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Abstract

In this article we consider the problem of estimating quantiles related to the outcome
of experiments with a technical system given the distribution of the input together with
an (imperfect) simulation model of the technical system, and (few) data points from the
technical system. The distribution of the outcome of the technical system is estimated
in a regression model, where the distribution of the residuals is estimated on the basis
of a conditional density estimate. It is shown how Monte Carlo can be used to estimate
quantiles of the outcome of the technical system on the basis of the above estimates, and
the rate of convergence of the quantile estimate is analyzed. Under suitable assumptions
it is shown that this rate of convergence is faster than the rate of convergence of standard
estimates which ignore either the (imperfect) simulation model or the data from the
technical system, hence it is crucial to combine both kinds of information. The results
are illustrated by applying the estimates to simulated and real data.

AMS classi�cation: Primary 62G05; secondary 62P30.

Key words and phrases: Conditional density estimation, quantile estimation, imperfect
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1 Introduction

The design of complex technical systems by engineers always has to take into account
some kind of uncertainty. This uncertainty might occur because of lack of knowledge
about future use or about properties of the materials used to build the technical system
(e.g., the exact value of the damping coe�cient of a spring�mass damper). In order to
take this uncertainty into account, we model in the sequel the outcome Y of the technical
system by a random variable. For simplicity we restrict ourselves to the case that Y is a
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real�valued random variable. Thus we are interested in properties of the distribution of
Y , e.g., we are interested in quantiles

qY,α = min {y ∈ R : P{Y ≤ y} ≥ α} (1)

for α ∈ (0, 1) (which describe for α close to one values which we expect to be upper
bounds on the values occurring in an application), or in the density gY : R → R of Y
with respect to the Lebesgue-Borel measure, which we assume later to exist.
In the sequel we model the lack of knowledge about the future use of the system or

about properties of materials used in it by introducing an additional Rd�valued random
variable X, which contains values for uncertain parameters describing the system or
its future use, and from which we assume either to know the distribution or are able
to generate an arbitrary number of independent realizations. Furthermore we assume
that we have available a model describing the relation between X and Y by a function
m̄ : Rd → R. This function m̄ might be constructed by using a physical model of our
technical system, and in some sense m̄(X) is an approximation of Y . However, as all
models our model is imperfect in the sense that Y = m̄(X) does not hold. This might
be due to the fact that Y cannot be exactly characterized by a function of X (since X
might not describe the randomness of Y completely), or since our relation between Y
and X is not correctly speci�ed by m̄, or because of both. So although we know m̄ and
can generate an arbitrary number of independent copies X1, X2, . . . of X, we cannot use
m̄(X1), m̄(X2), . . . as observations of Y , since there is an error between these values and
a sample of Y .
In order to control this error, we assume that we have available n ∈ N observations

of the Y �values corresponding to the �rst n values of X. To formulate our prediction
problem precisely, let (X,Y ), (X1, Y1), (X2, Y2), . . . be independent and identically dis-
tributed and let Ln, Nn ∈ N. We assume that we are given the data

(X1, Y1), . . . , (Xn, Yn), (Xn+1, m̄(Xn+1), . . . , (Xn+Ln , m̄(Xn+Ln)),

Xn+Ln+1, . . . , Xn+Ln+Nn , (2)

and we want to use this data in order to estimate the quantiles qY,α or the density gY of Y
(which we later assume to exist). The main di�culty in solving this problem is that the
sample size n of the observations of Y (which corresponds to the number of experiments
we are making with the technical system) is rather small (since these experiments are
time consuming or costly).
Before we describe various existing approaches to solve this problem in the literature,

we will illustrate the problem by an example. Here we consider a demonstrator for a
suspension strut, which was built at Technische Universität Darmstadt and which serves
as an academic demonstrator to study uncertainty in load distributions and the ability to
control vibrations, stability and load paths in suspension struts such as aircraft landing
gears. The photo of this suspension strut and its experimental test setup is shown in
Figure 1 (left), a CAD illustration of this suspension strut can be found in Figure 1
(middle).
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Mathematical modelling of a suspension strut

Figure 1 illustrates a suspension strut that has similar dynamic requirements and behaviour as an aircraft
landing gear.

upper structure

lower structure

spring and damper component

elastic foot

freefall height hf

Fig. 1 CAD illustration of a suspension strut

A) Two degree of freedom (2DOF) suspension system with linear stiffness
and axiomatic damping
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Fig. 2 Mathematical representation of a 2DOF suspension strut with linear stiffness and axiomatic
damping
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Figure 1: A photo of the demonstrator of a suspension strut and its experimental test
setup (left), a CAD illustration of the suspension strut (middle) and illustration
of a simpli�ed model of the suspension strut (right).

This suspension strut consists of an upper and lower structure, where the lower struc-
ture contains a spring�damper component and an elastic foot. The spring�damper com-
ponent transmits the axial forces between the upper and lower structures of the suspen-
sion strut. The aim of our analysis is the analysis of the behaviour of the maximum
relative compression of the spring damper component in case that the free fall height is
chosen randomly. Here we assume that the free fall heights are independent normally
distributed with mean 0.05 meter and standard deviation 0.0057 meter.
We analyze the uncertainty in the maximum relative compression in our suspension

strut using a simpli�ed mathematical model of the suspension strut (cf., Figure 1 (right)),
where the upper and the lower structures of the suspension strut are two lump masses
m and m1, the spring damper component is represented by a sti�ness parameter k and
a suitable damping coe�cient b, and the foot is represented by another sti�ness param-
eter kef . Using a linear sti�ness and an axiomatic damping it is possible to compute the
maximum relative compression by solving a di�erential equation using Runge-Kutta algo-
rithm (cf., model a) in Mallapur and Platz (2017)). Figure 2 shows Ln = 500 data points
from the computer experiment and also n = 20 experimental data points. Since they
do not look like they come from the same source, our computer experiment is obviously
imperfect. Our aim in the sequel is to us the n = 20 data points from our experiments
with the suspension strut together with the Ln = 500 data points from the computer
experiments in order to analyze the uncertainty in the above described experiments with
the suspension strut. This can be done, e.g., by making some statistical inference about
quantiles or the density of the maximal occurring compression in experiments with the
suspension strut.
There are various possible approaches to solve the above estimation problem. The

simplest idea is to ignore the model m̄(X) completely and to make inference about qY,α
and gY using only the observations

Y1, . . . , Yn (3)

of Y . E.g., we can estimate the quantile qY,α by the plug�in estimate

q̂Y,n,α = min
{
y ∈ R : ĜY,n(y) ≥ α

}
(4)
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Figure 2: Data from Ln = 500 computer experiments (in black) together with data (in
red) from n = 20 experiments with the suspension strut in Figure 1 (left panel).

corresponding to the estimate

ĜY,n(y) =
1

n

n∑
i=1

I(−∞,y](Yi)

of the cumulative distribution function (cdf.) G(y) = P{Y ≤ y} of Y , which result in
an order statistics as an estimate of the quantile. Or we can estimate the density gY of
Y by the well�known kernel density estimate of Rosenblatt (1956) and Parzen (1962),
where we �rst choose a density K : R→ R (so�called kernel) and a so�called bandwidth
hn > 0 and de�ne our estimate by

ĝY,n(y) =
1

n · hn
·
n∑
i=1

K

(
y − Yi
hn

)
.

However, since the sample size n of our data (3) is rather small, this will in general not
lead to satisfying results.
Another simple idea is to ignore the real data (3), and to use the model data

m̄(Xn+1), . . . , m̄(Xn+Ln) (5)

as a sample of Y with additional measurement errors, and to use this sample to de�ne
quantile and density estimates as above. In this way we estimate qY,α by

q̂m̄(X),Ln,α = min
{
y ∈ R : Ĝm̄(X),Ln(y) ≥ α

}
(6)
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where

Ĝm̄(X),Nn(y) =
1

Ln

Ln∑
i=1

I(−∞,y](m̄(Xn+i)),

and we can estimate the density g of Y by

ĝm̄(X),Ln(y) =
1

Ln · hLn
·
Ln∑
i=1

K

(
y − m̄(Xn+i)

hLn

)
.

Since the function m̄ of our model m̄(X) of Y might be costly to evaluate (e.g., in case
that its values are de�ned as solutions of a complicated partially di�erential equation)
and consequently Ln might not be really large, it makes sense to use in a �rst step the
data

(Xn+1, m̄(Xn+1)), . . . , (Xn+Ln , m̄(Xn+Ln))

to compute a surrogate model

m̂Ln(·) = m̂Ln(·, (Xn+1, m̄(Xn+1)), . . . , (Xn+Ln , m̄(Xn+Ln)) : Rd → R

of m̄, and to compute in the second step the quantile and density estimates q̂m̂Ln (X),Nn,α

and ĝm̄Ln (X),Nn using the data

m̂Ln(Xn+Ln+1), . . . , m̂Ln(Xn+Ln+Nn).

Surrogate models have been introduced and investigated with the aid of the simulated
and real data in connection with the quadratic response surfaces in Bucher and Burgund
(1990), Kim and Na (1997) and Das and Zheng (2000), in context of support vector
machines in Hurtado (2004), Deheeger and Lemaire (2010) and Bourinet, Deheeger and
Lemaire (2011), in connection with neural networks in Papadrakakis and Lagaros (2002),
and in context of kriging in Kaymaz (2005) and Bichon et al. (2008).
Under the assumption that we have m̄(X) = Y , the above estimates have been theo-

retically analyzed in Devroye, Felber and Kohler (2013), Bott, Felber and Kohler (2015),
Felber, Kohler and Krzy»ak (2015a, 2015b), Enss et al. (2016) and Kohler and Krzy»ak
(2017a).
However, in practice there usually will be an error in the approximation of Y by m̄(X),

and it is unclear how this error in�uences the error of the quantile and density estimates.
Kohler et al. (2016) and Kohler and Krzy»ak (2016) used the data

(X1, Y1), . . . , (Xn, Yn)

obtained by experiments with the technical system in order to control this error. In
particular, con�dence intervals for quantiles and con�dence bands for densities are derived
there. Wong, Storlie and Lee (2017) used the above data of the technical system in order
to calibrate a computer model and estimated the error of the resulting model by using
bootstrap. Kohler and Krzy»ak (2017b) used this data in order to improve the surrogate
model and analyzed the density estimate based on the improved surrogate model.
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Kohler et al. (2016) and Kohler and Krzy»ak (2016, 2017b) try to approximate Y by
some function of X and make statistical inference on the basis of this approximation.
Wong, Storlie and Lee (2017) do this similarly, but take into account additional mea-
surement errors of the y-values. The basic new idea in this article is to estimate instead
a regression model

Y = m̄(X) + ε̄, (7)

where
ε̄ = Y − m̄(X)

is the residual error of our model m̄(X), which is not related to measurement errors but
instead is due to the fact, that an approximation of Y by a function of X cannot be
perfect. In this model we estimate simultaneously m̄ and the conditional distribution
Pε̄|X=x of ε̄ given X = x. As soon as we have available estimates m̂Ln and Pε̄|X=x for
both, we generate data

m̂Ln(Xn+Ln+1) + ε̂(Xn+Ln+1), . . . , m̂Ln(Xn+Ln+Nn) + ε̂(Xn+Ln+Nn)

(where ε̂(x) has the distribution P̂ε̄|X=x conditioned on X = x) and use this data to
de�ne corresponding quantile estimates.
We assume in the sequel that the conditional distribution of ε̄ given X has a den-

sity with respect to the Lebesgue-Borel measure. In order to estimate this conditional
density, we use the well-known conditional kernel density estimate introduced already
in Rosenblatt (1969). Concerning existing results on conditional density estimates we
refer to Fan, Yao and Tong (1996), Fan and Yim (2004), Gooijer and Zerom (2003),
Efromovich (2007), Bott and Kohler (2016, 2017) and the literature cited therein.
Our main result, which is formulated in Section 3, shows that our newly proposed

quantile estimates achieve under suitable regularity condition rates of convergence, which
are faster than the rates of convergence of the estimates (4), (6) and the modi�cations
of (6) using m̂Ln instead of m̄. Furthermore we show with simulated data that in the
situations which we consider in our simulations this e�ect also occurs for �nite sample
sizes, and illustrate the usefulness of our newly proposed method by applying it to a
spring-damper system introduced earlier.
Throughout this paper we use the following notation: N, N0 and R are the sets of

positive integers, nonnegative integers and real numbers, respectively. Let p = k + β for
some k ∈ N0 and 0 < β ≤ 1, and let C > 0. A function m : Rd → R is called (p, C)-
smooth, if for every α = (α1, . . . , αd) ∈ Nd0 with

∑d
j=1 αj = k the partial derivative

∂km
∂x
α1
1 ...∂x

αd
d

exists and satis�es

∣∣∣∣ ∂km

∂xα1
1 . . . ∂xαdd

(x)− ∂km

∂xα1
1 . . . ∂xαdd

(z)

∣∣∣∣ ≤ C · ‖x− z‖β
for all x, z ∈ Rd. If X is a random variable, then PX is the corresponding distribution,
i.e., the measure associated with the random variable. If (X,Y ) is a Rd × R�valued
random variable and x ∈ Rd, then PY |X=x denotes the conditional distribution of Y

6



given X = x. Let D ⊆ Rd and let f : Rd → R be a real-valued function de�ned on Rd.
We write x = arg minz∈D f(z) if minz∈D f(z) exists and if x satis�es

x ∈ D and f(x) = min
z∈D

f(z).

For x ∈ Rd and r > 0 we denote the (closed) ball with center x and radius r by Sr(x). If
A is a set, then IA is the indicator function corresponding to A, i.e., the function which
takes on the value 1 on A and is zero elsewhere. For A ⊆ R we denote the in�mum of A
by inf A, where we use the convention inf ∅ =∞. If x ∈ R, then we denote the smallest
integer greater than or equal to x by dxe.
The outline of this paper is as follows: In Section 2 the construction of the newly

proposed quantile estimate is explained. The main results are presented in Section 3 and
proven in Section 5. The �nite sample size performance of our estimates is illustrated in
Section 4 by applying it to simulated and real data.

2 De�nition of the estimate

In the sequel we assume that we are given data (2), where n,Ln, Nn ∈ N, the Rd × R
valued random variables (X,Y ), (X1, Y1), (X2, Y2), . . . are independent and identically
distributed, and where m̄ : Rd → R is measurable. Our aim is to estimate the quantile
qY,α de�ned in (1) for some α ∈ (0, 1).
To do this, we start by constructing an estimate of m̄. For this we use the data

(Xn+1, m̄(Xn+1)), . . . , (Xn+Ln , m̄(Xn+Ln))

and de�ne the penalized least squares estimates of m̄ by

m̃Ln(·) = arg min
f∈Wk(Rd)

(
1

Ln

Ln∑
i=1

(m̄(Xn+i)− f(Xn+i))
2 + λLn · J2

k (f)

)
and

m̂Ln(x) = TβLn (m̃Ln(x)) (x ∈ Rd)

for some βLn > 0, where k ∈ N with 2k > d,

J2
k (f) =

∑
α1,...,αd∈N, α1+···+αd=k

k!

α1! · · · · · αd!

∫
Rd

∣∣∣∣ ∂kf

∂xα1
1 . . . ∂xαdd

(x)

∣∣∣∣2 dx
is a penalty term penalizing the roughness of the estimate, W k(Rd) denotes the Sobolev
space{

f :
∂kf

∂xα1
1 . . . ∂xαdd

∈ L2(Rd) for all α1, . . . , αd ∈ N with α1 + · · ·+ αd = k

}
,

and where λLn > 0, TL(x) = max{−L,min{L, x}}, L > 0 is the truncation operator and
L2(Rd) denotes square integrable functions on Rd. The condition 2k > d implies that
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the functions in W k(Rd) are continuous and hence the value of a function at a point is
well de�ned.
Then we compute the residuals of this estimate on the data (X1, Y1), . . . , (Xn, Yn),

i.e., we set
ε̂i = Yi − m̂Ln(Xi) (i = 1, . . . , n). (8)

We use these residuals in order to estimate the conditional distribution of ε̄ = Y − m̄(X)
given X = x. Here we assume that this distribution has a density and estimate this
density by applying a conditional density estimator to the data

(X1, Y1 − m̂Ln(X1)), . . . , (Xn, Yn − m̂Ln(Xn)).

To do this, we set G = I[−1,1] and let K : R→ R be a density, let hn, Hn > 0 and set

ĝε̂|X(y, x) =

∑n
i=1G

(
‖x−Xi‖
Hn

)
·K

(
y−(Yi−m̂Ln (Xi))

hn

)
hn ·

∑n
j=1G

(
‖x−Xj‖
Hn

) (9)

Once we have constructed the estimates m̂n and ĝε̂|X we construct a sample of size Nn

of the distribution of
m̂Ln(X) + ε̂(X),

where the random variable ε̂(X) has the conditional density ĝε̂|X(·, X) given X, and
estimate the quantile by the empirical quantile corresponding to this sample. To do this
we use an inversion method: We de�ne for u ∈ (0, 1) and x ∈ Rd

F−1
n (u, x) = inf

{
y ∈ R :

∫ y

−∞
ĝε̂|X(z, x) dz ≥ u

}
,

choose independent and identically uniformly on (0, 1) distributed random variables U1,
U2, . . . , such that they are independent of all other previously introduced random vari-
ables, and set

Ŷn+Ln+i = F−1
n (Ui, Xn+Ln+i) (i = 1, . . . , Nn).

This implies in case ∫
R
ĝε̂|X(z,Xn+Ln+i) dz = 1

that Ŷn+Ln+i conditioned on Xn+Ln+i has the density ĝε̂|X(·, Xn+Ln+i)).
With these random variables we estimate the cdf. of Y by

ĜŶ ,Nn(y) =
1

Nn

Nn∑
i=1

I{Ŷn+Ln+i≤y},

and use the corresponding plug�in estimate

q̂Ŷ ,Nn,α = min
{
y ∈ R : ĜŶ ,Nn(y) ≥ α

}
as an estimate of qY,α.
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3 Main result

Our main result is the following theorem, which gives a nonasymptotic bound on the
error of our quantile estimate.

Theorem 1 Let (X,Y ), (X1, Y1), (X2, Y2), . . . be independent and identically distributed
Rd × R�valued random variables, and let m̄ : Rd → R be a measurable function. Let

gε̄|X : R×Rd → R be a measurable function with the property that gε̄|X(·, X) is a density

of the conditional distribution of ε̄ = Y − m̄(X) given X. Assume that the following

regularity conditions hold for some C1, C2 > 0, r, s ∈ (0, 1]:

(A1) |gε̄|X(y, x1)− gε̄|X(y, x2)| ≤ C1 · ‖x1 − x2‖r for all x1, x2 ∈ Rd, y ∈ R,

(A2) |gε̄|X(u, x)− gε̄|X(v, x)| ≤ C2 · |u− v|s for all u, v ∈ R, x ∈ Rd

Let n,Ln, Nn ∈ N and assume N2
n ≥ 8·log n. For α ∈ (0, 1) de�ne the estimate q̂Ŷ ,Nn,α of

the quantile qY,α (given by (1)) as in Section 2, where hn, Hn > 0, G is the naive kernel

and where K : Rd → R is bounded and symmetric density, which decreases monotonically

on R+ and which satis�es∫
K2(z) dz <∞ and

∫
K(z) · |z|sdz <∞.

Let γn > 0, assume 2 ·
√
d · γn ≥ Hn, and for x ∈ Rd let −∞ < an(x) ≤ bn(x) <∞. Set

εn = 4 ·E
∫
Rd
|m̂Ln(x)− m̄(x)|2PX(dx),

δn =
8 ·K(0) · (4 ·

√
d)dγdn

hn ·Hd
n

·E
∫
Rd
|m̂Ln(x)− m̄(x)|PX(dx)

+8 · c1 ·

(√∫
[−γn,γn]d |bn(x)− an(x)|PX(dx) · γdn

n ·Hd
n · hn

+
4 · γdn
n ·Hd

n

+ 4 ·
∫

[−γn,γn]d
|bn(x)− an(x)|PX(dx) · (C1 ·Hr

n + C2 · hsn)

)

+8 ·PX(Rd \ [−γn, γn]d) + 8 ·
∫

[−γn,γn]d

∫
[an(x),bn(x)]c

gε̄|X(y, x) dyPX(dx)

where

c1 = max

{
1,

√
2 · (4 ·

√
d)d ·

∫
K2(z) dz, (4 ·

√
d)d,

∫
K(z) · |z|sdz

}

and

ηn = 4 ·P
{
X ∈ Rd \ [−γn, γn]d

}
+ 4 · (4 ·

√
d)d · γdn

n ·Hd
n

.
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Let en > 0 and assume that the cdf. of Y satis�es

GY (qY,α + en − ε1/3n )−GY (qY,α) > ε1/3n +

√
logNn

Nn
+ δn + ηn (10)

and

GY (qY,α)−GY (qY,α − en + ε1/3n ) > ε1/3n +

√
logNn

Nn
+ δn + ηn. (11)

Then

P
{∣∣∣q̂Ŷ ,Nn,α − qY,α∣∣∣ > (log n) · en

}
≤ 1

log n
.

Remark 1. Assume that Y has a density gY : R → R with respect to the Lebesgue
measure which satis�es for some c2, c3 > 0

gY (y) > c2 for all y ∈ [qY,α − c3, qY,α + c3]. (12)

Assume that positive εn, δn, ηn de�ned in Theorem 1 satisfy(
1 +

1

c2

)
·

(
ε1/3n + δn + ηn +

√
logNn

Nn

)
≤ c3, (13)

and set

en =

(
1 +

1

c2

)
·

(
ε1/3n + δn + ηn +

√
logNn

Nn

)
.

Then (10) and (11) hold, and consequently we can conclude from Theorem 1

P

{∣∣∣q̂Ŷ ,Nn,α − qY,α∣∣∣ > (1 +
1

c2

)
· (log n) ·

(
ε1/3n + δn + ηn +

√
logNn

Nn

)}
≤ 1

log n
.

Indeed, the assumptions above imply

0 ≤ en − ε1/3n ≤ c3.

Consequently because of the assumption on the density of Y we have

GY (qY,α + en − ε1/3n )−GY (qY,α) ≥ c2(en − ε1/3n )).

By the de�nition of en we have

c2(en − ε1/3n )− ε1/3n −
√

logNn

Nn
− δn − ηn > 0,

which implies (10). In the same way one can show (11).

10



Remark 2. Set γn = log(n). Under suitable smoothness assumptions on m̄ : Rd → R,
suitable assumptions on the tails of ‖X‖ and in case that λLn and βLn are suitably chosen
it is well-known that the expected L2 error of the smoothing spline estimate satis�es

E

∫
Rd
|m̂Ln(x)− m̄(x)|2PX(dx) ≤ c4 ·

(
logLn
Ln

)2k/(2k+d)

(cf., e.g. Theorem 2 in Kohler and Krzy»ak (2017b)). Thus for Ln large compared to n
and under suitable assumptions on the tails of ‖X‖ and on the tails of the conditional
distribution of ε̄ given X it follows from Remark 1 that the error of our quantile estimate
in Theorem 1 is up to some constant given by

(log n) ·

(√∫
[− log(n),log(n)]d |bn(x)− an(x)|PX(dx) · (log n)d

n ·Hd
n · hn

+
(log n)d

n ·Hd
n

+

∫
[− log(n),log(n)]d

|bn(x)− an(x)|PX(dx) · (C1 ·Hr
n + C2 · hsn)

)
. (14)

Minimizing the expression above with respect to hn and Hn as in the proof of Corollary
2 in Bott and Kohler (2017), shows that in case of a suitable choice of the bandwidths
hn, Hn > 0 the error of our quantile estimate in Theorem 1 is up to some logarithmic
factor given by the minimum of

C
d
r+d

1 · (
∫

[− log(n),log(n)]d
|bn(x)− an(x)|PX(dx))

d
r+d · n−

r
r+d

+C
ds

(r+d)(2s+1)

1 · C
1

2s+1

2 (

∫
[− log(n),log(n)]d

|bn(x)− an(x)|PX(dx))
(r+d)(s+1)+ds

(r+d)(2s+1) · n−
rs

(r+d)(2s+1)

and

C
(2s+1)d

r(2s+1)+ds

1 · C
− d
r(2s+1)+ds

2 · (
∫

[− log(n),log(n)]d
|bn(x)− an(x)|PX(dx))

ds
r(2s+1)+ds · n−

r(2s+1)
r(2s+1)+ds

+C
ds

r(2s+1)+ds

1 · C
r

r(2s+1)+ds

2 · (
∫

[− log(n),log(n)]d
|bn(x)− an(x)|PX(dx))

r(s+1)+ds
r(2s+1)+ds · n−

rs
r(2s+1)+ds .

In case of
∫

[− log(n),log(n)]d |bn(x) − an(x)|PX(dx) small, these terms might get much

smaller than the well-known rate of convergence 1/
√
n of the simple quantile estimate

(4), and in case of imperfect models they will also be smaller than the rate of convergence
of the surrogate quantile estimate.
Remark 3. The results in Remark 2 require that the parameters of the estimates (e.g.,
hn and Hn) are suitably chosen. A data-dependent way of chosing these parameters in
an application will be proposed in the next section, and by using simulated data it will
be shown that in this case our newly proposed estimates outperform the other estimates
for �nite sample size in the situations which we consider there.
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4 Application to simulated and real data

In this section we illustrate the �nite sample size performance of our estimates by applying
them to simulated and real data. We start with an application to simulated data, where
we compare the simple order statistics estimate (est. 1) de�ned by (4) and a surrogate
quantile estimate (est. 2) de�ned by (6) (where we replace m̄ by m̂Ln and evaluate this
function on Nn x�values) with our newly proposed estimate based on estimation of the
conditional density (est. 3) as de�ned in Section 2.
In the implementation of est. 2 and est. 3 we use thin plate splines (with smoothing

parameter chosen by generalized cross validation) as implemented by the routine Tps()
of R in order to estimate a surrogate model for our computer experiment. Here the
implementation of the surrogate quantile estimate est. 2 computes a sample of size Nn =
100, 000 of m̂Ln(X) and estimates the quantile by the corresponding order statistics.
In the implementation of our newly proposed est. 3 we use the naive kernel G(x) =

I[−1,1](x) and the Epanechnikov kernelK(y) = (3/4)·(1−y2)+ for the conditional density
estimate

ĝε̂|X(y, x) =

∑n
i=1G

(
‖x−Xi‖

H

)
·K

(
y−(Yi−m̂Ln (Xi))

h

)
h ·
∑n

j=1G
(
‖x−Xj‖

H

) .

Here the bandwidths h and H are chosen in a data dependent way from the sets

Ph =
{

2 · 2−l · IQR(Y1 − m̂Ln(X1), . . . , Yn − m̂Ln(Xn)) : l ∈ {0, 1, . . . , 4}
}

and
PH =

{
2 · 2−l · IQR(X1, . . . , Xn) : l ∈ {0, 1, . . . , 4}

}
by the combinatorial method proposed by Bott and Kohler (2016), where IQR denotes
an interquartile range, i.e., the distance between 25th and 75th percentiles. To do this
we choose them by minimizing

max
h1,h2∈Ph,
H1,H2∈PH

∣∣∣∣∣∣ 1

nt

n∑
i=nl+1

∫
Ai(h1,H1,h2,H2)

ĝ
(nl,(h,H)
ε̂|X (y,Xi) dy −

1

nt
·

n∑
i=nl+1

IAi(h1,H1,h2,H2)(Yi)

∣∣∣∣∣∣
with respect to h ∈ Ph and H ∈ PH , where nl = bn/2c, nt = n− nl,

ĝ
(nl,(h,H))
ε̂|X (y, x) =

∑nl
i=1G

(
‖x−Xi‖

H

)
·K

(
y−(Yi−m̂Ln (Xi))

h

)
h ·
∑nl

j=1G
(
‖x−Xj‖

H

)
and

Ai(h1, H1, h2, H2) =
{
y ∈ R : ĝ

(nl,(h1,H1))
ε̂|X (y,Xi) > ĝ

(nl,(h2,H2))
ε̂|X (y,Xi)

}
.

In the implementation of this method we approximate the integral∫
Ai(h1,H1,h2,H2)

ĝ
(nl,(h,H)
ε̂|X (y,Xi) dy

12



by a Rieman sum based on an equidistant grid of[
min{Y1 − m̂Ln(X1), . . . , Yn − m̂Ln(Xn)} − max

h∈Ph
h,

max{Y1 − m̂Ln(X1), . . . , Yn − m̂Ln(Xn)}+ max
h∈Ph

h
]

consisting of 200 grid points (which enables an �e�cient� implementation of the above

minimization problem by �rst computing of ĝ
(nl,(h,H)
ε̂|X (y,Xi) for all grid points y, all

h ∈ Ph, all H ∈ PH and all i = nl + 1, . . . , n). After the computation of ĝε|X we use the
inversion method to generate random variables with the conditional density ĝε|X(·, Xi).
Here we do not have to consider values outside of the above interval, since our density
estimate is zero outside of this interval. In order to implement the inversion method we
discretize the corresponding conditional cumulative distribution function

Ĝε̂|X(y,Xi) =

∫ y

−∞
ĝε̂|X(z,Xi) dz

=

∑nl
i=1G

(
‖x−Xi‖

H

)
·
∫ y
−∞K

(
z−(Yi−m̂Ln (Xi))

h

)
dz

h ·
∑nl

j=1G
(
‖x−Xj‖

H

)
by considering only its values on an equidistant grid of[

min{Y1 − m̂Ln(X1), . . . , Yn − m̂Ln(Xn)} − h,

max{Y1 − m̂Ln(X1), . . . , Yn − m̂Ln(Xn)}+ h
]

consisting of 1000 points, and by approximating the above integral by a Rieman sum
corresponding to this grid. This enables again an �e�cient� computation of the values of
the conditional empirical cumulative distribution function by computing in advance

K

(
z − (Yi − m̂Ln(Xi))

h

)
for all grid points z and all i = 1, . . . , n. Using so computed values of the random
variables we compute a sample of size Nn = 100, 000 of Y and estimate the quantile by
the corresponding order statistics.
We compare the above three estimates in the regression model

Y = m(X) + ε,

where X is a standard normally distributed random variable,

m(x) = exp(x) (x ∈ R)

and the conditional distribution of ε given X is normally distributed with mean zero and
standard deviation

σ(X) = σ · (0.25 +X · (1−X)) .
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Here σ > 0 is a parameter of our distribution for which we allow the values 0.5, 1 and 2.
Furthermore we assume that our simulation model is based on the function

m̄(x) = m(x)− δ = exp(x)− δ (x ∈ R),

where δ ∈ R is the constant model error of our model for which we consider the values
0 (i.e., no error) and 1 (i.e., negative error). Here we consider a negative value for the
model error, since the surrogate quantile estimate tends to underestimate the quantile
in the above example, so that a positive error might accidentally improve the surrogate
quantile estimate.
We apply our estimates to samples of size n ∈ {20, 50, 100} of (X,Y ) and Ln = 500 of

(X, m̄(X)), and use them to estimate quantiles of order α = 0.95 and α = 0.99.
In order to judge the errors of our quantile estimate, we use a simple order statis-

tics with sample size 1, 000, 000 applied to a sample of Y as a reference value for the
(unkonwn) quantile qY,α and compute the relative errors

|q̂Y,α − qY,α|
qY,α

.

Of course, our estimates q̂Y,α and hence also the above relative errors depend on the
random samples selected above, and hence are random. Therefore we repeat the com-
putation of the above error 100 times with newly generated independent samples and
report the median and the interquantile ranges of the 100 errors in each of the considered
cases for α, σ, δ and n, which results in errors for 2 · 3 · 2 · 3 = 36 di�erent situations.
The values we obtained in case α = 0.95 and in case α = 0.99 are reported in Tables 1
and 2, resp.
Looking at the results in Tables 1 and 2 wee see that our newly proposed estimate out-

performs the order statistics estimate in all 36 settings of the simulations. Furthermore
it outperfortms the surrogate quantile estimates whenever the model error is not zero,
and also in case of the model error being zero whenever σ is large. There are a few cases
with small σ value and zero model error where the surrogate quantile estimate is better
than our newly proposed estimate, but in this case the di�erence between the errors is
not large in contrast to the improvement of the error of the surrogate quantile estimate
by our newly proposed estimate in most of the other cases.
Finally we illustrate the usefulness of our newly proposed method for uncertainty

quanti�cation by using it in analysis of the uncertainty occurring in experiments with
the suspension strut in Figure 1 (left) described in the Introduction. We use the results
of Ln = 500 computer experiments to construct a surrogate estimate m̂Ln as described
above, and we apply the method proposed in Section 2 to compute the conditional density
of the residuals. To do this, we choose as described above the bandwidths h and H from
the sets

Ph = {0.000766, 0.000383, 0.000191, 0.000096, 0.000048}

and
PH = {0.0174, 0.0087, 0.0043, 0.0022, 0.0011}
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n σ δ est. 1 est. 2 est. 3

20 0.5 0 0.2876 (0.2315) 0.0181 (0.0071) 0.0242 (0.0285)
20 0.5 1 0.2971 (0.3107) 0.2066 (0.0084) 0.0254 (0.0458)
20 1 0 0.2911 (0.2617) 0.0950 (0.0078) 0.0902 (0.0690)
20 1 1 0.2990 (0.2844) 0.2679 (0.0081) 0.0844 (0.0869)
20 2 0 0.3511 (0.2645) 0.2771 (0.0070) 0.1804 (0.1572)
20 2 1 0.3082 (0.3147) 0.4158 (0.0070) 0.1816 (0.1514)

50 0.5 0 0.1595 (0.1638) 0.0182 (0.0085) 0.0275 (0.0360)
50 0.5 1 0.2058 (0.2209) 0.2069 (0.0089) 0.0224 (0.0360)
50 1 0 0.1579 (0.1584) 0.0941 (0.0079) 0.0882 (0.0815)
50 1 1 0.2095 (0.2378) 0.2684 (0.0074) 0.0768 (0.0830)
50 2 0 0.2361 (0.3509) 0.2757 (0.0061) 0.1316 (0.1902)
50 2 1 0.2808 (0.2220) 0.4155 (0.0068) 0.1428 (0.1550)

100 0.5 0 0.1210 (0.1312) 0.0162 (0.0079) 0.0219 (0.0303)
100 0.5 1 0.1260 (0.1480) 0.2063 (0.0093) 0.0211 (0.0371)
100 1 0 0.1269 (0.1574) 0.0930 (0.0084) 0.0647 (0.0796)
100 1 1 0.1590 (0.1721) 0.2679 (0.0078) 0.0732 (0.0735)
100 2 0 0.1269 (0.1835) 0.2760 (0.0060) 0.0922 (0.0902)
100 2 1 0.1799 (0.1870) 0.4167 (0.0061) 0.1143 (0.1238)

Table 1: Simulation results in case α = 0.95. Reported are the median (and in brackets
the interquartile range) of the 100 relative errors for each of our three estimates.

by using the combinatorial method of Bott and Kohler (2016). This results in h =
0.000191 and H = 0.0043. As described above we use the corresponding density estimate
together with the surrogate model to generate an approximate sample of size 100, 000
of Y and estimate the α = 0.95 quantile of Y by the corresponding order statistics,
which results in the estimate 0.0855. In contrast the simple order statistics estimate of
the quantile based only on the n = 20 experimental data points yields the smaller value
0.0849.

5 Proofs

5.1 Estimation of quantiles on the basis of conditional density estimates

Let (X,Y ), (X1, Y1), (X2, Y2), . . . be independent and identically distributed Rd × R�
valued random vectors and let m̄ : Rd → R be a measurable function. Assume that the
conditional distribution of ε̄ = Y −m̄(X) given X has the density gε̄|X(·, X) : R×R→ R
with respect to the Lebesgue-Borel-measure, where gε̄|X : R × Rd → R is measurable.
Let n,Ln, Nn ∈ N and set

Dn = {(X1, Y1), . . . , (Xn, Yn), (Xn+1, m̄(Xn+1)), . . . , (Xn+Ln , m̄(Xn+Ln))}.
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n σ δ est. 1 est. 2 est. 3

20 0.5 0 0.4711 (0.3179) 0.0149 (0.0127) 0.0210 (0.0224)
20 0.5 1 0.4030 (0.3437) 0.1122 (0.0146) 0.0523 (0.0918)
20 1 0 0.4430 (0.4022) 0.1125 (0.0124) 0.1102 (0.0286)
20 1 1 0.4142 (0.3468) 0.1995 (0.0128) 0.1284 (0.1059)
20 2 0 0.5208 (0.4348) 0.3601 (0.0125) 0.3388 (0.1051)
20 2 1 0.5321 (0.3556) 0.4223 (0.0100) 0.3569 (0.1328)

50 0.5 0 0.3172 (0.3565) 0.0160 (0.0159) 0.0224 (0.0425)
50 0.5 1 0.2518 (0.2873) 0.1122 (0.0150) 0.0291 (0.0643)
50 1 0 0.3137 (0.2480) 0.1140 (0.0177) 0.1197 (0.0787)
50 1 1 0.3490 (0.3389) 0.2009 (0.0138) 0.1211 (0.1055)
50 2 0 0.3059 (0.3802) 0.3578 (0.0107) 0.2475 (0.2130)
50 2 1 0.2993 (0.4137) 0.4215 (0.0094) 0.2556 (0.2473)

100 0.5 0 0.2439 (0.2368) 0.0135 (0.0136) 0.0275 (0.0422)
100 0.5 1 0.2120 (0.3256) 0.1130 (0.0191) 0.0390 (0.0476)
100 1 0 0.2125 (0.3053) 0.1114 (0.0152) 0.1085 (0.0925)
100 1 1 0.2457 (0.2612) 0.1986 (0.0164) 0.0978 (0.0886)
100 2 0 0.2644 (0.2248) 0.3608 (0.0107) 0.1785 (0.1993)
100 2 1 0.2544 (0.3104) 0.4214 (0.0110) 0.1686 (0.2273)

Table 2: Simulation results in case α = 0.99. Reported are the median (and in brackets
the interquartile range) of the 100 relative errors for each of our three estimates.

Let m̂Ln(·) = m̂Ln(·,Dn) : Rd → R and let

ĝε̂|X(·, ·) = ĝε̂|X(·, ·,Dn) : R× Rd → R

be a measurable function satisfying

ĝε̂|X(y, x) ≥ 0 for all y ∈ R, x ∈ Rd.

Let U , U1, U2, . . . be independent random variables which are uniformly distributed on
(0, 1) and which are idependent of (X,Y ), (X1, Y1), . . . and set

ε̂ = inf

{
y ∈ R :

∫ y

−∞
ĝε̂|X(z,X) dz ≥ U

}
and

ε̂i = inf

{
y ∈ R :

∫ y

−∞
ĝε|X(z,Xi) dz ≥ Ui

}
(i ∈ N).

Set

Ŷ = m̂Ln(X)+ε̂ and Ŷi = m̂Ln(Xi)+ε̂i (i ∈ {n+Ln+1, n+Ln+2, . . . , n+Ln+Nn}).

For α ∈ (0, 1) set
qY,α = min {y ∈ R : GY (y) ≥ α} ,
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where
GY (y) = P{Y ≤ y},

and
q̂Ŷ ,Nn,α = min

{
y ∈ R : ĜŶ ,Nn(y) ≥ α

}
,

where

ĜŶ ,Nn(y) =
1

Nn

Nn∑
i=n+Ln+1

I{Ŷi≤y}.

Lemma 1 Let α ∈ (0, 1), n ∈ N and Ln, Nn ∈ N and de�ne the estimate q̂Y,Nn,α of qY,α
as above. Assume that ĝε̂|X satis�es

ĝε̂|X(y, x) ≥ 0 (y ∈ R, x ∈ Rd) and

∫
R
ĝε̂|X(y, x) dy ≤ 1 (x ∈ Rd). (15)

Let εn, δn, ηn, en > 0 be such that

GY (qY,α + en − ε1/3n )−GY (qY,α) > ε1/3n +

√
logNn

Nn
+ δn + ηn (16)

and

GY (qY,α)−GY (qY,α − en + ε1/3n ) > ε1/3n +

√
logNn

Nn
+ δn + ηn. (17)

Then

P {|q̂Y,Nn,α − qY,α| > en} ≤ P

{
1

Nn

Nn∑
i=1

|m̂n(Xn+Ln+i)− m̄(Xn+Ln+i)|2 > εn

}

+P

{∫
Rd

∫
R
|ĝε̂|X(y, x)− gε̄|X(y, x)| dyPX(dx) > δn

}
+P

{
P

{∫
R
ĝε̂|X(z,X) dz 6= 1

∣∣Dn} > ηn

}
+

2

N2
n

.

Proof. Set
Ȳ = m̄(X) + ε̂, Ȳi = m̄(Xi) + ε̂i (i ∈ N),

GȲ (y) = P{Ȳ ≤ y|Dn} and ĜȲ ,Nn(y) =
1

Nn

Nn∑
i=1

I{Ȳn+Ln+i≤y}.

By the Dvoretzky-Kiefer-Wolfowitz inequality (cf., Massart (1990)) applied conditionally
on Dn we get

P

{
sup
y∈R

∣∣∣GȲ (y)− ĜȲ ,Nn(y)
∣∣∣ >√ logNn

Nn

}
≤ 2 · exp

(
−2 ·Nn ·

logNn

Nn

)
=

2

N2
n

.

Since

P {|q̂Y,Nn,α − qY,α| > en}
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≤ P

{
|q̂Y,Nn,α − qY,α| > en,

1

Nn

Nn∑
i=1

|m̂Ln(Xn+Ln+i)− m̄(Xn+Ln+i)|2 ≤ εn,∫
Rd

∫
R
|ĝε̂|X(y, x)− gε̄|X(y, x)| dyPX(dx) ≤ δn,

P

{∫
R
ĝε̂|X(z,X) dz 6= 1

∣∣Dn} ≤ ηn, sup
y∈R

∣∣∣GȲ (y)− ĜȲ ,Nn(y)
∣∣∣ ≤√ logNn

Nn

}

+P

{
1

Nn

Nn∑
i=1

|m̂Ln(Xn+Ln+i)− m̄(Xn+Ln+i)|2 > εn

}

+P

{∫
Rd

∫
R
|ĝε̂|X(y, x)− gε̄|X(y, x)| dyPX(dx) > δn

}
+P

{
P

{∫
R
ĝε̂|X(z,X) dz 6= 1

∣∣Dn} > ηn

}
+P

{
sup
y∈R

∣∣∣GȲ (y)− ĜȲ ,Nn(y)
∣∣∣ >√ logNn

Nn

}
,

it su�ces to show that

1

Nn

Nn∑
i=1

|m̂Ln(Xn+Ln+i)− m̄(Xn+Ln+i)|2 ≤ εn, (18)

∫
Rd

∫
R
|ĝε̂|X(y, x)− gε̄|X(y, x)| dyPX(dx) ≤ δn, (19)

P

{∫
R
ĝε̂|X(z,X) dz 6= 1

∣∣Dn} ≤ ηn, (20)

and

sup
y∈R

∣∣∣GȲ (y)− ĜȲ ,Nn(y)
∣∣∣ ≤√ logNn

Nn
(21)

imply
|q̂Y,Nn,α − qY,α| ≤ en. (22)

By the de�nition of q̂Y,Nn,α we know that (22) is implied by

ĜŶ ,Nn(qY,α + en) ≥ α (23)

and
ĜŶ ,Nn(qY,α − en) < α, (24)

so it su�ces to show that (18)-(21) imply (23) and (24), what we do next.
So assume from now on that (18)-(21) hold. Before we start with the proof of (23) we

show

sup
y∈R
|GY (y)−GȲ (y)| ≤

∫
Rd

∫
R
|ĝε̂|X(y, x)− gε̄|X(y, x)| dyPX(dx) + ηn. (25)

18



Indeed, we observe �rst

GY (y) = P{Y ≤ y}
= E

{
P
{
m̄(X) + ε̄ ≤ y

∣∣X}}
= E

{
P
{
ε̄ ≤ y − m̄(X)

∣∣X}}
= E

{∫ y−m̄(X)

−∞
gε̄|X(z,X) dz

}

=

∫
Rd

∫ y−m̄(x)

−∞
gε̄|X(z, x) dzPX(dx)

=

∫
Rd

∫ y

−∞
gε̄|X(z − m̄(x), x) dzPX(dx).

Furthermore we have

GȲ (y)

= E
{
P
{
ε̂ ≤ y − m̄(X)

∣∣X,Dn} ∣∣Dn}
= E

{
I{
∫
R ĝε̂|X(u,X) du=1} ·P

{
ε̂ ≤ y − m̄(X)

∣∣X,Dn}
+I{

∫
R ĝε̄|X(u,X) du6=1} ·P

{
ε̂ ≤ y − m̄(X)

∣∣X,Dn} ∣∣Dn}

= E

{
I{
∫
R ĝε̂|X(u,X) du=1} ·

∫ y−m̄(X)

−∞
ĝε̂|X(z,X) dz

+I{
∫
R ĝε̂|X(u,X) du6=1} ·P

{
ε̂ ≤ y − m̄(X)

∣∣X,Dn} ∣∣Dn}

=

∫
Rd

∫ y

−∞
ĝε̂|X(z − m̄(x), X) dzPX(dx)

+E

{
I{
∫
R ĝε̂|X(u,X) du6=1} ·

(
P
{
ε̂ ≤ y − m̄(X)

∣∣X,Dn}− ∫ y−m̄(X)

−∞
ĝε̂|X(z,X) dz

)∣∣Dn} .
Since we have ∣∣∣∣∣P{ε̂ ≤ y − m̄(X)

∣∣X}− ∫ y−m̄(X)

−∞
ĝε̂|X(z,X) dz

∣∣∣∣∣ ≤ 1 a.s.,

which follows from assumption (15)) and which implies∣∣∣∣∣E
{
I{
∫
R ĝε̂|X(u,X) du 6=1} ·

(
P
{
ε̂ ≤ y − m̄(X)

∣∣X,Dn}− ∫ y−m̄(X)

−∞
ĝε̂|X(z,X) dz

)∣∣Dn}
∣∣∣∣∣

≤ P

{∫
R
ĝε̂|X(z,X) dz 6= 1

∣∣Dn} ≤ ηn,
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and

sup
y∈R

∣∣∣∣∫
Rd

∫ y

−∞
gε̄|X(z − m̄(x), x) dzPX(dx)−

∫
Rd

∫ y

−∞
ĝε̂|X(z − m̄(x), x) dzPX(dx)

∣∣∣∣
≤ sup

y∈R

∫
Rd

∫ y

−∞
|gε̄|X(z − m̄(x), x)− ĝε̂|X(z − m̄(x), x)| dzPX(dx)

=

∫
Rd

∫
R
|gε̄|X(z − m̄(x), x)− ĝε̂|X(z − m̄(x), x)| dzPX(dx)

=

∫
Rd

∫
R
|ĝε̂|X(y, x)− gε̄|X(y, x)| dyPX(dx)

this implies (25).
Next we prove (23). Using (18), (21), (25) and (19) we get

ĜŶ ,Nn(qY,α + en)

≥ 1

Nn

Nn∑
i=1

I{Ŷn+Ln+i≤qY,α+en,|Ŷn+Ln+i−Ȳn+Ln+i|≤ε
1/3
n }

≥ 1

Nn

Nn∑
i=1

I{Ȳn+Ln+i≤qY,α+en−ε1/3n ,|Ŷn+Ln+i−Ȳn+Ln+i|≤ε
1/3
n }

≥ 1

Nn

Nn∑
i=1

I{Ȳn+Ln+i≤qY,α+en−ε1/3n }
− 1

Nn

Nn∑
i=1

I{|Ŷn+Ln+i−Ȳn+Ln+i|>ε
1/3
n }

≥ 1

Nn

Nn∑
i=1

I{Ȳn+Ln+i≤qY,α+c·en−ε1/3n }
− 1

Nn

Nn∑
i=1

|Ŷn+Ln+i − Ȳn+Ln+i|2

ε
2/3
n

=
1

Nn

Nn∑
i=1

I{Ȳn+Ln+i≤qY,α+c·en−ε1/3n }
− 1

ε
2/3
n

· 1

Nn

Nn∑
i=1

|m̂Ln(Xn+Ln+i)− m̄(Xn+Ln+i)|2

≥ ĜȲ ,Nn(qY,α + en − ε1/3n )− ε1/3n

≥ GȲ (qY,α + en − ε1/3n )− ε1/3n − sup
y∈R

∣∣∣GȲ (y)− ĜȲ ,Nn(y)
∣∣∣

≥ GȲ (qY,α + en − ε1/3n )− ε1/3n −
√

logNn

Nn

≥ GY (qY,α + en − ε1/3n )− ε1/3n −
√

logNn

Nn
− sup

y∈R
|GY (y)−GȲ (y)|

≥ GY (qY,α + en − ε1/3n )− ε1/3n −
√

logNn

Nn
− δn − ηn

> GY (qY,α) = α,

where the last inequality follows from (16).
In the same way we argue that

ĜŶ ,Nn(qY,α − en)
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≤ GY (qY,α − en + ε̂1/3n ) + ε1/3n +

√
logNn

Nn
+ δn + ηn

< α,

which �nishes the proof. �

5.2 A bound on the L1 error of a conditional density estimate

Lemma 2 Let (X,Y ), (X1, Y1), . . . , (Xn, Yn) be independent and identically distributed

Rd×R�valued random vectors. Assume that the conditional distribution PY |X of Y given

X has the density gY |X(·, X) : R→ R with respect to the Lebegue-Borel measure, where

gY |X : R× Rd → R

is a measurable function which satis�es

|gY |X(y, x1)− gY |X(y, x2)| ≤ C1 · ‖x1 − x2‖r for all x1, x2 ∈ Rd, y ∈ R, (26)

and

|gY |X(u, x)− gY |X(v, x)| ≤ C2 · |u− v|s for all u, v ∈ R, x ∈ Rd (27)

for some r, s ∈ (0, 1] and some C1, C2 > 0. Let γn > 0. For x ∈ Rd let −∞ < an(x) ≤
bn(x) <∞ be such that ∫

[−γn,γn]d
|bn(x)− an(x)|PX(dx) <∞. (28)

Set G = I[−1,1] and let K : R→ R be a density satisfying∫
R
K2(z) dz <∞ and

∫
R
K(z) · |z|sdz <∞.

Let hn, Hn > 0 be such that 2 ·
√
d · γn ≥ Hn, and set

ĝY |X(y, x) =

∑n
i=1G

(
‖x−Xi‖
Hn

)
·K

(
y−Yi
hn

)
hn ·

∑n
j=1G

(
‖x−Xj‖
Hn

) , (29)

where 0
0 := 0. Then

E

∫
[−γn,γn]d

∫
[an(x),bn(x)]

∣∣ĝY |X(y, x)− gY |X(y, x)
∣∣ dyPX(dx)

≤ c1 ·

(√∫
[−γn,γn]d |bn(x)− an(x)|PX(dx) · γdn

n ·Hd
n · hn

+
γdn

n ·Hd
n

+

∫
[−γn,γn]d

|bn(x)− an(x)|PX(dx) · (C1 ·Hr
n + C2 · hsn)

)
,
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where the constant

c1 = max

{
1,

√
2 · (4 ·

√
d)d ·

∫
K2(z) dz, (4 ·

√
d)d,

∫
K(z) · |z|sdz

}

does not depend on P(X,Y ), C1 or C2.

In the proof we will need the following well-known auxiliary result:

Lemma 3 Let n ∈ N, let Hn, γn > be such that 2 ·
√
d · γn ≥ Hn, and let X be an

Rd�valued random variable. Then it holds:∫
[−γn,γn]d

1

n ·PX(SHn(x))
PX(dx) ≤ (4 ·

√
d)d · γdn

n ·Hd
n

.

Proof. The assertion follows from the proof of equation (5.1) in Györif et al. (2002), a
complete proof is available from the authors on request. �
Proof of Lemma 2. By triangle inequality we have

E

∫
[−γn,γn]d

∫
[an(x),bn(x)]

∣∣ĝY |X(y, x)− gY |X(y, x)
∣∣ dyPX(dx) (30)

≤ E

∫
[−γn,γn]d

∫
[an(x),bn(x)]

∣∣ĝY |X(y, x)−E{ĝY |X(y, x)|Xn
1 }
∣∣ dyPX(dx)

+E

∫
[−γn,γn]d

∫
[an(x),bn(x)]

∣∣E{ĝY |X(y, x)|Xn
1 } − gY |X(y, x)

∣∣ dyPX(dx).

In the �rst step of the proof we show

E

∫
[−γn,γn]d

∫
[an(x),bn(x)]

∣∣ĝY |X(y, x)−E{ĝY |X(y, x)|Xn
1 }
∣∣ dyPX(dx)

≤

√
2 · (4 ·

√
d)d ·

∫
K2(z) dz ·

√∫
[−γn,γn]d |bn(x)− an(x)|PX(dx) · γdn

n ·Hd
n · hn

. (31)

The inequality of Cauchy-Schwarz implies

E

∫
[−γn,γn]d

∫
[an(x),bn(x)]

∣∣ĝY |X(y, x)−E{ĝY |X(y, x)|Xn
1 }
∣∣ dyPX(dx)

= E

∫
[−γn,γn]d

∫
[an(x),bn(x)]

E
{

1 ·
∣∣ĝY |X(y, x)−E{ĝY |X(y, x)|Xn

1 }
∣∣ ∣∣∣Xn

1

}
dyPX(dx)

≤ E

√∫
[−γn,γn]d

∫
[an(x),bn(x)]

E
{

12
∣∣Xn

1

}
dyPX(dx)

·E
√∫

[−γn,γn]d

∫
[an(x),bn(x)]

E
{∣∣ĝY |X(y, x)−E{ĝY |X(y, x)|Xn

1 }
∣∣2 ∣∣∣Xn

1

}
dyPX(dx)
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≤
√∫

[−γn,γn]d
|bn(x)− an(x)|PX(dx)

·
√

E

∫
[−γn,γn]d

∫
[an(x),bn(x)]

E
{∣∣ĝY |X(y, x)−E{ĝY |X(y, x)|Xn

1 }
∣∣2 ∣∣∣Xn

1

}
dyPX(dx),

hence it su�ces to show

E

∫
[−γn,γn]d

∫
[an(x),bn(x)]

E
{∣∣ĝY |X(y, x)−E{ĝY |X(y, x)|Xn

1 }
∣∣2 ∣∣∣Xn

1

}
dyPX(dx)

≤ 2 · (4 ·
√
d)d ·

∫
K2(z) dz · γdn

n ·Hd
n · hn

. (32)

To show this, we observe �rst that the independence of the data implies

E
{∣∣ĝY |X(y, x)−E{ĝY |X(y, x)|Xn

1 }
∣∣2 ∣∣∣Xn

1

}
= E


∣∣∣∣∣∣
∑n

i=1G
(
‖x−Xi‖
Hn

)
·
(
K
(
y−Yi
hn

)
−E

{
K
(
y−Yi
hn

) ∣∣∣Xi

})
hn ·

∑n
j=1G

(
‖x−Xj‖
Hn

)
∣∣∣∣∣∣
2 ∣∣∣Xn

1


=

∑n
i=1G

(
‖x−Xi‖
Hn

)2
·E
{∣∣∣K (y−Yihn

)
−E

{
K
(
y−Yi
hn

) ∣∣∣Xi

}∣∣∣2 ∣∣∣Xi

}
h2
n ·
(∑n

j=1G
(
‖x−Xj‖
Hn

))2

≤

∑n
i=1G

(
‖x−Xi‖
Hn

)2
·E
{∣∣∣K (y−Yihn

)∣∣∣2 ∣∣∣Xi

}
h2
n ·
(∑n

j=1G
(
‖x−Xj‖
Hn

))2

=

∑n
i=1G

(
‖x−Xi‖
Hn

)
·
∫
RK

2
(
y−u
hn

)
· gY |X(u,Xi) du

h2
n ·
(∑n

j=1G
(
‖x−Xj‖
Hn

))2 .

Hence,

E

∫
[−γn,γn]d

∫
[an(x),bn(x)]

E
{∣∣ĝY |X(y, x)−E{ĝY |X(y, x)|Xn

1 }
∣∣2 ∣∣∣Xn

1

}
dyPX(dx)

≤ E

∫
[−γn,γn]d

∑n
i=1G

(
‖x−Xi‖
Hn

)
·
∫
R
∫
RK

2
(
y−u
hn

)
dy · gY |X(u,Xi) du

h2
n ·
(∑n

j=1G
(
‖x−Xj‖
Hn

))2 PX(dx)

= E

∫
[−γn,γn]d

∑n
i=1G

(
‖x−Xi‖
Hn

)
·
∫
RK

2 (z) dz · hn ·
∫
R gY |X(u,Xi) du

h2
n ·
(∑n

j=1G
(
‖x−Xj‖
Hn

))2 PX(dx)

=

∫
K2 (z) dz

hn
·E

 I[−γn,γn]d(X)∑n
j=1G

(
‖X−Xj‖
Hn

) · I{∑n
j=1G

(
‖X−Xj‖
Hn

)
>0

}
 .
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Application of Lemma 4.1 in Györif et al. (2002) and Lemma 3 yields

E

 I[−γn,γn]d(X)∑n
j=1G

(
‖X−Xj‖
Hn

) · I{∑n
j=1 G

(
‖X−Xj‖
Hn

)
>0

}


≤
∫

[−γn,γn]d

2

(n+ 1) ·PX(SHn(x))
PX(dx) ≤ 2 · (4 ·

√
d)d · γdn

n ·Hd
n

,

which completes the proof of (32).
In the second step of the proof we show

E

∫
[−γn,γn]d

∫
[an(x),bn(x)]

∣∣E{ĝY |X(y, x)|Xn
1 } − gY |X(y, x)

∣∣ dyPX(dx).

≤ (4 ·
√
d)d · γdn

n ·Hd
n

+

∫
[−γn,γn]d

|bn(x)− an(x)|PX(dx) · C1 ·Hr
n

+

∫
K(z) · |z|sdz ·

∫
[−γn,γn]d

|bn(x)− an(x)|PX(dx) · C2 · hsn. (33)

Using the independence of the data and arguing similar as in the proof of inequality (32)
we get

E

∫
[−γn,γn]d

∫
[an(x),bn(x)]

∣∣E{ĝY |X(y, x)|Xn
1 } − gY |X(y, x)

∣∣ dyPX(dx)

= E

∫
[−γn,γn]d

∫
[an(x),bn(x)]

∣∣∣∣∣
∑n

i=1G
(
‖x−Xi‖
Hn

)
·
∫
RK

(
y−u
hn

)
· gY |X(u,Xi) du

hn ·
∑n

j=1G
(
‖x−Xj‖
Hn

)
−gY |X(y, x)

∣∣∣∣∣ dyPX(dx)

= E

∫
[−γn,γn]d

∫
[an(x),bn(x)]

I{∑n
j=1G

(
‖x−Xj‖
Hn

)
=0

}gY |X(y, x) dyPX(dx)

+E

∫
[−γn,γn]d

∫
[an(x),bn(x)]

∣∣∣∣∣
n∑
i=1

G
(
‖x−Xi‖
Hn

)
∑n

j=1G
(
‖x−Xj‖
Hn

)
·
∫
R

1

hn
·K

(
y − u
hn

)
· (gY |X(u,Xi)− gY |X(y, x)) du

∣∣∣∣∣ dyPX(dx)

≤
∫

[−γn,γn]d
P


n∑
j=1

G

(
‖x−Xj‖

Hn

)
= 0

PX(dx)

+E

∫
[−γn,γn]d

∫
[an(x),bn(x)]

∣∣∣∣∣
n∑
i=1

G
(
‖x−Xi‖
Hn

)
∑n

j=1G
(
‖x−Xj‖
Hn

)
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·
∫
R

1

hn
·K

(
y − u
hn

)
· (gY |X(u,Xi)− gY |X(y, x)) du

∣∣∣∣∣ dyPX(dx)

≤
∫

[−γn,γn]d
(1−PX(SHn(x)))nPX(dx)

+E

∫
[−γn,γn]d

∫
[an(x),bn(x)]

n∑
i=1

G
(
‖x−Xi‖
Hn

)
∑n

j=1G
(
‖x−Xj‖
Hn

)
·
∫
R

1

hn
·K

(
y − u
hn

)
· |gY |X(u,Xi)− gY |X(y, x))|du dyPX(dx).

By Lemma 3 we get∫
[−γn,γn]d

(1−PX(SHn(x)))nPX(dx) ≤ max
z∈R+

z · e−z ·
∫

[−γn,γn]d

1

n ·PX(SHn(x))
PX(dx)

≤ (4 ·
√
d)d · γdn

n ·Hd
n

.

Furthermore, by triangle inequality and assumptions (26) and (27), which imply

|gY |X(u,Xi)− gY |X(y, x))| ≤ |gY |X(u,Xi)− gY |X(u, x)|+ |gY |X(u, x)− gY |X(y, x)|
≤ C1 · ‖Xi − x‖r + C2 · |y − u|s

we get

E

∫
[−γn,γn]d

∫
[an(x),bn(x)]

n∑
i=1

G
(
‖x−Xi‖
Hn

)
∑n

j=1G
(
‖x−Xj‖
Hn

)
·
∫
R

1

hn
·K

(
y − u
hn

)
· |gY |X(u,Xi)− gY |X(y, x))|du dyPX(dx)

≤ E

∫
[−γn,γn]d

n∑
i=1

G
(
‖x−Xi‖
Hn

)
∑n

j=1G
(
‖x−Xj‖
Hn

) · C1 · ‖Xi − x‖r · |bn(x)− an(x)|PX(dx)

+

∫
[−γn,γn]d

∫
[an(x),bn(x)]

∫
R

1

hn
·K

(
y − u
hn

)
· C2 · |u− y|s du dyPX(dx)

≤ C1 ·Hr
n ·
∫

[−γn,γn]d
|bn(x)− an(x)|PX(dx)

+

∫
K(z) · |z|sdz · C2 · hsn ·

∫
[−γn,γn]d

|bn(x)− an(x)|PX(dx).

Summarizing the above results we get the assertion. �

5.3 Proof of Theorem 1

In the proof of Theorem 1 we will use Lemma 1, Lemma 2 and the following auxiliary
result from Bott, Felber and Kohler (2015).
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Lemma 4 Let K : R → R be a symmetric and bounded density which is monotonically

decreasing on R+. Then it holds∫ ∣∣∣∣K (y − z1

hn

)
−K

(
y − z2

hn

)∣∣∣∣ dy ≤ 2 ·K(0) · |z1 − z2|

for arbitrary z1, z2 ∈ R.

Proof. See Lemma 1 in Bott, Felber and Kohler (2015). �
Proof of Theorem 1. By Lemma 1 and Markov inequality it su�ces to show

E

{
1

Nn

Nn∑
i=1

|m̂Ln(Xn+Ln+i)− m̄(Xn+Ln+i)|2
}
≤ εn

4
, (34)

E

{∫
Rd

∫
R
|ĝε̂|X(y, x)− gε̄|X(y, x)| dyPX(dx)

}
≤ δn

4
(35)

and

P

{∫
R
ĝε̂|X(z,X) dz 6= 1

}
≤ ηn

4
. (36)

In the �rst step of the proof we observe that (34) is a trivial consequence of the inde-
pendence of the data and the de�nition of εn.

In the second step of the proof we show (35). In case
∑n

j=1G
(
‖x−Xj‖
Hn

)
6= 0 we have

that ĝε̂|X(·, x) is a density, and we can conclude by the Lemma of Sche�é and triangle
inequality∫

R
|ĝε̂|X(y, x)− gε̄|X(y, x)| dy

≤ 2 ·
∫
R

(
gε̄|X(y, x)− ĝε̂|X(y, x)

)
+
dy

≤ 2 ·
∫

[an(x),bn(x)]

(
gε̄|X(y, x)− ĝε̂|X(y, x)

)
+
dy + 2 ·

∫
[an(x),bn(x)]c

gε̄|X(y, x) dy

≤ 2 ·
∫

[an(x),bn(x)]

∣∣gε̄|X(y, x)− ĝε̂|X(y, x)
∣∣ dy + 2 ·

∫
[an(x),bn(x)]c

gε̄|X(y, x) dy.

In case
∑n

j=1G
(
‖x−Xj‖
Hn

)
= 0 we have

ĝε̂|X(y, x) = 0 for all y ∈ R,

and the above sequence of inequalities does trivially hold.
Using this we get

E

{∫
Rd

∫
R
|ĝε̂|X(y, x)− gε̄|X(y, x)| dyPX(dx)

}
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≤ 2 ·E

{∫
[−γn,γn]d

∫
[an(x),bn(x)]

|ĝε̂|X(y, x)− gε̄|X(y, x)| dyPX(dx)

}

+2 ·PX(Rd \ [−γn, γn]d) + 2 ·
∫

[−γn,γn]d

∫
[an(x),bn(x)]c

gε̄|X(y, x) dyPX(dx)

≤ 2 ·E

{∫
[−γn,γn]d

∫
[an(x),bn(x)]

|ĝε̂|X(y, x)− ĝε̄|X(y, x)| dyPX(dx)

}

+2 ·E

{∫
[−γn,γn]d

∫
[an(x),bn(x)]

|ĝε̄|X(y, x)− gε̄|X(y, x)| dyPX(dx)

}

+2 ·PX(Rd \ [−γn, γn]d) + 2 ·
∫

[−γn,γn]d

∫
[an(x),bn(x)]c

gε̄|X(y, x) dyPX(dx),

where

ĝε̄|X(y, x) =

∑n
i=1G

(
‖x−Xi‖
Hn

)
·K

(
y−(Yi−m̄(Xi))

hn

)
hn ·

∑n
j=1G

(
‖x−Xj‖
Hn

) .}

Application of Lemma 4 yields∫
[an(x),bn(x)]

|ĝε̂|X(y, x)− ĝε̄|X(y, x)| dy

≤

∑n
i=1G

(
‖x−Xi‖
Hn

)
hn ·

∑n
j=1G

(
‖x−Xj‖
Hn

) · ∫
R

∣∣∣∣K (y − (Yi − m̂Ln(Xi))

hn

)
−K

(
y − (Yi − m̄(Xi))

hn

)∣∣∣∣ dy
≤ 2 ·K(0) ·

∑n
i=1G

(
‖x−Xi‖
Hn

)
· |m̂Ln(Xi)− m̄(Xi)|

hn ·
∑n

j=1G
(
‖x−Xj‖
Hn

)
≤ 2 ·K(0)

hn
·
n∑
i=1

|m̂Ln(Xi)− m̄(Xi)|(
1 +

∑
j∈{1,...,n}\{i}G

(
‖x−Xj‖
Hn

)) |,
where the last inequality followed from the fact that G is the naive kernel. Using this
together with the independence of the data, Lemma 4.1 in Györ� et al. (2002) and
Lemma 3 we get

E

{∫
[−γn,γn]d

∫
[an(x),bn(x)]

|ĝε̂|X(y, x)− ĝε|X(y, x)| dyPX(dx)

}

≤ 2 ·K(0)

hn
·
∫

[−γn,γn]d

n∑
i=1

E

 1(
1 +

∑
j∈{1,...,n}\{i}G

(
‖x−Xj‖
Hn

))


·E
∫
Rd
|m̂Ln(x)− m̄(x)|PX(dx)
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≤ 2 ·K(0) · (4 ·
√
d)d · γdn

hn ·Hd
n

·E
∫
Rd
|m̂Ln(x)− m̄(x)|PX(dx).

Application of Lemma 2 yields

E

{∫
[−γn,γn]d

∫
[an(x),bn(x)]

|ĝε̂|X(y, x)− gε̄|X(y, x)| dyPX(dx)

}

≤ c1 ·

(√∫
[−γn,γn]d |bn(x)− an(x)|PX(dx) · γdn

n ·Hd
n · hn

+
γdn

n ·Hd
n

+

∫
[−γn,γn]d

|bn(x)− an(x)|PX(dx) · (C1 ·Hα
n + C2 · hrn)

)
.

Summarizing the above results, the proof of (35) is complete.
In the third step of the proof we show (36). As in the proof of Lemma 2 we get

P

{∫
R
ĝε̂|X(z,X) dz 6= 1

}

= P

 ∑
j∈{1,...,n}

G

(
‖X −Xj‖

Hn

)
= 0


≤ P

{
X ∈ Rd \ [−γn, γn]d

}
+ P

X ∈ [−γn, γn]d,
∑

j∈{1,...,n}

G

(
‖X −Xj‖

Hn

)
= 0


≤ P

{
X ∈ Rd \ [−γn, γn]d

}
+

2 · (4 ·
√
d)d · γdn

n ·Hd
n

.

Summarizing the above results, the proof is complete. �
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Supplementary material for the referees

Proof of Lemma 3. Partition [−γn, γn]d into

N =

(⌈
2 · γn
Hn/
√
d

⌉)d
≤

(
4 ·
√
d · γn
Hn

)d
many cubes A1, . . . , AN of side length at most Hn/

√
d. Let xi be the center of Ai. Then

Ai ⊆ SHn/2(xi) and x ∈ SHn/2(xi) implies SHn(x) ⊇ SHn/2(xi). Consequently we have∫
[−γn,γn]d

1

n ·PX(SHn(x))
PX(dx) ≤

N∑
i=1

∫
SHn/2(xi)

1

n ·PX(SHn(x))
PX(dx)

≤
N∑
i=1

∫
SHn/2(xi)

1

n ·PX(SHn/2(xi))
PX(dx) ≤ N

n
,

which implies the assertion. �
Proof of Remark 2.
In what follows we show how to choose bandwidths hn and Hn in order to minimize

the expression (14). Here we ignore constants and logarithmic factors, so the aim is to
minimize √

An
n ·Hd

n · hn
+

1

n ·Hd
n

+An · (C1 ·Hr
n + C2 · hsn) (37)

with respect to hn > 0 and Hn > 0, where we have used the abbreviation

An =

∫
[− log(n),log(n)]d

|bn(x)− an(x)|PX(dx).

If (hn, Hn) minimizes (37), then hn satis�es√
An

n ·Hd
n · hn

= An · C2 · hsn.

The last equation is equivalent to

1

C2
2 ·An · n ·Hd

n

= h2s+1
n ,

from which we conclude

hn = C
−2/(2s+1)
2 ·A−1/(2s+1)

n · n−1/(2s+1) ·H−d/(2s+1)
n .

Plugging that bandwidth back into (37) yields

1

n ·Hd
n

+An · C1 ·Hr
n + 2 ·An · C2 · hsn
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=
1

n ·Hd
n

+An · C1 ·Hr
n + 2 · C1/(2s+1)

2 ·A(s+1)/(2s+1)
n · n−s/(2s+1) ·H−d·s/(2s+1)

n .

(38)

So the optimal Hn > 0 minimizes (38), and it is easy to see, that a value Hn > 0 which
minimizes (38) does indeed exist.
The optimal Hn > 0 minimizing (38) must satisfy

−d
n
·H−d−1

n +r·An·C1·Hr−1
n − d · s

2s+ 1
·2·C1/(2s+1)

2 ·A(s+1)/(2s+1)
n ·n−s/(2s+1)·H−1−d·s/(2s+1)

n = 0,

which we can rewrite as

d

n
·H−dn +

d · s
2s+ 1

·2·C1/(2s+1)
2 ·A(s+1)/(2s+1)

n ·n−s/(2s+1)·H−d·s/(2s+1)
n −r·An·C1·Hr

n = 0 (39)

For the optimal Hn, either the �rst term on the left�hand side of (39) will be larger than
the second one, or not. In the �rst case the optimal Hn lies between the solutions of

d

n
·H−dn = r ·An · C1 ·Hr

n

and of

2 · d
n
·H−dn = r ·An · C1 ·Hr

n,

and in the second case it lies between the solutions of

d · s
2s+ 1

· 2 · C1/(2s+1)
2 ·A(s+1)/(2s+1)

n · n−s/(2s+1) ·H−d·s/(2s+1)
n = r ·An · C1 ·Hr

n

and

2 · d · s
2s+ 1

· 2 · C1/(2s+1)
2 ·A(s+1)/(2s+1)

n · n−s/(2s+1) ·H−d·s/(2s+1)
n = r ·An · C1 ·Hr

n.

If we ignore again all constants we get that the optimal Hn > 0 either satis�es

1

n ·Hd
n

= An · C1 ·Hr
n

or
C

1/(2s+1)
2 ·A(s+1)/(2s+1)

n · n−s/(2s+1) ·H−d·s/(2s+1)
n = An · C1 ·Hr

n.

In the �rst case we get
Hr+d
n = A−1

n · C−1
1 · n−1,

which implies

Hn = A−1/(r+d)
n · C−1/(r+d)

1 · n−1/(r+d), (40)

and in the second case we get

H(r·(2s+1)+d·s)/(2s+1)
n = C−1

1 ·A−s/(2s+1)
n · C1/(2s+1)

2 · n−s/(2s+1),
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from which we get

Hn = C
− 2s+1
r·(2s+1)+d·s

1 · C
1

r·(2s+1)+d·s
2 ·A

− s
r·(2s+1)+d·s

n · n−
s

r·(2s+1)+d·s . (41)

Plugging (40) into (38) and ignoring again all constants yields as an upper bound on the
error

An · C1 ·Hr
n + C

1/(2s+1)
2 ·A(s+1)/(2s+1)

n · n−s/(2s+1) ·H−d·s/(2s+1)
n

= C
d
r+d

1 ·A
d
r+d
n · n−

r
r+d + C

ds
(r+d)(2s+1)

1 · C
1

2s+1

2 A
(r+d)(s+1)+ds

(r+d)(2s+1)
n · n−

rs
(r+d)(2s+1) . (42)

And plugging (41) into (38) and ignoring again all constants yields as an upper bound
on the error

1

n ·Hd
n

+An · C1 ·Hr
n

= C
(2s+1)d

r(2s+1)+ds

1 · C
− d
r(2s+1)+ds

2 ·A
ds

r(2s+1)+ds
n · n−

r(2s+1)
r(2s+1)+ds

+C
ds

r(2s+1)+ds

1 · C
r

r(2s+1)+ds

2 ·A
r(s+1)+ds
r(2s+1)+ds
n · n−

rs
r(2s+1)+ds . (43)

From this we can conclude that (up to a logarithmic factor) the minimal value of (14) is
given by the minimum of (42) and (43).
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