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DISCUSSION OF �NONPARAMETRIC REGRESSION

USING DEEP NEURAL NETWORKS WITH RELU

ACTIVATION FUNCTION�

By Michael Kohler and Sophie Langer

Technische Universität Darmstadt

First we would like to congratulate Prof. Schmidt�Hieber for his excellent pa-

per, which shows the surprising result that deep neural networks can achieve

good rates of convergence even in case of non-smooth activation functions.

In the following we divide our discussion into three parts:

1. The importance of compository assumptions.

2. The necessity of the sparsity of the networks.

3. The theoretical di�erence between ReLU and sigmoidal functions.

1. The importance of compository assumptions. In the sequel we

use the following de�nition of (p, C)�smoothness.

Definition 1. Let p = q+s for some q ∈ N0 and 0 < s ≤ 1. A function

m : Rd → R is called (p, C)-smooth, if for every α = (α1, . . . , αd) ∈ Nd0 with∑d
j=1 αj = q the partial derivative ∂qm/(∂xα1

1 · · · ∂x
αd
d ) exists and satis�es∣∣∣∣ ∂qm

∂xα1
1 · · · ∂x

αd
d

(x)− ∂qm

∂xα1
1 · · · ∂x

αd
d

(z)

∣∣∣∣ ≤ C · ‖x− z‖s
for all x, z ∈ Rd, where ‖ · ‖ denotes the Euclidean norm.

Remark that this assumption on the regression function is similar to the

class Cβr (D,K) of functions mentioned in Section 3 in the paper under discus-

sion. It is well-known that the optimal rate of convergence for the estimation

of a (p, C)�smooth regression function is

n
− 2p

2p+d .

In case that d is relatively large compared to p this rate su�ers from the

well�known curse of dimensionality. The only way to circumenvent this phe-

nomenon is to impose additional assumptions on the regression function. One

way o�er compository assumptions, which were already used by Horowitz
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and Mammen (2007), where regression functions have been studied which

are of the form

m(x) = g

 L1∑
l1=1

gl1

 L2∑
l2=1

gl1,l2

. . . Lr∑
lr=1

gl1,...,lr(x
l1,...,lr)


for g, gl1 , . . . , gl1,...,lr : R → R (p, C)-smooth functions and xl1,...,lr single

components of x ∈ Rd (not necessarily di�erent for two di�erent indices

(l1, . . . , lr)). With the use of a penalized least squares estimate for smooth-

ing splines, they proved the rate n−2p/(2p+1). Kohler and Krzy»ak (2017)

extended this function class in form of so�called generalized hierarchical in-

teraction models introduced as follows:

Definition 2. Let d ∈ N, d∗ ∈ {1, . . . , d} and m : Rd → R.
a) We say that m satis�es a generalized hierarchical interaction model

of order d∗ and level 0, if there exist a1, . . . , ad∗ ∈ Rd and f : Rd∗ → R
such that

m(x) = f(aT1 x, . . . , a
T
d∗x) for all x ∈ Rd.

b) We say that m satis�es a generalized hierarchical interaction model

of order d∗ and level l + 1, if there exist K ∈ N, gk : Rd∗ → R (k =
1, . . . ,K) and f1,k, . . . , fd∗,k : Rd → R (k = 1, . . . ,K) such that f1,k, . . . , fd∗,k
(k = 1, . . . ,K) satisfy a generalized hierarchical interaction model of order

d∗ and level l and

m(x) =
K∑
k=1

gk (f1,k(x), . . . , fd∗,k(x)) for all x ∈ Rd.

c) We say that the generalized hierarchical interaction model de�ned

above is (p, C)-smooth, if all functions f and gk occurring in its de�nition

are (p, C)�smooth.

They showed that for such models suitably de�ned multilayer neural net-

works (in which the number of hidden layers depends on the level of the

generalized interaction model) achieve the rate of convergence n−2p/(2p+d
∗)

(up to some logarithmic factor) in case p ≤ 1. Bauer and Kohler (2019)

showed that this result even holds for p > 1 provided the sigmoidal function

is suitably chosen.

In case that the number of terms in the sum in part b) of the above

summation is chosen to be K = 1 for all levels and that the vectors a1,
. . . , ad∗ in part a) are chosen as unit vectors, the corresponding function
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is recursively de�ned as a function of d∗ variables, where all variables are

either a function of the same kind or one of the components of the input

variable (here it is allowed that the same component appears several times).

In practice, it is conceivable, that there exist input�output�relationships,

which can be described in this way with a small to moderate value of d∗.
Particulary, such an assumption is motivated by applications in connection

with complex technical systems, which are constructed in a modular form.

Here each modular part can be again a complex system, which also explains

the recursive construction in the above de�nition.

The function class studied by Prof. Schmidt�Hieber forms some general-

ization of De�nition 2 in a sense that smoothness and dimension of the gk in
di�erent levels in the recursive construction are allowed to be di�erent. This

can be generalized one step further by allowing smoothness and dimension

to change within each level:

Definition 3. Let d ∈ N and m : Rd → R.
a) We say that m satis�es a hierarchical composition model of level 0,
if there exists a K ∈ {1, . . . , d} such that

m(x) = x(K) for all x = (x(1), . . . , x(d))T ∈ Rd.

b) We say that m satis�es a hierarchical composition model of level

l + 1, if there exist K ∈ N, g : RK → R and f1, . . . , fK : Rd → R, such that

f1, . . . , fK satisfy a hierarchical composition model of level l and

m(x) = g(f1(x), . . . , fK(x)) for all x ∈ Rd.

c) We say that a hierarchical composition model satis�es the smoothness and

order constraint P, where P is a subset of (0,∞)×N, if in its de�nition all

functions g occuring in part b) satisfy g : RK → R and g (p, C)�smooth for

some (p,K) ∈ P and C > 0.

In case P ⊆ [1,∞) × N a suitably de�ned least squares neural network

regression estimate achieves (up to some logarithmic factor) the rate of con-

vergence

max
(p,K)∈P

n
− 2p

2p+K

(cf., e.g., Theorem 1 below). We would like to point out that De�nition

3 (which is basically a (slight) generalization of the assumption used in the

paper of Prof. Schmidt-Hieber) is a valuable extension of De�nition 2 (which

was introduced Kohler and Krzy»ak (2017)), because it seems to be even

more realistic for the applications described above.
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2. The necessity of the sparsity of the networks. One of the key

features of the neural networks in the paper under discussion is, that the

considered neural networks are not fully connected. We would like to point

out that this is not necessary required, since similar results also hold for fully

connected deep neural network, as the next theorem shows.

Theorem 1. Let (X,Y ), (X1, Y1), . . . , (Xn, Yn) be independent and iden-

tically distributed random variables with values in Rd×R such that supp(X)
is bounded and

(1) E
{
exp(c1 · Y 2)

}
<∞

for some constant c1 > 0. Let P ⊆ [1,∞)× N be such that

pmax = max
(p,K)∈P

p <∞ and max
(p,K)∈P

K <∞.

Assume that the regression function m(·) = E{Y |X = ·} satis�es a hier-

archical composition model of �nite level l and with smoothness and order

constraint P. Set

Ln = dc2 · max
(p,K)∈P

n
K

2·(2p+K) e and rn = c3

for c2, c3 > 0 su�ciently large. Let σ : R → R be the linear recti�er. Let

Fσ(Ln, rn) be the set of all fully connected neural networks with Ln hidden

layers, rn neurons in each hidden layer and σ as actication function. Let m̃n

be the least squares estimate de�ned by

(2) m̃n(·) = arg min
h∈Fσ(Ln,rn)

1

n

n∑
i=1

|Yi − h(Xi)|2

and de�ne mn = Tc4·log(n)m̃n for some c4 > 0 su�ciently large, where Tβz =
max{min{z, β},−β} for z ∈ R and β > 0. Then

E

∫
|mn(x)−m(x)|2PX(dx) ≤ c5 · (log n)4 · max

(p,K)∈P
n
− 2p

2p+K

holds for su�ciently large n.

Proof. See Kohler and Langer (2019).

A comparison with Theorem 1 in the paper under discussion shows that

we can reach the same convergence rate also with simple fully connected

networks. Here the topology of our networks is completely speci�ed, which

makes an implementation of a corresponding estimate much easier.
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3. The theoretical di�erence between ReLU and sigmoidal func-

tions. The paper of Prof. Schmidt-Hieber focusses on the ReLU activation

function, which is nowadays quite popular in applications. One useful charac-

teristic of this kind of function is, that their derivatives are always either 0 or

1. Consequently, the derivative of the neural network can be computed much

faster in an application and the backpropagation algorithm can be applied

with a much large number of gradient descent steps for the linear recti�er

(cf., e.g., Fan, Ma and Zhong (2019)). However, theoretically we cannot see

much of a di�erence in comparison to sigmoidal activation functions, due to

the following approximation result:

Lemma 1. Let σ : R → [0, 1] be 2-admissible, i.e., assume that σ is

nondecreasing and Lipschitz continous and that, in addition, the following

three conditions are satis�ed:

(i) The function σ is three times continously di�erentiable with bounded

derivatives.

(ii) A point tσ ∈ R exists, where all derivatives up to the order 2 of σ are

di�erent from zero.

(iii) If y > 0, the relation |σ(y) − 1| ≤ 1
y holds. If y < 0, the relation

|σ(y)| ≤ 1
|y| holds.

Then for any ε ∈ (0, 1] and a ≥ max{1, 3ε} a neural network

fReLU (x) =
6∑

k=1

dk · σ

(
2∑
i=1

bk,i · σ(ai · x+ tσ) + bk,3 · σ(a3 · x) + tσ

)
exists such that

|fReLU (x)−max{x, 0}| ≤ ε

holds for all x ∈ [−a, a]. The coe�cients of this network satisfy

|ai| ≤
3

ε
, |bk,i| ≤

c20
a

and |dk| ≤ c21 ·
a6

ε2

for i ∈ {1, . . . , 3}, k ∈ {1, . . . , 6}.

Proof. Let fid(x) and fmult be the networks of Lemma 1 and Lemma 3 in

Kohler, Krzy»ak and Langer (2019) which satisfy

|fid(x)− x| ≤
ε

3
for x ∈ [−a, a]

and

|fmult(x, y)− x · y| ≤
ε

3
for x, y ∈ [−2a, 2a].
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Then

= |fmult
(
fid(x), σ

(
3

ε
· x
))
−max{x, 0}|

≤ |fmult
(
fid(x), σ

(
3

ε
· x
))
− fid(x) · σ

(
3

ε
· x
)
|

+|fid(x) · σ
(
3

ε
· x
)
− x · σ

(
3

ε
· x
)
|+ |x · σ

(
3

ε
· x
)
− x · 1[0,∞)(x)|

≤ ε

3
+
ε

3
· 1 + ε

3
= ε. �

Using this lemma it is be possible to approximate any neural network with

ReLU activation function by a neural network with sigmoidal activation

function. However, in contrast to the networks in the paper by Prof. Schmidt-

Hieber the weights will no longer be bounded in absolute value by one. This

might be considered as a drawback, but from a theoretical point of view we do

not know any result indicating that least squares neural network regression

estimates with small weights achieve a better rate of convergence than neural

networks with large weights (as long as the absolute values of the weights do

increase at most like a polynomial in the sample size).
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