
Submitted to the Bernoulli

Over-Parametrized Deep Neural Networks

Minimizing The Empirical Risk Do Not

Generalize Well

MICHAEL KOHLER and ADAM KRZY�AK

Michael Kohler

Fachbereich Mathematik

TU Darmstadt

Schlossgartenstr. 7

64289 Darmstadt

E-mail: kohler@mathematik.tu-darmstadt.de

Adam Krzy»ak

Department of Computer Science

Concordia University

1455 De Maisonneuve Blvd. West

Montreal, Quebec, Canada H3G 1M8

E-mail: krzyzak@cs.concordia.ca

Recently it was shown in several papers that backpropagation is able to �nd the global minimum

of the empirical risk on the training data using over-parametrized deep neural networks. In this

paper a similar result is shown for deep neural networks with the sigmoidal squasher activation

function in a regression setting, and a lower bound is presented which proves that these networks

do not generalize well on a new data in the sense that networks which minimize the empirical

risk do not achieve the optimal minimax rate of convergence in estimation of smooth regression

functions.

Primary 62G05; secondary 62G20.

Keywords: neural networks, nonparametric regression, over-parametrization, rate of convergence.

1. Introduction

Deep neural networks are among the most successful approaches in multivariate statistical
estimation applications, see, e.g., Schmidhuber (2015) and the literature cited therein.
Motivated by the practical success of these networks there has been in recent years
an increasing interest in studying the corresponding estimators both practically and
theoretically. This is often done in the context of nonparametric regression with random
design. Here, (X,Y) is an Rd × R�valued random vector satisfying E{Y 2} < ∞, and
given a sample of (X,Y) of size n, i.e., given a data set

Dn = {(X1, Y1), . . . , (Xn, Yn)} , (1)
1

imsart-bj ver. 2009/08/13 file: overparneur15.tex date: November 1, 2020

2 M. Kohler and K. Krzy»ak

where (X,Y), (X1, Y1), . . . , (Xn, Yn) are i.i.d. random variables, the aim is to construct
an estimate

mn(·) = mn(·,Dn) : Rd → R

of the regression function m : Rd → R, m(x) = E{Y |X = x} such that the L2 error∫
|mn(x)−m(x)|2PX(dx)

is �small� (see, e.g., Györ� et al. (2002) for a systematic introduction to nonparametric
regression and a motivation for the L2 error).

It is well�known that one needs smoothness assumptions on the regression function
in order to derive non�trivial rate of convergence results for nonparametric regression
estimates (cf., e.g., Theorem 7.2 and Problem 7.2 in Devroye, Györ� and Lugosi (1996)
and Section 3 in Devroye and Wagner (1980)). To do this we will use the following
de�nition.

De�nition 1 Let p = q + s for some q ∈ N0 and 0 < s ≤ 1, where N0 is the set
of nonnegative integers. A function f : Rd → R is called (p, C)-smooth, if for every

α = (α1, . . . , αd) ∈ Nd0 with
∑d
j=1 αj = q the partial derivative ∂qf

∂x
α1
1 ...∂x

αd
d

exists and

satis�es ∣∣∣∣ ∂qf

∂xα1
1 . . . ∂xαdd

(x)− ∂qf

∂xα1
1 . . . ∂xαdd

(z)

∣∣∣∣ ≤ C · ‖x− z‖s
for all x, z ∈ Rd, where ‖ · ‖ denotes the Euclidean norm.

Stone (1982) showed that the optimal minimax rate of convergence in nonparametric
regression for (p, C)-smooth functions is n−2p/(2p+d). In order to describe this result
formally we need to introduce the following class of distributions.

De�nition 2 Let p, C, c1 > 0. We de�ne D(p,C) as the class of all distributions of (X,Y)
which satisfy

1. X ∈ [0, 1]d a.s.
2. supx∈[0,1]d E{Y 2|X = x} ≤ c1
3. m(·) = E{Y |X = ·} is (p, C)�smooth.

With this notation we can formulate the classical result of Stone (1982) as follows: Let
p, C, c1 > 0 be arbitrary and let D(p,C) be the corresponding class of distributions. Then
there exist estimates mn which satisfy

lim sup
n→∞

sup
(X,Y)∈D(p,C)

E
∫
|mn(x)−m(x)|2PX(dx)

n−2p/(2p+d)
<∞, (2)

and no estimate can achieve for this class of distributions a better rate of convergence in
the sense that it holds

lim inf
n→∞

inf
m̃n

sup
(X,Y)∈D(p,C)

E
∫
|m̃n(x)−m(x)|2PX(dx)

n−2p/(2p+d)
> 0, (3)

imsart-bj ver. 2009/08/13 file: overparneur15.tex date: November 1, 2020

Over-Parametrized Deep Neural Networks 3

where the above in�mum is computed with respect to all possible estimates m̃n (cf.,
Stone (1982) or Sections 3.2, 5.3 and 19.4 in Györ� et al. (2002)).

The above result implies that n−2p/(2p+d) is the optimal rate of convergence for esti-
mation of (p, C)�smooth regression functions. In case that d is large compared to p this
rate of convergence is rather slow (so called curse of dimensionality). It is well-known
that it is possible to circumvent this curse of dimensionality by imposing the additional
constraints on the regression function like additivity (cf., Stone (1985, 1994)). Recently it
was shown that under rather general compository assumptions on the regression function
the curse of dimensionality can be avoided by the suitably de�ned least squares neural
network regression estimates, which we want to explore next.

The starting point in de�ning a neural network is the choice of an activation function
σ : R → R. Here, we use in the sequel so�called squashing functions, which are nonde-
creasing and satisfy limx→−∞ σ(x) = 0 and limx→∞ σ(x) = 1. An example of a squashing
function is the so-called sigmoidal or logistic squasher

σ(x) =
1

1 + exp(−x)
(x ∈ R). (4)

In applications, also unbounded activation functions are often used, e.g., the famous
ReLU activation function

σ(x) = max{x, 0}.

The network architecture (L,k) depends on a positive integer L called the number of
hidden layers and a width vector k = (k1, . . . , kL) ∈ NL that describes the number
of neurons in the �rst, second, . . . , L-th hidden layer. A multilayer feedforward neural
network with architecture (L,k) and activation function σ is a real-valued function f :
Rd → R de�ned by

fw(x) =

kL∑
i=1

w
(L)
1,i · f

(L)
i (x) + w

(L)
1,0 (5)

for some w(L)
1,0 , . . . , w

(L)
1,kL
∈ R and for f (L)

i 's recursively de�ned by

f
(l)
i (x) = σ

kl−1∑
j=1

w
(l−1)
i,j · f (l−1)

j (x) + w
(l−1)
i,0

 (6)

for some w(l−1)
i,0 , . . . , w

(l−1)
i,kl−1

∈ R (l = 2, . . . , L) and

f
(1)
i (x) = σ

 d∑
j=1

w
(0)
i,j · x

(j) + w
(0)
i,0

 (7)

for some w(0)
i,0 , . . . , w

(0)
i,d ∈ R.

In the sequel we want to use the data (1) in order to choose the weights w = (w
(s)
i,j)i,j,s

of the neural network such that the resulting function fw de�ned by (5)�(7) is a good

imsart-bj ver. 2009/08/13 file: overparneur15.tex date: November 1, 2020

4 M. Kohler and K. Krzy»ak

estimate of the regression function. This can be done for instance by applying the principle
of the least squares. Here one de�nes a suitable class Fn of neural networks and chooses
that function from this class which minimizes the error on the training data, i.e., one
de�nes the so�called least squares neural network estimate by

mn(·) = arg min
f∈Fn

1

n

n∑
i=1

|f(Xi)− Yi|2.

Recently it was shown in several articles, that such least squares estimates based on deep
neural networks achieve rates of convergence independent on the dimension d of X if
suitable compository constraints on the regression function are imposed, cf., e.g., Kohler
and Krzy»ak (2017), Bauer and Kohler (2019), Kohler and Langer (2019) and Schmidt-
Hieber (2020a). Hence neural networks can circumvent the curse of dimensionality in case
that rather general compository assumptions on the regression function hold. Eckle and
Schmidt-Hieber (2019) and Kohler, Krzy»ak and Langer (2019) showed that the least
squares neural network regression estimates based on deep neural networks can achieve
the rate of convergence results similar to piecewise polynomial partition estimates where
the partition is chosen in an optimal way. Results concerning estimation by neural net-
works of piecewise polynomial regression functions with partitions having rather general
smooth boundaries have been obtained by Imaizumi and Fukamizu (2019).

Unfortunately it is not possible to compute the least squares neural networks regression
estimate exactly, because such computation requires minimization of the non-convex and
nonlinear function

Fn(w) =
1

n

n∑
i=1

|fw(Xi)− Yi|2

with respect to the weight vector w. In practice, one uses gradient descent in order to
compute the minimum of the above function approximately. Here one chooses a random
starting value w(0) for the weight vector, and then de�nes

w(t+1) = w(t) − λn · (∇wFn)(w(t)) (t = 0, . . . , tn − 1)

for some suitably chosen stepsize λn > 0 and the number of gradient descent steps tn ∈ N.
Then the regression estimate is de�ned by mn(x) = fw(tn)(x).

There are quite a few papers which try to prove that backpropagation works theoreti-
cally for deep neural networks. The most popular approach in this context is the so�called
landscape approach. Choromanska et al. (2015) used random matrix theory to derive a
heuristic argument showing that the risk of most of the local minima of the empirical L2

risk Fn(w) is not much larger than the risk of the global minimum. For neural networks
with special activation function it was possible to validate this claim, see, e.g., Arora et
al. (2018), Kawaguchi (2016), and Du and Lee (2018), which have analyzed gradient de-
scent for neural networks with linear or quadratic activation function. But for such neural
networks there do not exist good approximation results, consequently, one cannot derive
from these results good rates of convergence for neural network regression estimates. Du
et al. (2018) analyzed gradient descent applied to neural networks with one hidden layer

imsart-bj ver. 2009/08/13 file: overparneur15.tex date: November 1, 2020

Over-Parametrized Deep Neural Networks 5

in case of an input with a Gaussian distribution. They used the expected gradient instead
of the gradient in their gradient descent routine, and therefore, their result cannot be
used to derive the rate of convergence results for a neural network regression estimate
learned by the gradient descent. Liang et al. (2018) applied gradient descent to a modi-
�ed loss function in classi�cation, where it is assumed that the data can be interpolated
by a neural network. Here, as we will show in this paper (cf., Theorem 2 below), the
last assumption does not lead to good rates of convergence in nonparametric regression,
and it is unclear whether the main idea (of simplifying the estimation by a modi�ca-
tion of the loss function) can also be used in a regression setting. Neural tangent kernel
networks (NTK) were introduced by Jackot, Gabriel and Honger (2018). They showed
that in the in�nite-width limit case NTK converges to a deterministic limit kernel which
stays constant during Gaussian descent training of the random weights initialized with
the Gaussian distributions. These results were extended by Huang, Du and Xu (2020) to
orthogonal initialization which was shown to speed up training of fully connected deep
networks. Nitanda and Suzuki (2020) obtained global convergence rate for the averaged
stochastic gradient descent for overparametrized two-layer neural networks.

Recently it was shown in several papers, see, e.g., Allen-Zhu, Li and Song (2019),
Kawaguchi and Huang (2019) and the literature cited therein, that the gradient descent
leads to a small empirical L2 risk in over-parametrized neural networks. Here the results
in Allen-Zhu, Li and Song (2019) are proven for the ReLU activation function and neural
networks with a polynomial size in the sample size. The neural networks in Kawaguchi
and Huang (2019) use squashing activation functions and are much smaller (in fact,
they require only a linear size in the sample size). In contrast to Allen-Zhu, Li and Song
(2019) there the learning rate is set to zero for all neurons except for neurons in the output
layer and consequently in di�erent layers of the network di�erent learning rates are used.
Actually, they compute a linear least squares estimate with the gradient descent, which
is not used in practice. Related to these results are various recent studies which try to
understand the capacity of neural networks. These works examine the ability of neural
networks to �t the training data, either on a �nite data set as in Bubeck et al. (2020), or
with respect to neural networks trained by gradient methods as in Daniely (2019, 2020),
or in the so�called neural tangent training as in Montanari and Zhong (2020).

The main results in this paper are twofold: Firstly, we show, that it is rather easy
to show a corresponding result for a deep neural network regression estimate with the
logistic squasher activation function, where the learning rate is the same for all neurons of
the network. The main trick here is that we use a special topology of the neural network,
where we compute a huge number of deep fully connected neural networks in parallel and
use the �nal layer to compute a linear combination of all the outputs of these networks.
Here we use a simple initialization of the inner weights from the uniform distribution and
show that this results (with high probability) in an initial network, where for each x-value
of the data points we have one neuron in the output layer which has output approximately
one at this x-value and approximately zero at all other x-values of the sample. Since
we use the logistic squasher as an activation function we are able to show that this
implies that all the inner weights in the fully connected neural networks corresponding
to these neurons do not change much during training and consequently the gradient

imsart-bj ver. 2009/08/13 file: overparneur15.tex date: November 1, 2020

6 M. Kohler and K. Krzy»ak

descent performs for these parts of the neural network in a similar way as the gradient
descent applied to a linear function space which we can easily analyze. Of course, in this
result neither the topology of the network nor the random initialization of the weights
is typical for deep learning, which is the place where our second result is important.
This result shows that any estimate (including the above cited overparameterized neural
networks estimates), which achieves more or less the minimal empirical L2 risk on the
training data, does not generalize well to new (independent) data in a sense that it
does not achieve the optimal minimax rate of convergence n−2p/(2p+d) in case of the
class D(p,C) of distributions introduced above. Here the main trick is that we also allow
discrete design distributions and prove a general result which shows that any estimate
which achieves with high probability a very small error on the training data in case of
such distributions does not achieve the optimal minimax error.

A result related to our second result was recently presented in Schmidt-Hieber (2020b).
Here it was shown that gradient descent in a simpli�ed over-parametrized regime con-
verges to a spline interpolant and hence it is not consistent even if the distribution of
X is uniform on some compact cube (a case which is not covered by our lower bound
in Theorem 2). However, it is unclear whether this result derived in a simpli�ed setting
also holds in general (as our result does).

Our second result contrasts the recent trend in machine learning, where one tries to
argue that such estimates can achieve good rates of convergence (see, e.g., Bartlett et
al. (2019), Belkin et al. (2019), Hastie et al. (2019) and the literature cited therein).
We would like to emphasize that our result above does not contradict Belkin, Rakhlin
and Tsybakov (2018), who show that learning method which interpolates the training
data can achieve the optimal rates for nonparametric regression problems, because it is
assumed there that the design variable has a density with respect to the Lebesgue-Borel
measure, which is bounded away from zero and in�nity. It also does not contradict Cao
and Gu (2019), Neyshabur et al. (2019) or Allen-Zhu, Li and Liang (2019), who derive
generalization bounds for over-parametrized neural networks. We can justify our claim as
follows. Firstly, Cao and Gu (2019) consider a noiseless classi�cation problem where the
classes are separated according to marging condition, which is not a regression problem
with noise as considered in our paper here and where interpolation of the training data
is clearly a good idea. Secondly, Neyshabur et al. (2019) also consider a classi�cation
problem and show that there over-parametrized deep neural networks generalize well in
case that they are contained in a special subclass of these networks (which has a small
Rademacher complexity). It is argued by means of simulations that the over-parametrized
neural network learned by the gradient descent is indeed contained in this subclass, but
no formal proof of this claim is provided. And thirdly, the generalization bounds in Allen-
Zhu, Li and Liang (2019) are derived in a PAC setting which is di�erent from the classical
regression setting considered in our paper and where in each gradient descent step a new
independent data point is used which clearly helps to avoid the over�tting observed in
the proof of our second result.

We would also like to point out that it has been observed in the experiments that
the choice of the learning rate and of the initial initialization of the weights can bias
the optimization trajectory to minima with poor generalization properties (cf., Chizat,

imsart-bj ver. 2009/08/13 file: overparneur15.tex date: November 1, 2020

Over-Parametrized Deep Neural Networks 7

Oyallon and Bach (2020) and Woodworth et al. (2020)). However, our second result is
independent of this. It does not matter how the over-parametrized neural network is
learned at all, as soon as it achieves a very small empirical risk, it cannot achieve the
optimal minimax rate of convergence for the classes D(p,C) introduced above (cf., (2) and
(3)).

Throughout the paper, the following notation is used: The sets of natural numbers,
natural numbers including 0, and real numbers are denoted by N, N0 and R, respectively.
The Euclidean norm of x ∈ Rd is denoted by ‖x‖ and ‖x‖∞ denotes its supremum norm.
For f : Rd → R

‖f‖∞ = sup
x∈Rd

|f(x)|

is its supremum norm. Let p = q + s for some q ∈ N0 and 0 < s ≤ 1. A function
f : Rd → R is called (p, C)-smooth, if for every α = (α1, . . . , αd) ∈ Nd0 with

∑d
j=1 αj = q

the partial derivative ∂qf

∂x
α1
1 ...∂x

αd
d

exists and satis�es∣∣∣∣ ∂qf

∂xα1
1 . . . ∂xαdd

(x)− ∂qf

∂xα1
1 . . . ∂xαdd

(z)

∣∣∣∣ ≤ C · ‖x− z‖s
for all x, z ∈ Rd.

The outline of this paper is as follows: In Section 2 the over-parametrized neural
network regression estimate is de�ned. The main results are presented in Section 3 and
proven in Section 4.

2. Over-parametrized neural network regression

estimator

In the sequel we use the logistic squasher σ(x) = 1/(1 + e−x) as the activation function,
and we use a network topology where we compute the linear combination of kn fully
connected neural networks with L layers and r0 neurons per layer. Thus we de�ne our
neural networks by

fw(x) =

kn∑
j=1

w
(L)
1,1,j · f

(L)
j,1 (x) + w

(L)
1,1,0 (8)

for some w(L)
1,1,0, . . . , w

(L)
1,1,kn

∈ R, where f (L)
j,1 are recursively de�ned by

f
(l)
k,i(x) = σ

 r0∑
j=1

w
(l−1)
k,i,j · f

(l−1)
k,j (x) + w

(l−1)
k,i,0

 (9)

for some w(l−1)
k,i,0 , . . . , w

(l−1)
k,i,r0

∈ R (l = 2, . . . , L) and

f
(1)
k,i (x) = σ

 d∑
j=1

w
(0)
k,i,j · x

(j) + w
(0)
k,i,0

 (10)

imsart-bj ver. 2009/08/13 file: overparneur15.tex date: November 1, 2020

8 M. Kohler and K. Krzy»ak

for some w(0)
k,i,0, . . . , w

(0)
k,i,d ∈ R.

The above neural network consists of kn fully connected neural networks with depth
L, which are computed in parallel. These networks have r0 neurons in all layers except
for the last layer, where they only have one neuron. In the k-th such network we denote
the output of neuron i in the l-th layer by f (l)

k,i, and the weight between neuron j-th in

the (l − 1)-th layer and neuron i in the l-th layer is denoted by w(l−1)
k,i,j .

We learn the weight vector w = (w
(s)
k,i,j)k,i,j,s of our neural nework by the gradient

descent. We initialize w(0) by setting

w
(L)
1,1,j = 0 for j = 0, . . . , kn, (11)

and by choosing all others weights randomly such that all weights w(s)
k,i,j with s < L are

independent uniformly distributed on [−n4, n4], and we set

w(t+1) = w(t) − λn · (∇wFn)(w(t)) (t = 0, . . . , tn − 1)

where

Fn(w) =
1

n

n∑
i=1

|fw(Xi)− Yi|2

is the empirical L2 risk of the network fw on the training data. The step size λn > 0 and
the number tn of gradient descent steps will be chosen below.

Because of (11) we have

Fn(w(0)) =
1

n

n∑
i=1

|Yi|2.

3. Main results

Our �rst result shows that our estimate is able to achieve with high probability a very
small error on the training data in case that kn, λn and tn are suitably chosen.

Theorem 1 Let r0 ∈ N with r0 ≥ 2 · d, let L ∈ N with L ≥ 2, set

kn = n5·(L−2)·(r20+r0)+5·r0·(d+2)+7,

λn =
1

n8(L−2)·(r20+r0)+8·r0·(d+2)+16L+15

and
tn = 2 · n8·(L−2)·(r20+r0)+8·r0·(d+2)+16L+17,

and de�ne the estimate as in Section 2. Then for su�ciently large n we have on the event

inf{‖Xi −Xj‖∞ : 1 ≤ i, j ≤ n,Xi 6= Xj} ≥
1

(n+ 1)3
,

imsart-bj ver. 2009/08/13 file: overparneur15.tex date: November 1, 2020

Over-Parametrized Deep Neural Networks 9

max{‖Xi‖∞ : 1 ≤ i ≤ n} ≤ 1 and max{|Yi| : 1 ≤ i ≤ n} ≤ n2

that with probability at least 1− 1/n the random choice of w(0) leads to

1

n

n∑
i=1

|fw(tn)(Xi)− Yi|2 ≤ min
g:Rd→R

1

n

n∑
i=1

|g(Xi)− Yi|2 +
1

n · log n
. (12)

Remark 1. a) A corresponding result was shown in Kawaguchi and Huang (2019) for a
fully connected network of much smaller size (linear instead of polynomial in the sample
size as in Theorem 1 above), however there the learning rate of the gradient descent was
set to zero for all weights w(r)

k,i,j with r < L. In contrast, our learning rate is positive for
all weights and the same learning rate is used for all the weights in the network.

b) If the design points in Theorem 1 are di�erent, they are assumed to be (n+ 1)−3-
separated from each other with respect to the maximum norm. The possibility of observ-
ing the same design point twice (which does not happen for continuous design a.s.) also
then explains why the �rst term on the right hand side of (12) is not zero.

As our next result shows that any estimate which (as our estimate from Theorem
1) achieves with high probability a very small error on the training data does not, in
general generalize well on a new independent data (provided we allow the distributions
of X which are concentrated on �nite sets).

Theorem 2 Let (X,Y), (X1, Y1), . . . be independent and identically distributed Rd×R-
valued random variables with EY 2 < ∞, and let U be an RK�valued random variable
independent of the random variables above. Let Pn be a subset of RK , and let

mn(·) = mn(·, (X1, Y1), . . . , (Xn, Yn), U) : Rd → R

be an estimate of m. Let κn > 0 and let δn ≤ 1/(n + 1)3 and assume that mn satis�es
for any data set (X1, Y1), . . . , (Xn, Yn)

1

n

n∑
i=1

|mn(Xi)− Yi|2 ≤ min
g:Rd→R

1

n

n∑
i=1

|g(Xi)− Yi|2 + κn

whenever

inf {‖Xi −Xj‖∞ : 1 ≤ i, j ≤ n, Xi 6= Xj} ≥ δn and U ∈ Pn.

Then there exists a distribution of (X,Y) such that X ∈ [0, 1]d a.s., Y ∈ {−1, 1} a.s.,
m(x) = 0 for all x ∈ [0, 1]d and such that we have for n ≥ 10

E

∫
|mn(x)−m(x)|2PX(dx) ≥ 1

10
− n · κn −

1

2
·PU (Pcn).

In Theorem 2 above U is the randomness in the procedure (e.g. random initialization)
and Pn is the subset of �good� initializations.

imsart-bj ver. 2009/08/13 file: overparneur15.tex date: November 1, 2020

10 M. Kohler and K. Krzy»ak

Corollary 1 Let mn be either the estimate of Theorem 1 or an arbitrary estimates which
satis�es the assumptions of Theorem 2 for κn = 1/(n · log n) and some set Pn with
PU (Pcn) ≤ 1/n. Let p, C, c1 > 0 and let D(p,C) be the class of all distributions of (X,Y)
introduced in De�nition 2. Then we have for n su�ciently large

sup
(X,Y)∈D(p,C)

E

∫
|mn(x)−m(x)|2PX(dx) ≥ 1

11
.

Proof. Let U be the values for the random initialization of the weights of the estimate in
Theorem 1. By Theorem 1 we know that there exists a set Pn of weights such that (12)
holds for n su�ciently large whenever U ∈ Pn, where PU (Pcn) ≤ 1/n. Hence the assump-
tions of Theorem 2 are satis�ed with κn = 1/(n · log n). Let (X,Y) be the distribution
from Theorem 2. Then for n su�ciently large

sup
(X,Y)∈D(p,C)

E

∫
|mn(x)−m(x)|2PX(dx) ≥ E

∫
|mn(x)−m(x)|2PX(dx)

≥ 1

10
− n · 1

n · log n
− 1

2
· 1

n

≥ 1

11
.

�
Remark 2. Corollary 1 implies that the estimate of Theorem 1 does not achieve the
optimal minimax rate of convergence for the class D(p,C) (cf., (2) and (3)). In fact, the
minimax L2 error for this class does not even converge to zero, let alone to the optimal
value.
Remark 3. The neural network estimate in Corollary 1 behaves bad for the discrete
distributions in D(p,C). Also it is important in our proof that we allow the bad distribution
to change with sample size. However, we think the reason for this bad behaviour of our
estimate is the over-parametrization. Because in case that we restrict the number of
weights in the neural network accordingly it follows from Theorem 1 in Kohler and
Langer (2019) that a least squares regression estimates based on a set of fully connected
feedforward neural network achieves the optimal rate of convergence for the class D(p,C)

up to some logarithmic factor. Hence in this case the neural network estimate is also
good for discrete estimates.
Remark 4. As mentioned in the introduction it is shown in Belkin, Rakhlin and Tsy-
bakov (2018) that estimates which interpolate the data can nevertheless achieve the
optimal rates for nonparametric regression problems in case that the design variable has
a density with respect to the Lebesgue-Borel measure which is bounded away from zero
and in�nity. In Mücke and Steinwart (2019) it is shown that there even exists neural net-
work regression estimates which have this property. In the same paper it is also shown
that there exists neural network regression estimates which minimize the empirical L2

risk and which do not achieve the optimal rate of convergence (and which are in fact not
even consistent). So even if we assume that the distribution of the design variable is nice,
a neural network estimate which interpolates the training data might generalize not well.

imsart-bj ver. 2009/08/13 file: overparneur15.tex date: November 1, 2020

Over-Parametrized Deep Neural Networks 11

Remark 5. In light of the previous two remarks the takeaway message for practitioners
from our results is that it is not clear whether an overparameterized neural network which
minimizes the empirical L2 risk generalizes well on new data.

4. Proofs

4.1. Proof of Theorem 1

Lemma 1 Let F : RK → R be di�erentiable, let CLip,n > 0, set

λn =
1

CLip,n
,

let a1 ∈ RK and set
a2 = a1 − λn · (∇aF)(a1).

Then
‖(∇aF)(a)− (∇aF)(a1)‖ ≤ CLip,n · ‖a− a1‖ (13)

for all a = a1 + s · (a2 − a1), s ∈ [0, 1] implies

F (a2) ≤ F (a1)− 1

2 · CLip,n
· ‖(∇aF)(a1)‖2.

Proof. See proof of Lemma 1 in Braun, Kohler and Walk (2019). �
Set

Fn(w) =
1

n

n∑
i=1

|fw(Xi)− Yi|2

where fw is de�ned by (8)�(10).

Lemma 2 Let fw be de�ned by (8)�(10) and assume that for any i ∈ {1, . . . , n} there
exists ji ∈ {1, . . . , kn} such that

f
(L)
ji,1

(Xi) ≥ 1− 2

n2
and sup

t∈{1,...,n},Xt 6=Xi
f

(L)
ji,1

(Xt) ≤
2

n2
(14)

hold. Then we have for any n ≥ 5

‖(∇wFn(w))‖2 ≥ 1

n
·

(
1

n

n∑
i=1

|fw(Xi)− Yi|2 − min
g:Rd→R

1

n

n∑
i=1

|g(Xi)− Yi|2
)
.

Proof. Set

m̄n(x) =

∑n
i=1 Yi · I{Xi=x}∑n
i=1 I{Xi=x}

(x ∈ Rd),

imsart-bj ver. 2009/08/13 file: overparneur15.tex date: November 1, 2020

12 M. Kohler and K. Krzy»ak

where we use the convention 0/0 = 0. We have

1

n

n∑
i=1

|f(Xi)− Yi|2 =
1

n

n∑
i=1

|f(Xi)− m̄n(Xi)|2 +
1

n

n∑
i=1

|m̄n(Xi)− Yi|2,

since

1

n

n∑
i=1

(f(Xi)− m̄n(Xi)) · (m̄n(Xi)− Yi)

=
1

n

∑
x∈{X1,...,Xn}

(f(x)− m̄n(x)) ·
∑

1≤i≤n:Xi=x

(m̄n(Xi)− Yi) = 0.

This implies

min
g:Rd→R

1

n

n∑
i=1

|g(Xi)− Yi|2 =
1

n

n∑
i=1

|m̄n(Xi)− Yi|2

and

1

n

n∑
i=1

|f(Xi)− m̄n(Xi)|2 =
1

n

n∑
i=1

|f(Xi)− Yi|2 − min
g:Rd→R

1

n

n∑
i=1

|g(Xi)− Yi|2

for any f : Rd → R.
Next we observe

‖(∇wFn(w))‖2 =
∑
k,i,j,s

∣∣∣∣∣ ∂

∂w
(s)
k,j,i

Fn(w)

∣∣∣∣∣
2

≥
∑

i∈{1,...,n},ji 6=js for all s<i

∣∣∣∣∣ ∂

∂w
(L)
1,1,ji

Fn(w)

∣∣∣∣∣
2

=
∑

i∈{1,...,n},ji 6=js for all s<i

∣∣∣∣∣ 2n ·
n∑
t=1

(fw(Xt)− Yt) ·
∂

∂w
(L)
1,1,ji

fw(Xt)

∣∣∣∣∣
2

=
∑

i∈{1,...,n},ji 6=js for all s<i

∣∣∣∣∣ 2n ·
n∑
t=1

(fw(Xt)− Yt) · f (L)
ji,1

(Xt)

∣∣∣∣∣
2

≥
∑

i∈{1,...,n},ji 6=js for all s<i

(
1

2
·

∣∣∣∣∣∣ 2n ·
∑

t∈{1,...,n},Xt=Xi

(fw(Xi)− Yt) · f (L)
ji,1

(Xi)

∣∣∣∣∣∣
2

−

∣∣∣∣∣∣ 2n ·
∑

t∈{1,...,n},Xt 6=Xi

(fw(Xt)− Yt) · f (L)
ji,1

(Xt)

∣∣∣∣∣∣
2)

,

imsart-bj ver. 2009/08/13 file: overparneur15.tex date: November 1, 2020

Over-Parametrized Deep Neural Networks 13

where the last inequality followed from b2 ≤ 2(b− a)2 + 2a2 which implies

a2 ≥ 1

2
b2 − (a− b)2 (a, b ∈ R).

Using ∑
t∈{1,...,n},Xt=Xi

(fw(Xi)− Yt) = |{1 ≤ k ≤ n : Xk = Xi}| · (fw(Xi)− m̄n(Xi)),

∑
t∈{1,...,n},Xt 6=Xi

(fw(Xt)− Yt) · f (L)
ji,1

(Xt)

=
∑

t∈{1,...,n},Xt /∈{Xi,X1,...,Xt−1}

|{1 ≤ k ≤ n : Xk = Xt}| · (fw(Xt)− m̄n(Xt)) · f (L)
ji,1

(Xt),

(14) and the inequality of Jensen we conclude

‖(∇wFn(w))‖2

≥ 2

n2
·

∑
i∈{1,...,n},ji 6=js for all s<i

|{1 ≤ k ≤ n : Xk = Xi}|2 · (fw(Xi)− m̄n(Xi))
2 ·
(

1− 2

n2

)2

−4 ·
∑

i∈{1,...,n},ji 6=js for all s<i

∑
t∈{1,...,n},Xt /∈{Xi,X1,...,Xt−1}

|{1 ≤ k ≤ n : Xk = Xt}|
n

· |fw(Xt)− m̄n(Xt)|2 ·
4

n4

≥ 2

n2
·

∑
i∈{1,...,n},ji 6=js for all s<i

|{1 ≤ k ≤ n : Xk = Xi}| · (fw(Xi)− m̄n(Xi))
2 ·
(

1− 2

n2

)2

−4 ·
∑

i∈{1,...,n},ji 6=js for all s<i

∑
t∈{1,...,n},Xt /∈{Xi,X1,...,Xt−1}

|{1 ≤ k ≤ n : Xk = Xt}|
n

· |fw(Xt)− m̄n(Xt)|2 ·
4

n4

≥ 2

n
·
(

1− 2

n2

)2

· 1

n

n∑
t=1

(fw(Xt)− m̄n(Xt))
2

−4 · n · 4

n4
· 1

n
·
n∑
t=1

|fw(Xt)− m̄n(Xt)|2

=

(
2

n
·
(

1− 2

n2

)2

− 16

n3

)
· 1

n
·
n∑
t=1

|fw(Xt)− m̄n(Xt)|2

=

(
2

n
− 8

n3
+

8

n5
− 16

n3

)
· 1

n
·
n∑
t=1

|fw(Xt)− m̄n(Xt)|2

imsart-bj ver. 2009/08/13 file: overparneur15.tex date: November 1, 2020

14 M. Kohler and K. Krzy»ak

≥ 1

n
· 1

n
·
n∑
t=1

(fw(Xt)− m̄n(Xt))
2

=
1

n
·

(
1

n

n∑
i=1

|fw(Xi)− Yi|2 − min
g:Rd→R

1

n

n∑
i=1

|g(Xi)− Yi|2
)
.

�

Lemma 3 De�ne w(t) by

w(t+1) = w(t) − λn · (∇wFn)(w(t)) (t = 0, . . . , tn − 1)

for some �xed w(0) and

λn =
1

CLip,n
.

Assume that (13) holds for F = Fn and all a1 = w(t) and a2 = w(t+1) and any t ∈
{0, 1, . . . , tn−1}. Furthermore assume that (14) holds for all w = w(t) (t ∈ {0, 1, . . . , tn−
1}). Then we have for any n ≥ 5

Fn(w(tn))− min
g:Rd→R

1

n

n∑
i=1

|g(Xi)− Yi|2

≤
(

1− 1

2 · n · CLip,n

)tn
·

(
Fn(w(0))− min

g:Rd→R

1

n

n∑
i=1

|g(Xi)− Yi|2
)
.

Proof. Application of Lemma 1 and Lemma 2 implies for any t ∈ {0, . . . , tn − 1}

Fn(w(t+1))− min
g:Rd→R

1

n

n∑
i=1

|g(Xi)− Yi|2

≤ Fn(w(t))− 1

2 · CLip,n
· ‖(∇wFn)(w(t))‖2 − min

g:Rd→R

1

n

n∑
i=1

|g(Xi)− Yi|2

≤
(

1− 1

2 · n · CLip,n

)
·

(
Fn(w(t))− min

g:Rd→R

1

n

n∑
i=1

|g(Xi)− Yi|2
)
.

From this we can conclude

Fn(w(tn))− min
g:Rd→R

1

n

n∑
i=1

|g(Xi)− Yi|2

≤
(

1− 1

2 · n · CLip,n

)
·

(
Fn(w(tn−1))− min

g:Rd→R

1

n

n∑
i=1

|g(Xi)− Yi|2
)

≤
(

1− 1

2 · n · CLip,n

)2

·

(
Fn(w(tn−2))− min

g:Rd→R

1

n

n∑
i=1

|g(Xi)− Yi|2
)

imsart-bj ver. 2009/08/13 file: overparneur15.tex date: November 1, 2020

Over-Parametrized Deep Neural Networks 15

≤ . . .

≤
(

1− 1

2 · n · CLip,n

)tn
·

(
Fn(w(0))− min

g:Rd→R

1

n

n∑
i=1

|g(Xi)− Yi|2
)
.

�

Lemma 4 Let F : RK → R+ be di�erentiable, let tn ∈ N, and let CLip,n > 0 be such
that

‖(∇aF)(a)‖∞ ≤ CLip,n · c3 · nc4 holds for all a with ‖a‖∞ ≤ 2 · c3 · nc4 (15)

and
‖(∇aF)(a1)− (∇aF)(a2)‖ ≤ CLip,n · ‖a1 − a2‖ (16)

holds for all a1, a2 with ‖a1‖∞ ≤ 3 · c3 ·nc4 and ‖a2‖∞ ≤ 3 · c3 ·nc4 . Let a(0) be such that

‖a(0)‖ ≤ c3 · nc4 (17)

and √
2 · tn
CLip,n

· F (a(0)) ≤ c3 · nc4 , (18)

and set
a(t+1) = a(t) − λn · (∇aF)(a(t)) (t ∈ {0, 1, . . . , tn − 1}),

where

λn =
1

CLip,n
.

Then we have
‖a(t)‖∞ ≤ 2 · c3 · nc4 (t ∈ {0, 1, . . . , tn}.

Proof. We show
‖a(s)‖∞ ≤ 2 · c3 · nc4 (s ∈ {0, . . . , t}) (19)

for all t ∈ {0, 1, . . . , tn} by induction.
For t = 0 the assertion follows from (17). So assume that (19) holds for some t ∈

{0, 1, . . . , tn − 1}. Then this together with (15) implies that we have

‖a(t+1)‖∞ ≤ ‖a(t)‖∞ +
1

CLip,n
· ‖(∇aF)(a(t))‖∞ ≤ 3 · c3 · nc4 .

From this, the induction hypothesis and Lemma 1 we can conclude

0 ≤ F (a(s)) ≤ F (a(s−1)− 1

2 · CLip,n
· ‖(∇aF)(a(s−1))‖2

for all s ∈ {0, . . . , t+ 1} which implies

0 ≤ F (a(t+1)) ≤ F (a(0)−
t+1∑
s=1

1

2 · CLip,n
· ‖(∇aF)(a(s−1))‖2.

imsart-bj ver. 2009/08/13 file: overparneur15.tex date: November 1, 2020

16 M. Kohler and K. Krzy»ak

Consequently we have

t+1∑
s=1

1

2 · CLip,n
· ‖(∇aF)(a(s−1))‖2 ≤ F (a(0),

which implies

‖a(t+1)‖∞ ≤ ‖a(t+1)‖

≤ ‖a(0)‖+

t+1∑
s=1

1

CLip,n
· ‖(∇aF)(a(s−1))‖

≤ ‖a(0)‖+

√
t+ 1

CLip,n
·

√√√√t+1∑
s=1

1

CLip,n
· ‖(∇aF)(a(s−1))‖2

≤ ‖a(0)‖+

√
t+ 1

CLip,n
· 2 · F (a(0))

≤ 2 · c3 · nc4 ,

where the last inequality followed from (17) and (18). �

Lemma 5 Let σ be the logistic squasher. Let kn ∈ N and r0 ∈ N with 2 · r0 ≥ d. Let

w = (w
(s)
k,i,j)k,i,j,s and w̄ = (w̄

(s)
k,i,j)k,i,j,s be weight vectors and de�ne fw and fw̄ by

fw(x) =

kn∑
i=1

w
(L)
1,1,i · f

(L)
i,1 (x) + w

(L)
1,1,0 and fw̄(x) =

kn∑
i=1

w̄
(L)
1,1,i · f̄

(L)
i,1 (x) + w̄

(L)
1,1,0 (20)

for f
(L)
i,i 's and f̄

(L)
i,i 's recursively de�ned by

f
(l)
k,i(x) = σ

 r0∑
j=1

w
(l−1)
k,i,j · f

(l−1)
k,j (x) + w

(l−1)
k,i,0

 (21)

(l = 2, . . . , L) and

f̄
(l)
k,i(x) = σ

 r0∑
j=1

w̄
(l−1)
k,i,j · f̄

(l−1)
k,j (x) + w̄

(l−1)
k,i,0

 (22)

(l = 2, . . . , L) and

f
(1)
k,i (x) = σ

 d∑
j=1

w
(0)
k,i,j · x

(j) + w
(0)
k,i,0

 and f̄
(1)
k,i (x) = σ

 d∑
j=1

w̄
(0)
k,i,j · x

(j) + w̄
(0)
k,i,0

 .

(23)

imsart-bj ver. 2009/08/13 file: overparneur15.tex date: November 1, 2020

Over-Parametrized Deep Neural Networks 17

a) For any k ∈ {1, . . . , kn} and any x ∈ Rd we have

|f (L)
k,1 (x)− f̄ (L)

k,1 (x)| ≤ (2 · r0 + 1)L · (max{‖w‖∞, ‖x‖∞, 1})L · max
i,j,s:s<L

|w(s)
k,i,j − w̄

(s)
k,i,j |.

b) For any x ∈ Rd we have

|fw(x)− fw̄(x)| ≤ (2 · kn + 1) · (2 · r0 + 1)L · (max{‖w‖∞, ‖x‖∞, 1})L+1 · ‖w − w̄‖∞.

Proof. a) We show by induction

|f (l)
r,k(x)− f̄ (l)

r,k(x)| ≤ (2 · r0 + 1)l · (max{‖w‖∞, ‖x‖∞, 1})l · max
i,j,s:s<L

|w(s)
k,i,j − w̄

(s)
k,i,j | (24)

(l ∈ {1, . . . , L}). The logistic squasher satis�es |σ′(x)| = |σ(x) · (1− σ(x))| ≤ 1, hence it
is Lipschitz continuous with Lipschitz constant one. This implies∣∣∣f (1)

k,i (x)− f̄ (1)
k,i (x)

∣∣∣ ≤ d∑
j=1

|w(0)
k,i,j − w̄

(0)
k,i,j | · |x

(j)|+ |w(0)
k,i,0 − w̄

(0)
k,i,0|

≤ (2 · r0 + 1) ·max{‖x‖∞, 1} · max
i,j,s:s<L

|w(s)
k,i,j − w̄

(s)
k,i,j |.

Assume now that (24) holds for some l − 1, where l ∈ {2, . . . , L}. Then∣∣∣f (l)
k,i(x)− f̄ (l)

k,i(x)
∣∣∣

≤
r0∑
j=1

|w(l−1)
k,i,j | · |f

(l−1)
k,j (x)− f̄ (l−1)

k,j (x)|+
r0∑
j=1

|w(l−1)
k,i,j − w̄

(l−1)
k,i,j (x)| · |f̄ (l−1)

k,j (x)|

+|w(l−1)
k,i,0 − w̄

(l−1)
k,i,0 |

≤ r0 · ‖w‖∞ · max
j=1,...,r0

|f (l−1)
k,j (x)− f̄ (l−1)

k,j (x)|+ (r0 + 1) · max
i,j,s:s<L

|w(s)
k,i,j − w̄

(s)
k,i,j |

≤ (2r0 + 1) ·max{‖w‖∞, ‖x‖∞, 1}

·max

{
max

j=1,...,r0
|f (l−1)
k,j (x)− f̄ (l−1)

k,j (x)|, max
i,j,s:s<L

|w(s)
k,i,j − w̄

(s)
k,i,j |

}
≤ (2 · r0 + 1)r · (max{‖w‖∞, ‖x‖∞, 1})r · max

i,j,s:s<L
|w(s)
k,i,j − w̄

(s)
k,i,j |.

b) Because of

|fw(x)− f̄w(x)|

=

∣∣∣∣∣
kn∑
i=1

w
(L)
1,1,i · f

(L)
i,1 (x) + w

(L)
1,1,0 −

kn∑
i=1

w̄
(L)
1,1,i · f̄

(L)
i,1 (x)− w̄(L)

1,1,0

∣∣∣∣∣
≤

∣∣∣∣∣
kn∑
i=1

w
(L)
1,1,i · (f

(L)
i,1 (x)− f̄ (L)

i,1 (x))

∣∣∣∣∣+

∣∣∣∣∣
kn∑
i=1

(w
(L)
1,1,i − w̄

(L)
1,1,i) · f̄

(L)
i,1 (x) + w

(L)
1,1,0 − w̄

(L)
1,1,0

∣∣∣∣∣
imsart-bj ver. 2009/08/13 file: overparneur15.tex date: November 1, 2020

18 M. Kohler and K. Krzy»ak

≤ kn ·max
i
|w(L)

1,1,i| ·max
i
|f (L)
i,1 (x)− f̄ (L)

i,1 (x)|+ (kn + 1) ·max
i
|w(L)

1,1,i − w̄
(L)
1,1,i|,

the assertion follows from a). �

Lemma 6 Let σ be the logistic squasher. De�ne fw by (8)-(10) and set

Fn(w) =
1

n

n∑
i=1

|fw(Xi)− Yi|2.

Let c3, c4 ≥ 1. Assume ‖w1‖∞ ≤ c3 · nc4 , ‖w2‖∞ ≤ c3 · nc4 and

max
i=1,...,n

‖Xi‖∞ ≤ c3 · nc4 and max
i=1,...,n

|Yi| ≤ c3 · nc4 .

Set
CLip,n = 45 · L · 3L · (max{r0, L, d})3/2 · r2L

0 · k3/2
n · (c3 · nc4)

4L+1
.

Then we have
‖(∇wFn)(w1)‖∞ ≤ CLip,n · c3 · nc4 (25)

and
‖(∇wFn)(w1)− (∇wFn)(w2)‖ ≤ CLip,n · ‖w1 −w2‖. (26)

Proof. In the �rst step of the proof we compute the partial derivatives of Fn(w). We
have

∂

∂w
(r)
k,i,j

Fn(w) =
2

n

n∑
l=1

(fw(Xl)− Yl) ·
∂fw

∂w
(r)
k,i,j

(Xl).

The recursive de�nition of fw together with the chain rule imply

∂fw

∂w
(L)
1,1,i

(Xl) = f
(L)
i,1 (Xl)

(where we have set f (L)
0,0 (x) = 1) and in case r̄ < L

∂fw

∂w
(r̄)

k̄,̄i,j̄

(Xl) =

kn∑
i=1

w
(L)
1,1,i ·

∂f
(L)
i,1

∂w
(r̄)

k̄,̄i,j̄

(Xl) = w
(L)

1,1,k̄
·
∂f

(L)

k̄,1

∂w
(r̄)

k̄,̄i,j̄

(Xl).

In case 0 ≤ r̄ < r and r > 1 we have

∂f
(r)
k,i

∂w
(r̄)

k,̄i,j̄

(Xl)

= σ′

 r0∑
j=1

w
(r−1)
k,i,j · f

(r−1)
k,j (Xl) + w

(r−1)
k,i,0

imsart-bj ver. 2009/08/13 file: overparneur15.tex date: November 1, 2020

Over-Parametrized Deep Neural Networks 19

· ∂

∂w
(r̄)

k,̄i,j̄

 r0∑
j=1

w
(r−1)
k,i,j · f

(r−1)
k,j (Xl) + w

(r−1)
k,i,0

= σ

 r0∑
j=1

w
(r−1)
k,i,j · f

(r−1)
k,j (Xl) + w

(r−1)
k,i,0

·

1− σ

 r0∑
j=1

w
(r−1)
k,i,j · f

(r−1)
k,j (Xl) + w

(r−1)
k,i,0

· ∂

∂w
(r̄)

k,̄i,j̄

 r0∑
j=1

w
(r−1)
k,i,j · f

(r−1)
k,j (Xl) + w

(r−1)
k,i,0

 .

Next we explain how we can compute

∂

∂w
(r̄)

k,̄i,j̄

 r0∑
j=1

w
(r−1)
k,i,j · f

(r−1)
k,j (Xl) + w

(r−1)
k,i,0

 .

In case r̄ = r − 1 > 0 we have

∂

∂w
(r−1)

k,̄i,j̄

 r0∑
j=1

w
(r−1)
k,i,j · f

(r−1)
k,j (Xl) + w

(r−1)
k,i,0

 = f
(r−1)

k,j̄
(Xl) · 1{ī=i}

(where we have set f (r−1)

k̄,0
(x) = 1), and in case r̄ < r − 1 we get

∂

∂w
(r̄)

k,̄i,j̄

 r0∑
j=1

w
(r−1)
k,i,j · f

(r−1)
k,j (Xl) + w

(r−1)
k,i,0

 =

r0∑
j=1

w
(r−1)
k,i,j ·

∂

∂w
(r̄)

k,̄i,j̄

f
(r−1)
k,j (Xl).

And in case r = 2 and r̄ = 0 we have

∂f
(1)
k,i

∂w
(0)

k,̄i,j̄

(Xl)

= σ′

 d∑
j=1

w
(0)
k,i,j ·X

(j)
l + w

(0)
k,i,0

 ·X(j̄)
l · 1{ī=i}

= σ

 d∑
j=1

w
(0)
k,i,j ·X

(j)
l + w

(0)
k,i,0

 ·
1− σ

 d∑
j=1

w
(0)
k,i,j ·X

(j)
l + w

(0)
k,i,0

 ·X(j̄)
l · 1{ī=i},

where we have set X(0)
l = 1.

imsart-bj ver. 2009/08/13 file: overparneur15.tex date: November 1, 2020

20 M. Kohler and K. Krzy»ak

In the second step of the proof we show for x ∈ Rd with ‖x‖∞ ≤ c3 · nc4 and w, w1,
w2 with ‖w‖∞ ≤ c3 · nc4 , ‖w1‖∞ ≤ c3 · nc4 and ‖w2‖∞ ≤ c3 · nc4 ,∣∣∣∣∣∂fw(x)

∂w
(r)
k,i,j

∣∣∣∣∣ ≤ rL0 · (c3 · nc4)
L+1 (27)

and ∣∣∣∣∣∂fw1
(x)

∂w
(r)
k,i,j

− ∂fw2
(x)

∂w
(r)
k,i,j

∣∣∣∣∣ ≤ C̄Lip,n · ‖w1 −w2‖∞, (28)

where
C̄Lip,n = 4L · 3L · r2L−2

0 · (c3 · nc4)
4L
.

It is easy to see that the �rst step of the proof implies

∂fw(x)

∂w
(r)
k,i,j

=

r0∑
sr+1=1

· · ·
r0∑

sL−2=1

f
(r)
k,j (x) · f (r+1)

k,i (x) · (1− f (r+1)
k,i (x))

·w(r+1)
k,sr+1,i

· f (r+2)
k,sr+1

(x) · (1− f (r+2)
k,sr+1

(x)) · w(r+2)
k,sr+2,sr+1

· f (r+3)
k,sr+2

(x) · (1− f (r+3)
k,sr+2

(x))

· · ·w(L−2)
k,sL−2,sL−3

· f (L−1)
k,sL−2

(x) · (1− f (L−1)
k,sL−2

(x)) · w(L−1)
k,k,sL−2

· f (L)
k,1 (x) · (1− f (L)

k,1 (x))

·w(L)
1,1,k, (29)

where we have used the abbreviations

f
(0)
k,j (x) =

{
x(j) if j ∈ {1, . . . , d}
1 if j = 0

and
f

(r)
k,0(x) = 1.

Because of
f

(r)
k,i (x) ∈ [0, 1] if r > 0

and
|f (0)
k,i (x)| ≤ c3 · nc4

and
‖w‖∞ ≤ c3 · nc4

this implies (27).
Next we prove (28). The right-hand side of (29) is a sum of at most rL−2

0 products,
where each product contains at most 3L+ 1 factors. In the worst case from these 3L+ 1
factors L are Lipschitz continuous functions with Lipschitz constant bounded by one,
which are bounded in absolute value by c3 · nc4 . And according to the proof of Lemma 5
(cf., (24)) the remaining 2L+ 1 factors are Lipschitz continuous functions with Lipschitz
constant bounded by

(2r0 + 1)L · (c3 · nc4)L,

imsart-bj ver. 2009/08/13 file: overparneur15.tex date: November 1, 2020

Over-Parametrized Deep Neural Networks 21

which are bounded in absolute value by c3 · nc4 .
If g1, . . . , gs : R → R are Lipschitz continuous functions with Lipschitz constants

CLip,g1 , . . . , CLip,gs , then
s∏
l=1

gl and
s∑
l=1

gl

are Lipschitz continuous functions with Lipschitz constant bounded by

s∑
l=1

CLip,gl ·
∏

k∈{1,...,s}\{l}

‖gk‖∞ ≤ s ·max
l
CLip,gl · (max

k
‖gk‖∞)s−1

and by
s∑
l=1

CLip,gl ≤ s ·max
l
CLip,gl ,

respectively. This implies that (29) is Lipschitz continuous with Lipschitz constant bounded
by

rL−2
0 · (3L+ 1) · (2r0 + 1)L · (c3nc4)L · (c3nc4)3L.

In the third step of the proof we show (25). We have

‖(∇wFn)(w)‖∞ = max
k,i,j,r

∣∣∣∣∣ 2n
n∑
l=1

(fw(Xl)− Yl) ·
∂fw

∂w
(r)
k,i,j

(Xi)

∣∣∣∣∣
≤ 2 ·

(
(kn + 1) · ‖w‖∞ + max

i=1,...,n
|Yi|
)
· max
l,k,i,j,r

∣∣∣∣∣ ∂fw

∂w
(r)
k,i,j

(Xl)

∣∣∣∣∣
≤ 6 · kn · c3nc4 · max

l,k,i,j,r

∣∣∣∣∣ ∂fw

∂w
(r)
k,i,j

(Xl)

∣∣∣∣∣ .
From this the result follows by (27).

In the fourth step of the proof we show (26). Because of

‖(∇wFn)(w1)− (∇wFn)(w2)‖ =

 ∑
k,i,j,r

∣∣∣∣∣ ∂Fn

∂w
(r)
k,i,j

(w1)− ∂Fn

∂w
(r)
k,i,j

(w2)

∣∣∣∣∣
2
1/2

and
∂Fn

∂w
(r)
k,i,j

(w) =
2

n

n∑
l=1

(fw(Xl)− Yl) ·
∂fw

∂w
(r)
k,i,j

(Xl)

we have

‖(∇wFn)(w1)− (∇wFn)(w2)‖

≤
√
kn · (r0 + 1 + (L− 2) · (r2

0 + r0) + r0 · (d+ 1)) + kn + 1

imsart-bj ver. 2009/08/13 file: overparneur15.tex date: November 1, 2020

22 M. Kohler and K. Krzy»ak

·2 · max
k,i,j,r,l

∣∣∣∣∣(fw1
(Xl)− Yl) ·

∂fw1

∂w
(r)
k,i,j

(Xl)− (fw2
(Xl)− Yl) ·

∂fw2

∂w
(r)
k,i,j

(Xl)

∣∣∣∣∣ . (30)

By Lemma 5 we know

|fw1
(Xl)− fw2

(Xl)| ≤ (2kn + 1) · (2r0 + 1)L · (c3nc4)L+1 · ‖w1 −w2‖∞. (31)

Trivially,
|fw(Xl)− Yl| ≤ (kn + 1) · c3nc4 + c3n

c4 = (kn + 2) · c3nc4 . (32)

If gi are Lipschitz continuous functions with Lipschitz constants CLip,gi , then g1 · g2 is
Lipschitz continuous with Lipschitz constant

‖g1‖∞ · CLip,g2 + ‖g2‖∞ · CLip,g1 .

Combining this with (27), (28), (31) and (32) we get that

w 7→ (fw(Xl)− Yl) ·
∂fw

∂w
(r)
k,i,j

(Xl)

is Lipschitz continuous with Lipschitz constant bounded by

(kn + 2) · c3 · nc4 · 4L · 3L · r2L−2
0 · (c3 · nc4)

4L

+rL0 · (c3nc4)L+1 · (2kn + 1) · (2r0 + 1)L · (c3nc4)L+1

≤ 15 · kn · L · 3L · r2L
0 · (c3nc4)4L+1.

This together with (30) implies the assertion. �

Lemma 7 Let σ be the logistic squasher and let n, d, r0, L ∈ N with r0 ≥ 2 ·d and L ≥ 2.

De�ne f
(L)
1,1 : R→ R recursively by

f
(r)
1,k(x) = σ

 r0∑
j=1

w
(r−1)
1,k,j · f

(r−1)
1,j (x) + w

(r−1)
1,k,0

for some w

(r−1)
1,k,0 , . . . , w

(r−1)
1,k,r0

∈ R (r = 2, . . . , L) and

f
(1)
1,k (x) = σ

 d∑
j=1

w
(0)
1,k,j · x

(j) + w
(0)
1,k,0

for some w

(0)
1,k,0, . . . , w

(0)
1,k,d ∈ R. Let δ > 0 and let a, b ∈ Rd such that

b(l) − a(l) ≥ 2 · δ for all l ∈ {1, . . . , d}.

Assume
w

(L−1)
1,1,1 ≤ −4 · (n+ 1), (33)

imsart-bj ver. 2009/08/13 file: overparneur15.tex date: November 1, 2020

Over-Parametrized Deep Neural Networks 23

|w(L−1)
1,1,j − w

(L−1)
1,1,1 | ≤

1

2r0
for j = 2, . . . , d, (34)

|w(L−1)
1,1,j | ≤

1

2r0
for j = 2d+ 1, . . . , r0, (35)

|w(L−1)
1,k,0 +

1

2
· w(L−1)

1,1,1 | ≤
1

2
for k ∈ {1, . . . , 2d}, (36)

w
(r−1)
1,k,k ≥ 8 · log(8d− 1) for k ∈ {1, . . . , 2d} and r ∈ {2, . . . , L− 1}, (37)

|w(r−1)
1,k,0 +

1

2
· w(r−1)

1,k,k | ≤
log(8d− 1)

r0
for k ∈ {1, . . . , 2d} and r ∈ {2, . . . , L− 1}, (38)

|w(r−1)
1,k,j | ≤

log(8d− 1)

r0
for j ∈ {1, . . . , r0} \ {k}, k ∈ {1, . . . , 2d}, r ∈ {2, . . . , L− 1},

(39)

w
(0)
1,k,k ≤ −

2

δ
· log(8d− 1) for k ∈ {1, . . . , d}, (40)

|w(0)
1,k,0 + a(k) · w(0)

1,k,k| ≤
log(8d− 1)

d
for k ∈ {1, . . . , d}, (41)

|w(0)
1,k,j | ≤

log(8d− 1)

d
for k ∈ {1, . . . , d}, j ∈ {1, . . . , d} \ {k} (42)

w
(0)
1,d+k,k ≥

2

δ
· log(8d− 1) for k ∈ {1, . . . , d}, (43)

|w(0)
1,d+k,0 + b(k) · w(0)

1,d+k,k| ≤
log(8d− 1)

d
for k ∈ {1, . . . , d} (44)

and

|w(0)
1,d+k,j | ≤

log(8d− 1)

d
for k ∈ {1, . . . , d}, j ∈ {1, . . . , d} \ {k}. (45)

Then f
(L)
1,1 satis�es for any x ∈ [−1, 1]d

f
(L)
1,1 (x) ≥ 1− e−n if x ∈ [a(1) + δ, b(1) − δ]× · · · × [a(d) + δ, b(d) − δ] (46)

and
f

(L)
1,1 (x) ≤ e−n if x /∈ [a(1) − δ, b(1) + δ]× · · · × [a(d) − δ, b(d) + δ]. (47)

Proof. Let x ∈ [a(1) + δ, b(1)− δ]× · · ·× [a(d) + δ, b(d)− δ]∩ [−1, 1]d. Then we get for any
k ∈ {1, . . . , d} by (40), (41) and (42)

d∑
j=1

w
(0)
1,k,j · x

(j) + w
(0)
1,k,0

= w
(0)
1,k,k · (x

(k) − a(k)) + w
(0)
1,k,0 + w

(0)
1,k,k · a

(k) +
∑

j∈{1,...,d}\{k}

w
(0)
1,k,j · x

(j)

imsart-bj ver. 2009/08/13 file: overparneur15.tex date: November 1, 2020

24 M. Kohler and K. Krzy»ak

≤ −2 · log(8d− 1) + |w(0)
1,k,0 + w

(0)
1,k,k · a

(k)|+
∑

j∈{1,...,d}\{k}

|w(0)
1,k,j |

≤ − log(8d− 1).

And by (43), (44) and (45) we get for any k ∈ {1, . . . , d}

d∑
j=1

w
(0)
1,d+k,j · x

(j) + w
(0)
1,d+k,0

= −w(0)
1,d+k,k · (b

(k) − x(k)) + w
(0)
1,d+k,0 + w

(0)
1,d+k,k · b

(k) +
∑

j∈{1,...,d}\{k}

w
(0)
1,d+k,j · x

(j)

≤ −2 · log(8d− 1) + |w(0)
1,d+k,0 + w

(0)
1,d+k,k · b

(k)|+
∑

j∈{1,...,d}\{k}

|w(0)
1,d+k,j |

≤ − log(8d− 1).

It is easy to see that the logistic squasher satis�es

σ(x) ≥ 1− κ if x ≥ log

(
1

κ
− 1

)
and σ(x) ≤ κ if x ≤ − log

(
1

κ
− 1

)
. (48)

Using this we get for any k ∈ {1, . . . , 2d}

f
(1)
1,k (x) ≤ σ(− log(8d− 1)) = σ

(
− log

(
1

1/(8d)
− 1

))
≤ 1

8d
≤ 1

4
.

Using (37), (38) and (39), we can recursively conclude for r = 2, . . . , L− 1 that we have
for any k ∈ {1, . . . , 2d}

r0∑
j=1

w
(r−1)
1,k,j · f

(r−1)
1,j (x) + w

(r−1)
1,k,0

= w
(r−1)
1,k,k ·

(
f

(r−1)
1,k (x)− 1

2

)
+ w

(r−1)
1,k,k ·

1

2
+ w

(r−1)
1,k,0 +

∑
j∈{1,...,r0}\{k}

w
(r−1)
1,k,j · f

(r−1)
1,j (x)

≤ −2 · log(8d− 1) + |w(r−1)
1,k,k ·

1

2
+ w

(r−1)
1,k,0 |+

∑
j∈{1,...,r0}\{k}

|w(r−1)
1,k,j |

≤ − log(8d− 1)

and

f
(r)
1,k(x) ≤ σ(− log(8d− 1)) ≤ 1

8d
≤ 1

4
.

From this together with (33), (34), (35) and (36) we conclude

r0∑
j=1

w
(L−1)
1,1,j · f

(L−1)
1,j (x) + w

(L−1)
1,1,0

imsart-bj ver. 2009/08/13 file: overparneur15.tex date: November 1, 2020

Over-Parametrized Deep Neural Networks 25

= w
(L−1)
1,1,1 · (

2d∑
j=1

f
(L−1)
1,j (x)− 1

2
) + w

(L−1)
1,1,0 +

1

2
· w(L−1)

1,1,1

+

2d∑
j=1

(w
(L−1)
1,1,j − w

(L−1)
1,1,1) · f (L−1)

1,j (x) +

r0∑
j=2d+1

w
(L−1)
1,1,j · f

(L−1)
1,j (x)

≥ w(L−1)
1,1,1 · (

2d∑
j=1

f
(L−1)
1,j (x)− 1

2
)− |w(L−1)

1,1,0 +
1

2
· w(L−1)

1,1,1 |

−
2d∑
j=1

|w(L−1)
1,1,j − w

(L−1)
1,1,1 | −

r0∑
j=2d+1

|w(L−1)
1,1,j |

≥ −4 · (n+ 1) · (2d · 1

8d
− 1

2
)− 1

2
−

2d∑
j=1

1

2r0
−

r0∑
j=2d+1

1

2r0

≥ n ≥ log(1/e−n − 1),

which implies (46).
In order to prove (47) we assume that x ∈ [−1, 1]d satis�es x(k) /∈ [a(k)− δ, b(k) + δ] for

some k ∈ {1, . . . , d}. In case x(k) < a(k)− δ we can argue similarly as above and conclude
recursively from (48) and (33)-(45)

d∑
j=1

w
(0)
1,k,j · x

(j) + w
(0)
1,k,0

= w
(0)
1,k,k · (x

(k) − a(k)) + w
(0)
1,k,0 + w

(0)
1,k,k · a

(k) +
∑

j∈{1,...,d}\{k}

w
(0)
1,k,j · x

(j)

≥ 2 · log(8d− 1)− |w(0)
1,k,0 + w

(0)
1,k,k · a

(k)| −
∑

j∈{1,...,d}\{k}

|w(0)
1,k,j |

≥ log(8d− 1),

which implies

f
(1)
1,k (x) ≥ σ(log(8d− 1)) = σ(log(1/(1/(8d))− 1)) ≥ 1− 1

8d
≥ 3

4
.

Recursively we can conclude for r = 2, . . . , L− 1

r0∑
j=1

w
(r−1)
1,k,j · f

(r−1)
1,j (x) + w

(r−1)
1,k,0

= w
(r−1)
1,k,k ·

(
f

(r−1)
1,k (x)− 1

2

)
+ w

(r−1)
1,k,k ·

1

2
+ w

(r−1)
1,k,0 +

∑
j∈{1,...,r0}\{k}

w
(r−1)
1,k,j · f

(r−1)
1,j (x)

≥ 2 · log(8d− 1)− |w(r−1)
1,k,k ·

1

2
+ w

(r−1)
1,k,0 | −

∑
j∈{1,...,r0}\{k}

|w(r−1)
1,k,j |

imsart-bj ver. 2009/08/13 file: overparneur15.tex date: November 1, 2020

26 M. Kohler and K. Krzy»ak

≥ log(8d− 1)

and

f
(r)
1,k(x) ≥ σ(log(8d− 1)) ≥ 1− 1

8d
≥ 3

4
.

This yields

r0∑
j=1

w
(L−1)
1,1,j · f

(L−1)
1,j (x) + w

(L−1)
1,1,0

= w
(L−1)
1,1,1 · (

2d∑
j=1

f
(L−1)
1,j (x)− 1

2
) + w

(L−1)
1,1,0 +

1

2
· w(L−1)

1,1,1

+

2d∑
j=1

(w
(L−1)
1,1,j − w

(L−1)
1,1,1) · f (L−1)

1,j (x) +

r0∑
j=2d+1

w
(L−1)
1,1,j · f

(L−1)
1,j (x)

≤ w(L−1)
1,1,1 · (

2d∑
j=1

f
(L−1)
1,j (x)− 1

2
) + |w(L−1)

1,1,0 +
1

2
· w(L−1)

1,1,1 |

+

2d∑
j=1

|w(L−1)
1,1,j − w

(L−1)
1,1,1 |+

r0∑
j=2d+1

|w(L−1)
1,1,j |

≤ −4 · (n+ 1)(
3

4
− 1

2
) +

1

2
+

2d∑
j=1

1

2r0
+

r0∑
j=2d+1

1

2r0

= −n ≤ − log(1/e−n − 1),

which implies (47).
In the same way we get the assertion in case x(k) > b(k) + δ. �

Remark 3. It is easy to see that the number of weights of the neural network f (L)
1,1 is

given by
(L− 2) · (r2

0 + r0) + r0 · (d+ 2) + 1.

Lemma 8 Let σ be the logistic squasher. Let fw be de�ned by (8)�(10), let k ∈ {1, . . . , kn}
and assume that

max
t∈{1,...,n}

f
(L)
k,1 (Xt) · (1− f (L)

k,1 (Xt)) ≤ e−n (49)

holds. Assume furthermore ‖w‖∞ ≤ c3 · nc4 and

max
j=1,...,n

‖Xj‖∞ ≤ c3 · nc4 and max
j=1,...,n

|Yj | ≤ c3 · nc4 . (50)

Set

Fn(w) =
1

n

n∑
i=1

|fw(Xi)− Yi|2.

imsart-bj ver. 2009/08/13 file: overparneur15.tex date: November 1, 2020

Over-Parametrized Deep Neural Networks 27

Then we have for all r < L and all i, j∣∣∣∣∣ ∂Fn

∂w
(r)
k,i,j

(w)

∣∣∣∣∣ ≤ 2 ·
√
Fn(w) · rL0 · (c3 · nc4)L+1 · e−n

Proof. By the Cauchy-Schwarz inequality we get∣∣∣∣∣ ∂

∂w
(r)
k,i,j

Fn(w)

∣∣∣∣∣ =

∣∣∣∣∣ 2n
n∑
l=1

(fw(Xl)− Yl) ·
∂fw

∂w
(r)
k,i,j

(Xl)

∣∣∣∣∣
≤ 2 ·

√
Fn(w) · max

l=1,...,n

∣∣∣∣∣ ∂fw

∂w
(r)
k,i,j

(Xl)

∣∣∣∣∣ .
Using the recursive de�nition of fw together with (49), r < L and σ′(x) = σ(x)·(1−σ(x))
we get∣∣∣∣∣ ∂fw

∂w
(r)
k,i,j

(Xl)

∣∣∣∣∣
=

∣∣∣∣∣∣
kn∑
ī=1

w
(L)

1,1,̄i
·
∂f

(L)

ī,1

∂w
(r)
k,i,j

(Xl)

∣∣∣∣∣∣
= |w(L)

1,1,k| ·

∣∣∣∣∣ ∂f
(L)
k,1

∂w
(r)
k,i,j

(Xl)

∣∣∣∣∣
= |w(L)

1,1,k| · f
(L)
k,1 (Xl) · (1− f (L)

k,1 (Xl)) ·

∣∣∣∣∣∣ ∂

∂w
(r)
k,i,j

 r0∑
j̄=1

w
(L−1)

k,1,j̄
· f (L−1)

k,j̄
(Xl) + w

(L−1)
k,1,0

∣∣∣∣∣∣
≤ |w(L)

1,1,k| · e
−n ·

∣∣∣∣∣∣ ∂

∂w
(r)
k,i,j

 r0∑
j̄=1

w
(L−1)

k,1,j̄
· f (L−1)

k,j̄
(Xl) + w

(L−1)
k,1,0

∣∣∣∣∣∣ .
As in the proof of Lemma 6 (cf., proof of (27)) it is possible to show

|w(L)
1,1,k| ·

∣∣∣∣∣∣ ∂

∂w
(r)
k,i,j

 r0∑
j̄=1

w
(L−1)

k,1,j̄
· f (L−1)

k,j̄
(Xl) + w

(L−1)
k,1,0

∣∣∣∣∣∣ ≤ rL0 · (c3 · nc4)L+1,

which implies the assertion. �
Proof of Theorem 1. The proof is divided into six steps.

In the �rst step of the proof we show that for every l ∈ {1, . . . , n} there exist (random)

(w̄
(r)
1,i,j)i,j,r :r<L ∈

[
−n4, n4

](L−2)·(r20+r0)+r0·(d+2)+1

imsart-bj ver. 2009/08/13 file: overparneur15.tex date: November 1, 2020

28 M. Kohler and K. Krzy»ak

such that for any (w
(r)
1,i,j)i,j,r :r<L with

max
i,j,r:r<L

|w(r)
1,i,j − w̄

(r)
1,i,j | < min

{
1

16r0
,

log(8d− 1)

24r0

}
(51)

we have that any function f (L)
1,1 corresponding to any (w̃

(r)
1,i,j)i,j,r :r<L with

max
i,j,r:r<L

|w̃(r)
1,i,j − w

(r)
1,i,j | < min

{
1

16r0
,

log(8d− 1)

24r0

}
(52)

satis�es in case min{‖Xi −Xj‖∞ : 1 ≤ i, j ≤ n,Xi 6= Xj} ≥ 1/(n+ 1)3

f
(L)
1,1 (Xl) ≥ 1− e−n and max

t∈{1,...,n}, Xt 6=Xl
f

(L)
1,1 (Xt) ≤ e−n. (53)

Set δn = 1/(n + 1)3 and a(i) = X
(i)
l −

δn
2 and b(i) = X

(i)
l + δn

2 (i = 1, . . . , d). Then we
have

Xl ∈
[
a(1) +

δn
4
, b(1) − δn

4

]
× · · · ×

[
a(d) +

δn
4
, b(d) − δn

4

]
,

and
min{‖Xi −Xj‖∞ : 1 ≤ i, j ≤ n,Xi 6= Xj} ≥ 1/(n+ 1)3

implies that we also have

Xt /∈
[
a(1) − δn

4
, b(1) +

δn
4

]
× · · · ×

[
a(d) − δn

4
, b(d) +

δn
4

]
for all t ∈ {1, . . . , n} with Xt 6= Xl. If (w̄

(r)
1,i,j)i,j,r :r<L satis�es

w̄
(L−1)
1,1,1 ≤ −8 · (n+ 1),

|w̄(L−1)
1,1,j − w̄

(L−1)
1,1,1 | ≤

1

4r0
for j = 2, . . . , d,

|w̄(L−1)
1,1,j | ≤

1

4r0
for j = 2d+ 1, . . . , r0,

|w̄(L−1)
1,k,0 +

1

2
· w̄(L−1)

1,1,1 | ≤
1

4
for k ∈ {1, . . . , 2d},

w̄
(r−1)
1,k,k ≥ 16 · log(8d− 1) for k ∈ {1, . . . , 2d} and r ∈ {2, . . . , L− 1},

|w̄(r−1)
1,k,0 +

1

2
· w̄(r−1)

1,k,k | ≤
log(8d− 1)

2r0
for k ∈ {1, . . . , 2d} and r ∈ {2, . . . , L− 1},

|w̄(r−1)
1,k,j | ≤

log(8d− 1)

2r0
for j ∈ {1, . . . , r0} \ {k}, k ∈ {1, . . . , 2d}, r ∈ {2, . . . , L− 1},

imsart-bj ver. 2009/08/13 file: overparneur15.tex date: November 1, 2020

Over-Parametrized Deep Neural Networks 29

w̄
(0)
1,k,k ≤ −

4

δn
· log(8d− 1) for k ∈ {1, . . . , d},

|w̄(0)
1,k,0 + a(k) · w̄(0)

1,k,k| ≤
log(8d− 1)

2d
for k ∈ {1, . . . , d},

|w̄(0)
1,k,j | ≤

log(8d− 1)

2d
for k ∈ {1, . . . , d}, j ∈ {1, . . . , d} \ {k}

w̄
(0)
1,d+k,k ≥

4

δn
· log(8d− 1) for k ∈ {1, . . . , d},

|w̄(0)
1,d+k,0 + b(k) · w̄(0)

1,d+k,k| ≤
log(8d− 1)

2d
for k ∈ {1, . . . , d}

and

|w̄(0)
1,d+k,j | ≤

log(8d− 1)

2d
for k ∈ {1, . . . , d}, j ∈ {1, . . . , d} \ {k},

then it is easy to see that for any (w
(r)
1,i,j)i,j,r :r<L which satis�es (51) we have that any

(w̃
(r)
1,i,j)i,j,r :r<L which satis�es (52) also satis�es (33)-(45). Application of Lemma 7 yields

(53).
In the second step of the proof we show that for n su�ciently large with probability

at least 1 − n · e−n the weights in the random initialization of the weights are chosen
such that for each l ∈ {1, . . . , n} the weights for some index kl satisfy (51) (and hence
all functions with weights satisfying (52) satisfy (53)). We assume in the sequel that n is
su�ciently large. If we sample the weight vector from the uniform distribution on[

−n4, n4
](L−2)·(r20+r0)+r0(d+2)+1

,

then condition (51) is satis�ed for a weight vector w̄ corresponding to X1 with probability
at least (

1

n5

)(L−2)·(r20+r0)+r0·(d+2)+1

=
1

n5·(L−2)·(r20+r0)+5·r0·(d+2)+5
=: ηn.

Hence after ρn = n · d 1
ηn
e of such independent choices (51) is never satis�ed with proba-

bility less than or equal to

(1− ηn)
ρn ≤

(
1− n

ρn

)ρn
≤ exp

(
− n

ρn
· ρn
)

= e−n.

Now we consider n�times successively ρn choices of the weights, i.e.,

kn = n2 · d 1

ηn
e = n5·(L−2)·(r20+r0)+5·r0·(d+2)+7

imsart-bj ver. 2009/08/13 file: overparneur15.tex date: November 1, 2020

30 M. Kohler and K. Krzy»ak

such choices. Then the probability that in the �rst series of weights there are no weights
corresponding to X1 chosen, or in the second no weights corresponding to X2, ..., or in
the n-th no weights corresponding to Xn is bounded from above by

n∑
i=1

e−n = n · e−n.

Set
CLip,n = n8·(L−2)·(r20+r0)+8·r0·(d+2)+16·L+15.

In the third step of the proof we show that we have for n su�ciently large

‖w(t)‖∞ ≤ 2 · n4 for t = 0, 1, . . . , tn (54)

and
‖(∇wFn)(w)− (∇wFn)(w(t))‖ ≤ CLip,n · ‖w −w(t)‖ (55)

for all w = w(t) + s · (w(t+1) −w(t)) and all s ∈ [0, 1], for all t = 0, 1, . . . , tn − 1.
By Lemma 6 we know that for n su�ciently large (15) and (16) hold for c3 = 1

and c4 = 4. The initial choice of our weights implies furthermore (17) and (18) for n
su�ciently large. Application of Lemma 4 yields (54). And (54) together with another
application of Lemma 6 implies (55).

In the fourth step of the proof we show for n su�ciently large

Fn(w(t)) ≤ n4 for t = 0, 1, . . . , tn. (56)

Because of (55) we can conclude from Lemma 1 that we have for n su�ciently large

Fn(w(t+1)) ≤ Fn(w(t)) for t = 0, 1, . . . , tn − 1.

But the initial choice of the weights implies

Fn(w(0)) =
1

n

n∑
i=1

Y 2
i ≤ n4.

In the �fth step of the proof we show that for n su�ciently large and with probability
at least 1− n · e−n (14) holds for all w = w(t) (t = 0, 1, . . . , tn − 1). Because of the �rst
and the second step of the proof it su�ces to show

|w̄(r)
ji,k,l

− w(r)
ji,k,l
| ≤ 1

n

for all i ∈ {1, . . . , n} and all k, l, r with r < L, where w̄(r)
ji,k,l

and w
(r)
ji,k,l

are the corre-

sponding components of w(t) and w(0). Here ji is chosen such that

f
(L)
ji,1

(Xi) ≥ 1− e−n and max
t∈{1,...,n}, Xt 6=Xi

f
(L)
ji,1

(Xt) ≤ e−n. (57)

imsart-bj ver. 2009/08/13 file: overparneur15.tex date: November 1, 2020

Over-Parametrized Deep Neural Networks 31

By Lemma 8 and the result of the fourth step of the proof we can successively conclude
for n su�ciently large that we have for t = 0, 1, . . . , tn − 1∣∣∣∣∣ ∂

∂
(r)
ji,k,l

Fn(w(t))

∣∣∣∣∣ ≤ 2 · n2 · rL0 · (n4)L+1 · e−n ≤ 1

2n3
=

1

tn · λn
· 1

n

and that consequently (57) holds for w(t).
In the sixth step of the proof we show the assertion of Theorem 1. By the results of

the third and the �fth step of the proof we know that the assumptions of Lemma 3 are
satis�ed. Application of Lemma 3 yields

Fn(w(tn))− min
g:Rd→R

1

n

n∑
i=1

|g(Xi)− Yi|2

≤
(

1− 1

2 · n · CLip,n

)tn
·

(
Fn(w(0))− min

g:Rd→R

1

n

n∑
i=1

|g(Xi)− Yi|2
)

≤ exp

(
− tn

2 · n · CLip,n

)
·

(
Fn(w(0))− min

g:Rd→R

1

n

n∑
i=1

|g(Xi)− Yi|2
)

= exp(−n) ·

(
Fn(w(0))− min

g:Rd→R

1

n

n∑
i=1

|g(Xi)− Yi|2
)
.

With
Fn(w(0)) ≤ n4

we get the assertion. �

4.2. Proof of Theorem 2

Lemma 9 Let n ∈ N, (x1, y1), . . . , (xn, yn) ∈ Rd × R, f : Rd → R, κn > 0 and assume

1

n

n∑
i=1

|f(xi)− yi|2 ≤ min
g:Rd→R

1

n

n∑
i=1

|g(xi)− yi|2 + κn. (58)

Set

m̄n(x) =

∑n
i=1 yi · I{xi=x}∑n
i=1 I{xi=x}

(x ∈ Rd),

where we use the convention 0/0 = 0. Then we have for any i ∈ {1, . . . , n}

|f(xi)− m̄n(xi)| ≤
√
n · κn.

Proof. We have

1

n

n∑
i=1

|f(xi)− yi|2 =
1

n

n∑
i=1

|f(xi)− m̄n(xi)|2 +
1

n

n∑
i=1

|m̄n(xi)− yi|2,

imsart-bj ver. 2009/08/13 file: overparneur15.tex date: November 1, 2020

32 M. Kohler and K. Krzy»ak

since

1

n

n∑
i=1

(f(xi)− m̄n(xi)) · (m̄n(xi)− yi)

=
1

n

∑
x∈{x1,...,xn}

(f(x)− m̄n(x)) ·
∑

1≤i≤n:xi=x

(m̄n(xi)− yi) = 0.

Application of (58) yields

1

n

n∑
i=1

|f(xi)− m̄n(xi)|2 ≤ κn,

which implies the assertion. �
Proof of Theorem 2. Set

pk =
1

n
(k ∈ {1, . . . , n})

and set pk = 0 for k > n. Set xk = (k/n, 0, . . . , 0)T and de�ne the distribution of (X,Y)
by

1. P[X = xk] = pk (k ∈ N),
2. Y = m(X) + ε where X, ε are independent and m : Rd → R,
3. P{ε = −1} = 1

2 = P{ε = 1},
4. m(x) = 0 (x ∈ Rd).

Then m is the regression function of (X,Y) and the distribution of (X,Y) satis�es the
assumptions of Theorem 2.

Set

m̄n(x) =

∑n
i=1 Yi · I{Xi=x}∑n
i=1 I{Xi=x}

(x ∈ Rd).

Using
|m̄n(x)|2 ≤ 2 · |mn(xk)|2 + 2 · |mn(xk)− m̄n(xk)|2

together with Lemma 9 we get

E

∫
|mn(x)−m(x)|2PX(dx)

≥ E

{
n∑
k=1

|mn(xk)|2 · pk · I{∑n
i=1 I{Xi=xk}>0} · I{U∈Pn}

}

≥ E

{
n∑
k=1

(
1

2
|m̄n(xk)|2 − |mn(xk)− m̄n(xk)|2

)
· pk · I{∑n

i=1 I{Xi=xk}>0} · I{U∈Pn}

}

= E

{
n∑
k=1

1

2
|m̄n(xk)|2 · pk · I{∑n

i=1 I{Xi=xk}>0}

}

imsart-bj ver. 2009/08/13 file: overparneur15.tex date: November 1, 2020

Over-Parametrized Deep Neural Networks 33

−E

{
n∑
k=1

1

2
|m̄n(xk)|2 · pk · I{∑n

i=1 I{Xi=xk}>0} · I{U∈Pcn}

}

−E

{
n∑
k=1

|mn(xk)− m̄n(xk)|2 · pk · I{∑n
i=1 I{Xi=xk}>0} · I{U∈Pn}

}

≥ 1

2
·
n∑
k=1

E
{
|m̄n(xk)|2 · I{∑n

i=1 I{Xi=xk}>0}

}
· pk −

1

2
·PU (Pcn)− n · κn,

where in the last inequality we used |m̃n(x)| ≤ 1 which holds because of Yi ∈ {−1, 1}.
The de�nition of m̄n implies

n∑
k=1

E
{
|m̄n(xk)|2 · I{∑n

i=1 I{Xi=xk}>0}

}
· pk

≥
n∑
k=1

E
{
E
{
|m̄n(xk)|2

∣∣X1, . . . , Xn

}
· I{∑n

i=1 I{Xi=xk}>0}

}
· pk

=

n∑
k=1

E

{
1∑n

i=1 I{Xi=xk}
· I{∑n

i=1 I{Xi=xk}>0}

}
· pk.

Using the fact that
∑n
i=1 I{Xi=xk} is binomially distributed with n degrees of freedom

and probability of success pk we get

n∑
k=1

E

{
1∑n

i=1 I{Xi=xk}
· I{∑n

i=1 I{Xi=xk}>0}

}
· pk

=

n∑
k=1

n∑
i=1

1

i
·
(n
i

)
pik · (1− pk)n−i · pk

≥
n∑
k=1

n∑
i=1

1

i+ 1
·
(n
i

)
pik · (1− pk)n−i · pk

=
1

n+ 1
·
n∑
k=1

n∑
i=1

(
n+ 1

i+ 1

)
pi+1
k · (1− pk)n+1−(i+1)

=
n

n+ 1
·

(
1−

(
1− 1

n

)n+1

− (n+ 1) · 1

n
·
(

1− 1

n

)n)

≥ n

n+ 1
·
(

1− 2n+ 1

n
·
(

1− 1

n

)n)
≥ 10

11
·
(

1− 21

10
· 1

e

)
,

where the last inequality holds for n ≥ 10.
Putting together the above results implies the assertion. �

imsart-bj ver. 2009/08/13 file: overparneur15.tex date: November 1, 2020

34 M. Kohler and K. Krzy»ak

Acknowledgments

The authors would like to thank the Associate Editor and three anonymous referees for
various invaluable comment, which helped very much to improve the presentation. This
work was supported in part by the Natural Sciences and Engineering Research Council
of Canada under Grant RGPIN-2015-06412 and the second author would like to thank
NSERC for funding this work.

References

[1] Allen-Zhu, Z., Li, Y., and Liang, Y. (2019). Learning and generalization in overparam-
eterized neural networks, going beyond two layers. In Advances in neural information
processing systems, pages 6155-6166.

[2] Allen-Zhu, Z., Li, Y., and Song, Z. (2019). A convergence theory for deep kearning via
over-parameterization. Proceedings of the 36th International Conference on Machine
Learning (PMLR 2019), 97, pp. 242-252. Long Beach, California.

[3] Arora, S., Cohen, N., Golowich, N., and Hu, W. (2018). A convergence analysis of
gradient descent for deep linear neural networks. International Conference on Learning
Representations (ICLR 2019). New Orleans, Louisiana.

[4] Bartlett, P. L., Long, P. M., and Lugosi, G. (2019). Beningn over�tting in linear
regression. arXiv: 1906.11300v1.

[5] Bauer, B., and Kohler, M. (2019). On deep learning as a remedy for the curse of
dimensionality in nonparametric regression. Annals of Statistics 47, pp. 2261-2285.

[6] Belkin, M., Rakhlin, A., and Tsybakov, A. B. (2018). Does data interpolation con-
tradict statistical optimality? arXiv: 1806.09471v1.

[7] Belkin, M., Hsu, D., Ma, S., and Mandal, S. (2019). Reconciling modern machine
learning practice and the bias-variance trade-o�. arXiv: 1812.11118v2.

[8] Bubeck, S., Eldan, R., Lee, Y. T., and Mikulincer, D. (2020) Network size and weights
size for memorization with two-layers neural networks. arXiv: 2006.02855.

[9] Braun, A., Kohler, M., and Walk, H. (2019). On the rate of convergence of a neural
network regression estimate learned by gradient descent. Submitted for publication.

[10] Cao, Y., and Gu, Q. (2019). Generalization error bounds of gradient descent for
learning overparameterized deep relu networks. arXiv: 1902.01384.

[11] Chizat, L., Oyallon, E., and Bach, F. (2020). On Lazy Training in Di�erentiable
Programming. arXiv: 1812.07956.

[12] Choromanska, A., Hena�, M., Mathieu, M., Arous, G. B., and LeCun, Y. (2015) The
loss surface of multilayer networks. International Conference on Articial Intelligence
and Statistics (AISTATS) 2015, San Diego, CA, USA. Proceeding of Machine Learning
Research, volume 38, pp. 192-204.

[13] Daniely, A. (2019) Neural networks learning and memorization with (almost) no
over-parameterization. arXiv: 1911.09873.

[14] Daniely, A. (2020) Memorizing gaussians with no over-parameterizaion via gradient
decent on neural networks. arXiv: 2003.12895.

imsart-bj ver. 2009/08/13 file: overparneur15.tex date: November 1, 2020

Over-Parametrized Deep Neural Networks 35

[15] Devroye, L., Györ�, L., and Lugosi, G. (1996). A Probabilistic Theory of Pattern
Recognition. Springed, New York, USA.

[16] Devroye, L., and Wagner, T. J. (1980). Distribution-free consistency results in non-
parametric discrimination and regression function estimation. Annals of Statistics, 8,
pp. 231-239.

[17] Du, S., and Lee, J. (2018). On the power of over-parametrization in neural net-
works with quadratic activation. Proceedings of the 35th International Conference on
Machine Learning (PMLR 2018), 80, pp. 1329-1338. Stockholm, Sweden.

[18] Du, S., Lee, J., Tian, Y., Poczos, B., and Singh, A. (2018). Gradient descent learns
one-hidden-layer CNN: don't be afraid of spurious local minima. Proceedings of the
35th International Conference on Machine Learning (PMLR 2018), 80, pp. 1339-1348.
Stockholm, Sweden.

[19] Eckle, K., and Schmidt-Hieber, J. (2019). A comparison of deep networks with ReLU
activation function and linear spline-type methods. Neural Networks, 110, pp. 232-242.

[20] Györ�, L., Kohler, M., Krzy»ak, A., and Walk, H. (2002). A Distribution�Free The-
ory of Nonparametric Regression. Springer.

[21] Hastie, T., Montanari, A., Rosset, S., and Tibshirani, R. J. (2019). Surprises in
high-dimensional ridgeless least squares interpolation. arXiv: 1903.08560v4

[22] Huang, J. and Yau H-T. (2019). Dynamics of deep neural networks and neural
tangent hierarchy. arXiv:1909.08156v1

[23] Imaizumi, M., and Fukamizu, K. (2019). Deep neural networks learn non-smooth
functions e�ectively. Proceedings of the 22nd International Conference on Arti�cial
Intelligence and Statistics (AISTATS 2019). Naha, Okinawa, Japan.

[24] Jackot, A., Gabriel, F. and Hongler, C. (2018). Neural tangent kernel: convergence
and generalization in neural networks. Advances in Neural Information Processing
Systems, pp. 8571-8580.

[25] Kawaguchi, K. (2016). Deep learning without poor local minima. 30th Conference
on Neural Information Processing Systems (NIPS 2016). Barcelona, Spain.

[26] Kawaguchi, K, and Huang, J. (2019). Gradient descent �nds global minima for
generalizable deep neural networks of practical sizes. 57th IEEE Annual Allerton
Conference on Communication, Control, and Computing, Allerton, IL, pp. 92-99.

[27] Kohler, M., and Krzy»ak, A. (2017). Nonparametric regression based on hierarchical
interaction models. IEEE Transaction on Information Theory, 63, pp. 1620-1630.

[28] Kohler, M., Krzy»ak, A., and Langer, S. (2019). Estimation of a function of low local
dimensionality by deep neural networks. Submitted for publication. arXiv: 1908.11140.

[29] Kohler, M., and Langer, S. (2019). On the rate of convergence of fully connected
deep neural network regression estimates. To appear in Annals of Statistics, 2021.
arXiv: 1908.11133.

[30] Liang, S., Sun, R., Lee, J., and Srikant, R. (2018). Adding one neuron can elimi-
nate all bad local minima. Proceedings of the 32nd Conference on Neural Information
Processing Systems (NIPS 2018), pp. 4355 - 4365. Montreal, Canada.

[31] Montanari, A. and Zhong, Y. (2020) The interpolation phase transition in neural
networks: Mem- orization and generalization under lazy training. arXiv: 2007.12826.

[32] Mücke, N., and Steinwart, I. (2019). Global Minima of DNNs: The Plenty Pantry.

imsart-bj ver. 2009/08/13 file: overparneur15.tex date: November 1, 2020

36 M. Kohler and K. Krzy»ak

arXiv: 1905.10686.
[33] Neyshabur, B., Li, Z., Bhojanapalli, S., LeCun, Y., and Srebro, N. (2019). The
role of over-parametrization in generalization of neural networks. In 7th International
Conference on Learning Representations, ICLR 2019.

[34] Nitanda, A. and Suzuki, T. (2020). Optimal rates for averaged stochastic gradient
descent under neural tangent kernel regime. arXiv:2006.12297v1.

[35] Schmidhuber, J. (2015). Deep learning in neural networks: an overview. Neural Net-
works, 61, pp. 85-117.

[36] Schmidt-Hieber, J. (2020a). Nonparametric regression using deep neural networks
with ReLU activation function. Annals of Statistics, 48, pp. 1875-1897.

[37] Schmidt-Hieber, J. (2020b). Rejoinder to discussions of �Nonparametric regression
using deep neural networks with ReLU activation function�. Annals of Statistics, 48,
pp. 1916-1921.

[38] Stone, C. J. (1982). Optimal global rates of convergence for nonparametric regres-
sion. Annals of Statistics, 10, pp. 1040-1053.

[39] Stone, C. J. (1985). Additive regression and other nonparametric models. Annals of
Statistics, 13, pp. 689-705.

[40] Stone, C. J. (1994). The use of polynomial splines and their tensor products in
multivariate function estimation. Annals of Statistics, 22, pp. 118-184.

[41] Woodworth, B., Gunasekar, S., Lee, J., Moroshko, E., Savarese, P., Golan, I., Soudry,
D., and Srebro, N. (2020). Kernel and rich regimes in overparametrized models. arXiv:
2002.09277

imsart-bj ver. 2009/08/13 file: overparneur15.tex date: November 1, 2020

