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Abstract
In this article we study uncertainty quantification of a technical system. We propose new
density estimates which combine observed data of the technical system and simulated
data from an (imperfect) simulation model based on estimated input distributions. We
analyze the rate of convergence of these estimates. The finite sample size performance of
the estimates is illustrated by applying them to simulated data. The practical usefulness
of the newly proposed estimates is demonstrated by using them to predict the uncertainty
of a lateral vibration attenuation system with piezo-elastic supports.
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1 Introduction

We consider the problem of quantifying the uncertainty in an experiment with a technical
system. This experiment is described by an Rd × R-valued random variable (X,Y ),
where Y is the outcome of the experiment and the so-called input variable X describes
"parameters" of the experiment. For example if one wants to analyze in an experiment
the maximal relative compression Y of a spring damper component it is known that it is
dependent on the free fall height and the spring stiffness which leads to a two dimensional
input variable X.

We assume that Y has a density g with respect to the Lebesgue measure and our aim
is to find an estimator ĝ : R→ R such that the L1 error∫

R
|ĝ(x)− g(x)|dx

∗Running title: Uncertainty quantification with estimated input distributions
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is small. Since ∫
R
|ĝ(x)− g(x)|dx = 2 · sup

B∈B

∣∣∣∣∫
B
ĝ(x)dx−

∫
B
g(x)dx

∣∣∣∣
(cf. Theorem 5.1 in Devroye and Lugosi (2000)) such an approximation of g will allow
us to estimate for each Borel set B ⊆ R the probability

P {Y ∈ B} =

∫
B
g(x)dx by

∫
B
ĝ(x)dx

such that the maximal occurring error is small.
If an independent and identically distributed sample Y1, . . . , Yn is available, one possi-

bility to do this is to use the Rosenblatt-Parzen kernel density estimate

ĝ(y) =
1

n · hn

n∑
i=1

K

(
y − Yi
hn

)
(1)

(c.f. Rosenblatt (1956) and Parzen (1962)). Here K : Rd → R (so-called kernel, which
is assumed to be a density) and hn > 0 (so-called bandwidth) are parameters of the
estimate. But in many applications in engineering the sample size n is too small to
apply such an estimate, because the experiments with technical systems are rather time
consuming or expensive. Alternatively one could assume that the distribution of Y is
an element of a known class of distributions which can be characterized by a parameter,
i.e. PY ∈ {wϑ : ϑ ∈ Θ}, and estimate this parameter and thus the density of Y by a
so-called maximum likelihood estimate (cf., e.g., Kalbfleisch (1979)). In any application
the class of distributions of Y is usually not known. The standard approach would be
to assume that Y is normally distributed, but for instance in the above example the
maximal relative compression Y of a spring damper component is an extreme value and
according to Choi, Grandhi and Canfield (2007) the distribution of extreme values is
characterized by a non-symmetric distribution about the most likely value, thus it is not
a normal distribution.
Our estimate will be based on the choice of a model for the input X described by a

random variable X̄ and a simulation model described by a function m : Rd → R, both
chosen such that m(X̄) is in some sense a good approximation of Y . Here engineering
knowledge is used to construct the simulation model m : Rd → R, e.g. it could be the
solution of a partial differential equation system. And the model for X is constructed on
the basis of observed values of X.
We distinguish between two data models:

(i) In the first model we assume that our simulation model is perfect in sense that

Y = m(X) (2)

holds, and that we have observed an independent and identically distributed sample

X1, . . . , Xn (3)

of X which we use to construct X̄.
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(ii) In our second model our simulation model is imperfect in the sense that we have

Y 6= m(X),

but we have observed an identically and independent distributed sample

(X1, Y1), . . . , (Xn, Yn) (4)

of (X,Y ). Furthermore we assume that there exisits a function m∗ : Rd → R such
that Y = m∗(X) holds.

In the first data model we have no sample of Y available, but as in (1) we can use the
simulation model and the input data and estimate the density of Y by

ĝ(y) =
1

n · hn

n∑
i=1

K

(
y −m(Xi)

hn

)
.

In most applications the sample size n will be too small to achieve a good approximation
of g. Alternatively we can use our sample of input values to construct a sample of X̄.
Then we can apply the estimate to a large independent and identically distributed sample

X̄1, . . . , X̄Nn (5)

and estimate g by

ĝ(y) =
1

Nn · hNn

Nn∑
i=1

K

(
y −m(X̄i)

hNn

)
. (6)

Usually, the simulation model is evaluated using a computer program. In most cases the
evaluation of the simulation with a computer program is rather time consuming, so that
it is not feasible to run the computer experiments with a large sample and consequently
the density estimate (6) can not be applied with Nn large. Instead, one has to apply
techniques which are able to quantify the uncertainty in the computer experiment using
only a few evaluations of the computer program. There is a vast literature on the design
and analysis of such computer experiments, cf., e.g., Santner, Williams and Notz (2003)
or Fang, Li and Sudjianto (2010). There so-called surrogate models of the computer
experiment are used. Thus we estimate a surrogate model m̂n of m and use it to estimate
the density of g by

ĝ(y) =
1

Nn · hNn

Nn∑
i=1

K

(
y − m̂n(X̄i)

hNn

)
. (7)

In the second data model a sample of output data Y is available. As described above
the standard approach in modern statistics would be to use a nonparametric estimate of
the density g of Y , e.g. the classical kernel density estimate, cf. (1). However in most
applications the sample size n will be too small to achieve satisfying results. As in the first
data model one could also use the simulation model or a surrogate model of it to estimate
the density of Y on a sample of X̄, as described by (6) and (7). Since the simulation
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model is imperfect in this data model, the surrogate model will also be imperfect and
thus m̂n(X) will possibly not be a good approximation of Y . Consequently a density
estimate based on a surrogate model will not achieve good approximation results if the
error of the surrogate model is large. In this article we circumvent this problem by using
the data set (4) together with the simulation modelm to construct an improved surrogate
model and by estimating the density g of Y as in (7).
Our main results are as follows: In Theorem 1 below we present a general result on

the expected L1 error of our density estimate of g, which shows how the expected L1

error depends on the error of the estimation of the distribution of X and of the error
of the surrogate model m̂n. In case of normally distributed X we demonstrate how we
can estimate its parameters such that the error of the resulting estimate of X achieves
the parametric rate of convergence n−1/2. We use both results to show in Corollary 1
that in the first data model and for normally distributed X our density estimate of g can
achieve the parametric rate n−1/2 in case of a general (smooth) density g. Furthermore
we analyze the error of the density estimate (7) in the second data model. Here we show
that in case that the error of our simulation model m (considered as an estimate of m∗)
is small we get a rate of convergence of the density estimate, which depends on this error
and on the smoothness of m−m∗, and which can (even in case of a large dimension d of
X) be simultaneously smaller than the error of the density estimates (1) and (6). Hence
in this case the combination of the observed values of the technical system together with
the simulation model leads to an estimate which is better than the standard estimates
using the observed values of the technical system or the simulation model alone.

1.1 Discussion of related results

Estimation of surrogate methods models have been introduced and investigated with the
aid of the simulated and real data by several authors using a broad range of estimation
techniques. First Bucher and Bourgund (1990), Kim and Na (1997) and Das and Zheng
(2000). Later on Hurtado (2004), Deheeger and Lemaire (2010) and Bourinet, Deheeger
and Lemaire (2011) investigated surrogate models in context of support vector machines
and Papadrakakis and Lagaros (2002) concentrated on neural networks. Kaymaz (2005)
and Bichon et al. (2007) used kriging. Consistency and rate of convergence of density
estimates based on surrogate models have been studied in Devroye, Felber and Kohler
(2013), Bott, Felber and Kohler (2015) and Felber, Kohler and Krzyżak (2015a). A
method for the adaptive choice of the smoothing parameter of such estimates has been
presented in Felber, Kohler and Krzyżak (2015b).
In Bayesian analysis of computer experiments, Kennedy and O’Hagan (2001), Bayarri

et al. (2007), Goh et al. (2013), Han, Santner and Rawlinson (2009), Higdon et al.
(2013) and Wang, Chen and Tsui (2009) model the discrepancy between the computer
experiments and the outcome of the technical system by a Gaussian process. Tuo and Wu
(2015) pointed out that this approach might fail in case of an imperfect computer model,
for which there exists no values of the parameters which fit the technical system perfectly,
and suggested and analyzed non-Bayesian methods for the choice of the parameters
of such models. Related methods for the calibration of computer models have been
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considered in Wong, Storlie and Lee (2017). There the error of the resulting model was
estimated by using bootstrap. Confidence intervals for quantiles based on data from
imperfect simulation models have been derived in Kohler et al. (2018).
Kohler and Krzyżak (2017b) introduced a method to estimate an improved surrogate

model and showed a result for smoothing spline estimates. The method uses only a
very small sample of experimental data which is combined with a sample generated
by computer experiments. Götz, Kersting and Kohler (2018) extended the method to
least squares estimates and applied it to neural networks. Thus they where also able
to apply it to high-dimensional settings, where smoothing spline estimates usually fail
to deliver reasonable results because of the curse of dimensionality. In contrast to the
results presented in our article these estimate need to assume that a large quantity of
input values X is given or that they can be generated, i.e. their distribution is known,
which is often not satisfied in an application.

1.2 Notation

Throughout this paper we use the following notation: N, N0, R and R+ are the sets
of positive integers, nonnegative integers, real numbers, and nonnegative real numbers,
respectively. For z ∈ R we denote the smallest integer greater than or equal to z by dze.
For x ∈ Rd we denote the i-th component of x by x(i). For a vector v ∈ Rd

‖v‖∞ = max
1≤i≤d

|v(i)|

is its supremum norm and ‖v‖ is its Euclidean norm. For f : Rd → R and B ⊆ Rd

‖f‖∞,B = sup
x∈B
|f(x)|

is its supremum norm on B, where if B = Rd we write ‖f‖∞,Rd = ‖f‖∞. For a matrix
A ∈ Rm×n, where A = (aij)1≤i≤m,1≤j≤n

‖A‖∞ =
√
m · n · max

1≤i≤m,1≤j≤n
|aij | and ‖A‖F =

√√√√ m∑
i=1

n∑
j=1

|ai,j |2

is its supremum norm and its Frobenius norm, respectively.
If X is a random variable, then PX is the corresponding distribution, i.e., the measure

associated with the random variable. Let D ⊆ Rd and let f : Rd → R be a real-valued
function defined on Rd. We write x = arg minz∈D f(z) if minz∈D f(z) exists and if x
satisfies

x ∈ D and f(x) = min
z∈D

f(z).

If A is a set, then 1A is the indicator function corresponding to A, i.e. the function which
takes on the value 1 on A and is zero elsewhere, and λ(A) denotes its Lebesgue measure
(in case A ⊆ Rd).
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For ε > 0, xn1 = (x1, . . . , xn) ∈ (Rd)n and a set F of functions f : Rd → R we
define the L2 covering number N2(ε,F , xn1 ) as the minimal number l ∈ N of functions
g1, . . . , gl : Rd → R which have the property(

min
j=1,...,l

1

n

n∑
i=1

|f(xi)− gj(xi)|2
)1/2

≤ ε

for each f ∈ F .
Let p = k + β for some k ∈ N0 and 0 < β ≤ 1, and let C > 0. We say that a function

f : Rd → R is (p, C)-smooth, if for every α = (α1, . . . , αd) ∈ Nd0 with
∑d

j=1 αj = k the

partial derivative ∂kf

∂x
α1
1 ...∂x

αd
d

exists and satisfies

∣∣∣∣ ∂kf

∂xα1
1 . . . ∂xαdd

(x)− ∂kf

∂xα1
1 . . . ∂xαdd

(z)

∣∣∣∣ ≤ C · ‖x− z‖β
for all x, z ∈ Rd.

1.3 Outline

The outline of this paper is as follows: In Section 2 we show a general result for density
estimates based on surrogate models and estimated input distribution. In Section 3
we introduce a method to generate a sample of input values based on an estimated
distribution and show a result for its L1 convergence rate. In Sections 4 and 5 we show
results for a density estimate based on an (imperfect) simulation model and estimated
input distributions. The finite sample size performance of our estimates is illustrated in
Section 6 by applying the estimates to simulated data.

2 A general result

In the following we show a result for the general case, where we estimate the density
g using a sample of X̄ and a surrogate model m̂n of m. Here we assume that we have
available two data sets D(1)

n and D(2)
n . In a first step we construct an estimate f̂n of

the density f by the data set D(1)
n . Then we generate an independent and identically

distributed sample
X̄1, . . . , X̄Nn (8)

of size Nn, such that f̂n is its density. Next we construct a surrogate estimate
m̂n : Rd → R of m by the sample D(2)

n . In this setting the following theorem concerning
the L1 rate of convergence of the density estimate

ĝNn(y) =
1

Nn · hNn

Nn∑
i=1

K

(
y − m̂n(X̄i)

hNn

)
. (9)

of g holds, where hNn > 0 and K : R→ R.
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Theorem 1. Let d,Nn ∈ N. Let (X,Y ), (X1, Y1), . . . be independent and identically
distributed Rd × R valued random variables. Let f be the density of X and g be the
density of Y , and assume that g is (r, C)-smooth for some r ∈ (0, 1] and some C > 0.
Let Sn ⊆ R be compact. Let f̂n and the data (8) be defined as above, and assume that
D(1)
n and D(2)

n are independent of (8) and of (Xn+1, Yn+1), (Xn+2, Yn+2), . . . Let hNn > 0
and let K : R→ R be a symmetric and bounded density satisfying∫

R
K2(u) du <∞ and

∫
R
K(u) · |u|r du <∞.

Define the estimate ĝNn of g by (9).
Then there exists c1, c2, c3 ∈ R+ such that

E

∫
R
|ĝNn(y)− g(y)|dy ≤ 2 ·

∫
Scn

g(y)dy +
c1 ·

√
λ(Sn)√

Nn · hNn
+ c2 · λ(Sn) · hrNn

+E

∫
|f̂n(x)− f(x)| dx+

c3

hNn

√
E {|m̂n(X)− Y |2}.

Remark 1. In the first data model with suitable assumptions on the tail probability
of Y and Sn growing fast enough the first term on the right-hand side is neglectable.
Also with suitable smoothness assumptions on m the last term on the right-hand side
decreases for an increasing sample size of D(2)

n and is insignificant for the rate. Finally
if we choose Nn large enough and hNn small enough the second and third term on the
right-hand side are also neglectable. Consequently the rate of convergence only depends
on the rate of the density estimate f̂n.
Remark 2. In our the second data model we will see in Corollary 2 below that for
normally distributed X and an appropriate choice of hNn and Nn the expected L1 error
of ĝNn is bounded by some constant times

max
{
n−1/2, (log n) ·

(
E
{
|m̂n(X)− Y |2

}) r
2r+2

}
.

3 Estimation of the input distribution

If the distribution of X is an element of a parametric class of distributions, then it is
possible to estimate its parameters (e.g., by maximum likelihood), and to use a technique
especially designed for this parametric class to generate a sample of the corresponding
distribution (cf., e.g., Devroye (1986)). In the sequel we demonstrate how this can be
done in case of a multivariate normal distribution. Here we estimate the mean µ and
variance Σ of X given the sample (3) by

µ̂ =
1

n

n∑
i=1

Xi (10)

and

Σ̂ =

(
1

n

n∑
k=1

(X
(i)
k − µ̂

(i))(X
(j)
k − µ̂

(j))

)
1≤i,j≤d

. (11)
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In order to generate a sample
X̄1, . . . , X̄Nn (12)

of size Nn ∈ N, which is independent and normally distributed with mean µ̂ and covari-
ance matrix Σ̂, we consider the eigendecomposition

Σ̂ = ÔΛ̂ÔT

of Σ̂. Here Λ̂ = diag(λ̂1, . . . , λ̂d) is a diagonal matrix consisting of eigenvalues of Σ̂
and Ô is a orthogonal matrix whose columns are eigenvectors of Σ̂. Then we generate
an independent sample Z1, . . . , ZNn of d-dimensional vectors, where for each vector the
components are independent and standard normally distributed, and set for every i =
1, . . . , Nn

X̄i = ÔΛ̂1/2Zi + µ̂. (13)

It is easy to see that X̄1, . . . , X̄Nn are independent and multivariate normally distributed
with mean µ̂ and covariance Σ̂. We denote the density of X̄1 by f̂n. For this estimate
the following lemma concerning the L1 rate of convergence holds:

Lemma 1. Let d, n ∈ N. Let X,X1, . . . independent and multivariate normally dis-
tributed with mean vector µ and positive definite covariance matrix Σ. Let f be the
density of X. Estimate µ̂ by (10) and Σ̂ by (11) and let f̂n the density of X̄1 defined as
above. Then there exists a constant c4 ∈ R+ such that

E

∫
R
|f̂n(x)− f(x)| dx ≤ c4 · n−1/2

holds.

4 Uncertainty quantification in case of perfect simulation
models

In this section we consider uncertainty quantification in our first data model. Here we
want to estimate the density of real valued random variable Y which depends on an Rd-
valued random variable X. We have available a perfect simulation model m : Rd → R,
satisfying Y = m(X) and an independent and identically distributed sample

X1, . . . , Xn (14)

of X. We will use this sample to estimate the density f : Rd → R of X and based on this
estimate f̂n we will generate an independent and identically distributed sample

X̄1, . . . , X̄Nn (15)

as described in Section 3. Based on this sample and a surrogate model for m we will
then estimate the density of Y by (9).

8



Our estimate uses a neural network as a surrogate for the simulation model. To con-
struct this neural network we proceed as follows: Let σ : R→ R be a so-called squashing
function, i.e., assume that σ is monotonically increasing and satisfies limx→−∞ σ(x) = 0
and limx→∞ σ(x) = 1. In our theoretical results and applications below we will use the
so-called logistic squasher σ(x) = 1/(1 + exp(−x)) (x ∈ R).
For M ∈ N, d ∈ N, d∗ ∈ {0, . . . , d} and γ > 0, we denote the set of all functions

f : Rd → R that satisfy

f(x) =

M∑
i=1

µi · σ

 4d∗∑
j=1

λi,j · σ

(
d∑
v=1

θi,j,v · x(v) + θi,j,0

)
+ λi,0

+ µ0

(x ∈ Rd) for some µi, λi,j , θi,j,v ∈ R, where

|µi| ≤ γ, |λi,j | ≤ γ, |θi,j,v| ≤ γ

for all i ∈ {0, 1, . . . ,M}, j ∈ {0, . . . , 4d∗} and v ∈ {0, . . . , d}, by F (neural networks)
M,d,d∗,γ . We

will use the following recursively defined classes of neural networks (with parameters I,
M , d, d∗ ∈ N and γ > 0): For l = 0, we define our space of hierarchical neural networks
by

H(0)
I,M,d,d∗,γ = F (neural networks)

M,d,d∗,γ .

For l > 0, we define recursively

H(l)
I,M,d,d∗,γ =

{
h : Rd → R, h(x) =

I∑
k=1

gk(f1,k(x), . . . , fd∗,k(x)) (x ∈ Rd)

for some gk ∈ F
(neural networks)
M,d∗,d∗,γ and fj,k ∈ H

(l−1)
I,M,d,d∗,γ

}
. (16)

We start constructing the estimate by defining a surrogate estimate of our simula-
tion model m. To do this we generate a sample of size Ln ∈ N consisting of indepen-
dent and uniformly on Bn := [−c5 · (logLn), c5 · (logLn)]d distributed random variables
U1,n, . . . , ULn,n, which are independent of all other random variables mentioned before.
Next we define our surrogate estimate

m̂Ln(·) = m̂Ln(·, (U1,n,m(U1,n)), . . . , (ULn,n,m(ULn,n))) : Rd → R

of the simulation model m by a least squares neural network estimate given by

m̃Ln(·) = arg min
f∈H(l)

I1,MLn
,d,d∗,γLn

1

Ln

Ln∑
i=1

|f(Ui,n)−m(Ui,n)|2, (17)

where I1,MLn , d
∗ ∈ N and γLn > 0 are parameters of the estimate. For simplicity we

assume here and in the sequel that the minimum above indeed exists. When this is not
the case our theoretical results also hold for any estimate which minimizes the above
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empirical L2 risk up to a sufficiently small additional term (e.g. 1/n). In order to be
able to analyze the rate of convergence of this estimate we need to truncate the estimate
at some height βn > 0, i.e., we define

m̂Ln(x) = Tβn(m̃Ln(x)) (x ∈ Rd), (18)

where Tβn(z) = sign(z) ·min{|z|, βn} for z ∈ R.
Next we define our density estimate ĝNn : R → R of g by applying a kernel density

estimate on the sample m̂Ln(X̄1), . . . , m̂Ln(X̄Nn). Therefore we choose a kernel K : R→
R and a bandwidth hNn > 0 and define ĝNn by (9) with m̂n replaced by m̂Ln .
We will impose the following assumption (which was introduced in Kohler and Krzyżak

(2017a) as an assumption which is realistic in connection with complex technical systems
which are build in a modular way) on the functions which we want to approximate by
neural networks:

Definition 1. Let d ∈ N, d∗ ∈ {1, . . . , d} and m : Rd → R.
a) We say that m satisfies a generalized hierarchical interaction model of order
d∗ and level 0, if there exist a1, . . . , ad∗ ∈ Rd and f : Rd∗ → R such that

m(x) = f(aT1 x, . . . , a
T
d∗x) for all x ∈ Rd.

b) We say that m satisfies a generalized hierarchical interaction model of order d∗

and level l+1, if there exist I ∈ N, gk : Rd∗ → R (k = 1, . . . , I) and f1,k, . . . , fd∗,k : Rd →
R (k = 1, . . . , I) such that f1,k, . . . , fd∗,k (k = 1, . . . , I) satisfy a generalized hierarchical
interaction model of order d∗ and level l and

m(x) =
I∑

k=1

gk(f1,k(x), . . . , fd∗,k(x)) for all x ∈ Rd.

c) We say that a generalized hierarchical interaction model is (p, C)-smooth, if
all functions f and gk occurring in its definition are (p, C)-smooth.

In order to prove our main result of this section we will make the following assumptions:

(A1) The random variable X has a density f : Rd → R (with respect to the Lebesgue
measure) which is bounded by some constant, i.e., which satisfies

‖f‖∞ ≤ c6 (19)

for some c6 ∈ R+.

(A2) The random variable Y satisfies Y = m(X) for some measurable functionm : Rd →
R and has a density g : R→ R which is (r, C)-smooth for some r ∈ (0, 1] and some
C > 0.
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(A3) The function m : Rd → R in (A2) satisfies a (p, C)-smooth generalized hierarchical
interaction model of order d∗ and finite level l with p = q + s, where q ∈ N0 and
s ∈ (0, 1]. Here in the definition of this generalized hierarchical interaction model
all partial derivates of order less than or equal to q of the functions gk, f of this
generalized hierarchical interaction model are bounded, i.e., each such function f
satisfies

max
j1,...,jd∈{0,1,...,q}
j1+...+jd≤q

∥∥∥∥ ∂j1+...+jdf

∂j1x(1) · · · ∂jdx(d)

∥∥∥∥
∞
≤ c7, (20)

and all functions gk are Lipschitz continuous with Lipschitz constant L̃ > 0.

(A4) The function m : Rd → R satisfies

‖m‖∞,Bn ≤ βn, (21)

where Bn = [−c5 · log(Ln), c5 · log(Ln)]d and 1 ≤ βn ≤ Lc8n for some constant
c8 ∈ (0, 1].

Here assumptions (A1) and (A4) enable us to estimate the surrogate model based on
observations of the simulation model at x-values uniformly distributed on Bn, assumption
(A2) is our smoothness assumption on the density of Y = m(X), and assumption (A3)
is the main smoothness assumption on the simulation model.

Theorem 2. Let d, n, Ln, Nn ∈ N. Let X,X1, . . . be independent and identically dis-
tributed Rd-valued random variables, let m : Rd → R and assume that (A1)–(A4) hold.
Let f̂n be an estimate of f based on the sample (14) and generate the sample (15) such

that its density is f̂n. Let σ : R→ [0, 1] be the logistic squasher σ(x) = 1/(1 + exp(−x))
(x ∈ R). Let U1,n, . . . , ULn,n be independent and uniformly distributed on Bn and define
the surrogate estimate m̂Ln by (17) and (18), where we choose I1, d and d∗ as in the

definition of the generalized hierarchical interaction model for m and setMLn =

⌈
L

d∗
2p+d∗
n

⌉
and γLn = Lc9n .
Assume that K : R→ R is a symmetric and bounded density satisfying∫

R
K2(u) du <∞ and

∫
R
K(u) · |u|r du <∞,

and define the estimate ĝNn of g by (9) with m̂n replaced by m̂Ln.
Then there exists some constants c10, c11, c12 ∈ R+ such that

E

∫
R
|ĝNn(y)− g(y)|dy

≤ 2 ·
∫
Scn

g(y)dy +
c10 ·

√
λ(Sn)√

Nn · hNn
+ c11 · λ(Sn) · hrNn + E

∫
|f̂n(x)− f(x)|dx

+
c12

hNn

(
β4
n · λ(Bn) · (logLn)4p+6 · L

− 2p
2p+d∗

n + β2
n ·
∫
Rd\Bn

f(x) dx

11



+

∫
Rd\Bn

m(x)2 PX(dx)

)1/2

holds for Ln sufficiently large.

In case X multivariate normally distributed the following corollary holds:

Corollary 1. Let X,X1, . . . , Xn be independent and multivariate normally distributed
with expectation µ ∈ Rd and positive definite covariance matrix Σ ∈ Rd×d. Estimate µ̂
by (10) and Σ̂ by (11), and let f̂n be the multivariate normal density with mean vector
µ̂ and covariance matrix Σ̂. Assume that the assumptions of Theorem 2 are satisfied
and furthermore that E{|Y |} < ∞ holds. Set Bn = [−c5 · log(Ln), c5 · log(Ln)]d and
Sn = [−n1/2, n1/2]. Set

hNn = n−
1
r and βn = c13 · log(Ln).

Assume that Ln, Nn ∈ N are chosen such that the following inequalities hold:

Ln ≥
(

(logLn)4p+d+10 · n
2+r
r

) 2p+d∗
2p

, Nn ≥ n
3r+2
2r

and ∫
Rd\Bn

m(x)2 PX(dx) ≤ λ(Bn) · (logLn)4p+10 · L
− 2p

2p+d∗
n .

Then for some constant c14 ∈ R+

E

∫
R
|ĝNn(y)− g(y)|dy ≤ c14 · n−1/2

holds for Ln sufficiently large.

Remark 3. Corollary 1 shows that in case of a perfect simulation model a parametric
assumption on the density of X leads to the parametric rate n−1/2 for the estimation of
the density g of Y , even if this density is not contained in a parametric class of densities.

5 Uncertainty quantification in case of imperfect simulation
models

In this section we consider uncertainty quantification in the second data model. I.e. we
want to estimate the density of a real valued random variable Y where we know that
there exists a functional relationship such that for an Rd-valued random variable X and
some measurable function m∗ : Rd → R

Y = m∗(X) (22)

holds. We have available an imperfect simulation model msim,n : Rd → R with

Y 6= msim,n(X)

12



and an independent and identically distributed sample

(X1, Y1), . . . , (Xn, Yn) (23)

of (X,Y ). We will use this sample to estimate the density f : Rd → R of X and based
on this estimate f̂n we will generate an independent and identically distributed sample

X̄1, . . . , X̄Nn (24)

as described in Section 3. Based on our imperfect simulation model msim,n and the
sample (23) we will estimate an improved surrogate model, which we will evaluate on
the sample (24) in order to estimate the density of Y .
Therefore we will next present a method to estimate an improved surrogate model. We

generate an independent and uniformly on Bn := [−c5 · log(Ln), c5 · log(Ln)]d distributed
sample

U1,n, . . . , ULn,n (25)

of size Ln independent of all other random variables mentioned before, and define our
surrogate estimate m̂Ln by

m̃Ln(·) = arg min
f∈H(l)

I1,MLn
,d,d∗,γLn

1

Ln

Ln∑
i=1

|f(Ui,n)−msim,n(Ui,n)|2 (26)

and
m̂Ln(x) = Tβn(m̃Ln(x)) (x ∈ Rd). (27)

Next we define an estimate on basis of the residuals

εi = Yi − m̂Ln(Xi) (i = 1, . . . , n), (28)

by a least squares neural network estimate

m̃ε
n(·) = arg min

f∈H(l)
I2,Mn,d,d

∗,γn

1

n

n∑
i=1

|f(Xi)− εi|2, (29)

where I2,Mn, d
∗ ∈ N and γn > 0 are parameters of the estimate. We set

m̂ε
n(x) = Tc15·αn(m̃ε

n(x)) (x ∈ Rd), (30)

where c15 ≥ 1 and αn > 0. We define our final surrogate model (X, m̂n(X)) for (X,Y )
by

m̂n(x) = m̂Ln(x) + m̂ε
n(x) (x ∈ Rd), (31)

and estimate the density g of Y by applying a kernel density estimate to a sample of
m̂n(X̄). Therefore we choose a kernel K : R → R and a bandwidth hNn > 0 and define
ĝNn by (9).
To formulate the main theorem of this section we need assumption (A1), the following

modifications of (A2), (A3) and (A4) and the additional assumption (A5).

13



(A2∗) The random variable Y satisfies Y = m∗(X) for some measurable function m∗ :
Rd → R and has a density g : R → R which is (r, C)-smooth for some r ∈ (0, 1]
and some C > 0.

(A3∗) The function msim,n : Rd → R satisfies a (p, C)-smooth generalized hierarchical
interaction model of order d∗ and finite level l with p = q + s, where q ∈ N0 and
s ∈ (0, 1]. Here in the definition of this generalized hierarchical interaction model
all partial derivates of order less than or equal to q of the functions gk, f of this
generalized hierarchical interaction model are bounded, and all functions gk are
Lipschitz continuous with Lipschitz constant L̃ > 0.

(A4∗) The function msim,n : Rd → R satisfies

‖msim,n‖∞,Bn ≤ βn, (32)

where Bn = [−c5 · log(Ln), c5 · log(Ln)]d and 1 ≤ βn ≤ Lc8n for some constant
cx ∈ (0, 1].

(A5) Let 0 < αn ≤ 1 and assume that

‖m∗ −msim,n‖∞ ≤ αn. (33)

Furthermore assume that 1
αn

(m∗−msim,n) : Rd → R satisfies a (p, C)-smooth gen-
eralized hierarchical interaction model of order d∗ and finite level l with p = q + s,
where q ∈ N0 and s ∈ (0, 1]. Assume that in Definition 1 b) all partial derivates of
order less than or equal to q of the functions gk, f of this generalized hierarchical
interaction model are bounded, and let all functions gk be Lipschitz continuous
with Lipschitz constant L̃ > 0.

Theorem 3. Let d, n, Ln, Nn ∈ N with 2 ≤ n ≤ Ln. Let (X,Y ), (X1, Y1), . . . be indepen-
dent and identically distributed Rd×R valued random variables. Assume that assumptions
(A1), (A2∗), (A3∗), (A4∗) and (A5) hold. Generate the sample (24) such that its density
is f̂n. Assume that E{|Y |} <∞.
Let σ : R → [0, 1] be the logistic squasher σ(x) = 1/(1 + exp(−x)) (x ∈ R). Let

U1,n, . . . , ULn,n be independent and uniformly distributed on

Bn := [−c5 · log(Ln), c5 · log(Ln)]d

and define the surrogate estimate m̂Ln by (26) and (27), where we choose I1, d and d∗ as
in the definition of the generalized hierarchical interaction model for msim,n (and assume

that these values are independent of n) and set MLn =

⌈
L

d∗
2p+d∗
n

⌉
and γLn = Lc16n .

Assume that

c17 ·

(
β2
n · λ(Bn) · (logLn)4p+6L

− 2p
2p+d∗

n + β2
n ·
∫
Rd\Bn

f(x) dx
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+

∫
Rd\Bn

msim,n(x)2 PX(dx)

)
≤ α3

n

βn
, (34)

∫
Rd\Bn
|msim,n(x)|3 PX(dx) ≤ c18 · α3

n (35)

and ∫
Rd\Bn

f(x) dx ≤ c19 ·
β3
n

α3
n

(36)

holds.
Define the estimate of the residuals m̂ε

n by (29) and (30), where we choose I2, d and
d∗ as in the hierarchical interaction model for (m∗ −msim,n)/αn (and assume that these

values are independent of n) and set Mn =

⌈
n

d∗
2p+d∗

⌉
and γn = nc20n . Furthermore define

the improved surrogate estimate by

m̂n(x) = m̂Ln(x) + m̂ε
n(x) (x ∈ Rd). (37)

Let Sn ⊆ R, let hNn > 0 and define the estimate ĝNn of g by (9).
Then there exists constants c21, c22, c23 ∈ R+ such that

E

∫
R
|ĝNn(y)− g(y)|dy

≤ 2 ·
∫
Scn

g(y)dy +
c21 ·

√
λ(Sn)√

Nn · hNn
+ c22 · λ(Sn) · hrNn + E

∫
|f̂n(x)− f(x)|dx

+
c23

hNn

(
α2
n · (log n)4p+6 · n−

2p
2p+d∗ +

α2
n

n
+ (α2

n · n+ β2
n) ·

∫
Rd\Bn

f(x) dx

+

∫
Rd\Bn

msim,n(x)2PX(dx) + β2
n · λ(Bn) · (logLn)4p+6 · L

− 2p
2p+d∗

n

)1/2

holds for n sufficiently large.

In case of X multivariate normally distributed we get the following corollary.

Corollary 2. Let X,X1, . . . , Xn be independent and multivariate normally distributed
with expectation µ ∈ Rd and positive definite covariance matrix Σ ∈ Rd×d. Estimate µ̂
by (10) and Σ̂ by (11). Assume that the assumptions of Theorem 3 are satisfied and that
in addition

E{exp(c24 · |Y |)} <∞

holds. Assume furthermore that αn ≤ βn. Set Bn := [−c5 · log(Ln), c5 · log(Ln)]d and
Sn = [−c25 · log(n), c25 · log(n)]. Set βn = c13 · log(Ln) and

hNn =
(
αn · (log n)4p+6 · n−

p
2p+d∗

) 1
r+1

15



where c13 ∈ R+. Furthermore assume that

max

{
λ(Bn) · (logLn)4p+8 · L

− 2p
2p+d∗

n ,

∫
Rd\Bn

msim,n(x)2PX(dx)

}
≤ α2

n·(log n)4p+6·n−
2p

2p+d∗

and

Nn ≥ nc26 ·
(
αn · (log n)4p+6 · n−

p
2p+d∗

)− 1
r+1

holds. Then for some constant c27 ∈ R+

E

∫
R
|ĝNn(y)− g(y)|dy ≤ c27 ·max

{
n−1/2, (log n) ·

(
αn · (log n)4p+6 · n−

p
2p+d∗

) r
r+1

}
holds for n sufficiently large.

6 Application to simulated data

In the following a simulation study considering the second data model of Section 11 is
realized. The implementation of the density estimate introduced in Section 5 which is
based on an improved surrogate model is described and its performance is analyzed by
applying it to simulated data. In the supplementary material we apply our method on a
real world example.
In the simulation study we consider the following setting. We choose the dimension

d as 5 and X multivariate standard normally distributed. The dependent variable Y is
defined by

Y = m∗(X)

for some m∗ : R5 → R. We set

m(x) = m∗(x) + σm · λ∗,

where σm ∈ {0.1, 0.2, 0.5} and λ∗ > 0 is selected as the empirical interquartile range of
m∗(X).

We consider four different functions for m∗ : R5 → R. In each case we use sample sizes
n = 10, Ln = 200 and Nn = N1,n + N2,n, where N1,n = 200 and N2,n = 104. The
different functions used as m∗ are the following:

m∗1(x) =2·log(|x1 ·x2|+4·sin(x3)2+| tan(x4)|+ 0.1)+cos(
√
|x3|·x2

5−x1 · x3)

m∗2(x) =x1 +
cot(|x2|+ 0.002) + x3

3 + log(|x4|+ 0.1)

9π
+ 3·x5

m∗3(x) =
2

|x1|+ 0.1
+ 3·log(x6

2 + 0.2)·x4 +
x5

|x1|+ 0.1

m∗4(x) =
10

(1 + x2
1)

+ 5·sin(x3 ·x4) + 2·x5 + exp(x1) + x2
2 + sin(x3 ·x4)2 − 10
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As mentioned before, the parameter λ∗ is chosen as the empirical interquartile range
of m∗(X) calculated on 107 realizations of X. The used values are λ∗1 = 1.65, λ∗2 = 4.32,
λ∗3 = 7.27 and λ∗4 = 5.86.
We estimate µ̂ by (10) and Σ̂ by (11). Based on these estimates we generate the sample

(12) by the MATLAB function mvnrnd().
Our improved surrogate estimate is defined by combining two least squares neural

network estimates m̂Ln and m̂ε
n. For reasons of simplicity we will neglect the truncation

of the estimates in the implementation. To improve the performance of the estimate
we will use the following generalization of the least squares estimate m̂ε

n. We split the
sample (12) in a sample of size Nn,1 ∈ N and Nn,2 = Nn − Nn,1 and use the following
weighted least squares estimate

m̂ε
n(·) = arg min

f∈H(l)
I2,Mn,d,d

∗,γn

w(n)

n

n∑
i=1

|f(Xi)−εi|2 +
(1− w(n))

Nn,1

Nn,1∑
i=1

|f(X̄i)−0|2
 , (38)

where w(n) ∈ [0, 1]. Here the additional function values of X̄1, . . . , X̄Nn,1 are compared
with 0, which can be seen as a form of regularization, based on the assumption that
the surrogate estimate m̂Ln is almost perfect. In the case that w(n) = 1 this estimate
coincides with the estimate introduced in Section 5. For both cases we use the in Sec-
tion 4 introduced class of neural networks, however the network parameters are chosen
differently. For both estimates we neglect the bounds on the weights (,i.e γn = ∞ and
γLn = ∞). For m̂Ln we choose the parameters data-dependent by a splitting of the
sample, where we use

⌈
2
3 · Ln

⌉
train data and Ln −

⌈
2
3 · Ln

⌉
test data. We calculate

the least squares estimate by solving (17) approximately using the Levenberg-Marquard
algorithm implemented in the MATLAB routine lsqnonlin(). Then we consider the pa-
rameter combination with the smallest occurring L2 risk evaluated on the test data.
The parameters are chosen from the sets l ∈ {0, 1, 2}, I1 ∈ {1, 2}, d∗ ∈ {1, . . . , d} and
MLn ∈ {1, . . . , 5, 6, 16, . . . , 46}.

Since the data set (X1, Y1), . . . , (Xn, Yn) is quite small we consider as network param-
eters for m̂ε

n only the sets l ∈ {0}, I2 ∈ {1}, d∗ ∈ {1, 2, 4} , Mn ∈ {1, 3, 5} and the
additional weighting parameter w(n) is chosen also data dependent from {0, 0.25, . . . , 1}.
For the parameter selection we use a 5-fold cross validation. Again we calculate the least
squares estimate by solving (38) approximately by the Levenberg-Marquard algorithm.
To calculate the density estimate gNn we use the remaining part of data set (12) of size
Nn,2. Consequently we denote the density estimate by gNn,2 and our density estimate of
the density of Y is defined by

ĝNn,2(y) =
1

Nn,2 · hNn,2

Nn,1+Nn,2∑
i=Nn,1+1

K

(
y − m̂n(X̄i)

hNn,2

)
. (39)

We compare our estimate (est. 4) with three other density estimates. The first one
(est. 1) is a standard kernel density estimate applied to a sample of size n of Y , cf. (1).
Estimates 2 and 3 are surrogate density estimates where the kernel density estimate of
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MATLAB is applied to a sample of size N2,n of the surrogate model. For the second
estimate (est. 2) a surrogate model of the simulation model m as defined in (17) is used.
For the third estimate (est. 3) the surrogate model is chosen as a least squares neural
network estimate trained on n realizations of (X,Y ), i.e.

m̂(est. 3)
n (·) = arg min

f∈H(l)
I1,MLn

,d,d∗,γLn

1

n

n∑
i=1

|f(Xi)− Yi|2. (40)

The estimates are compared by their L1 error. Therefore it is necessary that the real
density of Y is available. We do not try to compute its exact form, instead we compute
it approximately by a kernel density estimate (as implemented in the MATLAB routine
ksdensity()) applied to a sample of size 106. In order to evaluate the performance of our
density estimates the result is treated as if it were the real density. To calculate the L1

error we approximate the integral by a Riemann sum defined on an equidistant partition
consisting of 104 subintervals. Since we need to take the randomness of the L1 error into
account, we repeat each simulation 50 times and report in Table 1 the median (and in
brackets the interquartile range) of the 50 L1 errors.

σm 0.1 0.2 0.5

m∗1

est. 1 0.422 (0.232) 0.407 (0.219) 0.456 (0.227)
est. 2 0.408 (0.188) 0.469 (0.280) 0.688 (0.269)
est. 3 0.691 (0.340) 0.685 (0.407) 0.649 (0.344)
est. 4 0.387 (0.194) 0.387 (0.186) 0.454 (0.221)

m∗2

est. 1 0.362 (0.154) 0.399 (0.263) 0.306 (0.169)
est. 2 0.318 (0.213) 0.391 (0.233) 0.612 (0.247)
est. 3 0.564 (0.292) 0.556 (0.316) 0.506 (0.252)
est. 4 0.314 (0.202) 0.348 (0.244) 0.356 (0.205)

m∗3

est. 1 0.456 (0.246) 0.439 (0.221) 0.409 (0.157)
est. 2 0.313 (0.214) 0.443 (0.225) 0.643 (0.277)
est. 3 0.658 (0.259) 0.642 (0.217) 0.660 (0.309)
est. 4 0.296 (0.186) 0.383 (0.199) 0.384 (0.321)

m∗4

est. 1 0.302 (0.238) 0.425 (0.195) 0.328 (0.231)
est. 2 0.250 (0.177) 0.312 (0.206) 0.571 (0.239)
est. 3 0.539 (0.237) 0.597 (0.410) 0.572 (0.311)
est. 4 0.228 (0.163) 0.298 (0.228) 0.279 (0.197)

Table 1: Median (and interquartile range) of the L1 error of the four different estimates
for the four different models with a constant error in the computer model and
five percent noise

Our newly proposed estimate outperforms the other three estimates in 11 of 12 cases
and it always outperforms the other surrogate models (est. 2) and (est. 3). The resulting
L1 error of (est. 3) is in any simulation higher than the error of the other estimates. We
assume this is due to the complexity of the used functions m∗ and the small sample size
of 10.
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7 Supplementary Material

The Supplementary Material contains an application of the in Section 5 introduced
method on a real world example and all proofs.
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Supplementary material

Application to real data

As a real world example we consider the lateral vibration attenuation system with piezo–
elastic supports described in Figure 1. This system consists of a beam with circular

Figure 1: A CAD model of the lateral vibration attenuation system with piezo–elastic
supports and a sectional view of one of the piezo–elastic supports, cf. Li et al.
(2017).

cross-section embedded in two piezo–elastic supports A and B where support A is used
for lateral beam vibration excitation and B support is used for lateral beam vibration
attenuation, as proposed in Götz et al. (2016). The two piezo–elastic supports A and
B are located at the beam’s end and each consist of one elastic membrane-like spring
element made of spring steel, two piezoelectric stack transducers arranged orthogonally
to each other and mechanically prestressed with disc springs as well as the relatively
stiff axial extension made of hardened steel that connects the piezoelectric transducers
with the beam. For vibration attenuation in support B, optimally tuned electrical shunt
circuits are connected to the piezoelectric transducers.
Our aim is to predict the maximal amplitude of the vibration occurring in an experi-

ment with this attenuation system. It is known that five parameters of the membrane in
the attenuation system vary during the construction of the attenuation system and influ-
ence the maximal vibration amplitude: the lateral stiffness in direction of y (klat,y) and
in direction of z (klat,z), the rotatory stiffness in direction of y (krot,y) and in direction of
z (krot,z), and the height of the membrane (hx). A physical computer model is available
with which we can compute the maximal vibration amplitude to a corresponding input
value. To apply our estimate we measured the corresponding parameters for the ten built
systems. As a result we got the data in Table 2.
Since the parameters vary in scale, it does not make sense to estimate the surrogate

model m̂Ln on Ui,n ∼ U([−c5 · log(Ln), c5 · log(Ln)]d). Instead we rescale the components
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1 2 3 4 5 6 7 8 9 10
krot,y × 102 1.31 1.34 1.31 1.23 1.14 1.29 1.35 1.28 1.04 1.20
krot,z × 102 1.31 1.28 1.43 1.25 1.30 1.34 1.22 1.16 1.18 1.11
klat,y × 107 3.27 3.28 3.35 3.29 3.22 3.26 3.19 3.54 3.21 3.42
klat,z × 107 3.07 3.22 3.29 3.25 3.30 3.18 3.16 3.51 3.37 3.44
hx × 10−4 6.79 6.77 6.82 6.80 6.79 6.76 6.81 6.74 6.68 6.84
y × 101 1.45 1.42 1.44 1.42 1.43 1.35 1.47 1.32 1.31 1.63

Table 2: Measured data for the ten built systems. The values of krot,y and krot,z are given
in [Nm/ rad], the values of klat,y and klat,z are given in [N/m], the values of hx
are given in [m] and the values of y are given in [m

s2
/V ].

of Ui,n such that for each component U (j)
i,n ∼ U([µ̂(j) − 2 ·

√
σ̂jj , µ̂

(j) + 2 ·
√
σ̂jj ]) holds.

We apply the four estimates described in Section 6 to the given data and obtain as an
result Figure 2.
As discussed in the introduction, the distribution of extreme values is characterized by a

non-symmetric distribution about the most likely value. This characteristic is described
by the (est. 2) and our (est. 4), whereas the (est. 4) predicts higher values. If one
considers the experimental data this is a plausible correction by the residual estimate
m̂ε
n.

Proof of Theorem 1

Scheffés Lemma implies that

E

∫
R
|ĝNn(y)− g(y)|dy ≤ 2 ·E

∫
Sn

(g(y)− ĝNn(y))+ dy + 2 ·
∫
Scn

g(y) dy.

≤ 2 ·E
∫
Sn

|g(y)− ĝNn(y)| dy + 2 ·
∫
Scn

g(y) dy.

Set

ĝm̂n(X),Nn(y) =
1

Nn · hNn
·
n+Nn∑
i=n+1

K

(
y − m̂n(Xi)

hNn

)
and

Dn = D(1)
n ∪ D(2)

n .

By the triangle inequality

E

∫
Sn

|ĝNn(y)− g(y)|dy

≤ E

∫
Sn

|ĝNn(y)−E
{
ĝNn(y)

∣∣Dn} |dy + E

∫
Sn

|E
{
ĝNn(y)

∣∣Dn}
−E

{
ĝm̂n(X),Nn(y)

∣∣Dn} |dy + E

∫
Sn

|E
{
ĝm̂n(X),Nn(y)

∣∣Dn}− g(y)|dy.
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Figure 2: Four different density estimates and as reference the data Y1, . . . , Yn indicated
on the x axis.

With Fubini’s theorem and the Cauchy-Schwarz inequality the first term is bounded by

E

∫
Sn

|ĝNn(y)−E
{
ĝNn(y)

∣∣Dn} |dy
=

∫
Sn

E
{
E
{
|ĝNn(y)−E

{
ĝNn(y)

∣∣Dn}| ∣∣Dn}}dy
≤
∫
Sn

E

{√
V
{
ĝNn(y)

∣∣Dn}} dy
= E

{∫
Sn

√
V
{
ĝNn(y)

∣∣Dn}dy}
≤
√
λ(Sn) ·E

{(∫
Sn

V
{
ĝNn(y)

∣∣Dn} dy)1/2
}
.
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Next we observe∫
V
{
ĝNn(y)

∣∣Dn} dy =

∫
1

Nn · hNn
· 1

hNn
·V
{
K

(
y − m̂n(X̄1)

hNn

) ∣∣Dn} dy
≤
∫

1

Nn · hNn
· 1

hNn
·E
{
K2

(
y − m̂n(X̄1)

hNn

) ∣∣Dn} dy
=

1

Nn · hNn
·
∫ ∫

1

hNn
·K2

(
y − m̂n(x)

hNn

)
PX̄(dx) dy

=
1

Nn · hNn
·
∫ ∫

1

hNn
·K2

(
y − m̂n(x)

hNn

)
dyPX̄(dx)

=
1

Nn · hNn
·
∫
K2 (u) du ≤ c28

Nn · hNn
.

Thus we can bound the variance term by

√
λ(Sn) ·E

{(∫
Sn

V
{
ĝNn(y)

∣∣Dn} dy)1/2
}
≤
√
c28 · λ(Sn)√
Nn · hNn

.

Next we observe

E

∫
|E
{
ĝNn(y)

∣∣Dn}−E
{
ĝm̂n(X),Nn(y)

∣∣Dn} |dy
= E

∫ ∣∣∣E{ 1

hNn
·K

(
y − m̂n(X̄1)

hNn

) ∣∣Dn}−E

{
1

hNn
·K

(
y − m̂n(Xn+1)

hNn

) ∣∣Dn} ∣∣∣dy
= E

∫ ∣∣∣ ∫ 1

hNn
·K

(
y − m̂n(x)

hNn

)
· f̂n(x) dx−

∫
1

hNn
·K

(
y − m̂n(x)

hNn

)
· f(x) dx

∣∣∣dy
≤ E

∫ ∫
1

hNn
·K

(
y − m̂n(x)

hNn

)
· |f̂n(x)− f(x)| dx dy

= E

∫ ∫
1

hNn
·K

(
y − m̂n(x)

hNn

)
dy · |f̂n(x)− f(x)| dx

≤ E

∫
|f̂n(x)− f(x)| dx.

Set

ĝY,Nn(y) =
1

Nn · hNn
·
n+Nn∑
i=n+1

K

(
y − Yi
hNn

)
.

To bound the last term we observe

E

∫
Sn

|E
{
ĝm̂n(X),Nn(y)

∣∣Dn}− g(y)|dy

≤ E

∫
Sn

|E
{
ĝm̂n(X),Nn(y)

∣∣Dn}−E
{
ĝY,Nn(y)

∣∣Dn} |dy
+

∫
Sn

|E
{
ĝY,Nn(y)

∣∣Dn}− g(y)|dy
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By the assumptions on g we have∫
Sn

|E
{
ĝY,Nn(y)

∣∣Dn}− g(y)|dy =

∫
Sn

∣∣∣ ∫ 1

hNn
·K

(
y − x
hNn

)
· g(x)dx− g(y)

∣∣∣dy
≤
∫
Sn

∫
1

hNn
·K

(
y − x
hNn

)
· |g(x)− g(y)|dx dy

≤
∫
Sn

∫
1

hNn
·K

(
y − x
hNn

)
· C · |x− y|rdx dy

≤c29 · hrNn ·
∫
Sn

∫
K (u) · |u|rdu dy

=c29 · hrNn · λ(Sn) ·
∫
K (u) · |u|rdu

≤c30 · hrNn · λ(Sn).

Lemma 1 in Bott, Felber and Kohler (2015) implies that for any z1, z2 ∈ R we have∫ ∣∣∣∣K (y − z1

hn

)
−K

(
y − z2

hn

)∣∣∣∣ dy ≤ 2 ·K(0) · |z1 − z2|.

Thus ∫
|ĝm̂n(X),Nn(y)− ĝY,Nn(y)| dy ≤ 1

Nn · hNn
·
n+Nn∑
i=n+1

2 ·K(0) · |m̂n(Xi)− Yi|.

From this we conclude

E

∫
Sn

|E
{
ĝm̂n(X),Nn(y)

∣∣Dn}−E
{
ĝY,Nn(y)

∣∣Dn} |dy
≤
∫
Sn

E
{
|ĝm̂n(X),Nn(y)− ĝY,Nn(y)|

}
dy

≤ E

∫
R
|ĝm̂n(X),Nn(y)− ĝY,Nn(y)| dy

≤ 2 ·K(0)

hNn
·E {|m̂n(X)− Y |}

≤ 2 ·K(0)

hNn
·
√
E {|m̂n(X)− Y |2}.

Combining the above results yields the assertion. �

Proof of Lemma 1

In order to prove Lemma 1 we need the following auxiliary lemma:
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Lemma 2. Let d, n ∈ N. Let X,X1, . . . independent and multivariate normally dis-
tributed with mean µ ∈ Rd and positive definite covariance Σ ∈ Rd×d. Estimate µ̂ by
(10) and Σ̂ by (11). Then there exists constants c56, c57 ∈ R+ such that

E {‖µ̂− µ‖∞} ≤
c56√
n

and
E
{
‖Σ̂− Σ‖∞

}
≤ c57√

n
.

Proof. If Z, Z1, . . . , Zn are independent and identically distributed real-valued random
variables with E{Z2} <∞, then

E

{∣∣∣∣∣ 1n
n∑
i=1

Zi −EZ

∣∣∣∣∣
}
≤

√√√√V

(
1

n

n∑
i=1

Zi

)
=

√
V(Z)

n
,

which implies the first inequality.
The second inequality follows similarly using

E

{∣∣∣∣∣ 1n
n∑
k=1

(
X

(i)
k −

1

n

n∑
l=1

X
(i)
l

)(
X

(j)
k −

1

n

n∑
l=1

X
(j)
l

)
−(E{X(i)X(j)} −E{X(i)}E{X(j)})

∣∣∣∣∣
}

= E

{∣∣∣∣∣ 1n
n∑
k=1

X
(i)
k X

(j)
k −

1

n

n∑
k=1

X
(i)
k ·

1

n

n∑
k=1

X
(j)
k − (E{X(i)X(j)} −E{X(i)}E{X(j)})

∣∣∣∣∣
}

≤ E

{∣∣∣∣∣ 1n
n∑
k=1

X
(i)
k X

(j)
k −E{X(i)X(j)}

∣∣∣∣∣
}

+E

{∣∣∣∣∣ 1n
n∑
k=1

X
(i)
k ·E{X

(j)} −E{X(i)}E{X(j)}

∣∣∣∣∣
}

+E

{∣∣∣∣∣
(

1

n

n∑
k=1

X
(i)
k −E{X(i)}

)
·

(
1

n

n∑
l=1

X
(j)
l −E{X(j)}

)∣∣∣∣∣
}

+E

{∣∣∣∣∣E{X(i)} ·

(
1

n

n∑
l=1

X
(j)
l −E{X(j)}

)∣∣∣∣∣
}

and

E

{∣∣∣∣∣
(

1

n

n∑
k=1

X
(i)
k −E{X(i)}

)
·

(
1

n

n∑
l=1

X
(j)
l −E{X(j)}

)∣∣∣∣∣
}

≤

√√√√√E


∣∣∣∣∣ 1n

n∑
k=1

X
(i)
k −E{X(i)}

∣∣∣∣∣
2
 ·

√√√√√E


∣∣∣∣∣ 1n

n∑
l=1

X
(j)
l −E{X(j)}

∣∣∣∣∣
2
.
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�
Proof of Lemma 1. Scheffés Lemma implies that

E

∫
R
|f̂n(x)− f(x)| dx = 2 ·E

{
sup
A∈Bd

|PX̄(A)−PX(A)|

}
.

Since µ̂ is normally distributed with expectation µ we have

P {µ = µ̂} = 0, (1)

thus w.l.o.g. we can assume that

|(µ− µ̂)(i)| > 0 (2)

for some i ∈ {1, . . . , d}. Using Theorem 1.2 from Devroye, Mehrabian and Reddad (2019)
we have

sup
A∈Bd

|PX̄(A)−PX(A)|

≤ 9

2
·max

{
|(µ− µ̂)T (Σ− Σ̂)(µ− µ̂)|

(µ− µ̂)TΣ(µ− µ̂)
,

(µ− µ̂)T (µ− µ̂)√
(µ− µ̂)TΣ(µ− µ̂)

,

∥∥(ΠTΣΠ)−1ΠT Σ̂Π− Id−1

∥∥
F

}
,

where Π is a d × d − 1 orthogonal matrix whose columns form a basis for the subspace
orthogonal to µ− µ̂ and Id−1 is the d−1 dimensional identity matrix. Since Π only needs
to be orthogonal to µ− µ̂, we choose Π to be orthonormal, thus we have

‖Π‖∞ ≤ c58. (3)

Since Σ is symmetric and positive definite we have

(µ− µ̂)TΣ(µ− µ̂) ≥ c59 · ‖µ− µ̂‖2∞. (4)

We observe by (4) that

|(µ− µ̂)T (Σ− Σ̂)(µ− µ̂)|
(µ− µ̂)TΣ(µ− µ̂)

≤ c60 ·
‖µ− µ̂‖2∞ · ‖Σ− Σ̂‖∞

‖µ− µ̂‖2∞
≤ c60 · ‖Σ− Σ̂‖∞

and

(µ− µ̂)T (µ− µ̂)√
(µ− µ̂)TΣ(µ− µ̂)

≤ c61 ·
‖µ− µ̂‖2∞
‖µ− µ̂‖∞

= c61 · ‖µ− µ̂‖∞.
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Let Σ = OTΛO be the eigendecomposition of Σ where O is orthonormal. Using

‖A ·B‖F ≤ ‖A‖F · ‖B‖F ,

and
‖C‖F ≤ ‖C‖∞

for matrices A ∈ Rd1×d2 , B ∈ Rd2×d3 and C ∈ Rd1×d1 , with d1, d2, d3 ∈ N, we see that∥∥(ΠTΣΠ)−1ΠT Σ̂Π− Id−1

∥∥
F

= ‖(ΠTΣΠ)−1 · (ΠT (Σ̂− Σ)Π)‖F
≤ ‖(ΠTΣΠ)−1‖F · ‖ΠT (Σ̂− Σ)Π‖F
= ‖(ΠTOTΛOΠ)−1‖F · ‖ΠT (Σ̂− Σ)Π‖F
= ‖(OΠ)TΛ−1(OΠ)‖F · ‖ΠT (Σ̂− Σ)Π‖F
≤ c62 · ‖ΠT (Σ̂− Σ)Π‖F
≤ c63 · ‖Σ̂− Σ‖∞,

where the last two steps are implied since Σ is symmetric and positive definite, thus
all its eigenvalues are greater than zero and since Π and O are orthonormal, thus their
entries are bounded.
Combining the above results we have

E

∫
R
|f̂n(x)− f(x)| dx ≤ c64 ·E

{
max

{
‖µ− µ̂‖∞, ‖Σ− Σ̂‖∞

}}
≤ c64 ·

(
E {‖µ− µ̂‖∞, }+ E

{
‖Σ− Σ̂‖∞

})
.

Application of Lemma 2 yields the assertion. �

Proof of Theorem 2

In this section we prove Theorem 2. Therefore we need an auxiliary result concerning a
surrogate model of a simulation model m : Rd → R based on a general class of functions.
We estimate the surrogate model using a uniformly on Bn ⊆ Rd distributed sample

U1,n, . . . , ULn,n

by a penalized least squares estimate. We define the estimate m̂Ln of m by

m̃Ln(·) = arg min
f∈FLn

1

Ln

Ln∑
i=1

|f(Ui,n)−m(Ui,n)|2 + pen2
n(f), (1)

where FLn is a set of functions f : Rd → R and pen2
n(f) ≥ 0 is a penalty term for each

f ∈ FLn , and
m̂Ln(x) = Tβn(m̃Ln(x)) (x ∈ R) (2)

for some βn > 0.
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Theorem 4. Let d, n, Ln ∈ N with 2 ≤ Ln. Let X be a Rd valued random variable. Let

U1,n, . . . , ULn,n

be independent and uniformly distributed on Bn ⊆ Rd.
Let f be the density of X and assume that

‖f‖∞ ≤ c31. (3)

Let m : Rd → R be a measurable function and assume that for some 1 ≤ βn ≤ Ln

‖m‖∞,Bn ≤ βn. (4)

Estimate the surrogate model m̂Ln(·) : Rd → R by (1) and (2), where FLn is a set of
functions and pen2

n(g) ≥ 0 is a penalty term for every g ∈ FLn.
Choose δLn > 0 such that

δLn > c32 ·
β2
n

Ln
,

√
Ln · δ
βn

≥ c33

∫ √48δ

δ/(c34·βn)

(
logN2

(
u

4βn
, {Tβnf − g : f ∈ FLn , (5)

1

Ln

Ln∑
i=1

|Tβnf(xi)− g(xi)|2 + pen2
n(f) ≤ 48 · δ}, xLn1

))1/2

du

for all δ ≥ δLn , g ∈ {m} ∪ Fn and all x1, . . . , xLn ∈ Bn.
Then we have for some constant c35 ∈ R+

E{|m̂Ln(X)−m(X)|2}

≤ c35 · λ(Bn) ·
(

inf
f∈FLn

(∫
|f(x)−m(x)|2PU1,n(dx) + pen2

n(f)

)
+ β2

n · δLn +
β2
n

Ln

)
+2β2

n ·
∫
Rd\Bn

f(x) dx+ 2 ·
∫
Rd\Bn

|m(x)|2 PX(dx).

Proof. First we observe

E
{
|m̂Ln(X)−m(X)|2

}
= E

∫
|m̂Ln(x)−m(x)|2 · f(x) dx

= E

∫
Bn

|m̂Ln(x)−m(x)|2 · f(x) dx+ E

∫
Rd\Bn

|m̂Ln(x)−m(x)|2 · f(x) dx.

Using (a+ b)2 ≤ 2a2 + 2b2 and since by assumption m̂Ln(·) is bounded in absolute value
by βn we have

E

∫
Rd\Bn

|m̂Ln(x)−m(x)|2 · f(x) dx ≤ 2β2
n ·
∫
Rd\Bn

f(x) dx+ 2 ·
∫
Rd\Bn

|m(x)|2 PX(dx).
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Using (3) and that the density of U1,n has a constant value 1/λ(Bn) on Bn we have

E

∫
Bn

|m̂Ln(x)−m(x)|2 · f(x) dx ≤ c36 ·E
∫
Bn

|m̂Ln(x)−m(x)|2 dx

= c36 · λ(Bn) ·E
∫
|m̂Ln(x)−m(x)|2 PU1,n(dx).

Next we apply Theorem 2 from Götz, Kersting and Kohler (2018) with β = βn, (Xi, Yi) =
(Ui,n,m(Ui,n)), w(n) = 1, n = Ln, Ȳi,Ln+L̄n = Yi = m(Ui,n) (i = 1, . . . , Ln) and suitably
chosen ȲLn+1,Ln+L̄n , . . . , ȲLn+L̄n,Ln+L̄n , and obtain

E

∫
|m̂Ln(x)−m(x)|2 PU1,n(dx)

≤ c37 · β2
n · δLn +

c38 · β2
n

Ln
+ 9 · inf

f∈FLn

(∫
|f(x)−m(x)|2PU1,n(dx) + pen2

n(f)

)
.

Combining the above results we get the assertion. �

Proof of Theorem 2. Set pen2
n(f) = 0 and

δLn = c39 · β2
n ·

log(Ln)

Ln
·MLn .

First we show that Theorem 4 is applicable by the assumptions of Theorem 2 and the
choice of δLn . For

δ ≥ δLn > c39 ·
β2
n

Ln

and xLn1 ∈ Bn we have∫ √48δ

δ/(c40·βn)

(
logN2

(
u

4βn
, {Tβnh− g : h ∈ H(l)

I1,MLn ,d,d
∗,γLn

}, xLn1

))1/2

du

≤
√

48δ ·
(

logN2

(
c41

Ln
, {Tβnh− g : h ∈ H(l)

I1,MLn ,d,d
∗,γLn

}, xLn1

))1/2

.

Set aLn = c5 · log(Ln), then we have Bn ⊆ [−aLn , aLn ]d. Since max{aLn , γLn ,MLn} ≤
Lc42n holds we can apply Lemma 2 from Bauer and Kohler (2019) to bound the above
covering number by

log

(
N2

(
c41

Ln
, {Tβnh− g : h ∈ H(l)

I1,MLn ,d,d
∗,γLn

}, xLn1

))
≤ c42 · log(Ln) ·MLn ,

for Ln sufficiently large. Combing the above results we see that (5) is implied by
√
Ln · δ
βn

≥ c43 ·
√

48δ · (c42 · log(Ln) ·MLn)1/2
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which in turn follows from δ ≥ δLn , for a suitably chosen c39 ∈ R+.
Applying Theorem 1 and Theorem 4 yields

E

∫
R
|ĝNn(y)− g(y)|dy

≤ 2 ·
∫
Scn

g(y)dy +
c44 ·

√
λ(Sn)√

Nn · hNn
+ c45 · λ(Sn) · hrNn + E

∫
|f̂n(x)− f(x)|dx

+
c46

hNn

(
λ(Bn)

(
inf

h∈H(l)
I1,MLn

,d,d∗,γLn

(∫
|f(x)−m(x)|2PU1,n(dx)

)
+ β2

n · δLn +
β2
n

Ln

)

+β2
n ·
∫
Rd\Bn

f(x) dx+

∫
Rd\Bn

|m(x)|2 PX(dx)

)1/2

.

To derive a bound on the approximation error we first observe since U1,n is uniformly
distributed on Bn∫

|h(x)−m(x)|2PU1,n(dx) =

∫
Bn

|h(x)−m(x)|2PU1,n(dx) (6)

holds for an arbitrary h ∈ H(l)
I1,MLn ,d,d

∗,γLn
. We set ηLn = (logLn)4p+6−2q ·L

− 2·(q+1)·p+2d∗
2p+d∗

n .

Using Theorem 3 in Bauer and Kohler (2019) we see that there exists a h∗ ∈ H(l)
I1,MLn ,d

∗,d,γLn
and an exception set DLn with PX -measure of ηLn such that∫

Bn

|h∗(x)−m(x)|2 · IDcLn (x)PU1,n(dx) +

∫
Bn

|h∗(x)−m(x)|2 · IDLn (x)PU1,n(dx)

≤
(
c47 · a(2q+3)

Ln
·M−p/d

∗

Ln

)2
+
(

2 · c48 · aqLn ·M
(d∗+q·p)/d∗
Ln

)2
· ηLn

≤ c49 · (logLn)4p+6 · L
− 2p

2p+d∗
n + c50 · (logLn)2q · L

2d∗+2q·p
2p+d∗

n · (logLn)4p+6−2q · L
− 2·(q+1)·p+2d∗

2p+d∗
n

≤ c51 · (logLn)4p+6 · L
− 2p

2p+d∗
n ,

where we have used that ‖m‖∞,Bn ≤ βn ≤ c48 · aqLn ·M
(d∗+q·p)/d∗
Ln

.
To conclude by the choice of δLn we have that

E

∫
R
|ĝNn(y)− g(y)|dy

≤ 2 ·
∫
Scn

g(y)dy +
c44 ·

√
λ(Sn)√

Nn · hNn
+ c45 · λ(Sn) · hrNn + E

∫
|f̂n(x)− f(x)|dx

+
c52

hNn

(
β4
n · λ(Bn) · (logLn)4p+6 · L

− 2p
2p+d∗

n + β2
n ·
∫
Rd\Bn

f(x) dx

+

∫
Rd\Bn

|m(x)|2 PX(dx)

)1/2
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holds for Ln sufficiently large.
�

Proof of Corollary 1

Since |y|√
n
≥ 1 for every y ∈ Scn and E{|Y |} <∞ we have∫

Scn

g(y) dy ≤
∫
Scn

|y|√
n
· g(y) dy ≤ c53 · n−1/2.

Next we see since Σ is positive definite, we have σii > 0 for all i ∈ {1, . . . , d}. Further-
more we observe that for each component of X it holds X(i) ∼ N (µ(i), σ2

ii). Thus∫
Rd\Bn

f(x) dx

≤
d∑
i=1

P{|X(i)| ≥ c5 · (logLn)}

≤
d∑
i=1

P

{
X(i) − µi

σii
≥ c5 · (logLn)− µi

σii

}
+

d∑
i=1

P

{
X(i) − µi

σii
≤ −c5 · (logLn) + µi

σii

}

≤ 2 ·
d∑
i=1

P

{
X(i) − µi

σii
≥ c5 · (logLn)− µi

σii

}
.

Using Lemma 1.19.2 from Gänssler and Stute (1977) and we have for every i ∈ {1, . . . , d}

P

{
X(i) − µi

σii
≥ c5 · (logLn)− µi

σii

}

≤ σii

(c5 · (logLn)− µi) ·
√

2π
· exp

(
−1

2
·
(
c5 · (logLn)− µi

σii

)2
)
,

which is smaller than λ(Bn) · log(Ln)4p+6 ·L
− 2p

2p+d∗
n for Ln sufficiently large. Application

of Theorem 2 and Lemma 1 together with the assumptions yields the assertion. �

8.1 Proof of Theorem 3

In this section we prove Theorem 3. Therefore we will show an auxiliary result concerning
the rate of convergence of an improved surrogate model for an imperfect simulation model
m : Rd → R. I.e. we we consider the second data model where m(X) 6= Y = m∗(X) and
we have an observed independent and identically distributed sample

(X1, Y1), . . . , (Xn, Yn)
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of (X,Y ). To estimate the simulation model we generate an independent and uniformly
on Bn := [−c5 · log(Ln), c5 · log(Ln)]d distributed sample

U1,n, . . . , ULn,n

and define the estimate m̂Ln ofm by (1) and (2). Next we define an estimate ofm∗−m̂Ln

on basis of the residuals

εi = Yi − m̂Ln(Xi) (i = 1, . . . , n), (1)

by a penalized least squares estimate

m̃ε
n(·) = arg min

f∈Fn

1

n

n∑
i=1

|f(Xi)− εi|2 + pen2
n(f) (2)

for a set of functions Fn and a penalty term pen2
n(f) ≥ 0 for each f ∈ Fn, where we

assume that the penalty term satisfies pen2
n(α · f) = α2 · pen2

n(f) for α ∈ R and f ∈ Fn
with α · f ∈ Fn. We set

m̂ε
n(x) = Tc65·αn(m̃ε

n(x)) (x ∈ Rd), (3)

where c65 ≥ 1 and αn > 0. We define our final surrogate model (X, m̂n(X)) for (X,Y )
by

m̂n(x) = m̂Ln(x) + m̂ε
n(x) (x ∈ Rd). (4)

Theorem 5. Let d, n, Ln, Nn ∈ N with 2 ≤ n ≤ Ln. Let (X,Y ), (X1, Y1), . . . be indepen-
dent and identically distributed Rd × R valued random variables. Let f : Rd → R be the
density of X w.r.t. the Lebesgue measure which we assume to exist. Assume that

‖f‖∞ ≤ c66 (5)

for some c66 ∈ R+. Assume that E{|Y |} <∞.
Let m : Rd → R be a measurable function and assume that for some 1 ≤ βn ≤ Ln

‖m‖∞,Bn ≤ βn, (6)

where
Bn := [−c5 · log(Ln), c5 · log(Ln)]d

for some c5 ∈ R+. Let U1,n, . . . , ULn,n be independent and uniformly distributed on Bn
and define the surrogate estimate m̂Ln by (1) and (2).
Assume that there exists a (measurable) function m∗ : Rd → R such that m∗(X) = Y .

Let

c67 · λ(Bn) ·
(
β2
nδLn +

β2
n

Ln
+ inf
f∈Fn

(∫
|f(x)−m(x)|2PU1,n(dx) + pen2

n(f)

))
+ 2β2

n

∫
Rd\Bn

f(x) dx+

∫
Rd\Bn

m(x)2 PX(dx) ≤ α3
n

βn
, (7)
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∫
Rd\Bn

|m(x)|3PX(dx) ≤ c68 · α3
n (8)

and ∫
Rd\Bn

f(x) dx ≤ α3
n

β3
n

. (9)

Assume that
‖m∗ −m‖∞ ≤ αn (10)

and set
1

αn
Fn = {f/αn : f ∈ Fn} .

Define the estimate of the residuals m̂ε
n by (2) and (3) and the improved surrogate esti-

mate by
m̂n(x) = m̂Ln(x) + m̂ε

n(x) (x ∈ Rd). (11)

Choose δk > 0 such that for all k ≥ n we have

δk > c69 ·
β2
n

k
,

√
Lnδ

βn
≥ c70

∫ √48δ

δ/(c71·βn)

(
logN2

(
u

4βn
, {TLnf − g : f ∈ FLn , (12)

1

k

k∑
i=1

|TLnf(xi)− g(xi)|2 + pen2
n(f) ≤ 48 · δ}, xLn1

))1/2

du

for all δ ≥ δLn, g ∈ {m} ∪ FLn and all x1, . . . , xLn ∈ Bn and
√
nδ

βn
≥ c72

∫ √48δ

δ/(c73·βn)

(
logN2

(
u

4βn
, {Tnf − g : f ∈ 1

αn
Fn, (13)

1

k

k∑
i=1

|Tnf(xi)− g(xi)|2 + pen2
n(f) ≤ 48 · δ}, xn1

))1/2

du

for all δ ≥ δn, g ∈ {m∗} ∪ 1
αn
Fn and all x1, . . . , xn ∈ Bn.

Then there exists constants c74, . . . , c77 such that

E{|Y − m̂n(X)|2}

≤ c74 · α2
n · δn +

c75 · α2
n

n
+ c76 · (α2

n · n+ β2
n) ·

∫
Rd\Bn

f(x) dx+ 2 ·
∫
Rd\Bn

m(x)2PX(dx)

+9 · α2
n · inf

f∈ 1
αn
Fn

(∫
|f(x)− 1

αn
(m∗ −m)(x)|2PX(dx) + pen2

n(f)

)
+c77 · λ(Bn) ·

(
β2
n · δLn +

β2
n

Ln
+ inf
f∈Fn

(∫
|f(x)−m(x)|2PU1,n(dx) + pen2

n(f)

))
.
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Proof. Using the definition of m̂n and (a+ b)2 ≤ 2a2 + 2b2 (a, b ∈ R) we have

E
{
|Y − m̂n(X)|2

}
= E

{
|m∗(X)− m̂n(X)|2

}
= E

{
|(m∗(X)−m(X)− m̂ε

n(X)) + (m(X)− m̂Ln(X))|2
}

≤ 2 ·E
{
|m∗(X)−m(X)− m̂ε

n(X)|2
}

+ 2 ·E
{
|m(X)− m̂Ln(X)|2

}
.

Application of Theorem 4 yields

E
{
|m̂Ln(X)−m(X)|2

}
≤ c78 · λ(Bn) ·

(
inf

f∈FLn

(∫
|f(x)−m(x)|2PU1,n(dx) + pen2

n(f)

)
+ β2

n · δLn +
β2
n

Ln

)
+2β2

n ·
∫
Rd\Bn

f(x) dx+ 2 ·
∫
Rd\Bn

m(x)2PX(dx). (14)

Hence in order to prove the assertion it suffices to show

E

∫
|m̂ε

n(x)− (m∗ −m)(x)|2 PX(dx) (15)

≤ 9 · α2
n · inf

f∈ 1
αn
Fn

(∫
|f(x)− 1

αn
(m∗ −m)(x)|2PX(dx) + pen2

n(f)

)

+c79 · α2
n · δn + c80 · λ(Bn) ·

(
inf

f∈FLn

(∫
|f(x)−m(x)|2PU1,n(dx) + pen2

n(f)

)

+β2
n · δLn +

β2
n

Ln

)
+ (c81 · α2

n · n+ 4β2
n) ·

∫
Rd\Bn

f(x) dx+ 2 ·
∫
Rd\Bn

|m(x)|2PX(dx).

In order to prove (15) we first observe that∫
|m̂ε

n(x)− (m∗ −m)(x)|2 PX(dx)

=

∫
Bn

|m̂ε
n(x)− (m∗ −m)(x)|2 PX(dx) +

∫
Rd\Bn

|m̂ε
n(x)− (m∗ −m)(x)|2 PX(dx)

≤
∫
Bn

|m̂ε
n(x)− (m∗ −m)(x)|2 PX(dx) + c82 · α2

n ·
∫
Rd\Bn

f(x) dx.

Next we see that∫
Bn

|m̂ε
n(x)− (m∗ −m)(x)|2 PX(dx) = α2

n·
∫
Bn

∣∣∣∣ 1

αn
· m̂ε

n(x)− 1

αn
· (m∗ −m)(x)

∣∣∣∣2 PX(dx).

(16)
It is easy to see that the definition of m̂ε

n implies

1

αn
· m̂ε

n(x) =
1

αn
· Tc65·αn(m̃n(x)) = Tc65

(
1

αn
· m̃n(x)

)
(x ∈ Rd),
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and that by the definition of the estimate m̃n

1

αn
m̃n(·) = arg min

f∈ 1
αn
Fn

(
1

n

n∑
i=1

∣∣∣f(Xi)−
εi
αn

∣∣∣2 + pen2
n(f)

)

holds.
To bound (16) we use a straightforward modification of Theorem 2 from Götz, Kersting

and Kohler (2018), where we replace
∫
| · |2PX(dx) by

∫
Bn
| · |2PX(dx). We will apply this

theorem with w(n) = 1, Ln = 0, (X,Y ) = (X, (Y −m(X))/αn), Ȳi,n = (Yi−m̂Ln(Xi))/αn
(i = 1, . . . , n) and m = (m∗ −m)/αn. Therefore we first need to show that

max
i=1,...,n

E

{∣∣∣∣Yi − m̂Ln(Xi)

αn

∣∣∣∣3
}
<∞.

We observe by (7), (8), (9), (10), and (14) that we have

max
i=1,...,n

E

{∣∣∣∣Yi − m̂Ln(Xi)

αn

∣∣∣∣3
}

=
1

α3
n

·E
{
|m∗(X)− m̂Ln(X)|3

}
≤ 8

α3
n

·

(
E
{
|m∗(X)−m(X)|3

}
+

∫
Bn

|m(x)− m̂Ln(x)|3PX(dx)

+

∫
Rd\Bn

|m(x)− m̂Ln(x)|3PX(dx)

)

≤ 8

α3
n

·

(
α3
n + 2βn ·

α3
n

βn
+

∫
Rd\Bn

|m(x)|3PX(dx) +

∫
Rd\Bn

|m̂Ln(x)|3PX(dx)

)
≤ c83.

By application of Theorem 2 from Götz, Kersting and Kohler (2018) we observe

E

∫
Bn

∣∣∣∣ 1

αn
m̂ε
n(x)− 1

αn
(m∗ −m)(x)

∣∣∣∣2 PX(dx)

≤ c84

n
+ c85 ·

(
δn + n ·

∫
Rd\Bn

f(x) dx+

∫
Rd\Bn

∣∣∣∣ 1

αn
(m∗ −m)(x)

∣∣∣∣2 PX(dx)

)

+ 9 · inf
f∈ 1

α
Fn

(∫
|f(x)− 1

αn
(m∗ −m)(x)|PX(dx) + pen2

n(f)

)

+ E

{
1

n

n∑
i=1

∣∣∣∣m(Xi)− m̂Ln(Xi)

αn

∣∣∣∣2
}
.

From (14) we can conclude

E

{
1

n

n∑
i=1

∣∣∣∣m(Xi)− m̂Ln(Xi)

αn

∣∣∣∣2
}
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=
1

α2
n

·E
{
|m(X)− m̂Ln(X)|2

}
≤ 1

α2
n

(
c86 · λ(Bn) ·

(
inf

f∈FLn

(∫
|f(x)−m(x)|2PU1,n(dx) + pen2

n(f)

)
+ β2

n · δLn +
β2
n

Ln

)

+4β2
n ·
∫
Rd\Bn

f(x) dx+ 2

∫
Rd\Bn

|m(x)|2PX(dx)

)
.

Summarizing the above results we get the assertion.
�

Proof of Theorem 3. Set pen2
n(f) = 0, ak = c5 · log(k) and

δk = c87 · β2
n ·

log(k)

k
·Mk.

First we show that Theorem 5 is applicable by the assumptions of Theorem 3 and the
choice of δk. We observe as in the proof of Theorem 2 that (12) holds.

For

δ ≥ δn > c87 ·
β2
n

n

and xn1 ∈ Bn we have∫ √48δ

δ/(c88·βn)

(
logN2

(
u

4βn
, {Tnh−msim,n : h ∈ 1

αn
H(l)
I2,Mn,d,d∗,γn

}, xn1
))1/2

du

≤
√

48δ ·
(

logN2

(
c89

n
, {Tnh−msim,n : h ∈ 1

αn
H(l)
I2,Mn,d,d∗,γn

}, xn1
))1/2

.

Since max{an, γn/αn,Mn} ≤ nc90 holds we can apply Lemma 2 from Bauer and Kohler
to bound the above covering number by

log

(
N2

(
c89

n
, {Tnh−msim,n : h ∈ 1

αn
H(l)
I2,Mn,d,d∗,γn

}, xn1
))
≤ c91 · log(n) ·Mn,

for n sufficiently large. Combing the above results we see that (13) is implied by
√
n · δ
βn

≥
√

48δ · (c91 · log(n) ·Mn)1/2

which in turn follows from δ ≥ δn, for a suitably chosen c87 ∈ R+.
Applying Theorem 1 and Theorem 5 yields

E

∫
R
|ĝNn(y)− g(y)|dy

≤ 2 ·
∫
Scn

g(y)dy +
c92 ·

√
λ(Sn)√

Nn · hNn
+ c93 · λ(Sn) · hrNn + E

∫
|f̂n(x)− f(x)|dx
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+
c94

hNn

(
α2
n · δn +

α2
n

n
+ (α2

n · n+ β2
n) ·

∫
Rd\Bn

f(x) dx+ 2 ·
∫
Rd\Bn

|msim,n(x)|2P(dx)

+ 9 · α2
n · inf

h∈ 1
αn
H(l)
I2,Mn,d,d

∗,γn

∫
|h(x)− 1

αn
(m∗ −msim,n)(x)|2PX(dx)

+ λ(Bn) ·

(
β2
n · δLn +

β2
n

Ln

+ inf
h∈H(l)

I1,MLn
,d,d∗,γLn

∫
|h(x)−msim,n(x)|2PU1,n(dx)

))1/2

.

Analogous as in the proof of Theorem 2 using Theorem 3 from Bauer and Kohler
(2019) we get

inf
h∈H(l)

I1,MLn
,d,d∗,γLn

(∫
|h(x)−msim,n(x)|2PU1,n(dx)

)
≤ c95 · (logLn)4p+6 · L

− 2p
2p+d∗

n .

We observe that by definition for every h ∈ 1
αn
H(l)
I2,Mn,d,d∗,γn

‖h‖∞ ≤
1

αn
· I2 · (Mn + 1) · γn ≤ c96 ·

Mn · γn
αn

(17)

holds. Using furthermore that ‖ 1
αn

(m∗ −msim,n)‖∞ ≤ 1 holds by assumption, we have

∫
|h(x)− 1

αn
(m∗ −msim,n)(x)|2PX(dx)

≤
∫
Bn

|h(x)− 1

αn
(m∗ −msim,n)(x)|2PX(dx) + c96 ·

(
Mn · γn
αn

)2

·
∫
Rd\Bn

f(x) dx,

for every h ∈ 1
αn
H(l)
I2,Mn,d,d∗,γn

.

We set ηn = (log n)4p+6−2q · n−
2·(q+1)·p+2d∗

2p+d∗ . Using Theorem 3 in Bauer and Kohler
(2019) we see that there exists a h∗ ∈ 1

αn
H(l)
I2,Mn,d,d∗,γn

and an exception set Dn with
PX -measure of ηn such that∫

Bn

|h∗(x)− 1

αn
(m∗ −msim,n)(x)|2 · IDcn(x)PX(dx)

+

∫
Bn

|h∗(x)− 1

αn
(m∗ −msim,n)(x)|2 · IDn(x)PX(dx)

≤
(
c97 · a(2q+3)

n ·M−p/d∗n

)2
+
(

2 · c97 · aqn ·M (d∗+q·p)/d∗
n

)2
· ηLn

≤ c97 · (log n)4p+6 · n−
2p

2p+d∗ + c97 · (log n)2q · n
2d∗+2q·p
2p+d∗ · (log n)4p+6−2q · n−

2·(q+1)·p+2d∗
2p+d∗
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≤ c97 · (log n)4p+6 · n−
2p

2p+d∗ ,

where we have used that ‖ 1
αn

(m∗ −msim,n)‖∞,Bn ≤ 1 ≤ c97 · aqn ·M (d∗+q·p)/d∗
n .

Thus by the choice of δk we have that

E

∫
R
|ĝNn(y)− g(y)|dy

≤ 2 ·
∫
Scn

g(y)dy +
c98 ·

√
λ(Sn)√

Nn · hNn
+ c99 · λ(Sn) · hrNn + E

∫
|f̂n(x)− f(x)|dx

+
c97

hNn

(
α2
n · (log n)4p+6 · n−

2p
2p+d∗ +

α2
n

n
+ (α2

n · n+ β2
n +

(
Mnγn
αn

)2

) ·
∫
Rd\Bn

f(x) dx

+

∫
Rd\Bn

msim,n(x)2PX(dx) + β4
n · λ(Bn) · (logLn)4p+6 · L

− 2p
2p+d∗

n +
β2
n

Ln

)1/2

holds for n sufficiently large.
�

Proof of Corollary 2

Analogous to the proof of Corollary 1 one can show that

(α2
n · n+ β2

n +

(
Mnγn
αn

)2

) ·
∫
Rd\Bn

f(x) dx ≤ c54 · α2
n · (log n)4p+6 · n−

2p
2p+d∗

holds for n sufficiently large and that∫
Scn

g(y) dy ≤ c55 · n−1/2

holds. Application of Theorem 3 and Lemma 1 together with the assumptions yields the
assertion.

�
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