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Abstract
Quantification of uncertainty of a technical system is often based on a surrogate model
of a corresponding simulation model. In any application the simulation model will not
describe the reality perfectly, and consequently the surrogate model will be imperfect.
In this article we combine observed data from the technical system with simulated data
from the imperfect simulation model in order to estimate an improved surrogate model
consisting of multi-layer feedforward neural networks, and we show that under suitably
assumptions this estimate is able to circumvent the curse of dimensionality. Based on
this improved surrogate model we show a rate of convergence result for density estimates.
The finite sample size performance of the estimates is illustrated by applying them to
simulated data. The practical usefulness of the newly proposed estimates is demonstrated
by using them to predict the uncertainty of a lateral vibration attenuation system with
piezo–elastic supports.

AMS classification: Primary 62G07; secondary 62P30.

Key words and phrases: Curse of dimensionality, density estimation, imperfect models,
L1 error, neural networks, surrogate models, uncertainty quantification.

1 Introduction

1.1 An example

In this article we develop new methods for the statistical inference in connection with
complex technical systems. As an example we consider the lateral vibration attenuation
system with piezo–elastic supports described in Figure 1.

∗Running title: Uncertainty quantification by neural networks
†Corresponding author. Tel: +49-6151-16-23374, Fax:+49-6151-16-23381
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Figure 1: A CAD model of the lateral vibration attenuation system with piezo–elastic
supports and a sectional view of one of the piezo–elastic supports, cf. Li et al
(2017) .

This system consists of a beam with circular cross-section embedded in two piezo–
elastic supports A and B where support A is used for lateral beam vibration excitation
support and B is used for lateral beam vibration attenuation, as proposed in Götz, Platz
and Melz (2016). The two piezo–elastic supports A and B are located at the beam’s
end and each consist of one elastic membrane-like spring element made of spring steel,
two piezoelectric stack transducers arranged orthogonally to each other and mechani-
cally prestressed with disc springs as well as the relatively stiff axial extension made of
hardened steel that connects the piezoelectric transducers with the beam. For vibration
attenuation in support B, optimally tuned electrical shunt circuits are connected to the
piezoelectric transducers.
Our aim is to predict the maximal amplitude of the vibration occurring in an exper-

iment with this attenuation system. If we construct such attenuation systems several
times the constructed attenuation systems will be different due to variations in the parts
used in the construction (e.g., the height or the stiffness of the used membrane) or in
the construction process, and consequently the results which we measure in experiments
with the systems will vary. E.g., building such systems ten times and measuring the
maximal vibration amplitude in an experiment with each of the built systems, we got
the following ten values in [m

s2
/V ]:

y1 = 14.50, y2 = 14.17, y3 = 14.37, y4 = 14.16, y5 = 14.28, y6 = 13.51,

y7 = 14.73, y8 = 13.21, y9 = 13.05, y10 = 16.26. (1)

We assume in the sequel that y1, . . . , y10 are independent realizations of a real-valued
random variable Y , and in order to get information about the distribution of Y we try
to estimate the density g : R→ R of Y with respect to the Lebesgue measure (which we
assume to exist).

2



The classical statistical approach of doing this is to assume that Y is, e.g., normally
distributed, to estimate its mean and its variance by maximum likelihood and to use
the density of the corresponding normal distribution as an estimate of the density of
Y . For the data in (1) this results in the blue curve in Figure 2. However the maxi-
mum vibration amplitudes represents extrem values of the lateral beam-column vibration
transfere behaviour. According to Choi, Grandhi and Canfield (2007), the distribution
of extreme values is characterized by a non-symmetric distribution about the most likely
value. Thus this approach seems to be unpromising. The standard approach in modern
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Figure 2: A parametric (blue line), a nonparametric (red line) estimate of the density of
the data (1). A surrogate estimate on experimental data (5) (green line) and a
surrogate estimate on computer simulated data (8) (green line). Additionally
the data set (1) indicated on the x axis.

statistics would be to use a nonparametric estimate of the density of Y , e.g. the classical
kernel density estimate of Rosenblatt (1956) and Parzen (1962)

ĝY,n(y) =
1

n · hn
·
n∑
i=1

K

(
y − Yi
hn

)
, (2)
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which we apply in the above formula to random variables Y1, . . . , Yn which are inde-
pendent and identically distributed as Y . Here K : Rd → R (so-called kernel, which
is assumed to be a density) and hn > 0 (so-called bandwidth) are parameters of the
estimate. E.g., computing this kernel density estimate with the routine ksdensity() in
MATLAB results in the red curve in Figure 2.
The obvious drawback of the first approach is that the error of this parametric estimate

might be rather large in case that the true density of Y is not the density of a normal
distribution, in particular if it cannot be approximated well by any such density. However,
due to the small sample size in this example it is not clear that the second approach,
i.e., the nonparametric density estimate, yields an estimate which is better than the
parametric estimate. So in general neither of these two approaches will lead to satisfying
results.
Unfortunately, it is not really possible to increase the sample size 10 of the data (1)

in such a way that a nonparametric estimate seems promising, since experiments with
the above attenuation system (in particular the construction and replacement of the
membrane-like spring elements) are extremely time consuming. What we do instead in
the sequel is to use some knowledge outside of the data (e.g., knowledge from engineering
science about attenuation systems) in order to improve our estimation.
Often this is done in the framework of Bayesian statistics, where some kind of a priori

distribution describing the system under consideration is assumed to be given, and under
the assumption that this is indeed true, estimates are constructed which achieve good
results even for very small sample sizes. However, this is an example of the saying
’We buy information with assumptions” (Coombs (1964)), which of course might lead to
wrong informations in the case of wrong assumptions. And since it is not obvious how
to transform the knowledge in engineering science into assumptions about an a priori
distribution, we will not use this approach.
Instead, we will use the following knowledge in engineering science in order to con-

struct an improved estimate: It is known that five parameters of the membrane in the
attenuation system vary during the construction of the attenuation system and influence
the maximal vibration amplitude: the lateral stiffness in direction of y (klat,y) and in
direction of z (klat,z), the rotatory stiffness in direction of y (krot,y) and in direction of z
(krot,z), and the height of the membrane (hx). For given values of these five parameters
it is possible to compute in a physical model of the attenuation system the corresponding
maximal vibration amplitude. In order to generate values of these five parameters we
need to determine their distributions. Therefore we measured the corresponding param-
eters for the ten built systems. As a result we got the data in Table 1. We assume that
the four stiffness properties as well as the height property are multivariate normally dis-
tributed and estimate their distribution with the mlest() routine of the mvnmle package
of the statistic software R. We obtain the expectation vector

µ̂ =
(
124.9572 125.8931 33046576 32834749 0.00678

)
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1 2 3 4 5 6 7 8 9 10
krot,y × 102 1.31 1.34 1.31 1.23 1.14 1.29 1.35 1.28 1.04 1.20
krot,z × 102 1.31 1.28 1.43 1.25 1.30 1.34 1.22 1.16 1.18 1.11
klat,y × 107 3.27 3.28 3.35 3.29 3.22 3.26 3.19 3.54 3.21 3.42
klat,z × 107 3.07 3.22 3.29 3.25 3.30 3.18 3.16 3.51 3.37 3.44
hx × 10−4 6.79 6.77 6.82 6.80 6.79 6.76 6.81 6.74 6.68 6.84
y × 101 1.45 1.42 1.44 1.42 1.43 1.35 1.47 1.32 1.31 1.63

Table 1: Measured data for the ten built systems. The values of krot,y and krot,z are given
in [Nm/ rad], the values of klat,y and klat,z are given in [N/m], the values of hx
are given in [m] and the values of y are given in [m

s2
/V ].

and the covariance matrix

Σ̂ =


88.85741 32.74759 1595777 −5647359 0.0001846703
32.74759 79.76893 −2919445 −6593387 0.0001762972
1595777 −2919445 1.070764× 1012 884544431242 −14.19626
−5647359 −6593387 8.845444× 1011 1.5991× 1012 −32.52903

0.0001846703 0.0001762972 −14.19626 −32.52903 1.600001× 10−9

 .

By this assumption we have specified the distribution of a 5 dimensional random vector
X, and our computer program computes a functionm : R5 → R such that the distribution
of m(X) is an approximation of the distribution of the maximal vibration amplitude Y
occurring in experiments with our attenuation system.
In this stochastic model of our attenuation system we can generate independent data

Xn+1, . . . , Xn+Ln , compute m(Xn+1), . . . , m(Xn+Ln) and define a kernel density esti-
mate by

ĝLn(y) =
1

Ln · hLn
·
Ln∑
i=1

K

(
y −m(Yn+i)

hLn

)
.

However, the evaluation of the computer program for our technical system will often be
rather time consuming and consequently Ln (although much larger than n) might not
be really large. One possibility to circumvent this problem is to define an estimate of g
on the basis of the data

(Xn+1,m(Xn+1)), . . . , (Xn+Ln ,m(Xn+Ln)), Xn+Ln+1, . . . , Xn+Ln+Nn (3)

by estimating in a first step a surrogate

m(X,m(X)),Ln(·) = (4)

m(X,m(X)),Ln(·, (Xn+1,m(Xn+1)), . . . , (Xn+Ln ,m(Xn+Ln))) : Rd → R

of m and by defining in a second step the corresponding surrogate density estimate via

ĝ(X,m(X)),Ln =
1

Nn · hNn
·
Nn∑
i=1

K

(
y −m(X,m(X)),Ln(Xn+Ln+i)

hNn

)
. (5)
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Computing such an surrogate density estimate results in the yellow line in Figure 2.
Alternatively, one can also ignore the simulation model completely, and can use instead
the data

(X1, Y1), . . . , (Xn, Yn), Xn+Ln+1, . . . , Xn+Ln+Nn (6)

in order to construct an estimate

m(X,Y ),n(·) = m(X,Y ),n(·, (X1, Y1), . . . , (Xn, Yn)) : Rd → R (7)

of m∗(x) = E{Y |X = x}, and can define the corresponding surrogate density estimate
by

ĝ(X,Y ),n =
1

Nn · hNn
·
Nn∑
i=1

K

(
y −m(X,Y ),n(Xn+Ln+i)

hNn

)
. (8)

The main question which we want to investigate theoretically in this paper is whether
there exist situations in which suitably defined estimates based on the complete data

(X1, Y1), . . . , (Xn, Yn), (Xn+1,m(Xn+1)), . . . , (Xn+Ln ,m(Xn+Ln)),

Xn+Ln+1, . . . , Xn+Ln+Nn (9)

(where n,Ln, Nn ∈ N) achieve simultaneously better rate of convergence results than the
estimates (2), (5) and (8).

1.2 Mathematical setting

The mathematical setting which we consider is as follows: Let (X,Y ), (X1, Y1), (X2, Y2),
. . . be independent and identically distributed random variables with values in Rd × R,
and let m : Rd → R be a measurable function. Here Y describes the outcome of an
experiment with the technical system, and our aim is to predict the density g of Y
(w.r.t. the Lebesgue measure), which we assume to exist. The random vector X and
the measurable function m describe our stochastic model of the technical system, and in
this model we use m(X) as an approximation of Y . Let m∗(x) = E{Y |X = x} be the
regression function of (X,Y ). In the sequel we will assume that

E
{
|Y −m∗(X)|2

}
is small, so that it is reasonable to try to approximate Y by some m̂n(X). Given the
data (9) our goal is to construct an estimate of g.

1.3 Definition of a class of neural networks

In order to construct such an estimate, we proceed as follows: Let σ : R → R be a
so-called squashing function, i.e., assume that σ is monotonically increasing and satisfies
limx→−∞ σ(x) = 0 and limx→∞ σ(x) = 1. In our applications in Section 3 we will use
the so–called logistic squasher σ(x) = 1/(1 + exp(−x)) (x ∈ R).
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For M ∈ N, d ∈ N, d∗ ∈ {0, . . . , d} and Bn > 0, we denote the set of all functions
f : Rd → R that satisfy

f(x) =
M∑
i=1

µi · σ

 4d∗∑
j=1

λi,j · σ

(
d∑
v=1

θi,j,v · x(v) + θi,j,0

)
+ λi,0

+ µ0

(x ∈ Rd) for some µi, λi,j , θi,j,v ∈ R, where

|µi| ≤ Bn, |λi,j | ≤ Bn, |θi,j,v| ≤ Bn

for all i ∈ {0, 1, . . . ,M}, j ∈ {0, . . . , 4d∗} and v ∈ {0, . . . , d}, by F (neural networks)
M,d,d∗,Bn

.
We will impose the following assumption (which was introduced in Kohler and Krzyżak

(2017a) as an assumption which is realistic in connection with complex technical systems
which are build in a modular way) on the functions which we want to approximate by
neural networks:

Definition 1 Let d ∈ N, d∗ ∈ {1, . . . , d} and m : Rd → R.
a) We say that m satisfies a generalized hierarchical interaction model of order
d∗ and level 0, if there exist a1, . . . , ad∗ ∈ Rd and f : Rd∗ → R such that

m(x) = f(aT1 x, . . . , a
T
d∗x) for all x ∈ Rd.

b) We say that m satisfies a generalized hierarchical interaction model of or-
der d∗ and level l + 1, if there exist K ∈ N, gk : Rd∗ → R (k = 1, . . . ,K) and
f1,k, . . . , fd∗,k : Rd → R (k = 1, . . . ,K) such that f1,k, . . . , fd∗,k (k = 1, . . . ,K) satisfy
a generalized hierarchical interaction model of order d∗ and level l and

m(x) =

K∑
k=1

gk(f1,k(x), . . . , fd∗,k(x)) for all x ∈ Rd.

Definition 2 Let p = k + β for some k ∈ N0 and 0 < β ≤ 1, and let C > 0.
a) We say that a function m : Rd → R is called (p, C)-smooth, if for every α =

(α1, . . . , αd) ∈ Nd0 with
∑d

j=1 αj = k the partial derivative ∂km
∂x
α1
1 ...∂x

αd
d

exists and satisfies∣∣∣∣ ∂km

∂xα1
1 . . . ∂xαdd

(x)− ∂km

∂xα1
1 . . . ∂xαdd

(z)

∣∣∣∣ ≤ C · ‖x− z‖β
for all x, z ∈ Rd.
b) We say that a generalized hierarchical interaction model is (p, C)-smooth, if
all functions occurring in its definition are (p, C)-smooth.

We will use the following recursively defined classes of neural networks (with parameters
K, M , d, d∗ ∈ N and Bn > 0) in order to approximate functions which satisfy a general-
ized hierarchical interaction model: For l = 0, we define our space of hierarchical neural
networks by

H(0)
K,M,d,d∗,Bn

= F (neural networks)
M,d,d∗,Bn

.
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For l > 0, we define recursively

H(l)
K,M,d,d∗,Bn

=

{
h : Rd → R, h(x) =

K∑
k=1

gk(f1,k(x), . . . , fd∗,k(x)) (x ∈ Rd)

for some gk ∈ F
(neural networks)
M,d∗,d∗,Bn

and fj,k ∈ H
(l−1)
K,M,d,d∗,Bn

}
. (10)

1.4 Definition of the estimate

Give the data (9) we want to estimate the density g of Y. We start with defining a
surrogate estimate

mLn(·) = mLn(·, (Xn+1,m(Xn+1)), . . . , (Xn+Ln ,m(Xn+Ln))) : Rd → R (11)

of the function m. For this we use a least squares estimate defined by

m̃Ln(·) = arg min
h∈H(l)

K1,M1,n,d,d
∗,B1,n

(
1

Ln

n+Ln∑
i=n+1

|h(Xi)−m(Xi)|2
)
, (12)

where K1,M1,n, d
∗ ∈ N and B1,n > 0 are parameters of the estimate. For simplicity we

assume here and in the sequel that the minimum above indeed exists. When this is not
the case our theoretical results also hold for any estimate which minimizes the above
empirical L2 risk up to a sufficiently small additional term (e.g., 1/n). In order to be
able to analyze the rate of the convergence of this estimate for an arbitrary distribution
of X we truncate this estimate at some height β > 0, i.e., we define

mLn(x) = Tβ(m̃Ln(x)) (x ∈ Rd) (13)

where

Tβ(z) =

{
sign(z) · β |z| > β

z otherwise

for z ∈ R. (Here we will assume later that |m(x)| ≤ β (x ∈ Rd) holds.) Next we define
an estimate of m∗ −mLn on the basis of the residuals

ε̂i = Yi −mLn(Xi) (i = 1, . . . , n). (14)

To do this we define

m̃ε̂
n(·) = arg min

h∈H(l)
K2,M2,n,d,d

∗,B2,n

w(n)

n

n∑
i=1

(ε̂i − h(Xi))
2 +

1− w(n)

N1,n

N1,n∑
i=1

(0− h(Xn+Ln+i))
2


(15)

for some weight w(n) ∈ [0, 1] and parameters K2,M2,n, d
∗ ∈ N and B2,n > 0, and set

m̂ε̂
n(x) = Tc1·αnm̃

ε̂
n(x) (x ∈ Rd), (16)
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where c1 ≥ 1 and αn > 0.
We define our final surrogate model (X, m̂n(X)) for (X,Y) by

m̂n(x) = mLn(x) + m̂ε̂
n(x) (x ∈ Rd), (17)

and estimate the density g of Y by applying a kernel density estimate to a sample of
m̂n(X). Therefore we choose a kernel K : R→ R and a bandwidth hN2,n > 0 and set

ĝN2,n(y) =
1

N2,n · hN2,n

·
N2,n∑
i=1

K

(
y − m̂n(Xn+Ln+i)

hN2,n

)
. (18)

1.5 Main results

Our main assumptions in our theoretical result are the following: We assume for some
αn ≥ α∗n > 0 that

E
{
|Y −m∗(X)|2

}
≤ (α∗n)2 and sup

x∈Rd
|m(x)−m∗(x)| ≤ αn,

and that m : Rd → R and the function

x 7→ E

{
1

αn
(Y −m(X))

∣∣∣X = x

}
=

1

αn
(m∗ −m)(x)

both satisfy a (p, C)-smooth generalized hierarchical interaction model of order d∗ and
finite level l with p = q+ s for some q ∈ N0 and s ∈ (0, 1]. Under some minor additional
assumptions and with properly chosen parameters we are then able to show that our
improved surrogate estimate satisfies

E
{
|Y − m̂n(X)|2

}
≤ c2 ·max

{
(α∗n)2, α2

n · (log n)3 · n−
2p

2p+d∗ , (logLn)3 · L
− 2p

2p+d∗
n

}
.

From this we are able to conclude for α∗n sufficiently small and Ln sufficiently large that
the L1 error of our density estimate satisfies in case of a (r, C)–smooth density g

E

∫
R
|ĝN2,n(y)− g(y)| dy ≤ c3 ·

(
αn · (log n)3/2 · n−

p
2p+d∗

) r
r+1

.

In case αn · (log n)3/2 → 0 (n → ∞) sufficiently fast this rate of convergence converges
faster to zero than any of the rate of convergences

n−
r

2r+1 , α
r
r+1
n and

(
n
− p

2p+d∗
) r
r+1 (19)

which we would expect for the estimates (2), (5) and (8), resp.
The finite sample size behaviour of our estimates is illustrated by using simulated

data, and we illustrate the usefulness of our newly proposed estimates for uncertainty
quantification by applying them in the application above.
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1.6 Discussion of related results

Neural networks belong since many years to the most promising approaches in nonpara-
metric statistics in view of multivariate statistical applications, in particular in pattern
recognition and in nonparametric regression (see, e.g., the monographs Hertz, Krogh and
Palmer (1991), Devroye, Györfi and Lugosi (1996), Anthony and Bartlett (1999), Györfi
et al. (2002), Haykin (2008) and Ripley (2008)). New theoretical results in nonparamet-
ric regression show that neural networks with many hidden layer are able to circumvent
under proper assumptions the so–called curse of dimensionality and achieve therefore
good rate of convergence results in high-dimensional estimation problems (cf., Kohler
and Krzyżak (2017a), Bauer and Kohler (2017) and Schmidt-Hieber (2017)). Our results
in this article demonstrate that the techniques introduced in these papers also lead to
good theoretical results in uncertainty quantification.
Estimation of surrogate methods for uncertainty quantification based on neural net-

works has been proposed in Papadrakakis and Lagaros (2002), but theoretical results
for the proposed estimates have not been developped there. Other ways to estimate
surrogate models have been introduced and investigated with the aid of the simulated
and real data in connection with the quadratic response surfaces in Bucher and Burgund
(1990), Kim and Na (1997) and Das and Zheng (2000), in context of support vector
machines in Hurtado (2004), Deheeger and Lemaire (2010) and Bourinet, Deheeger and
Lemaire (2011), and in context of kriging in Kaymaz (2005) and Bichon et al. (2008). See
also Santner, Williams, and Notz (2003) and the literature cited therein for additional
literature on the design and analysis of computer experiments.
Consistency and rate of convergence of density estimates based on surrogate models

have been studied in Devroye, Felber and Kohler (2013), Bott, Felber and Kohler (2015)
and Felber, Kohler and Krzyżak (2015a). A method for the adaptive choice of the
smoothing parameter of such estimates has been presented in Felber, Kohler and Krzyżak
(2015b).
In Bayesian analysis of computer experiments, Kennedy and O’Hagan (2001), Bayarri

et al. (2007), Goh et al. (2013), Han, Santner and Rawlinson (2009), Higdon et al.
(2013) and Wang, Chen and Tsui (2009) model the discrepancy between the computer
experiments and the outcome of the technical system by a Gaussian process. Tuo and Wu
(2015) pointed out that this approach might fail in case of an imperfect computer model,
for which there exists no values of the parameters which fit the technical system perfectly,
and suggested and analyzed non-Bayesian methods for the choice of the parameters
of such models. Related methods for the calibration of computer models have been
considered in Wong, Storlie and Lee (2017). There the error of the resulting model was
estimated by using bootstrap. Confidence intervals for quantiles based on data from
imperfect simulation models have been derived in Kohler et al. (2016).
The definition of our improved surrogate model is motivated by Kohler and Krzyżak

(2017b), where a result for smoothing spline estimates is shown. In this article we
extend this result from smoothing spline to least squares estimates, and apply it to
neural networks. The main advantage of our new results is that we are able to apply our
method also successfully to high-dimensional settings, where smoothing spline estimates
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usually fail to deliver reasonable results because of the curse of dimensionality.

1.7 Notation

Throughout this paper we use the following notation: N, N0, R and R+ are the sets
of positive integers, nonnegative integers, real numbers, and nonnegative real numbers,
respectively. For z ∈ R, we denote the smallest integer greater than or equal to z by dze.
For f : Rd → R

‖f‖∞ = sup
x∈Rd

|f(x)|

is its supremum norm.
If X is a random variable, then PX is the corresponding distribution, i.e., the measure

associated with the random variable.
Let D ⊆ Rd and let f : Rd → R be a real-valued function defined on Rd. We write

x = arg minz∈D f(z) if minz∈D f(z) exists and if x satisfies

x ∈ D and f(x) = min
z∈D

f(z).

For ε > 0, xn1 = (x1, . . . , xn) ∈ (Rd)n and a set F of functions f : Rd → R we
define the L2 covering number N2(ε,F , xn1 ) as the minimal number l ∈ N of functions
g1, . . . , gl : Rd → R which have the property(

min
j=1,...,l

1

n

n∑
i=1

|f(xi)− gj(xi)|2
)1/2

≤ ε

for each f ∈ F .

1.8 Outline

The outline of this paper is as follows: The main results are presented in Section 2 and
proven in Section 4. The finite sample size performance of our estimates is illustrated in
Section 3 by applying it to simulated and real data.

2 Main results

In order to formulate our main result on the rate of convergence of our improved surrogate
estimate we need the following definition.

Definition 3 A nondecreasing and Lipschitz continuous function σ : R→ [0, 1] is called
N-admissible, if the following conditions are satisfied.

(i) The function σ is N + 1 times continuously differentiable with bounded derivates.

(ii) A point tσ ∈ R exists, where all derivates up to the order N of σ are different from
zero.
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(iii) If y > 0, the relation |σ(y)− 1| ≤ 1
y holds. If y < 0, the relation |σ(y)| ≤ 1

|y| holds.

It is easy to see that the logistic squasher σ(x) = 1/(1 + exp(−x)) is N–admissible for
any N ∈ N (cf., Bauer and Kohler (2017)).

Theorem 1 Let d, n, Ln ∈ N with 2 ≤ n ≤ Ln and with nc4 ≤ Ln ≤ nc5 for some
c4, c5 > 0. Let (X,Y ), (X1, Y1), . . . be independent and identically distributed Rd × R–
valued random variables with E{|Y |} < ∞ and with supp(X) bounded. Let m∗(·) =
E{Y |X = ·} be the regression function of (X,Y ). Let C > 0 and let p = q + s for
some q ∈ N0 and s ∈ (0, 1]. Let m : Rd → R be a measurable function, which satisfies
a (p, C)-smooth generalized hierarchical interaction model of order d∗ and finite level l,
and assume that in Definition 1 b) all partial derivates of order less than or equal to q of
the functions gk, fj,k of this generalized hierarchical interaction model are bounded, i.e.,
assume that each such function f satisfies

max
j1,...,jd∈{0,1,...,q}
j1+...+jd≤q

∥∥∥∥ ∂j1+...+jdf

∂j1x(1) · · · ∂jdx(d)

∥∥∥∥
∞
≤ c6, (20)

and let all functions gk be Lipschitz continuous with Lipschitz constant L > 0. Assume
that for some 1 ≤ β ≤ n+ Ln

|m(x)| ≤ β (x ∈ Rd). (21)

Let αn > α∗n ≥ 0 and assume

E
{
|Y −m∗(X)|2

}
≤ (α∗n)2 and E

{
|Y −m∗(X)|3

}
≤ (α∗n)3, (22)

that there exists K,σ0 > 0 such that

K2 ·
(
E

{
exp

(
(Y −m∗(X))2

αn ·K

) ∣∣X}− 1

)
≤ σ0 a.s., (23)

and that the regression function E{ 1
αn

(Y − m(X))|X = x} = 1
αn

(m∗ − m)(x) satisfies
a (p, C)-smooth generalized hierarchical interaction model of order d∗ and finite level l.
Furthermore assume that in Definition 1 b) all partial derivates of order less than or
equal to q of the functions gk, fj,k of this generalized hierarchical interaction model are
bounded, i.e., assume that each such function f satisfies (20), and let all functions gk be
Lipschitz continuous with Lipschitz constant L > 0. Assume

sup
x∈Rd

|m∗(x)−m(x)| ≤ αn (24)

and (
(logLn)3 · L

− 2p
2p+d∗

n

)1/3

≤ αn. (25)
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Define the estimate m̂n as in Subsection 1.4, where we choose K1, d, and d∗ as in the
definition of the generalized hierarchical interaction model for m and

M1,n = dc7 · L
d∗

2p+d∗
n e

and B1,n = Lc8n , where we choose K2, d, and d∗ as in the definition of the generalized hier-
archical interaction model for (m∗−m)/αn, N1,n,M2,n ∈ N with M2,n ≤ N1,n/ log(N1,n)
and B2,n = nc8, where σ : R → [0, 1] is N -admissible according to Definition 3 for
some N ≥ q, and where we use some weight w(n) ∈ [0, 1]. Then there exists constants
c9, . . . , c14 ∈ R+ such that

E
{
|Y − m̂n(X)|2

}
≤ c9 · (α∗n)2 + c10 · α2

n · (log n)3 ·M−
2p
d∗

2,n + c11 · w(n) · α2
n · (log n)3 · M2,n

n

+c12 · (1− w(n)) · α2
n + c13 · (logLn)3 · L

− 2p
2p+d∗

n + c14 ·
α2
n

n
,

for n sufficiently large.
In particular, in case w(n) = 1 and M2,n = dc15 · n

d∗
2p+d∗ e we get

E
{
|Y − m̂n(X)|2

}
≤ c16 ·max

{
(α∗n)2, α2

n · (log n)3 · n−
2p

2p+d∗ , (logLn)3 · L
− 2p

2p+d∗
n

}
for some c16 ∈ R+ and n sufficiently large.

Theorem 1 implies the following corollary concerning the L1 error of the density esti-
mate (18):

Corollary 1 Assume that the density g of Y is (r, C)–smooth for some r ∈ (0, 1] and
that its support is compact. Let K : R → R be a symmetric and bounded density which
decreases monotonically on R+ and define the estimate ĝN2,n as in Subsection 1.4, where
m̂n is defined as in the end of Theorem 1. Assume that the assumptions of Theorem 1
are satsified, and that, in addition,

max

{
(α∗n)2, (logLn)3 · L

− 2p
2p+d∗

n

}
≤ α2

n · (log n)3 · n−
2p

2p+d∗

holds. Set

hNn,2 = c17 ·
(
αn · (log n)3/2 · n−

p
2p+d∗

) 1
r+1

and assume

N2,n ≥

(
n

p
2p+d∗

αn · (log n)3/2

) 2r+1
r+1

13



Then we have for some c18 ∈ R+

E

∫
R
|ĝN2,n(y)− g(y)| dy ≤ c18 ·

(
αn · (log n)3/2 · n−

p
2p+d∗

) r
r+1

,

for n sufficiently large.

Proof. Lemma 1 in Bott, Felber and Kohler (2015) implies that for any z1, z2 ∈ R we
have ∫ ∣∣∣∣K (y − z1

hn

)
−K

(
y − z2

hn

)∣∣∣∣ dy ≤ 2 ·K(0) · |z1 − z2|.

Consequently,

ĝY,N2,n(y) =
1

N2,n · hN2,n

·
N2,n∑
i=1

K

(
y − Yn+Ln+i

hN2,n

)
satisfies∫

|ĝN2,n(y)− ĝY,N2,n(y)| dy ≤ 1

N2,n · hN2,n

·
N2,n∑
i=1

2 ·K(0) · |m̂n(Xn+Ln+i)− Yn+Ln+i|.

From this and standard bounds on the L1 error of kernel density estimates (cf., e.g.,
proof of Theorem 1 in Felber, Kohler and Krzyżak (2015a)) we conclude

E

∫
R
|ĝN2,n(y)− g(y)| dy

≤ E

∫
R
|ĝN2,n(y)− ĝY,N2,n(y)| dy + E

∫
R
|ĝY,N2,n(y)− g(y)| dy

≤ 2 ·K(0)

hN2,n

·E {|mn(X)− Y |}+
c19√

N2,n · hN2,n

+ c20 · hrN2,n

≤ 2 ·K(0)

hN2,n

·
√
E {|mn(X)− Y |2}+

c19√
N2,n · hN2,n

+ c20 · hrN2,n
.

Application of Theorem 1 yields the assertion. �
Remark 1. As already mentioned in Subsection 1.5, we have that for αn → 0 (n→∞)
sufficiently fast the nonasymptotic error bound in Corollary 1 converges faster to zero
than any of the rate of convergences in (19) which we would expect for the estimates (2),
(5) and (8), resp.
Remark 2. Since the rate of convergence in Corollary 1 does not depend on the dimen-
sion d ofX, our newly proposed estimate is able to circumvent the curse of dimensionality
under suitably assumptions on the structure of m.
Remark 3. The parameters of the estimate in Corollary 1 depend on the distribution
of (X,Y ) and on m. In the next subsection we propose data–dependent choices for these
parameters and investigate the finite sample size performance of the resulting estimate
with the aid of simulated data.

14



3 Application to simulated and real data

In this section we want to describe the implementation of our introduced surrogate esti-
mation method and analyze the performance of the estimate by applying it to simulated
and real data.
The surrogate estimate is defined by combining the least squares neural network es-

timates mLn and m̂ε̂
n as described in Subsection 1.4. In both cases we use multi-layer

feedforward neural networks, however the network parameters are chosen differently. For
the estimate mLn we choose the parameter from the sets l ∈ {0, 1, 2}, K1 ∈ {1, 2},
d∗ ∈ {1, . . . , d} and M1,n ∈ {1, . . . , 5, 6, 16, . . . , 46}. For the estimate mLn the pa-
rameter selection is done data-dependent by a splitting of the sample, where we use
d2

3 ·Lne train data and Ln − d2
3 ·Lne test data and we consider the parameter combina-

tion with the smallest empirical L2 risk evaluated on the test data. Since the data set
(X1, Y1), . . . , (Xn, Yn) is considered rather small we reduce the sets of possible param-
eters for m̂ε

n to l ∈ {0}, K2 ∈ {1}, d∗ ∈ {1, 2, 4} , M2,n ∈ {1, 3, 5} and the additional
weighting parameter w is chosen from {0, 0.25, . . . , 1}. For the residual estimate we se-
lect the parameter with a 5-fold cross-validation. To solve the least squares problems in
(12) and (15), we use the Levenberg-Marquardt algorithm implemented in the MATLAB
function lsqnonlin() to approximate their solution. For our density estimate we use a
sample of size N2,n of m̂n(X) and apply a standard kernel density estimate implemented
in the MATLAB function ksdensity().
In the application on simulated data we consider the following setting. We choose the

independent random variable X as uniformly distributed on [0, 1]d and an error term
ε uniformly distributed on [−1, 1] such that X and ε are independent. The dependent
variable Y is defined by

Y = m∗(X) + σ∗ · λ∗ · ε

for somem∗ : Rd → R, a noise factor σ∗ ∈ {0.05, 0.2} and λ∗ > 0 selected as the empirical
interquartile range of m∗(X). We set

m(x) = m∗(x) + σm · λ∗ (x ∈ Rd)

where σm ∈ {0.1, 0.2, 0.5}.
Let (X,Y ), (X1, Y1), (X2, Y2) . . . be independent and identically distributed and ran-

dom variables. Our estimate gets

(X1, Y1), . . . , (Xn, Yn)

as data from our real technical system,

(Xn+1,m(Xn+1)), . . . , (Xn+Ln ,m(Xn+Ln))

as data from our (imperfect) model and the additional X-values

Xn+Ln+1, . . . , Xn+Ln+Nn .
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We consider five different models with a constant deviation in the computer model.
In each model we use sample sizes n = 10, Ln = 200, N1,n = 200 and N2,n = 105. The
different functions used as m∗ are listed below.

m∗1(x) = cot

(
π

1 + exp
(
x2

1 + 2 · x2 + sin(6 · x3
4)− 3

))
+ exp

(
3 · x3 + 2 · x4 − 5 · x5 +

√
x6 + 0.9 · x7 + 0.1

)
(x ∈ [0, 1]7)

m∗2(x) =
2

x1 + 0.008
+ 3 · log(x7

2 · x3 + 0.1) · x4 (x ∈ [0, 1]7)

m∗3(x) =2 · log(x1 · x2 + 4 · x3 + | tan(x4)|+ 0.1) + x4
3 · x2

5 · x6

− x4 · x7 + (3 · x2
8 + x9 + 2)0.1+4·x210 (x ∈ [0, 1]10)

m∗4(x) =x1 + tan(x2) + x3
3 + log(x4 + 0.1) + 3 · x5 + x6 +

√
x7 + 0.1 (x ∈ [0, 1]7)

m∗5(x) = exp(‖x‖) (x ∈ [0, 1]7)

As mentioned before, the parameter λ∗ is chosen as the empirical interquartile range of
m∗(X) calculated on 105 realizations of X. The used values are λ∗1 = 9.11, λ∗2 = 5.68,
λ∗3 = 13.97, λ∗4 = 1.77 and λ∗5 = 1.64.
The density of Y is the convolution of the density of m∗(X) and a uniform density.

We do not try to compute its exact form, instead we compute it approximately by a
kernel density estimate (as implemented in the MATLAB routine ksdensity()) applied to
a sample of size 106. In order to evaluate the performance of our density estimates the
result is treated as if it is the real density.
We compare our estimate (est. 4) with three other density estimates. The first one

(est. 1) is a standard kernel density estimate applied to a sample of size n of Y , cf.
(2). The estimates 2 and 3 are surrogate density estimates where the kernel density
estimate of MATLAB is applied to a sample of size N2,n of the surrogate model. For the
second estimate (est. 2) the surrogate model is chosen as a neural network trained on Ln
realizations of (X,m(X)), cf. (5). For the third estimate (est. 3) the surrogate model is
chosen as a neural network trained on n realizations of (X,Y ), cf. (8).
The estimates are compared by their L1 error. Therefore we approximate the integral

by a Riemann sum defined on an equidistant partition consisting of 104 subintervals.
Since we need to take the randomness of the L1 error into account, we repeat each
simulation 50 times and report in Table 2 and Table 3 the median (and in brackets the
interquartile range) of the 50 L1 errors.
Our newly proposed estimate outperforms the other three estimates in 22 of 30 cases.

In all cases if σm is sufficiently small our estimate yields a smaller L1 error than estimates
1 and 3, where the biggest difference is in model four where it is eight times smaller. In
any simulation except one it is able to reduce the L1 error compared to the surrogate
estimate on computer model data (est. 2). The resulting L1 error of estimate 3 is in any
simulation higher than the error of the other three used estimates. We assume this is
due to the complexity of the used functions m∗ and the small sample size of 10.
We apply the four different estimates on the lateral vibration attenuation system data

and illustrate the results in Figure 3. The number of experimental data is equal to 10.
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σ∗ 5%
σm 0.1 0.2 0.5

m∗1

est. 1 0.704 (0.168) 0.704 (0.168) 0.704 (0.168)
est. 2 0.271 (0.043) 0.503 (0.077) 0.954 (0.085)
est. 3 0.998 (0.345) 0.998 (0.345) 0.998 (0.345)
est. 4 0.162 (0.134) 0.218 (0.136) 0.191 (0.166)

m∗2

est. 1 0.525 (0.183) 0.525 (0.183) 0.525 (0.183)
est. 2 0.240 (0.919) 0.330 (0.820) 0.811 (0.782)
est. 3 1.086 (0.459) 1.086 (0.459) 1.086 (0.459)
est. 4 0.284 (0.957) 0.290 (0.866) 0.644 (0.984)

m∗3

est. 1 0.786 (0.163) 0.786 (0.163) 0.786 (0.163)
est. 2 0.616 (0.460) 0.935 (0.124) 1.233 (0.263)
est. 3 1.472 (0.847) 1.472 (0.847) 1.472 (0.847)
est. 4 0.562 (0.606) 0.835 (0.595) 0.999 (0.590)

m∗4

est. 1 0.329 (0.175) 0.329 (0.175) 0.329 (0.175)
est. 2 0.102 (0.016) 0.208 (0.015) 0.516 (0.015)
est. 3 0.878 (1.328) 0.878 (1.328) 0.878 (1.328)
est. 4 0.040 (0.029) 0.035 (0.018) 0.036 (0.022)

m∗5

est. 1 0.317 (0.183) 0.317 (0.183) 0.317 (0.183)
est. 2 0.107 (0.035) 0.212 (0.032) 0.522 (0.031)
est. 3 0.836 (1.422) 0.836 (1.422) 0.836 (1.422)
est. 4 0.064 (0.031) 0.068 (0.050) 0.067 (0.050)

Table 2: Median (and interquartile range) of the L1 error of the four different estimates
for the five different models with a constant error in the computer model and
five percent noise

To improve the stability of our estimate we increase the sample sizes Ln and N1,n to
500. As discussed in the introduction, we assume that the distribution of the maximal
vibration amplitude is characterized by a non-symmetric distribution about the most
likely value. This characteristic is described by the estimate 2 and our estimate 4,
whereas the estimate 4 predicts higher values. If one considers the experimental data
this is a plausible correction by the residual estimate m̂ε̂

n. Since we only have 10 real
data, it is unclear how reliable the estimates 1 and 3 are.

4 Proofs

4.1 A general result on weighted generalized penalized least squares
estimates

In the proof of Theorem 1 we will use an error bound for weighted generalized penalized
least squares estimates, which will enable us to generalize the results in Kohler and
Krzyżak (2017b) from smoothing spline estimates to least squares estimates.
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σ∗ 20 %
σm 0.1 0.2 0.5

m∗1

est. 1 0.697 (0.241) 0.697 (0.241) 0.697 (0.241)
est. 2 0.272 (0.105) 0.470 (0.098) 0.934 (0.089)
est. 3 1.185 (0.604) 1.185 (0.604) 1.185 (0.604)
est. 4 0.245 (0.131) 0.272 (0.157) 0.216 (0.162)

m∗2

est. 1 0.547 (0.181) 0.547 (0.181) 0.547 (0.181)
est. 2 0.233 (0.926) 0.315 (0.966) 0.694 (0.764)
est. 3 1.140 (0.401) 1.140 (0.401) 1.140 (0.401)
est. 4 0.272 (0.951) 0.296 (1.038) 0.625 (1.018)

m∗3

est. 1 0.666 (0.217) 0.666 (0.217) 0.666 (0.217)
est. 2 0.579 (0.480) 0.844 (0.229) 1.212 (0.252)
est. 3 1.263 (0.832) 1.263 (0.832) 1.263 (0.832)
est. 4 0.573 (0.543) 0.776 (0.499) 0.999 (0.499)

m∗4

est. 1 0.348 (0.219) 0.348 (0.219) 0.348 (0.219)
est. 2 0.105 (0.015) 0.209 (0.016) 0.513 (0.015)
est. 3 1.006 (1.057) 1.006 (1.057) 1.006 (1.057)
est. 4 0.055 (0.054) 0.055 (0.045) 0.049 (0.038)

m∗5

est. 1 0.372 (0.196) 0.372 (0.196) 0.372 (0.196)
est. 2 0.110 (0.034) 0.207 (0.033) 0.518 (0.03)
est. 3 1.003 (1.062) 1.003 (1.062) 1.003 (1.062)
est. 4 0.079 (0.045) 0.085 (0.085) 0.082 (0.057)

Table 3: Median (and interquartile range) of the L1 error of the four different estimates
for the five different models with a constant error in the computer model and
twenty percent noise

Theorem 2 Let d, n, Ln ∈ N, w(n) ∈ [0, 1] with 2 ≤ n ≤ Ln and 1 ≤ β ≤ βn = n+ Ln.
Let (X,Y ), (X1, Y1), . . . be independent and identically distributed Rd×R–valued random
variables with E{|Y |} <∞. Set m(x) = E{Y |X = x} and assume

|m(x)| ≤ β (x ∈ Rd). (26)

Let Ȳ1,n, . . . , Ȳn+Ln,n be arbitrary R–valued random variables satisfying

max
i=1,...,n+Ln

E
{
|Ȳi,n|3

}
≤ c21 <∞. (27)

Let Fn be a set of functions and
pen2

n(f) ≥ 0

be a penalty term for each f ∈ Fn. Define the estimate mn by

m̃n(·) = arg min
f∈Fn

(
n+Ln∑
i=1

wi · |f(Xi)− Ȳi,n|2 + pen2
n(f)

)
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Figure 3: Four different density estimates and as reference the data set (1) indicated on
the x axis.

and
mn(x) = Tβ(m̃n(x)) (x ∈ Rd),

where

wi =
w(n)

n
for i = 1, . . . , n

and

wi =
1− w(n)

Ln
for i = n+ 1, . . . , n+ Ln.

Assume

K2 ·
(
E

{
exp

(
(Y −m(X))2

K2

) ∣∣X}− 1

)
≤ σ2

0 a.s. (28)

for some K,σ0 > 0. Choose δk > 0 with δk → 0 (k → ∞) and δn ≥ δLn, such that for
all k ≥ n we have

δk > c22 ·
β2

k
, (29)
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√
kδ ≥ c23

∫ √48δ

δ/(12σ0)

(
logN2

(
u, {Tβnf − g : f ∈ Fn, (30)

1

k

k∑
i=1

|Tβnf(xi)− g(xi)|2 + pen2
n(f) ≤ 48 · δ}, xk1

))1/2

du

for all δ ≥ δk/6, all g ∈ Fn, and
√
kδ

β2
≥ c23

∫ √δ
δ/(c24·β2)

(
logN2

(
u, {(Tβf −m)2 : f ∈ Fn, (31)

1

k

k∑
i=1

|Tβf(xi)−m(xi)|2 ≤
δ

β2
, pen2

n(f) ≤ δ}, xk1

))1/2

du

for all δ ≥ δk and all x1, . . . , xk ∈ Rd. Then there exists constants c25, c26, c27 ∈ R+ such
that

E

∫
|mn(x)−m(x)|2PX(dx)

≤ 9 · inf
f∈Fn

(
pen2

n(f) +

∫
|f(x)−m(x)|2PX(dx)

)
+c25 · w(n) ·

(
δn + E

{
1

n
·
n∑
i=1

|Ȳ1,n − Yi|2
})

+c26 · (1− w(n)) ·

(
δLn + E

{
1

Ln
·
n+Ln∑
i=n+1

|Ȳ1,n − Yi|2
})

+
c27

n
.

Proof. The proof follows by a generalization of the proof of Theorem 2 in Kohler and
Krzyżak (2017b). A complete proof is available from the authors on request.

4.1.1 Application to neural networks

In the following subsection we want to introduce a corollary of Theorem 2, where we
choose our function space as hierarchical neural networks as defined in Subsection 1.3.

Corollary 2 Let d, n, Ln ∈ N, w(n) ∈ [0, 1] with 2 ≤ n ≤ Ln and 1 ≤ β ≤ n + Ln. Let
(X,Y ), (X1, Y1), . . . be independent and identically distributed Rd × R–valued random
variables with E{|Y |} < ∞ and with supp(X) bounded. Let m(·) = E{Y |X = ·} be the
regression function, which satisfies a generalized hierarchical interaction model of order
d∗ and finite level l and assume

|m(x)| ≤ β (x ∈ Rd). (32)

Let Ȳ1,n, . . . , Ȳn+Ln,n be arbitrary R–valued random variables satisfying

max
i=1,...,n+Ln

E
{
|Ȳi,n|3

}
≤ c28 <∞. (33)
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Assume

K2 ·
(
E

{
exp

(
(Y −m(X))2

K2

) ∣∣X}− 1

)
≤ σ2

0 a.s. (34)

for some K,σ0 > 0. Let N ∈ N0 and H
(l)
K,Mn,d,d∗,Bn

be the set of hierarchical neural
networks introduced in Subsection 1.3, where K, d, d∗ are chosen as in the definition of
the generalized hierarchical interaction model for m, and where Mn ≤ nc29, Bn = nc30,
and where σ : R→ R is a Lipschitz continuous function with Lipschitz constant L, which
satisfy

|σ(x)| ≤ L ·max{|x|, 1} (x ∈ R). (35)

Define the estimate mn by

m̃n(·) = arg min
h∈H(l)

K,Mn,d,d∗,Bn

(
n+Ln∑
i=1

wi · |h(Xi)− Ȳi,n|2
)

and
mn(x) = Tβ(m̃n(x)) (x ∈ Rd),

where

wi =
w(n)

n
for i = 1, . . . , n

and

wi =
1− w(n)

Ln
for i = n+ 1, . . . , n+ Ln.

Then there exists constants c31, c32, c33 ∈ R+ such that

E

∫
|mn(x)−m(x)|2PX(dx)

≤ 9 · inf
h∈H(l)

K,Mn,d,d∗,Bn

(∫
|h(x)−m(x)|2PX(dx)

)

+c31 · w(n) ·

(
log(n)

n
·Mn + E

{
1

n
·
n∑
i=1

|Ȳ1,n − Yi|2
})

+c32 · (1− w(n)) ·

(
log(Ln)

Ln
·Mn + E

{
1

Ln
·
n+Ln∑
i=n+1

|Ȳ1,n − Yi|2
})

+
c33

n
,

for n sufficiently large.

Proof. Set pen2
n(f) = 0 and

δk = c34 ·
log(k)

k
·Mn.

We show that Theorem 2 is applicable by the assumptions of Corollary 2 and the choice
of δk. First we observe that

δk > c35 ·
β2

k
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and
δn = c36 ·

log(n)

n
·Mn ≥ c36 ·

log(Ln)

Ln
·Mn = δLn ,

since 2 ≤ n ≤ Ln. In order to be able to apply Theorem 2 it suffices to show that (30)
and (31) are fulfilled. First we show that (31) holds. Since the values of the estimate on
supp(X) will not change in case that we replace H(l)

K,Mn,d,d∗,Bn
by{

h · Isupp(X) : h ∈ H(l)
K,Mn,d,d∗,Bn

}
in the definition of m̃n, it suffices to show that (31) holds for x1, . . . , xk ∈ supp(X). Next
we observe that using |a2 − b2|2 ≤ (|a| + |b|)2 · |a − b|2 (a, b ∈ R) (which we apply with
a = (Tβf −m)(xi) and b = g(xi), where g is approximating Tβf −m) and |m(x)| ≤ β
(x ∈ Rd) we get(

1

k

k∑
i=1

|(Tβf −m)2(xi)− g2(xi)|2
)1/2

≤

(
1

k

k∑
i=1

(
|(Tβf −m)(xi)− g(xi)|2 · (|(Tβf −m)(xi)|+ |g(xi)|)2

))1/2

≤ 4 · β ·

(
1

k

k∑
i=1

|(Tβf −m)(xi)− g(xi)|2
)1/2

for any x1, . . . , xk ∈ supp(X), which implies

N2

(
u,
{

(Tβf −m)2 : f ∈ H(l)
K,Mn,d,d∗,Bn

}
, xk1

)
≤ N2

(
u

4β
,
{
Tβf −m : f ∈ H(l)

K,Mn,d,d∗,Bn

}
, xk1

)
.

Using this we see that for any δ ≥ δk∫ √δ
δ/(c37·β2)

(
logN2

(
u, {(Tβf −m)2 : f ∈ H(l)

K,Mn,d,d∗,Bn
}, xk1

))1/2
du

≤
∫ √δ
δ/(c37·β2)

(
logN2

(
u

4β
, {Tβf −m : f ∈ H(l)

K,Mn,d,d∗,Bn
}, xk1

))1/2

du

which is bounded by

√
δ ·
(

logN2

(c38

k
, {Tβf −m : f ∈ H(l)

K,Mn,d,d∗,Bn
}, xk1

))1/2

since
u

4β
≥ c38

k
for u ≥ δ

c37 · β2
≥ δk
c37 · β2

≥ c39

c37 · k
.
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Set ak = kc40 . Applying Lemma 2 from Bauer and Kohler (2017) yields for any x1, . . . , xk ∈
[−ak, ak]d

log
(
N2

(c41

k
, {Tβf −m : f ∈ Fn}, xk1

))
≤ c42 · log(k) ·Mn.

Since supp(X) is bounded the relationship supp(X) ⊆ [−ak, ak]d holds for k sufficiently
large. Combing the above results we see that (31) is implied by

√
k · δ
β2

≥
√
δ · (c42 · log(k) ·Mn)1/2

which in turn follows from δ ≥ δk.
By the choice of δk we have for any δ ≥ δk/6

δ

12σ0
>
c43

k
.

Arguing as above, this implies that (30) holds. Consequently Theorem 2 is applicable
which yields the assertion.

�

4.2 Proof of Theorem 1

Using the definition of m̂n, (a+ b+ c)2 ≤ 3a2 + 3b2 + 3c2 (a, b, c ∈ R) and (22) we get

E
{
|Y − m̂n(X)|2

}
= E

{∣∣∣(Y −m∗(X)) + (m∗(X)−m(X)− m̂ε̂
n(X)) + (m(X)−mLn(X))

∣∣∣2}
≤ 3 ·E

{
|Y −m∗(X)|2

}
+ 3 ·E

{∣∣∣m∗(X)−m(X)− m̂ε̂
n(X)

∣∣∣2}
+3 ·E

{
|m(X)−mLn(X)|2

}
≤ 3(α∗n)2 + 3 ·E

∫ ∣∣∣m̂ε̂
n(x)− (m∗ −m)(x)

∣∣∣2 PX(dx)

+3 ·E
∫
|mLn(x)−m(x)|2 PX(dx).

Hence in order to prove the assertion it suffices to show

E

∫
|mLn(x)−m(x)|2 PX(dx) ≤ c44 · log(Ln)3 · L

− 2p
2p+d∗

n (36)

and

E

∫ ∣∣∣m̂ε̂
n(x)− (m∗ −m)(x)

∣∣∣2 PX(dx)

≤ c45 · α2
n · (log n)3 ·M−

2p
d∗

2,n + c46 · w(n) · α2
n · log(n) · M2,n

n
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+c47 · (1− w(n)) · α2
n + c48 · (logLn)3 · L

− 2p
2p+d∗

n + c49 ·
α2
n

n
(37)

To proof inequality (36) we apply Corollary 2 with (X,Y ) = (X,m(X)), n = Ln, w(n) =
1 and Ȳi,Ln+L̄n = Yi = m(Xn+i) (i = 1, . . . , Ln) and suitably chosen ȲLn+1,Ln+L̄n ,
. . . ,ȲLn+L̄n,Ln+L̄n and observe

E

∫
|mLn(x)−m(x)|2 PX(dx)

≤ 9 · inf
h∈H(l)

K1,M1,n,d,d
∗,B1,n

(∫
|h(x)−m(x)|2PX(dx)

)
+ c50 ·

log(Ln)

Ln
·M1,n +

c51

Ln

≤ 9 · inf
h∈H(l)

K1,M1,n,d,d
∗,B1,n

(∫
|h(x)−m(x)|2PX(dx)

)
+ c52 · log(Ln) · L

−2p
2p+d∗
n ,

for sufficiently large n. Next we want to derive a bound on the approximation error. Set

aLn = (logLn)
3

2·(N+q+3) and ηLn = (logLn)
3·(N+3)
N+q+3 · L

− 2·(N+1)·p+2d∗
2p+d∗

n and assume w.l.o.g.
that supp(X) ⊆ [−aLn , aLn ]d. Using Theorem 3 in Bauer and Kohler (2017) we see that
there exists a h∗ ∈ H(l)

K1,M1,n,d∗,d,B1,n
and an exception set DLn with PX -measure of ηLn

such that∫
|h∗(x)−m(x)|2 · IDcLn (x) PX(dx) +

∫
|h∗(x)−m(x)|2 · IDLn (x) PX(dx)

≤
(
c53 · a(N+q+3)

Ln
·M−p/d

∗

1,n

)2
+
(

2 · c54 · aqLn ·M
(d∗+N ·p)/d∗
1,n

)2
· ηLn

≤ c55 · (logLn)3 · L
− 2p

2p+d∗
n + c56 · (logLn)

3q
N+q+3 · L

2d∗+2N·p
2p+d∗

n · (logLn)
3·(N+3)
N+q+3 · L

− 2·(N+1)·p+2d∗
2p+d∗

n

≤ c57 · (logLn)3 · L
− 2p

2p+d∗
n ,

where we have used that |m(x)| ≤ β ≤ c58 · aqLn ·M
(d∗+N ·p)/d∗
1,n .

In order to prove (37) we first observe that

E{Y −m(X)|X = x} = m∗(x)−m(x),

hence m∗ − m is the regression function to (X,Y − m(X)), and (m∗ − m)/αn is the
regression function to (X, (Y −m(X))/αn). Clearly,∫ ∣∣∣m̂ε̂

n(x)− (m∗ −m)(x)
∣∣∣2 PX(dx) = α2

n ·
∫ ∣∣∣∣ 1

αn
· m̂ε̂

n(x)− 1

αn
· (m∗ −m)(x)

∣∣∣∣2 PX(dx).

It is easy to see that the definition of m̂ε̂
n implies

1

αn
· m̂ε̂

n(x) =
1

αn
· Tc1·αn(m̃ε̂

n(x)) = Tc1

(
1

αn
· m̃ε̂

n(x)

)
(x ∈ Rd),
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and

1

αn
· m̃ε̂

n(·) = arg min
h∈ 1

αn
H(l)
K2,M2,n,d

∗,d,B2,n

(
w(n)

n

n∑
i=1

(
1

αn
· ε̂i − h(Xi)

)2

+
1− w(n)

N1,n

N1,n∑
i=1

(0− h(Xn+Ln+i))
2

)
,

where
1

αn
H(l)
K2,M2,n,d,d∗,B2,n

=
{
h/αn : h ∈ H(l)

K2,M2,n,d∗,d,B2,n

}
.

The assumptions in Theorem 1 together with (36) imply that we have

sup
x∈Rd

|m∗(x)−m(x)| ≤ αn

and

max
i=1,...,n

E

{∣∣∣∣Yi −mLn(Xi)

αn

∣∣∣∣3
}

≤ 9

α3
n

·
(
E
{
|Y −m∗(X)|3

}
+ E

{
|m∗(X)−m(X)|3

}
+ E

{
|m(X)−mLn(X)|3

})
≤ 9 ·

(
(α∗n)3

α3
n

+ 1 +
c59 ·

(
(logLn)3 · L

− 2p
2p+d∗

n

)
α3
n

)
≤ 18 + c59

We consider

1

αn
· ε̂i =

1

αn
· (Yi −mLn(Xi)) =

1

αn
· (Yi −m(Xi)) +

1

αn
· (m(Xi)−mLn(Xi))

as an observation of (Yi −m(Xi))/αn with an additional measurement error

1

αn
· (m(Xi)−mLn(Xi))

(i = 1, . . . , n). And we consider

0 =
1

αn
· (Yn+Ln+i −m(Xn+Ln+i))−

1

αn
· (Yn+Ln+i −m(Xn+Ln+i))

as an observation of 1
αn
· (Yn+Ln+i−m(Xn+Ln+i)) with an additional measurement error

(−1) · 1

αn
· (Yn+Ln+i −m(Xn+Ln+i))

(i = 1, . . . , N1,n).
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From inequality (36) we can conclude

E

{
1

n

n∑
i=1

∣∣∣∣ 1

αn
· (m(Xi)−mLn(Xi))

∣∣∣∣2
}
≤ 1

α2
n

·E
∫
|m(x)−mLn(x)|2 PX(dx)

≤ 1

α2
n

· c60 · (logLn)3 · L
− 2p

2p+d∗
n ,

and the assumptions in Theorem 1 imply

E

 1

N1,n

N1,n∑
i=1

∣∣∣∣ 1

αn
· (Yn+Ln+i −m(Xn+Ln+i))

∣∣∣∣2


≤ 2 ·E

 1

N1,n

N1,n∑
i=1

∣∣∣∣ 1

αn
· (Yn+Ln+i −m∗(Xn+Ln+i))

∣∣∣∣2


+2 ·E

 1

N1,n

N1,n∑
i=1

∣∣∣∣ 1

αn
· (m∗(Xn+Ln+i)−m(Xn+Ln+i))

∣∣∣∣2


≤ 2 · (α∗n)2

α2
n

+ 2 ≤ 4.

We observe that by dividing the function space H(l)
K2,M2,n,d,d∗,B2,n

by αn we change the µi

in the last level of the hierarchical neural network. Since αn ≥
(

(logLn)3 · L
−2p

2p+d∗
n

)1/3

and Ln ≤ nc4 the µi are bounded by
1

αn
·B2,n ≤ nc60 .

Thus in the proof of Corollary 2 the bound on the covering number holds. Application
of Corollary 2 yields

E

∫ ∣∣∣∣ 1

αn
· m̂ε̂

n(x)− 1

αn
· (m∗ −m)(x)

∣∣∣∣2 PX(dx)

≤ 9 · inf
h∈ 1

αn
·H(l)
K2,M2,n,d,d

∗,B2,n

(∫ ∣∣∣∣h(x)− 1

αn
· (m∗ −m)(x)

∣∣∣∣2 PX(dx)

)

+c61 · w(n) ·
(

log(n) · M2,n

n
+

1

α2
n

· c62 · (logLn)3 · L
− 2p

2p+d∗
n

)
+c63 · (1− w(n)) ·

(
log(N1,n) · M2,n

N1,n
+ 4

)
+
c64

n
.

Analogously as before we can bound the approximation error by using Theorem 3 in
Bauer and Kohler (2017) and can conclude

E

∫ ∣∣∣∣ 1

αn
· m̂ε̂

n(x)− 1

αn
· (m∗ −m)(x)

∣∣∣∣2 PX(dx)
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≤ c65 · (log n)3 ·M−
2p
d∗

2,n + c66 · w(n) ·
(

log(n) · M2,n

n
+

1

α2
n

· (logLn)3 · L
− 2p

2p+d∗
n

)
+c67 · (1− w(n)) +

c68

n
.

The above results implies (37) which implies the assertion. �
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Supplementary material for the referees

Proof of Theorem 2. In the first step of the proof we show that we can assume w.l.o.g.

Ȳi,n ∈ [−βn, βn] for all i = 1, . . . , n+ Ln. (38)

To do this, we let

An =
{
|Ȳi,n| ≤ βn for all i = 1, . . . , n+ Ln

}
be the event that all Ȳi,n be bounded in absolutely value by βn. The union bound together
with Markov inequality and (27) implies

P(Acn) ≤ (n+ Ln) · max
i=1,...,n+Ln

P{|Ȳi,n| > βn} ≤ (n+ Ln) ·
maxi=1,...,n+Ln E

{
|Ȳi,n|3

}
β3
n

≤ c69

n
.

On the event An the estimate mn coincides with the estimate m(trunc)
n defined by

m̃(trunc)
n (·) = arg min

f∈Fn

(
n+Ln∑
i=1

wi · |f(Xi)− Tβn Ȳi,n|2 + pen2
n(f)

)
and

m(trunc)
n (x) = Tβm̃

(trunc)
n (x) (x ∈ Rd).

From this we can conclude that

E

∫
|mn(x)−m(x)|2PX(dx)

≤ E

{∫
|mn(x)−m(x)|2PX(dx) · IAn

}
+ 4 · β2 ·P(Acn)

= E

{∫
|m(trunc)

n (x)−m(x)|2PX(dx) · IAn
}

+ 4 · β2 ·P(Acn)

≤ E

∫
|m(trunc)

n (x)−m(x)|2PX(dx) + 4 · β2 · c69

n
,

which completes the first step of the proof.
So from now on we assume that (38) holds. Set

γn = w(n) · δn + (1− w(n)) · δLn

and

Tn =

∫
|mn(x)−m(x)|2PX(dx)

−

(
9 · inf

f∈Fn

(
pen2

n(f) +

n+Ln∑
i=1

wi · |f(Xi)−m(Xi)|2
)

+ 384 ·
n+Ln∑
i=1

wi · |Yi − Ȳi,n|2
)
.
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In the second step of the proof we show that the assertion follows from∫ 4·β2

12·γn
P{Tn > t} dt ≤ c70

n
+ c71 ·

(
w(n) · δn + (1− w(n)) · δLn

)
.

To do this, we observe

E

∫
|mn(x)−m(x)|2PX(dx)

≤ E

{∫
|mn(x)−m(x)|2PX(dx)

−

(
9 · inf

f∈Fn

(
pen2

n(f) +

n+Ln∑
i=1

wi · |f(Xi)−m(Xi)|2
)

+ 384 ·
n+Ln∑
i=1

wi · |Yi − Ȳi,n|2
)}

+E

{
9 · inf

f∈Fn

(
pen2

n(f) +

n+Ln∑
i=1

wi · |f(Xi)−m(Xi)|2
)

+ 384 ·
n+Ln∑
i=1

wi · |Yi − Ȳi,n|2
}

≤ 12 · γn +

∫ 4·β2

12·γn
P{Tn > t}dt+ 384 ·E

{
n+Ln∑
i=1

wi · |Yi − Ȳi,n|2
}

+9 · inf
f∈Fn

(
pen2

n(f) +

∫
|f(x)−m(x)|2PX(dx)

)
= 12 · γn +

∫ 4·β2

12·γn
P{Tn > t}dt+ 384 ·E

{
n+Ln∑
i=1

wi · |Yi − Ȳi,n|2
}

+9 · inf
f∈Fn

(
pen2

n(f) +

∫
|f(x)−m(x)|2PX(dx)

)
,

where the last equation holds since Tn ≤ 4β2. The definition of γn and of the weights
implies the assertion of step 2.
In the third step of the proof we show that we have for t > 0

P{Tn > t} ≤ P1,n(t) + P2,n(t),

where

P1,n(t) = P

{∫
|mn(x)−m(x)|2PX(dx)

>
t

2
+ 3 · pen2

n(m̃n) + 3 ·
n+Ln∑
i=1

wi · |mn(Xi)−m(Xi)|2
}

and

P2,n(t) = P

{
3 ·

n+Ln∑
i=1

wi · |mn(Xi)−m(Xi)|2 + 3 · pen2
n(m̃n)
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>
t

2
+ 9 · inf

f∈Fn

(
n+Ln∑
i=1

wi · |f(Xi)−m(Xi)|2 + pen2
n(f)

)

+384 ·
n+Ln∑
i=1

wi · |Yi − Ȳi,n|2
}
.

Using

Tn

=

(∫
|mn(x)−m(x)|2PX(dx)− 3 · pen2

n(m̃n)− 3 ·
n+Ln∑
i=1

wi · |mn(Xi)−m(Xi)|2
)

+

(
3 ·

n+Ln∑
i=1

wi · |mn(Xi)−m(Xi)|2 + 3 · pen2
n(m̃n)

−

(
9 · inf

f∈Fn

(
n+Ln∑
i=1

wi · |f(Xi)−m(Xi)|2 + pen2
n(f)

)
+ 384 ·

n+Ln∑
i=1

wi · |Yi − Ȳi,n|2
))

=: T1,n + T2,n

this immediately follows from

P{Tn > t} = P{T1,n + T2,n > t} ≤ P{T1,n > t/2}+ P{T2,n > t/2}.

In the fourth step of the proof we derive a upper bound on∫ 4·β2

12·γn
P1,n(t) dt.

Let 12 · γn ≤ t ≤ 4 · β2. The definition of the weights together with

a+ b > c+ d ⇒ (a > c or b > d)

implies that we have

P1,n(t) ≤ P

{
w(n) ·

∫
|mn(x)−m(x)|2PX(dx) >

w(n) · δn
w(n) · δn + (1− w(n)) · δLn

· t
2

+w(n) · 3 · pen2
n(m̃n) + w(n) · 3 · 1

n
·
n∑
i=1

|mn(Xi)−m(Xi)|2
}

+P

{
(1− w(n)) ·

∫
|mn(x)−m(x)|2PX(dx)

>
(1− w(n)) · δLn

w(n) · δn + (1− w(n)) · δLn
· t

2
+ (1− w(n)) · 3 · pen2

n(m̃n)

+(1− w(n)) · 3 · 1

Ln
·
n+Ln∑
i=n+1

|mn(Xi)−m(Xi)|2
}
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≤ P

{∫
|mn(x)−m(x)|2PX(dx) >

δn

w(n) · δn + (1− w(n)) · δLn
· t

2

+3 · pen2
n(m̃n) + 3 · 1

n
·
n∑
i=1

|mn(Xi)−m(Xi)|2
}

+P

{∫
|mn(x)−m(x)|2PX(dx) >

δLn
w(n) · δn + (1− w(n)) · δLn

· t
2

+3 · pen2
n(m̃n) + 3 · 1

Ln
·
n+Ln∑
i=n+1

|mn(Xi)−m(Xi)|2
}

= P
(1)
1,n(t) + P

(2)
1,n(t).

Set

δ̄n :=
δn

w(n) · δn + (1− w(n)) · δLn
· t

12
and δ̄Ln :=

δLn
w(n) · δn + (1− w(n)) · δLn

· t
12
.

We have

P
(1)
1,n(t)

= P

{∫
|mn(x)−m(x)|2PX(dx) > 6 · δ̄n + 3 · pen2

n(m̃n) + 3
1

n

n∑
i=1

|mn(Xi)−m(Xi)|2
}

≤ P

{∫
|mn(x)−m(x)|2PX(dx) > δ̄n + 3 · pen2

n(m̃n) + 3
1

n

n∑
i=1

|mn(Xi)−m(Xi)|2
}
.

Next we want to use Lemma 4 from Kohler and Krzyżak (2017b) on the above probability,
where we replace βn in the notation of Lemma 4 by β. The assumptions of the lemma
are satisfied since (29) and (31) hold for every k ≥ n. Thus

P

{∫
|mn(x)−m(x)|2PX(dx) > δ̄n + 3 · pen2

n(m̃n) + 3
1

n

n∑
i=1

|mn(Xi)−m(Xi)|2
}

≤ c72 · exp

(
− n · δ̄n
c72 · β2

)
holds. For P (2)

1,n we use an analogous transformation, apply Lemma 4, use the sample size
Ln instead of n and replace again βn by β and obtain

P
(2)
1,n ≤ P

{∫
|mn(x)−m(x)|2PX(dx) > δ̄Ln + 3 · pen2

n(m̃n)

+3
1

Ln

n+Ln∑
i=n+1

|mn(Xi)−m(Xi)|2
}
.
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≤ c72 · exp

(
−Ln · δ̄Ln
c72 · β2

)
.

The results for P (1)
1,n and P (2)

1,n are implying∫ 4·β2

12·γn
P1,n(t)dt ≤ c73 · β2

n
· w

(n) · δn + (1− w(n)) · δLn
δn

· exp

(
− n

c73 · β2
· δn
)

+
c73 · β2

Ln
· w

(n) · δn + (1− w(n)) · δLn
δLn

· exp

(
− Ln
c73 · β2

· δLn
)

≤ c73

n
· δn
δn
· exp

(
−c22 · β2

c73 · β2

)
+
c73 · β2 ·

(
w(n) · δn + (1− w(n)) · δLn

)
c22 · β2

· exp

(
−c22 · β2

c73 · β2

)
≤ c74

n
+ c75 ·

(
w(n) · δn + (1− w(n)) · δLn

)
where we have used δn ≥ δLn > 0, and that (29) implies

δn · n > c22 · β2 and δLn · Ln > c22 · β2.

In the fifth step of the proof we derive a upper bound on∫ 4·β2

12·γn
P2,n(t) dt.

Since |m(x)| ≤ β ≤ βn (x ∈ Rd) and wi ≥ 0 (i ∈ {1, . . . , n+ Ln}) we have

n+Ln∑
i=1

wi · |mn(Xi)−m(Xi)|2 ≤
n+Ln∑
i=1

wi · |Tβnm̃n(Xi)−m(Xi)|2

which implies

P2,n(t) ≤ P

{
n+Ln∑
i=1

wi · |Tβnm̃n(Xi)−m(Xi)|2 + pen2
n(m̃n)

>
t

6
+ 3 · inf

f∈Fn

(
n+Ln∑
i=1

wi · |f(Xi)−m(Xi)|2 + pen2
n(f)

)

+128 ·
n+Ln∑
i=1

wi · |Yi − Ȳi,n|2
}
.

Choose m∗n ∈ Fn such that

3 ·

(
n+Ln∑
i=1

wi · |m∗n(Xi)−m(Xi)|2 + pen2
n(m∗n)

)
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≤ 3 · inf
f∈Fn

(
n+Ln∑
i=1

wi · |f(Xi)−m(Xi)|2 + pen2
n(f)

)
+

t

12

Then we can conclude by Lemma 1 from Kohler and Krzyżak (2017b) that the above
probability is bounded by

P

{
n+Ln∑
i=1

wi · |Tβnm̃n(Xi)−m(Xi)|2 + pen2
n(m̃n)

≥ t

12
+ 3 ·

(
n+Ln∑
i=1

wi · |m∗n(Xi)−m(Xi)|2 + pen2
n(m∗n)

)
+ 128 ·

n+Ln∑
i=1

wi · |Yi − Ȳi,n|2
}

≤ P

{
n+Ln∑
i=1

wi · (Tβnm̃n(Xi)−m∗n(Xi)) · (Yi −m(Xi))

≥ 1

24
·

(
n+Ln∑
i=1

wi · |Tβnm̃n(Xi)−m∗n(Xi)|2 + pen2
n(m̃n)

)
+

t

72

}
The definition of the weights together with

a+ b > c+ d ⇒ (a > c or b > d)

implies

P

{
n+Ln∑
i=1

wi · (Tβnm̃n(Xi)−m∗n(Xi)) · (Yi −m(Xi))

≥ 1

24
·

(
n+Ln∑
i=1

wi · |Tβnm̃n(Xi)−m∗n(Xi)|2 + pen2
n(m̃n)

)
+

t

72

}

≤ P

{
w(n)

n

n∑
i=1

(Tβnm̃n(Xi)−m∗n(Xi)) · (Yi −m(Xi))

≥ w(n)

24
·

(
1

n

n∑
i=1

|Tβnm̃n(Xi)−m∗n(Xi)|2 + pen2
n(m̃n)

)
+ w(n) · δ̄n

6

}

+ P

{
(1− w(n))

Ln

n+Ln∑
i=n+1

(Tβnm̃n(Xi)−m∗n(Xi)) · (Yi −m(Xi))

≥ (1− w(n))

24
·

(
1

Ln

n+Ln∑
i=n+1

|Tβnm̃n(Xi)−m∗n(Xi)|2 + pen2
n(m̃n)

)
+ (1− w(n)) · δ̄Ln

6

}

≤ P

{
1

n

n∑
i=1

(Tβnm̃n(Xi)−m∗n(Xi)) · (Yi −m(Xi))

≥ 1

24
·

(
1

n

n∑
i=1

|Tβnm̃n(Xi)−m∗n(Xi)|2 + pen2
n(m̃n)

)
+

1

6
· δ̄n

}
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+ P

{
1

Ln

n+Ln∑
i=n+1

(Tβnm̃n(Xi)−m∗n(Xi)) · (Yi −m(Xi))

≥ 1

24
·

(
1

Ln

n+Ln∑
i=n+1

|Tβnm̃n(Xi)−m∗n(Xi)|2 + pen2
n(m̃n)

)
+

1

6
· δ̄Ln

}
= P

(1)
2,n(t) + P

(2)
2,n(t).

Next we want to use Lemma 3 from Kohler and Krzyżak (2017b) in order to bound
P

(1)
2,n(t). The assumptions of the Lemma are satisfied since (29) and (30) hold for every
k ≥ n. Thus

P
(1)
2,n(t) ≤ c76 · exp

(
−n ·min{δ̄n, σ2

0}
c76

)
and because of t ≤ 4β2 we can w.l.o.g. assume that σ2

0 ≥ δ̄n holds. Thus

P
(1)
2,n(t) ≤ c76 exp

(
−nδ̄n
c76

)
and by the same arguments we can apply Lemma 3 from Kohler and Krzyżak (2017) and
obtain

P
(2)
2,n(t) ≤ c77 exp

(
−Lnδ̄Ln

c77

)
.

Analogously as before δn ≥ δLn > 0 and

δn · n > c22 and δLn · Ln > c22

implies ∫ 4·β2

12·γn
P2,n(t)dt ≤ c78

n
+ c79 ·

(
w(n) · δn + (1− w(n)) · δLn

)
.

Summarizing the above results we get the assertion. �
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