w(dz)

m.////EmX:t}.EmX:s}
I

‘ Apz @O . IAP;kH(z)(S)
W, @) 1A, )

2d
S 2; ] Cg . <max{hnk7 hnk+17 e 7hnk+1}) . (EY)2
ng - (ng — 1) min{fp,, Py 1, -+ Py }

In case z € Ap, | (z) we have Ap,, .| (x) = Ap,, ., (z). Using this,

1 B 1 1
(1442 (i+1)-(i+2)+(i+1)2~(i+2)
1 3
G+D-(i+2) TG0 -(1+2)-(+3)

N

IN
[N}

- p(dt) p(ds) pldz) p(dz)

and Lemma 2 a) we get

1 1
E .
{ 1+ Eje{l,...,nk}\{l,r} IApnk+1 (z) (X;) 1+ Zje{l,...,nk}\{l,r} [Apnk+1 (2) (X;5) }

1 1
—-E -E
{” D je (V1) IAP%H@)(XJ‘)} {H 2 jell i\ 1} IAPnW(Z)(XJ’)}

-----

=F 1 3
(1 T2 e N L) IApnkH (z) (Xj)>
(i)
U et mnin Lap,,, @(X5)
ng—2

n .
i=0 k- DP1

el 1 e — 2
k= i nE—2—1i
- - . (1 — k

2o (i+1)-(i+2) ( i >p1 (1=p)

k—2 2

3 ng =2\ np—2—i 1_(1—]91)”’“)

+ : : a—— 1=y (TP

;(z+1)-(1+2)~(1+3) ( i >p1 (1=p1) < ng - P1

_ nkz—:2 1 . ( ng ) pi+2 . (1 o pl)nk—(i+2)

— (ng — 1) -ng-p? \i+2 !
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+nk22 3 e+ 1 P31 = pp)eti=+3)
i—0 (nk—l)-nk~(nk+1)~p:{’ 1+ 3 1

(=)

1
= (1 — (1 — ng __ . (1 — n—1
(nk—l)-nk~p% ( ( p1) ng - p1 - ( P1) )
3
1= =p)tt — 1)-p1-(1—p)™
1 - 1—2-(1—p)™ + (1 —p1)*™
—=(nk+1)-np - pf- (1—p)™ " | —
2 v ni -9}
1 3

(=g (L—p1)™) +

= (g —1)-ni-p? (ng — 1) -ng - (ng + 1) - p3
(g —1) =2 (ng — 1) - (1 —p)™
(ng — 1) - nj - p
_ 1w =2) - A-p)™ 3
B (ng — 1) -n? - p? (nk — 1) -ng - (ng +1) - p3
)
(ng —1)-ni-p}’

where the last inequality follows from
ng — 2 1 1
i “(ng-p1)-e P < — maxz-e 7 < —
Nk - P1 p1 >0 p1

(nk —2)- (1 —p1)™ <

and p; < 1.
Consequently we get by an application of the inequality of Cauchy-Schwarz and by

Lemma 4 a)

(2
Dk, T
<

)
!
2
EJI 2 (Xn Y;
//APnk+1(Z)< { AP%’“WQ( )( k+1) k+l}>

* 2
@ E {IAP* (2) (Xnk+1) : (Ynk+1) } -E {IAP:IIHJ (2) (X)}

A Nk+1

7)"k-o-l

B . * 20 . Z
— /E {IAP* (2) (Xnk+1> (Ynk+1) } (nk — 1) . nz . /L(APnk+1 (Z>)M(d )

k41
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. <max{hnk, Pyt hn,m})d CE{(Y.)7
min{fp,, Pyt Py } ni “(ng —1)

Summarizing the above results we get

= (B{Y))? + BE{(Y;,,,)*}

oo
Z Z Dy < cio- Z - < 00,

k=1 lLre{l,....,np41} k=1
l#r

which completes the proof. O
Lemma 6 Assume that the assumptions of Corollary 1 hold and set
z—X;
K (5
Wn,z({L’) = i X\
S K (52)
Then Wy, ; satisfies the assumptions (A2), (A3), (A4) and (A5) from Theorem 1.

Proof. Proof of (A2): Let § > 0 be arbitrary and by (8) choose ng € N such that
d/hy > 19 for n > ng. Then we have for n > ng

Wn’z(l’) - I i—z <
; {1Xi—al1>5} ; S (=)

for each € R?, which implies (A42).

Proof of (A3): It suffices to show (A3') (compare Remark 2). W.l.o.g. we assume ¢y = 1.
Then (15) and Lemma 5 yield (A3).

Proof of (A4): We have to show

Zy = | I¢a . dr) =0 a.s.,
/ {21157,1 <9L;:L(1>:0}M( J)) — a.s

i=

which follows from
E{Z,} -0 (n— o0) (24)

and
Zn —E{Z,} -0 a.s. (25)

By assumption (9) and by arguing as on pages 75, 76 in Gyorfi et al. (2002), it is easy to
see that (24) holds, hence it suffices to show (25). For this we use Lemma 4.2 in Kohler
et al. (2003) — an Efron-Stein type lemma for higher central moments — here for the
fourth central moment.

Let X| be a d-dimensional random vector such that X, Xi, ..., X,, are independent
and identically distributed and set

%= (), () )
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Then Lemma 4.2 in Kohler et al. (2003) implies that there exists a ¢;; > 0 such that for
alln e N
E{\Zn—E{Zn}]4} gcn-nQ-E{\Zn—Z;\‘*}. (26)

— 4 . .
In case Ig,, (fhiQ) =Is,, (%) =0or Ig,, <””;i(l) =1 for some i € {2,...,n}, we

have
I n oy :I r—X!
{Erm ) =p s (5

)£ (55) 0

Consequently,

E{\Zn—zjf} 4
<16 E (/Is7l< [ ( 5, (ﬁf)) u(drc)>

)1
<16-E (/ ( Xl) exp( sT1<xhnX">> u(d$)>4
)

- X
<1689 | [10, (5 uidr) | b
1+Zz 21571(%)(1.>

n

- Xi

E%

where the last inequality followed from (1+2)-e™* <1 (2 € Ry). Application of Lemma

5 yields
4 C12
E{|z.-z|'} < 21,

from which we get the assertion by an application of the lemma of Borel-Cantelli, Markov
inequality and inequality (26).
Proof of (A5): Condition (A5) follows directly from the definition of W, ; since K is

nonnegative. U
Proof of Corollary 1. By Lemma 1 and Lemma 6 the assumptions of Theorem 1 are
satisfied. Application of Theorem 1 yields the assertion. O

3.3 Proof of Corollary 2
Analogously to the proof of Lemma 5 one can show

Lemma 7 Assume that the assumptions of Corollary 2 are satisfied. Then constants
c13,c14 > 0 exists such that for each i € {1,...,n}

2
Tap, (2)(Xi) c13
E / = pldz) | p < —
( L2 jeqt, iy Tap, (0 (X5) n?
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and

4
Lap, () (X3) c14
/ 1 P (2) . = Alde) <M
+ 2 et (i} L, () (X5) n
Lemma 8 Assume that the assumptions of Corollary 1 hold and set

IApn (I) (X'L)
Z;'L:l Lap, () (X;5)

Then Wy, ; satisfies the assumption (A1) from Theorem 1.

Wnﬂ(l‘) =

Proof of Lemma 8. Let Y be such that Y > 0 a.s. We have to show for some ¢15 > 0
I X)) Y

B DI e

n—00 1+ Z]E{l

Set Y;* =Y, - Ity,<;3. We show next that (27) follows from

lim su
n%mp/z 1+ Zj

To do this, we observe that we have as in the proof of Lemma 1 that Y, # Y,, holds at
most for finitely many n. For each i € N, one has

n pu(dx) -0 a.s.,
/ L+ 3t it Lap, (@) (X5)

dr) < c15 - EY. 27
(i Lap, (@) (X5) plde) = e 0

77777

I X;) - Yy
Ap @) (X0) - ¥ u(dz) < 15 - EY. (28)
ef1,.np\{i} Lap, () (X5)

77777

since Lemma 7 implies

[e's] I - Xz 2 0o
Y E (/ Az )X X,>u(dx)> <c13-n§::i:2<oo.

n=i 1+ Zje{l,...,n}\{i} IApn (CC)( Jj

As in the proof of Lemma 1, we can conclude that (27) is implied by (28). In the sequel
we show (28). Set ny = 2F (k € N). Since the partitions P, are nested we have for any
r < s and all z € R?

A'P»« (:E) 2 APS (I‘),

from which we get for any n € {ng,nx +1,...,ngp41}

En: Lap, @(Xi) - Y7

S Yjen iy Lap, @(X5)

< nil Lap, (0)(X3) - Y7
Beacil e 2 jet i N\{i} Lap, () (X))
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i Lap, (@)(Xi) Yy

= Yt i Lap,,,, @(X5)
Hence in order to show (28) it suffices to show

k1 Iap (2)(Xi) - Y
lim sup/ “k
k—o0 ; 1+ Zje{l,...,nk}\{i} IApnkH (z) (Xj)

p(dx) < ci5 - EY.

By the assumptions of Corollary 2 each set in the partition P, is contained in the union
of at most L sets of the partition Py, ,. Consequently we get the assertion above as in
the proof of Lemma 1. O

Lemma 9 Assume that the assumptions of Corollary 2 hold and set

IApn (I) (X'L)
> =1 dap, (@)(X5)

Then W, ; satisfies the assumptions (A2),(A3), (A4) and (A5) from Theorem 1.

Wn,z(x) =

Proof. Proof of (A2): Let ¢ > 0 and # € R? be arbitrary. By assumption (11) there
exists ng € N such that diam(Ap,(z)) < € for n > ng. Then we have for any n > ng

n n

Lap, () (Xa) * I xi—a||>e}
Wnai(x) : I X;—x||>e€ = Pn n : = 07
2 W) T = 2 ()

which implies (A2).

Proof of (A3): Lemma 7 yields (A3"), which implies (A3) (compare Remark 2).

Proof of (A4): Analogously to the proof of (A4) in Lemma 6.

Proof of (A5): Condition (A5) trivially follows from the definition of the weights. O
Proof of Corollary 2. By Lemma 8 and Lemma 9 the assumptions of Theorem 1 are
satisfied. Application of Theorem 1 yields the assertion. O
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