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Abstract

Image classi�ers based on convolutional neural networks are de�ned, and the rate of
convergence of the misclassi�cation risk of the estimates towards the optimal misclassi�-
cation risk is analyzed. Under suitable assumptions on the smoothness and structure of
the aposteriori probability, the rate of convergence is shown which is independent of the
dimension of the image. This proves that in image classi�cation, it is possible to circum-
vent the curse of dimensionality by convolutional neural networks. Our classi�ers are
compared with various other classi�cation methods using simulated data. Furthermore,
the performance of our estimates is also tested on real images.

AMS classi�cation: Primary 62G05; secondary 62G20.
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1 Introduction

1.1 Scope of this article

Deep neural networks are nowadays among the most successful and most widely used
methods in machine learning, see, e.g., Schmidhuber (2015), Rawat and Wang (2017),
and the literature cited therein. In many applications the most successful networks
are deep convolutional networks, see, e.g., Krizhevsky, Sutskever and Hinton (2012)
and Kim (2014) concerning applications in image classi�cation or language recognition,
respectively. These networks can be considered as a special case of the deep feedforward
neural networks, where symmetry constraints are imposed on the weights of the networks.
For general deep feedforward neural networks it was recently shown that under suitable

1Running title: Rate of convergence of image classi�ers
2Corresponding author. Tel: +1-514-848-2424 ext. 3007, Fax:+1-514-848-2830

1



compository assumptions on the structure of the regression function these networks are
able to achieve dimension reduction in estimation of high-dimensional regression functions
(cf., Kohler and Krzy»ak (2017), Bauer and Kohler (2019), Schmidt-Hieber (2019), Kohler
and Langer (2019) and Suzuki and Nitanda (2019)). The purpose of this article is to
characterize situations in image classi�cation, where deep convolutional neural networks
can achieve a similar dimension reduction.

1.2 Image classi�cation

Let d1, d2 ∈ N and let (X, Y ), (X1, Y1), . . . , (Xn, Yn) be independent and identically
distributed random variables with values in

[0, 1]{1,...,d1}×{1,...,d2} × {0, 1}.

Here we use the notation

[0, 1]J = {(aj)j∈J : aj ∈ [0, 1] (j ∈ J)}

for a nonempty and �nite index set J , and we describe a (random) image from (random)
class Y ∈ {0, 1} by a (random) matrix X with d1 columns and d2 rows, which contains at
position (i, j) the grey scale value of the pixel of the image at the corresponding position.
Let

η(x) = P{Y = 1|X = x} (x ∈ [0, 1]{1,...,d1}×{1,...,d2}) (1)

be the so�called aposteriori probability. Then we have

min
f :[0,1]{1,...,d1}×{1,...,d2}→{0,1}

P{f(X) 6= Y } = P{f∗(X) 6= Y },

where

f∗(x) =

{
1, if η(x) > 1

2

0, elsewhere

is the so�called Bayes classi�er (cf., e.g., Theorem 2.1 in Devroye, Györ� and Lugosi
(1996)). Set

Dn = {(X1, Y1), . . . , (Xn, Yn)} .
In the sequel we consider the problem of constructing a classi�er

fn = fn(·,Dn) : [0, 1]{1,...,d1}×{1,...,d2} → {0, 1}

such that the misclassi�cation risk

P{fn(X) 6= Y |Dn}

of this classi�er is as small as possible. Our aim is to derive a bound on the expected
di�erence of the misclassi�cation risk of fn and the optimal misclassi�cation risk, i.e., we
want to derive an upper bound on

E

{
P{fn(X) 6= Y |Dn} − min

f :[0,1]{1,...,d1}×{1,...,d2}→{0,1}
P{f(X) 6= Y }

}
= P{fn(X) 6= Y } −P{f∗(X) 6= Y }.
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1.3 Plug-in classi�ers

We will use plug-in classi�ers of the form

fn(x) =

{
1, if ηn(x) ≥ 1

2

0, elsewhere

where
ηn(·) = ηn(·,Dn) : [0, 1]{1,...,d1}×{1,...,d2} → R

is an estimate of the aposteriori probability (1). It is well-known that such plug-in
classi�ers satisfy

P{fn(X) 6= Y |Dn} −P{f∗(X) 6= Y } ≤ 2 ·
∫
|ηn(x)− η(x)|PX(dx)

(cf., e.g., Theorem 1.1 in Györ� et al. (2002)), which implies (via the Cauchy-Schwartz
inequality)

P{fn(X) 6= Y } −P{f∗(X) 6= Y } ≤ 2 ·

√
E

{∫
|ηn(x)− η(x)|2PX(dx)

}
. (2)

Hence we can derive an upper bound on the di�erence between the expected misclassi�-
cation risk of our estimate and the minimal possible value from a bound on the expected
L2 error of the estimate ηn of the aposteriori probability.
It is well-known that the bound in (2) is not tight, therefore classi�cation is easier

than regression estimation (cf., Devroye, Gör� and Lugosi (1996)). In the sequel we
will nevertheless solve an image classi�cation problem via regression estimation, because
this will enable us to impose conditions on the underlying distribution by restricting the
structure of the aposteriori probability. And, as we will see in the next subsection, it
is easy to formulate such restrictions such that they seem to be natural assumptions in
image classi�cation applications.

1.4 A hierarchical max-pooling model for the aposteriori probability

In order to derive nontrivial rate of convergence results on the di�erence between the
misclassi�cation risk of any estimate and the minimal possible value it is necessary to
restrict the class of distributions (cf., Cover (1968) and Devroye (1982)). In the sequel we
will use assumptions on the structure and the smoothness of the aposteriori probability.
The basic idea behind the formulation of our structural constraint is the following:

Consider an application where a human has to decide about a class of an image, e.g., the
human has to decide whether a given image contains a speci�c tra�c sign or not. Then
the human will survey the whole image and look at each subpart of the image whether
it contains the tra�c sign or not. By looking at a subpart, the human can estimate a
probability that this subpart contains the tra�c sign. It is then natural to assume that
the probability that the whole image contains a tra�c sign is simply the maximum of
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the probabilities for each subpart of the image. This idea leads to the de�nition of a
max-pooling model for the aposteriori probability introduced below.
Furthermore, we take decision whether a given subpart of the image contains a tra�c

sign or not by taking several decisions whether the image contains parts of a tra�c sign
or not, and by combining these decisions about the di�erent parts hierarchically. This
idea leads to the hierarchical model introduced below.
Combining both ideas leads to the hierarchical max-pooling model introduced below.
Now consider an application in which a human has to classify an image by applying a

function to the information about the existence of several objects, e.g., the human has
to decide whether an image contains exactly three speci�c tra�c signs out of a list of
�ve speci�c tra�c signs. Then, for each of these �ve tra�c signs, the human estimates
the probability that the image contains the tra�c sign and then veri�es whether exactly
three probabilities are su�ciently large. This leads us to our main model, the generalized
hierarchical max-pooling model, which we introduce next. In order to de�ne this model
we need the following notation: For M ⊆ Rd and x ∈ Rd we de�ne

x +M = {x + z : z ∈M}.

For I ⊆ {1, . . . , d1} × {1, . . . , d2} and x = (xi)i∈{1,...,d1}×{1,...,d2} ∈ [0, 1]{1,...,d1}×{1,...,d2}

we set
xI = (xi)i∈I .

De�nition 1 Let d1, d2 ∈ N with d1, d2 > 1 and m : [0, 1]{1,...,d1}×{1,...,d2} → R.
a) We say that m satis�es a max-pooling model with index set

I ⊆ {0, . . . , d1 − 1} × {0, . . . , d2 − 1},

if there exist a function f : [0, 1](1,1)+I → R such that

m(x) = max
(i,j)∈Z2 : (i,j)+I⊆{1,...,d1}×{1,...,d2}

f
(
x(i,j)+I

)
(x ∈ [0, 1]{1,...,d1}×{1,...,d2}).

b) Let I = {0, . . . , 2l − 1} × {0, . . . , 2l − 1} for some l ∈ N. We say that

f : [0, 1]{1,...,2
l}×{1,...,2l} → R

satis�es a hierarchical model of level l, if there exist functions

gk,s : R4 → [0, 1] (k = 1, . . . , l, s = 1, . . . , 4l−k)

such that we have

f = fl,1

for some fk,s : [0, 1]{1,...,2
k}×{1,...,2k} → R recursively de�ned by

fk,s(x) = gk,s
(
fk−1,4·(s−1)+1(x{1,...,2k−1}×{1,...,2k−1}),

fk−1,4·(s−1)+2(x{2k−1+1,...,2k}×{1,...,2k−1}),
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fk−1,4·(s−1)+3(x{1,...,2k−1}×{2k−1+1,...,2k}),

fk−1,4·s(x{2k−1+1,...,2k}×{2k−1+1,...,2k})
)(

x ∈ [0, 1]{1,...,2
k}×{1,...,2k}

)
for k = 2, . . . , l, s = 1, . . . , 4l−k, and

f1,s(x1,1, x1,2, x2,1, x2,2) = g1,s(x1,1, x1,2, x2,1, x2,2) (x1,1, x1,2, x2,1, x2,2 ∈ [0, 1])

for s = 1, . . . , 4l−1.
c) We say that m : [0, 1]{1,...,d1}×{1,...,d2} → R satis�es a hierarchical max-pooling

model of level l (where 2l ≤ min{d1, d2}), if m satis�es a max-pooling model with

index set

I =
{

0, . . . , 2l − 1
}
×
{

0, . . . , 2l − 1
}

and the function f : [0, 1](1,1)+I → R in the de�nition of this max-pooling model satis�es

a hierarchical model with level l.
d) Let d∗ ∈ N. We say m : [0, 1]{1,...,d1}×{1,...,d2} → R satis�es a generalized hierar-

chical max-pooling model of order d∗ and level l, if there exist functions

m1, . . . ,md∗ : [0, 1]{1,...,d1}×{1,...,d2} → R,

which satisfy a hierarchical max-pooling model of level l, and if there exists a function

g : Rd∗ → [0, 1] such that

m(x) = g(m1(x), . . . ,md∗(x)).

e) Let p1, p2 ∈ (0,∞). We say that a generalized hierarchical max-pooling model of order

d∗ and level l has smoothness constraints p1 and p2, if all functions gk,s in the de�nition

of the functions mi are (p1, C1)�smooth for some C1 > 0 for any i ∈ {1, . . . , d∗}, and if

the function g is (p2, C2)�smooth for some C2 > 0 (see Subsection 1.7 for the de�nition

of (p, C)�smoothness).

Remark 1. In the de�nition of our generalized hierarchical max-pooling model we do
not allow distinct levels l1, . . . , ld∗ for the functions m1, ...,md∗ . This is a restriction of
the more general case which we use because it makes our proofs much less technical (see
Remark 5 for the generalization of our results).

1.5 Main results

The main contributions in this paper are as follows: First, we introduce the above setting
for the mathematical analysis of an image classi�cation problem. Here our main idea is
to use plug-in classi�cation estimates, which allows us to restrict the underlying class of
distributions by imposing constraints on the structure and the smoothness of the apos-
teriori probability. The main advantage of this approach is that we can introduce in this
setting with the above generalized hierarchical max-pooling model a natural condition
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for applications. Second, we analyze the rate of convergence of the deep convolutional
neural network classi�ers (with ReLU activation function) in this context. Here we show
in Theorem 1 below that in case that the aposteriori probability satis�es a generalized
hierarchical max-pooling model of order d∗ with smoothness constraints p1 and p2, the
expected misclassi�cation risk of the estimate converges toward the minimal possible
value with rate

max
{
n
− p1

2·p1+4 , n
− p2

2·p2+d∗
}

(up to some logarithmic factor). Since this rate of convergence does not depend on the
dimension d1·d2 of the image, this shows that under suitable assumptions on the structure
of the aposteriori probability it is possible to circumvent the curse of dimensionality in
image classi�cation by using convolutional neural networks.

1.6 Discussion of related results

Convolutional neural networks, introduced by Le Cun et al. (1989), have become the
leading techniques in pattern recognition applications, cf., e.g., Le Cun et al. (1998),
LeCun, Bengio and Hinton (2015), Goodfellow, Bengio and Courville (2016), Rawat and
Wang (2017), and the literature cited therein.
As mentioned by Rawat and Wang (2017), despite the empirical success of these meth-

ods the theoretical proof of why they succeed is lacking. In fact there are only a few
papers addressing theoretical properties of these networks. Several papers used the idea
that properly de�ned convolutional neural networks are able to mimic deep feedforward
neural networks and obtained rate of convergence results for estimates based on convolu-
tional neural networks similar to feedforward neural networks estimates (cf., e.g., Oono
and Suzuki (2019) and the literature cited therein). The drawback of this approach is
that in this way it is not possible to identify situations in which convolutional neural
networks are superior to standard feedforward neural networks. Generalization bounds
for convolutional neural networks have been analyzed in Lin and Zhang (2019). In sev-
eral papers it was shown that gradient descent is able to �nd the global minimum of the
empirical loss function in case of overparametrized convolutional neural networks, cf.,
e.g., Du et al. (2019). But, as was shown by a counterexample in Kohler and Krzy»ak
(2019), overparametrized deep neural networks do not, in general, generalize well. In an
abstract setting, very interesting approximation properties of deep convolutional neural
networks have been obtained by Yarotsky (2018). However, it is unclear how one can
apply these results in statistical estimation problem.
Much more is known about standard deep feedforward neural networks. Here, it was

recently shown that under suitable compository assumptions on the structure of the
regression function these networks are able to achieve dimension reduction in estima-
tion of high-dimensional regression functions (cf., Kohler and Krzy»ak (2017), Bauer and
Kohler (2019), Schmidt-Hieber (2019), Kohler and Langer (2019) and Suzuki and Nitanda
(2019)). Imaizumi and Fukamizu (2019) derived results concerning estimation by neu-
ral networks of piecewise polynomial regression functions with partitions having rather
general smooth boundaries. Eckle and Schmidt-Hieber (2019) and Kohler, Krzy»ak and
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Langer (2019) showed that the least squares neural network regression estimates based
on deep neural networks can achieve the rate of convergence results similar to piecewise
polynomial partition estimates where partition is chosen in an optimal way.
Classi�cation theory has been intensively studied in statistics, see e.g., the book De-

vroye, Györ� and Lugosi (1996) which discusses probabilistic theory of pattern recogni-
tion in depth. This theory can of course be applied to image classi�cation, but due to
high dimensionality of the input in image classi�cation, this will not lead to useful results.
To the best of our knowledge there do not exist until now papers which analyze the rate
of convergence of image classi�ers and are able to achieve su�cient, and for some ap-
plications satisfactory, dimension reduction. Classi�cation problem with standard deep
feedforward neural networks has been analyzed in Kim, Ohn and Kim (2019).
Bayesian image analysis, which can be used, e.g., for feature extraction, can be found

in Chang et al. (2017).
A related problem to image classi�cation is image reconstruction or image denoising.

Here, quite a few theoretical results exist, see, e.g., Korostelev and Tsybakov (1993) and
the literature cited therein.

1.7 Notation

Throughout the paper, the following notation is used: The sets of natural numbers,
natural numbers including 0, integers and real numbers are denoted by N, N0, Z and R,
respectively. For z ∈ R, we denote the smallest integer greater than or equal to z by dze.
Let D ⊆ Rd and let f : Rd → R be a real-valued function de�ned on Rd. We write x =
arg minz∈D f(z) if minz∈D f(z) exists and if x satis�es x ∈ D and f(x) = minz∈D f(z).
For f : Rd → R

‖f‖∞ = sup
x∈Rd

|f(x)|

is its supremum norm, and the supremum norm of f on a set A ⊆ Rd is denoted by

‖f‖A,∞ = sup
x∈A
|f(x)|.

Let p = q + s for some q ∈ N0 and 0 < s ≤ 1. A function f : Rd → R is called (p, C)-
smooth, if for every α = (α1, . . . , αd) ∈ Nd0 with

∑d
j=1 αj = q the partial derivative

∂qf

∂x
α1
1 ...∂x

αd
d

exists and satis�es∣∣∣∣ ∂qf

∂xα1
1 . . . ∂xαdd

(x)− ∂qf

∂xα1
1 . . . ∂xαdd

(z)

∣∣∣∣ ≤ C · ‖x− z‖s

for all x, z ∈ Rd.
Let F be a set of functions f : Rd → R, let x1, . . . ,xn ∈ Rd and set xn1 = (x1, . . . ,xn).

A �nite collection f1, . . . , fN : Rd → R is called an ε� cover of F on xn1 if for any f ∈ F
there exists i ∈ {1, . . . , N} such that

1

n

n∑
k=1

|f(xk)− fi(xk)| < ε.
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The ε�covering number of F on xn1 is the size N of the smallest ε�cover of F on xn1 and
is denoted by N1(ε,F ,xn1 ).
For z ∈ R and β > 0 we de�ne Tβz = max{−β,min{β, z}}. If f : Rd → R is a function

and F is a set of such functions, then we set

(Tβf)(x) = Tβ (f(x)) and TβF = {Tβf : f ∈ F} .

1.8 Outline of the paper

In Section 2 the convolutional neural network image classi�ers used in this paper are
de�ned. The main result is presented in Section 3 and proven in Section 4.

2 Convolutional neural network image classi�ers

In the sequel we de�ne a convolutional neural network architecture by computing several
convolutional networks in parallel and by �nally applying a fully connected standard
feedforward network consisting of several layers to the results of these networks.
Firstly, we de�ne a fully connected multilayer feedforward neural network with L

hidden layers and kr neurons in layer r (r = 1, . . . , L). The output of the network
is produced by a function g : Rt → R of the form

g(x) =

kL∑
i=1

w
(L)
i g

(L)
i (x) + w

(L)
0 , (3)

where w
(L)
0 , . . . , w

(L)
kL
∈ R denote the output weights and for i ∈ {1, . . . , kL} the g(L)i are

recursively de�ned by

g
(r)
i (x) = σ

kr−1∑
j=1

w
(r−1)
i,j g

(r−1)
j (x) + w

(r−1)
i,0


for w

(r−1)
i,0 , . . . , w

(r−1)
i,kr−1

∈ R, i ∈ {1, . . . , kr}, r ∈ {1, . . . , L}, k0 = t and

g
(0)
i (x) = xi

for i ∈ {1, . . . , k0}, where the function σ : R→ R denotes the ReLU activation function

σ(x) = max{x, 0}.

We de�ne the function class of all real-valued functions on Rt of the form (3) with
parameters L and k = (k1, . . . , kL) by Gt(L,k).
Secondly, we de�ne a convolutional neural network with L ∈ N convolutional layers,

one linear layer and one max-pooling layer for a [0, 1]{1,...,d1}×{1,...,d2}�valued input, where
d1, d2 ∈ N. The network has kr ∈ N channels (also called feature maps) in the convolu-
tional layer r and the convolution in layer r is performed by a window of values of layer
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r − 1 of size Mr ∈ {1, . . . ,min{d1, d2}}, where r ∈ {1, . . . , L}. We will denote the input
layer as the convolutional layer 0 with k0 = 1 channels. The network depends on the
weight matrix (so�called �lter)

w =
(
w

(r)
i,j,s1,s2

)
1≤i,j≤Mr,s1∈{1,...,kr−1},s2∈{1,...,kr},r∈{1,...,L}

,

the weights

wbias =
(
w(r)
s2

)
s2∈{1,...,kr},r∈{1,...,L}

for the bias in each channel and each convolutional layer and the output weights

wout = (ws)s∈{1,...,kL}.

The output of the network is given by a real�valued function on [0, 1]{1,...,d1}×{1,...,d2} of
the form

fw,wbias,wout(x) = max

{
kL∑
s2=1

ws2 · o
(L)
(i,j),s2

: i ∈ {1, . . . , d1 −ML + 1},

j ∈ {1, . . . , d2 −ML + 1}

}
,

where o
(L)
(i,j),s2

is the output of the last convolutional layer, which is recursively de�ned
as follows:
We start with

o
(0)
(i,j),1 = xi,j for i ∈ {1, . . . , d1} and j ∈ {1, . . . , d2}.

Then we de�ne recursively

o
(r)
(i,j),s2

= σ

kr−1∑
s1=1

∑
t1,t2∈{1,...,Mr}

(i+t1−1,j+t2−1)∈D

w
(r)
t1,t2,s1,s2

· o(r−1)(i+t1−1,j+t2−1),s1 + w(r)
s2

 (4)

for the index set D = {1, . . . , d1} × {1, . . . , d2}, (i, j) ∈ D, s2 ∈ {1, . . . , kr} and r ∈
{1, . . . , L}.
Let F (L,k,M) be the set of all functions of the above form with parameters L,

k = (k1, . . . , kL) and M = (M1, . . . ,ML). With the de�nition of the index set D in (4)
we use a so-called zero padding which is illustrated in Figure 1. Therefore, the size of a
channel is the same as in the previous layer.
The function class that we will introduce here is then given by

Ft
(
L,k(1),k(2),M

)
=
{
g ◦ (f1, . . . , ft) : f1, . . . , ft ∈ F

(
L1,k

(1),M
)
, g ∈ Gt

(
L2,k

(2)
)}

.
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σ
(r−1)
(1,1),s1

σ
(r−1)
(1,2),s1

σ
(r−1)
(2,1),s1

σ
(r−1)
(2,2),s1

σ
(r−1)
(3,3),s1

σ
(r)
(1,1),s2

σ
(r)
(3,3),s2

0 0 0 0

0

0

0

Figure 1: Illustration of the zero padding for Mr = 2 and d1 = d2 = 3.

It depends on the parameters

L = (L1, L2), k
(1) =

(
k
(1)
1 , . . . , k

(1)
L1

)
, k(2) =

(
k
(2)
1 , . . . , k

(2)
L2

)
, M = (M1, . . . ,ML1)

and t ∈ N. Let

ηn = arg min
f∈Ft(L,k(1),k(2),M)

1

n

n∑
i=1

|Yi − f(Xi)|2 (5)

be the least squares estimate of η(x) = E{Y = 1|X = x}. Then our estimate fn is
de�ned by

fn(x) =

{
1, if ηn(x) ≥ 1

2

0, elsewhere.

3 Main results

Our main result is the following theorem, which presents an upper bound on the dis-
tance between the expected misclassi�cation risk of our plug-in classi�er and the optimal
misclassi�cation risk.

Theorem 1 Let d1, d2 ∈ N with d1, d2 > 1. Let (X, Y ), (X1, Y1), . . . , (Xn, Yn) be inde-
pendent and identically distributed [0, 1]{1,...,d1}×{1,...,d2} × {0, 1}-valued random variables

with n > 1. Assume that the aposteriori probability η(x) = P{Y = 1|X = x} satis�es a
generalized hierarchical max-pooling model of �nite order d∗ and level l with smoothness

constraints p1, p2 ∈ [1,∞). Choose

Ln = max

{⌈
c1 · n

4
2·(2·p1+4)

⌉
,

⌈
c1 · n

d∗
2·(2·p2+d∗)

⌉}
and set

L = (L1, L2) =

(
4l − 1

3
· Ln + l, Ln

)
,
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for c1 > 0 su�ciently large. Furthermore, choose t = d∗,

k(1)s =
2 · 4l + 4

3
+ c2

for s ∈ {1, . . . , L1}, k(2)s = c2 for s ∈ {1, . . . , L2} and c2 ∈ N su�ciently large and set

Ms = 2π(s) for s ∈ {1, . . . , L1},

where π : {1, . . . , L1} → {1, . . . , l} is an increasing function de�ned by

π(s) =

l∑
i=1

I{s≥i+∑l−1
r=l−i+1 4

r·Ln}.

We de�ne the estimate fn as in Section 2. Then

P{fn(X) 6= Y } − min
f :[0,1]{1,...,d1}×{1,...,d2}→{0,1}

P{f(X) 6= Y }

≤ c3 ·
√

log(d1 · d2) · (log n)2 ·max
{
n
− p1

2·p1+4 , n
− p2

2·p2+d∗
}
,

for some constant c3 > 0 which does not depend on d1, d2 and n.

Remark 2. The rate of convergence in Theorem 1 does not depend on the dimension
d1 · d2 of X, hence the estimate is able to circumvent the curse of dimensionality under
the above structural assumption on η.
Remark 3. In the proof of Theorem 1 we show that the expected L2 error of our
estimate of the aposteriori probability tends to zero with the rate of convergence

max

{
n
− 2p1

2p1+4 , n
− 2p2

2p2+d
∗

}
(6)

(up to some logarithmic factor). According to Stone (1982)

n
− 2p

2p+t

is the optimal minimax rate of convergence for estimation of (p, C)�smooth functions
de�ned on Rt. We conjecture that (6) is in our setting the optimal rate of convergence
for estimation of the aposteriori probability.
Remark 4. To show the above bound on the misclassi�cation risk we bound the L2�
error of the estimate ηn of the aposteriori probability (see inequality (2)). So we solve
our classi�cation problem via regression estimation. Kohler and Langer (2019) present
an upper bound for the expected L2�error of least squares neural network regression
estimates based on a set of fully connected neural networks. The upper bound is linear-
dependent on the dimension of X. This dependence on the dimension of X results from
the VC dimension of the class of fully connected neural networks (see Subsection 6.3 for
the de�nition of the VC dimension). In our result, however, the dimension d1 · d2 of
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X only occurs logarithmically, which gives us an indication of why convolutional neural
networks could be able to outperform the standard feedforward neural networks in image
classi�cation.
Remark 5. The above result can also be shown for the more general case where the apos-
teriori probability satis�es a generalized hierarchical max-pooling model in which func-
tionsm1, ...,md∗ have distinct levels l1, ..., ld∗ . In this case we would choose the parameter
l in the de�nition of the convolutional neural network as the maximum max{l1, ...ld∗}.
The biggest challenge would then be to modify the approximation result of Lemma 5.
Here the idea of the proof would then be to represent the maximum max{x1, . . . , x4} on
R4 as a standard feedforward neural network and apply a modi�cation of Lemma 6 to it.
This would enable us to calculate the maximum of four positions of a channel. However,
the proof would be much more technical.

4 Application to simulated data

In this section we illustrate how the introduced image classi�er based on the convolutional
neural networks behaves in case of �nite sample sizes. Therefore, we apply it to the
synthetic image data sets and compare the results with other classi�cation methods using
Python code. Firstly, we describe how the synthetic image data sets were generated. A
data set consists of �nitely many realizations (x1, y1), (x2, y2), . . . of a random variable

(X, Y ) ∈ [0, 1]{1,...,32}×{1,...,32} × {0, 1},

where X is a random image with label Y and the image dimensions here correspond to
d1 = d2 = 32. As described in Section 1, the matrix X contains at position (i, j) the
grey scale value of the pixel of the image at the corresponding position. We consider two
di�erent classi�cation problems, where our classi�er is supposed to distinguish between
two classes of geometric objects.
The �rst classi�cation task is to detect whether an image contains a circle. Therefore

our synthetic image data set consists of images that do not contain a circle and images
that contain at least one circle. In the following we describe how such an image is
created. Each image consists of three geometric objects. For each object we randomly
and independently choose between a square, an equilateral triangle and a circle with �xed
probabilities each. The circle is choosen with probability p = 1−0.5

1
3 and the square and

the equilateral triangle with probability q = 1
2 · 0.5

1
3 , respectively. After an object has

been de�ned as the square, triangle or circle we randomly choose its area, rotation and
grey scale values. For each object, rotation and area are choosen independently and are
uniformly distributed on a �xed interval. We determine the grey scale values of the three
objects by randomly permuting the list (13 ,

2
3 , 1) of three grey scale values. The positions

of the objects are determined one after the other. For the �rst object, we generate its
position from the uniform distribution on the restricted image area so that the object
lies completely within the image. The position of the second object is chosen in the same
way with the additional restriction that the second object only covers a maximum of one
percent of the area of the �rst object. For the placement of the third object, we use the
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corresponding restriction that the third image only covers a maximum of one percent
of the area of the �rst and second object. With the above procedure, the label Y is
discrete and is uniformly distributed on {0, 1}, since the probability that the image does
not contain a circle is (2 · q)3 = 0.5.

Figure 2: Some random images as realizations of the random variable X for the �rst
classi�cation task, where the �rst two rows show images of class 0 and the two
lower rows show images of class 1.

Figure 3: Some random images as realizations of the random variable X for the second
classi�cation task, where the �rst two rows show images of class 0 and the two
lower rows show images of class 1.

In our second classi�cation task we determine whether an image consists of two equal
geometric objects. The �rst di�erences to the above problem is that only the two geomet-
ric objects circle and triangle are available and each image contains only two geometric
objects. Apart from that, the images are generated in the same way as above with the
di�erence that the two objects are choosen with the probability p = 0.5 each and the list
of grey scale values only consists of the values 1

2 and 1. Again, label Y is discrete and
is uniformly distributed on {0, 1}, since the probability that the image does contain two
identical objects is given by 2 · p2 = 0.5.
We conjecture that the aposteriori probability of the �rst classi�cation task satis�es

our generalized hierarchical max-pooling model of order 1, since only one object has to be
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detected. To solve our second classi�cation task, we apply a function to the information
about the existence of the two objects. Therefore, we conjecture that for the second
classi�cation task the aposteriori probability satis�es our generalized hierarchical max-
pooling model of order 2.
Since all classi�ers, i.e., ours and the classi�ers we compare ourselves to, depend on

parameters that in�uence their behavior, we choose some parameters in data-dependent
manner by sample splitting. This means that we train the classi�ers with a training set
of ntrain =

⌊
4
5 · n

⌋
realizations several times with di�erent choices for the parameters

each time and test with a validation set consisting of nval = n−ntrain realizations which
parameters we should use. Then we train the classi�ers with the selected parameters
on the entire training set consisting of n realizations. First we describe how to choose
the parameters in the convolutional part of our network, which depend on the level l
and order d∗ of the generalized hierarchical max-pooling model. We adaptively choose
l ∈ {2, 3, 4} and t ∈ {1, 2}. As in our theoretical result the �lter sizes Mr have the values
21, 22, . . . , 2l for r ∈ {1, . . . , L1}, where the �lter sizes grow with increasing r. To simplify
the architecture of our classi�er, each value of the �lter sizes is repeated Ln ∈ {1, 2, 3}
times. The number of layers in the convolutional part is then given by L1 = Ln · l.
We determine the number of channels in each convolutional layer from k(1) ∈ {2, 4, 8}.
Furthermore, we choose the number of layers in the dense part by Ln and the number
of neurons by k(2) ∈ {5, 10} for each layer. To avoid overparameterization, we only use
those parameter combinations for which the total number of trainable parameters of our
model does not exceed the size of the training data set. To approximate the minimum
of the least squares problem (5), we use the stochastic gradient descent method Adam

from the Keras library.
We compare the results of our estimate (abbr. neural-c) with other conventional

classi�cation methods. Firstly, we consider a fully connected standard feedforward neural
network (abbr. neural-s) with an adaptively chosen number of hidden layers and neurons
per layer. We choose the number of hidden layers from {1, 2, . . . , 8} and the number
of neurons per layer from {10, 20, 50, 100, 200}. We have implemented both the above
approach and our convolutional neural network classi�er, using the Keras library in
Python. As a second alternative approach, we consider a support vector machine (abbr.
svm-rbf ) using a Gaussian radial basis function kernel and polynomial kernel (abbr. svm-
p) with a degree adaptively choosen from {1, 2, 3, 4}. The parameter C which controls
the importance of the regularization term and the kernel coe�cient γ we adaptively
choose from {10−2, 10−1, 1, 10} and {10−2, 10−1, 1, 10}, respectively for both variants of
the support vector machines approach. For its computation we use the function SVC

integrated in the Python library scikit-learn. We also compare our estimate with a kn�
nearest neighbors classi�cation estimate (abbr. neighbor) with an adaptively choosen kn
from {1, 2, 3}∪{4, 8, 12, 16, . . . , 4 ·bntrain4 c}, using the function KNeighborsClassi�er from
the scikit-learn library. Finally we compare our estimate to a random forest classi�er
(abbr. rand-f ). We adaptively choose the maximum number of leaf nodes and the
number of trees in the forest from {8, 16, 32} and {50, 100, 200}, respectively and use the
RandomForestClassi�er function from the scikit-learn library to compute our classi�er.
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The quality of each estimate is measured by its empirical misclassi�cation risk

εN =
1

N

N∑
k=1

I{fn(xn+k) 6=yn+k} (7)

where fn is the considered estimate based on the training set and

(xn+1, yn+1), . . . , (xn+N , yn+N )

are newly generated independent realizations of the random variable (X, Y ), i. e. di�er-
ent from the n labeled training images. We choose N = 105. Since our results depend
on randomly selected data, we calculate the estimators and their errors (7) based on 25
independently generated data sets {(x1, y1), . . . , (xn+N , yn+N )}. Table 1 lists the median
and interquartile range (IQR) of all runs.

task 1 task 2

sample size n = 1000 n = 2000 n = 1000 n = 2000

approach median (IQR) median (IQR) median (IQR) median (IQR)

neural-c 0.05 (0.02) 0.02 (0.01) 0.05 (0.05) 0.02(0.01)

neural-s 0.46 (0.01) 0.45 (0.01) 0.50 (0.02) 0.50(0.01)
neighbor 0.48 (0.01) 0.46 (0.01) 0.50 (0.01) 0.50(0.01)
rand-f 0.46 (0.01) 0.45 (0.02) 0.50 (0.01) 0.50(0.01)
svm-p 0.42 (0.01) 0.39 (0.01) 0.50 (0.01) 0.50(0.01)
svm-rbf 0.50 (0.01) 0.49 (0.01) 0.50 (0.01) 0.50(0.01)

Table 1: Median and interquartile range of the empirical misclassi�cation risk εN .

We observe that our convolutional neural network classi�er (neural-c) outperforms the
other approaches in both classi�cation tasks. The errors of our classi�er are 8 to 25
times smaller than the erros of the other approaches. The relative improvement of our
classi�er with increasing sample size is much larger than the relative improvements of
the other approaches. This could indicate that our classi�er also has a better rate of
convergence. In the second classi�cation task all approaches except our classi�er, are not
able to achieve satisfactory results, since the errors of these estimates corresponds to the
expected error of a classi�er which always estimates the same class.

5 Application to real images

In this section we test the di�erent image classi�cation methods on real data to show
the practical relevance of our classi�er. We consider the CIFAR-10 data set described
in Krizhevsky (2009). It contains 60, 000 images, which consist of 10 di�erent classes.
We limit ourselves here to only two of these classes (12, 000 images). One class contains
images of cars and the other class contains images of ships. The size of each image is
32× 32 pixels. Since the images are in color, we have converted them to grey scale.
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Figure 4: The �rst two rows show some images of the ships and the lower two rows show
images of the cars of the grey scaled CIFAR-10 data set.

The di�erent approaches of classi�cation, as well as the parameter sets we use, are
described in the simulation study in Section 4. We choose n = 2, 000, ntrain = 1, 600 and
nval = 400 to train our classi�ers. We calculate the empirical misclassi�cation risk (7)
using the remaining N=10,000 images. The results of all approaches are summarized in
Table 2.

neural-c neural-s neighbor rand-f svm-p svm-rbf

0.16 0.22 0.36 0.22 0.28 0.30

Table 2: The empirical misclassi�cation risk εN for each estimate based on the presented
grey scaled subset of the CIFAR-10 data set.

Again we observe that our estimate outperforms the others. This time, contrary to
the synthetic image data sets, the error is only 1.4 times smaller than the error of the
two second best approaches (the fully connected standard feedforward neural network
and the random forest classi�er). However, in the case of the real images we do not
know for which model parameters the aposteriori probability could satisfy our generalized
hierarchical max-pooling model. In particular, we have only tested the values t ∈ {1, 2}
which correspond to the orders d∗ ∈ {1, 2} of our generalized hierarchical max-pooling
model. Moreover, the errors of the other approaches are much smaller than their errors
in the two classi�cation tasks of the synthetic image data sets.

6 Proofs

6.1 Auxiliary results

In this subsection we present several auxiliary results from the literature which we will use
in the proof of Theorem 1. Our �rst result is a well-known bound on the misclassi�cation
risk of the plug-in classi�ers.
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Lemma 1 De�ne (X, Y ), (X1, Y1), . . . , (Xn, Yn), and Dn, η, f∗ and fn as in Section

1. Then

P{fn(X) 6= Y |Dn} −P{f∗(X) 6= Y } ≤ 2 ·
∫
|ηn(x)− η(x)|PX(dx)

≤ 2 ·

√∫
|ηn(x)− η(x)|2PX(dx)

holds.

Proof. See Theorem 1.1 in Györ� et al. (2002). �
Our next result is a bound on the expected L2 error of the (truncated) least squares

regression estimate.

Lemma 2 Let (X, Y ), (X1, Y1), . . . , (Xn, Yn) be independent and identically distributed
Rd × R-valued random variables. Assume that the distribution of (X, Y ) satis�es

E{exp(c3 · Y 2)} <∞

for some constant c3 > 0 and that the regression function m(·) = E{Y |X = ·} is bounded
in absolute value. Let m̃n be the least squares estimate

m̃n(·) = arg min
f∈Fn

1

n

n∑
i=1

|Yi − f(Xi)|2

based on some function space Fn consisting of functions f : Rd → R and set mn =
Tc4·log(n)m̃n for some constant c4 > 0. Then mn satis�es

E

∫
|mn(x)−m(x)|2PX(dx)

≤
c5 · (log(n))2 · supxn1∈(Rd)n

(
log
(
N1

(
1

n·c4 log(n) , Tc4 log(n)Fn,x
n
1

))
+ 1
)

n

+ 2 · inf
f∈Fn

∫
|f(x)−m(x)|2PX(dx)

for n > 1 and some constant c5 > 0, which does not depend on n or the parameters of

the estimate.

Proof. This result follows in a straightforward way from the proof of Theorem 1 in
Bagirov, Clausen and Kohler (2009). A complete proof can be found in the supplement
of Bauer and Kohler (2019). �
Our third auxiliary result is an approximation result for (p, C)�smooth functions by

very deep feedforward neural networks.
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Lemma 3 Let d ∈ N, let f : Rd → R be (p, C)�smooth for some p = q + s, q ∈ N0 and

s ∈ (0, 1], and C > 0. Let M ∈ N with M > 1 su�ciently large, where

M2p ≥ c5 ·

max

2, sup
x∈[−2,2]d

(l1,...,ld)∈Nd
l1+···+ld≤q

∣∣∣∣ ∂l1+···+ldf

∂l1x(1) . . . ∂ldx(d)
(x)

∣∣∣∣



4(q+1)

must hold for some su�ciently large constant c5 ≥ 1. Let σ : R → R be the ReLU

activation function

σ(x) = max{x, 0}

and let L, r ∈ N such that

(i)

L ≥5Md +
⌈
log4

(
M2p+4·d·(q+1) · e4(̇q+1)·(Md−1)

)⌉
· dlog2(max{d, q}+ 2)e+ dlog4(M

2p)e

(ii)

r ≥ 132 · 2d · dede ·
(
d+ q

d

)
·max{q + 1, d2}

hold. Then there exists a feedforward neural network

fnet ∈ Gd(L,k)

with k = (k1, . . . , kL) and k1 = · · · = kL = r such that

sup
x∈[−2,2]d

|f(x)− fnet(x)|

≤ c6 ·

max

2, sup
x∈[−a,a]d

(l1,...,ld)∈Nd
l1+···+ld≤q

∣∣∣∣ ∂l1+···+ldf

∂l1x(1) . . . ∂ldx(d)
(x)

∣∣∣∣



4(q+1)

·M−2p.

Proof. See Theorem 2 in Kohler and Langer (2019). An alternative proof of a closely
related result can be found in Yarotsky and Zhevnerchuk (2019), see Theorem 4.1 therein.

�
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6.2 An approximation result for convolutional neural networks

In this subsection we describe in Lemma 5 below a connection between fully connected
neural networks and convolutional neural networks, which will enbable us to derive in the
proof of Theorem 1 an approximation result for the generalized hierarchical max-pooling
models by the convolutional neural networks. Before we do this we present a bound on
the error we make in case that we replace the functions gk,s in a hierarchical model by
some approximations of them.

Lemma 4 Let d1, d2, t ∈ N and l ∈ N with 2l ≤ min{d1, d2}. For a ∈ {1, . . . , t}, set
I = {0, 1, . . . , 2l − 1} × {0, 1, . . . , 2l − 1} and de�ne

ma(x) = max
(i,j)∈Z2 : (i,j)+I⊆{1,...,d1}×{1,...,d2}

fa
(
x(i,j)+I

)
and

m̄a(x) = max
(i,j)∈Z2 : (i,j)+I⊆{1,...,d1}×{1,...,d2}

f̄a
(
x(i,j)+I

)
,

where fa and f̄a satisfy

fa = f
(a)
l,1 and f̄a = f̄

(a)
l,1

for some f
(a)
k,s , f̄

(a)
k,s : R{1,...,2k}×{1,...,2k} → R recursively de�ned by

f
(a)
k,s (x) = g

(a)
k,s

(
f
(a)
k−1,4·(s−1)+1(x{1,...,2k−1}×{1,...,2k−1}),

f
(a)
k−1,4·(s−1)+2(x{2k−1+1,...,2k}×{1,...,2k−1}),

f
(a)
k−1,4·(s−1)+3(x{1,...,2k−1}×{2k−1+1,...,2k}),

f
(a)
k−1,4·s(x{2k−1+1,...,2k}×{2k−1+1,...,2k})

)
and

f̄
(a)
k,s (x) = ḡ

(a)
k,s

(
f̄
(a)
k−1,4·(s−1)+1(x{1,...,2k−1}×{1,...,2k−1}),

f̄
(a)
k−1,4·(s−1)+2(x{2k−1+1,...,2k}×{1,...,2k−1}),

f̄
(a)
k−1,4·(s−1)+3(x{1,...,2k−1}×{2k−1+1,...,2k}),

f̄
(a)
k−1,4·s(x{2k−1+1,...,2k}×{2k−1+1,...,2k})

)
for k = 2, . . . , l, s = 1, . . . , 4l−k, and

f
(a)
1,s (x1,1, x1,2, x2,1, x2,2) = g

(a)
1,s (x1,1, x1,2, x2,1, x2,2)

and

f̄
(a)
1,s (x1,1, x1,2, x2,1, x2,2) = ḡ

(a)
1,s (x1,1, x1,2, x2,1, x2,2)

for s = 1, . . . , 4l−1, where

g
(a)
k,s : R4 → [0, 1] and ḡ

(a)
k,s : R4 → R
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are functions for a ∈ {1, . . . , t}, k ∈ {1, . . . , l} and s ∈ {1, . . . , 4l−k}. Furthermore, let

g : Rt → [0, 1] and ḡ : Rt → R be functions. Assume that all restrictions g
(a)
k,s |[−2,2]4 :

[−2, 2]4 → [0, 1] and g|[−2,2]t : [−2, 2]t → [0, 1] are Lipschitz continuous regarding the

Euclidean distance with Lipschitz constant C > 0 and for all a ∈ {1, . . . , t}, k ∈ {1, . . . , l}
and s ∈ {1, . . . , 4l−k} we assume that∥∥∥ḡ(a)k,s

∥∥∥
[−2,2]4,∞

≤ 2. (8)

Then for any x ∈ [0, 1]{1,...,d1}×{1,...,d2} it holds:

|g(m1(x), . . . ,mt(x))− ḡ(m̄1(x), . . . , m̄t(x))|
≤
√
t · (2C + 1)l

· max
a∈{1,...,t},j∈{1,...,l},s∈{1,...,4l−j}

{
‖g(a)j,s − ḡ

(a)
j,s ‖[−2,2]4,∞, ‖g − ḡ‖[−2,2]t,∞

}
.

Proof. Firstly, we show for any a ∈ {1, . . . , t} that

|ma(x)− m̄a(x)| ≤ (2C + 1)l−1 · max
j∈{1,...,l},s∈{1,...,4l−j}

‖g(a)j,s − ḡ
(a)
j,s ‖[−2,2]4,∞. (9)

If a1, b1, . . . , an, bn ∈ R, then

| max
i=1,...,n

ai − max
i=1,...,n

bi| ≤ max
i=1,...,n

|ai − bi|.

Indeed, in case a1 = maxi=1,...,n ai ≥ maxi=1,...,n bi (which we can assume w.l.o.g.) we
have

| max
i=1,...,n

ai − max
i=1,...,n

bi| = a1 − max
i=1,...,n

bi ≤ a1 − b1 ≤ max
i=1,...,n

|ai − bi|.

Consequently it su�ces to show

max
(i,j)∈Z2 : (i,j)+I⊆{1,...,d1}×{1,...,d2}

∣∣fa (x(i,j)+I)− f̄a (x(i,j)+I)∣∣
≤ (2C + 1)l−1 · max

j∈{1,...,l},s∈{1,...,4l−j}
‖g(a)j,s − ḡ

(a)
j,s ‖[−2,2]4,∞.

This in turn follows from

|f (a)k,s (x)− f̄ (a)k,s (x)| ≤ (2C + 1)k−1 · max
i∈{1,...,k},s∈{1,...,4l−i}

‖g(a)i,s − ḡ
(a)
i,s ‖[−2,2]4,∞ (10)

for all k ∈ {1, . . . , l}, all s ∈ {1, . . . , 4l−k} and all x ∈ [0, 1]{1,...,2
k}×{1,...,2k}, which we

show in the sequel by induction on k.
For k = 1 and s ∈ {1, . . . , 4l−1} we have∣∣∣f (a)1,s (x)− f̄ (a)1,s (x)

∣∣∣ =
∣∣∣g(a)1,s (x1,1, x1,2, x2,1, x2,2)− ḡ(a)1,s (x1,1, x1,2, x2,1, x2,2)

∣∣∣
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≤
∥∥∥g(a)1,s − ḡ

(a)
1,s

∥∥∥
[0,1]4,∞

.

Assume now that (10) holds for some k ∈ {1, . . . , l − 1}. The de�nition of f̄
(a)
k,s and

inequality (8) imply that ∣∣∣f̄ (a)k,s (x)
∣∣∣ ≤ 2

for all x ∈ [0, 1]{1,...,2
k}×{1,...,2k} and s ∈ {1, . . . , 4l−k}. Then, the triangle inequality and

the Lipschitz assumption on g imply

|f (a)k+1,s(x)− f̄ (a)k+1,s(x)|

≤
∣∣∣g(a)k+1,s

(
f
(a)
k,4·(s−1)+1(x{1,...,2k}×{1,...,2k}), f

(a)
k,4·(s−1)+2(x{2k+1,...,2k+1}×{1,...,2k}),

f
(a)
k,4·(s−1)+3(x{1,...,2k}×{2k+1,...,2k+1}), f

(a)
k,4·s(x{2k+1,...,2k+1}×{2k+1,...,2k+1})

)
−g(a)k+1,s

(
f̄
(a)
k,4·(s−1)+1(x{1,...,2k}×{1,...,2k}), f̄

(a)
k,4·(s−1)+2(x{2k+1,...,2k+1}×{1,...,2k}),

f̄
(a)
k,4·(s−1)+3(x{1,...,2k}×{2k+1,...,2k+1}), f̄

(a)
k,4·s(x{2k+1,...,2k+1}×{2k+1,...,2k+1})

)∣∣∣
+
∣∣∣g(a)k+1,s

(
f̄
(a)
k,4·(s−1)+1(x{1,...,2k}×{1,...,2k}), f̄

(a)
k,4·(s−1)+2(x{2k+1,...,2k+1}×{1,...,2k}),

f̄
(a)
k,4·(s−1)+3(x{1,...,2k}×{2k+1,...,2k+1}), f̄

(a)
k,4·s(x{2k+1,...,2k+1}×{2k+1,...,2k+1})

)
−ḡ(a)k+1,s

(
f̄
(a)
k,4·(s−1)+1(x{1,...,2k}×{1,...,2k}), f̄

(a)
k,4·(s−1)+2(x{2k+1,...,2k+1}×{1,...,2k}),

f̄
(a)
k,4·(s−1)+3(x{1,...,2k}×{2k+1,...,2k+1}), f̄

(a)
k,4·s(x{2k+1,...,2k+1}×{2k+1,...,2k+1})

)∣∣∣
≤ C ·

(
|f (a)k,4·(s−1)+1(x{1,...,2k}×{1,...,2k})− f̄

(a)
k,4·(s−1)+1(x{1,...,2k}×{1,...,2k})|

2

+|f (a)k,4·(s−1)+2(x{2k+1,...,2k+1}×{1,...,2k})− f̄
(a)
k,4·(s−1)+2(x{2k+1,...,2k+1}×{1,...,2k})|2

+|f (a)k,4·(s−1)+3(x{1,...,2k}×{2k+1,...,2k+1})− f̄
(a)
k,4·(s−1)+3(x{1,...,2k}×{2k+1,...,2k+1})|2

+|f (a)k,4·s(x{2k+1,...,2k+1}×{2k+1,...,2k+1})− f̄
(a)
k,4·s(x{2k+1,...,2k+1}×{2k+1,...,2k+1})|2

)1/2
+‖g(a)k+1,s − ḡ

(a)
k+1,s‖[−2,2]4,∞

≤ (2 · C) · (2C + 1)k−1 · max
i∈{1,...,k},s∈{1,...,4l−i}

‖g(a)i,s − ḡ
(a)
i,s ‖[−2,2]4,∞

+‖g(a)k+1,s − ḡ
(a)
k+1,s‖[−2,2]4,∞

≤ (2C + 1)k · max
i∈{1,...,k+1},s∈{1,...,4l−i}

‖g(a)i,s − ḡ
(a)
i,s ‖[−2,2]4,∞

for all x ∈ [0, 1]{1,...,2
k+1}×{1,...,2k+1}.

The de�nition of the functions f̄
(a)
k,s and inequality (8) imply that

|m̄a(x)| ≤ 2
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for all x ∈ [0, 1]{1,...,d1}×{1,...,d2} and a ∈ {1, . . . , t}. Then, the triangle inequality, the
Lipschitz assumption on g and inequality (9) imply

|g(m1(x), . . . ,mt(x))− ḡ(m̄1(x), . . . , m̄t(x))|
≤ |g(m1(x), . . . ,mt(x))− g(m̄1(x), . . . , m̄t(x))|

+ |g(m̄1(x), . . . , m̄t(x))− ḡ(m̄1(x), . . . , m̄t(x))|

≤ C ·
(
|m1(x)− m̄1(x)|2 + · · ·+ |mt(x)− m̄t(x)|2

)1/2
+ ‖g − ḡ‖[−2,2]t,∞
≤
√
t · C · (2C + 1)l−1 · max

a∈{1,...,t},j∈{1,...,l},s∈{1,...,4l−j}
‖g(i)j,s − ḡ

(i)
j,s‖[−2,2]4,∞

+ ‖g − ḡ‖[−2,2]t,∞
≤
√
t · (2C + 1)l

· max
a∈{1,...,t},

j∈{1,...,l},s∈{1,...,4l−j}

{
‖g(a)j,s − ḡ

(a)
j,s ‖[−2,2]4,∞, ‖g − ḡ‖[−2,2]t,∞

}

for all x ∈ [0, 1]{1,...,d1}×{1,...,d2}. �

Lemma 5 Let d1, d2, l ∈ N with 2l ≤ min{d1, d2}. For k ∈ {1, . . . , l} and s ∈ {1, . . . , 4l−k}
let

ḡnet,k,s : R4 → R

be de�ned by a feedforward neural network with Lnet ∈ N hidden layers and rnet ∈ N
neurons per hidden layer and ReLU activation function. Set

I =
{

0, . . . , 2l − 1
}
×
{

0, . . . , 2l − 1
}

and de�ne m̄ : [0, 1]{1,...,d1}×{1,...,d2} → R by

m̄(x) = max
(i,j)∈Z2 : (i,j)+I⊆{1,...,d1}×{1,...,d2}

f̄
(
x(i,j)+I

)
,

where f̄ satis�es

f̄ = f̄l,1

for some f̄k,s : [0, 1]{1,...,2
k}×{1,...,2k} → R recursively de�ned by

f̄k,s(x) = ḡnet,k,s
(
f̄k−1,4·(s−1)+1(x{1,...,2k−1}×{1,...,2k−1}),

f̄k−1,4·(s−1)+2(x{2k−1+1,...,2k}×{1,...,2k−1}),

f̄k−1,4·(s−1)+3(x{1,...,2k−1}×{2k−1+1,...,2k}),

f̄k−1,4·s(x{2k−1+1,...,2k}×{2k−1+1,...,2k})
)

for k = 2, . . . , l, s = 1, . . . , 4l−k, and

f̄1,s(x1,1, x1,2, x2,1, x2,2) = ḡnet,1,s(x1,1, x1,2, x2,1, x2,2)
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for s = 1, . . . , 4l−1. Set

lnet =
4l − 1

3
· Lnet + l,

ks =
2 · 4l + 4

3
+ rnet (s = 1, . . . , lnet),

and set

Ms = 2π(s) for s ∈ {1, . . . , lnet},

where the function π : {1, . . . , lnet} → {1, . . . , l} is de�ned by

π(s) =
l∑

i=1

I{s≥i+∑l−1
r=l−i+1 4

r·Lnet}.

Then there exists some mnet ∈ F (lnet,k,M) such that

m̄(x) = mnet(x)

holds for all x ∈ [0, 1]{1,...,d1}×{1,...,d2}.

In order to prove Lemma 5 we will use the following auxiliary result.

Lemma 6 Let gnet : R4 → R be a standard feedforward neural network with Lnet ∈ N
hidden layers and rnet ∈ N neurons per hidden layer. Let d1, d2 ∈ N with d1, d2 > 1 and

let σ(x) = max{x, 0} be the ReLU activation function. We assume that there is given a

convolutional neural network mnet ∈ F(L,k,M) with L = r0 + Lnet + 1 convolutional

layers and kr = t + rnet channels in the convolutional layer r (r = 1, . . . , r0 + Lnet + 1)
for r0, t ∈ N, and �lter sizes M1, . . . ,Mr0+Lnet+1 ∈ N with

Mr0+1 = 2k for some k ∈ N with 2k ≤ min{d1, d2}.

The convolutional neural network mnet is given by its weight matrix

w =
(
w

(r)
i,j,s1,s2

)
1≤i,j≤Mr,s1∈{1,...,kr−1},s2∈{1,...,kr}r∈{1,...,r0+Lnet+1}

, (11)

and its bias weights

wbias =
(
w(r)
s2

)
s2∈{1,...,kr},r∈{1,...,r0+Lnet+1}

. (12)

Set I(m) = {0, . . . , 2m − 1} × {0, . . . 2m − 1} for m ∈ N0. Furthermore, let f1, . . . , f4 :

[0, 1](1,1)+I
(k−1) → R be functions and let s2,1, . . . , s2,10 ∈ {1, . . . , t}. Assume that the

given convolutional neural network mnet satis�es the following four conditions for all

(i2, j2) ∈ {1, . . . , d1 − 2k + 1} × {1, . . . , d2 − 2k + 1}:

o
(r0)
(i2,j2),s2,1

− o(r0)(i2,j2),s2,2
= f1(x(i2,j2)+I(k−1)), (13)
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o
(r0)

(i2+2k−1,j2),s2,3
− o(r0)

(i2+2k−1,j2),s2,4
= f2(x(i2+2k−1,j2)+I(k−1)), (14)

o
(r0)

(i2,j2+2k−1),s2,5
− o(r0)

(i2,j2+2k−1),s2,6
= f3(x(i2,j2+2k−1)+I(k−1)) (15)

and

o
(r0)

(i2+2k−1,j2+2k−1),s2,7
− o(r0)

(i2+2k−1,j2+2k−1),s2,8
= f4(x(i2+2k−1,j2+2k−1)+I(k−1)). (16)

Then we are able to modify the weights (11) and (12)

w
(r)
t1,t2,s1,s2

, w(r)
s2 (s1 ∈ {1, . . . , t+ rnet}) (17)

in layers r ∈ {r0+1, . . . , r0+Lnet+1} and in channels s2 ∈ {s2,9, s2,10, t+1, . . . , t+rnet}
such that

o
(r0+Lnet+1)
(i2,j2),s2,9

− o(r0+Lnet+1)
(i2,j2),s2,10

= gnet

(
f1(x(i2,j2)+I(k−1)), f2(x(i2+2k−1,j2)+I(k−1)),

f3(x(i2,j2+2k−1)+I(k−1)), f4(x(i2+2k−1,j2+2k−1)+I(k−1))
)

holds for all (i2, j2) ∈ {1, . . . , d1 − 2k + 1} × {1, . . . , d2 − 2k + 1}.

Remark 6. In the proof of Lemma 6 we only modify in layers r0 + 1, . . . , r0 + Lnet + 1
the �lters and bias weights (17) in channels

t+ 1, . . . , t+ rnet

and in layer r0 + Lnet + 1 the �lters and bias weights in channels

s2,9, s2,10.

This means that the calculation only takes place in these channels. The �lter and bias
weights in the remaining channels can therefore be arbitrary.
Proof of Lemma 6. Let (i2, j2) ∈ {1, . . . , d1−2k+1}×{1, . . . , d2−2k+1} be arbitrary.
We modify the weights (15) by using the weights of gnet. Here we assume that gnet is
given by

gnet(x) =

rnet∑
i=1

w
(Lnet)
1,i g

(Lnet)
i (x) + w

(Lnet)
1,0

for g
(Lnet)
i 's recursively de�ned by

g
(r)
i (x) = σ

rnet∑
j=1

w
(r−1)
i,j g

(r−1)
j (x) + w

(r−1)
i,0


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for i ∈ {1, . . . , rnet}, r ∈ {2, . . . , Lnet}, and

g
(1)
i (x) = σ

 4∑
j=1

w
(0)
i,j x

(j) + w
(0)
i,0

 (i ∈ {1, . . . , rnet}).

In layer r0 + 1 we modify the weights (17) in channel t+ i by setting

w
(r0+1)
t1,t2,s,t+i

= 0

for all t1, t2 /∈ {1, 1 + 2k−1} and all s /∈ {s2,1, . . . , s2,8} and choose the only nonzero
weights by

w
(r0+1)
1,1,s2,1,t+i

= w
(0)
i,1 ,

w
(r0+1)

1+2k−1,1,s2,3,t+i
= w

(0)
i,2 ,

w
(r0+1)

1,1+2k−1,s2,5,t+i
= w

(0)
i,3 ,

w
(r0+1)

1+2k−1,1+2k−1,s2,7,t+i
= w

(0)
i,4 ,

w
(r0+1)
1,1,s2,2,t+i

= −w(0)
i,1 ,

w
(r0+1)

1+2k−1,1,s2,4,t+i
= −w(0)

i,2 ,

w
(r0+1)

1,1+2k−1,s2,6,t+i
= −w(0)

i,3 ,

w
(r0+1)

1+2k−1,1+2k−1,s2,8,t+i
= −w(0)

i,4

and w
(r0+1)
t+i = w

(0)
i,0 for i ∈ {1, . . . , rnet}. Then we calculate with the modi�ed weights

and the assumptions (13)�(16)

o
(r0+1)
(i2,j2),t+i

=σ


t+rnet∑
s1=1

∑
t1,t2∈{1,...,Mr0+1}

(i2+t1−1,j2+t2−1)∈D

w
(r0+1)
t1,t2,s1,t+i

· o(r0)(i2+t1−1,j2+t2−1),s1 + w
(r0+1)
t+i


=σ

(
w

(0)
i,1 ·

(
o
(r0)
(i2,j2),s2,1

− o(r0)(i2,j2),s2,2

)
+ w

(0)
i,2 ·

(
o
(r0)

(i2+2k−1,j2),s2,3
− o(r0)

(i2+2k−1,j2),s2,4

)
+ w

(0)
i,3 ·

(
o
(r0)

(i2,j2+2k−1),s2,5
− o(r0)

(i2,j2+2k−1),s2,6

)
+ w

(0)
i,4 ·

(
o
(r0)

(i2+2k−1,j2+2k−1),s2,7
− o(r0)

(i2+2k−1,j2+2k−1),s2,8

)
+ w

(0)
i,0

)

=σ

(
w

(0)
i,1 f1(x(i2,j2)+I(k−1)) + w

(0)
i,2 f2(x(i2+2k−1,j2)+I(k−1))

+ w
(0)
i,3 f3(x(i2,j2+2k−1)+I(k−1)) + w

(0)
i,4 f4(x(i2+2k−1,j2+2k−1)+I(k−1)) + w

(0)
i,0

)
=g

(1)
i

(
f1(x(i2,j2)+I(k−1)), f2(x(i2+2k−1,j2)+I(k−1)),

f3(x(i2,j2+2k−1)+I(k−1)), f4(x(i2+2k−1,j2+2k−1)+I(k−1))
)

(18)
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for i ∈ {1, . . . , rnet}. In layers r ∈ {r0 + 2, . . . , r0 + Lnet} in channel t+ i we modify the
weights (17) by setting

w
(r)
t1,t2,s,t+i

= 0

for all (t1, t2) 6= (1, 1) and all s ∈ {1, . . . , t} and choose the only nonzero weights by

w
(r)
1,1,t+j,t+i = w

(r−r0−1)
i,j , w

(r)
t+i = w

(r−r0−1)
i,0 (j ∈ {1, . . . , rnet})

for i ∈ {1, . . . , rnet}. Thus we obtain

o
(r0+r)
(i2,j2),t+i

=σ

(
rnet∑
j=1

w
(r−1)
i,j o

(r0+r−1)
(i2,j2),t+j

+ w
(r−1)
i,0

)

for i ∈ {1, . . . , rnet} and r ∈ {2, . . . , Lnet}. Then we get by equation (18) and the

de�nition of g
(r)
i that

o
(r0+r)
(i2,j2),t+i

=g
(r)
i

(
f1(x(i2,j2)+I(k−1)), f2(x(i2+2k−1,j2)+I(k−1)),

f3(x(i2,j2+2k−1)+I(k−1)), f4(x(i2+2k−1,j2+2k−1)+I(k−1))
)

for i ∈ {1, . . . , rnet} and r ∈ {2, . . . , Lnet}. Now in layer r0 + Lnet + 1 in channels
s2,9, s2,10 ∈ {1, . . . , t} we modify the weights (17) by setting

w
(r0+Lnet+1)
t1,t2,s,s2,9

= w
(r0+Lnet+1)
t1,t2,s,s2,10

= 0

for all (t1, t2) 6= (1, 1) and all s ∈ {1, . . . , t} and choose the only nonzero weights by

w
(r0+Lnet+1)
1,1,t+i,s2,9

= w
(Lnet)
1,i ,

w(r0+Lnet+1)
s2,9 = w

(Lnet)
1,0 ,

w
(r0+Lnet+1)
1,1,t+i,s2,10

= −w(Lnet)
1,i ,

w(r0+Lnet+1)
s2,10 = −w(Lnet)

1,0

for i ∈ {1, . . . , rnet}. Consequently, we get the following outputs:

o
(r0+Lnet+1)
(i2,j2),s2,9

= σ

(
rnet∑
i=1

w
(Lnet)
1,i · o(r0+Lnet)(i2,j2),t+i

+ w
(Lnet)
1,0

)

= σ

(
gnet

(
f1(x(i2,j2)+I(k−1)), f2(x(i2+2k−1,j2)+I(k−1)),

f3(x(i2,j2+2k−1)+I(k−1)), f4(x(i2+2k−1,j2+2k−1)+I(k−1))
))

and

o
(r0+Lnet+1)
(i2,j2),s2,10

= σ

(
rnet∑
i=1

−w(Lnet)
1,i · o(r0+Lnet)(i2,j2),t+i

− w(Lnet)
1,0

)

26



= σ

(
− gnet

(
f1(x(i2,j2)+I(k−1)), f2(x(i2+2k−1,j2)+I(k−1)),

f3(x(i2,j2+2k−1)+I(k−1)), f4(x(i2+2k−1,j2+2k−1)+I(k−1))
))

.

Finally, we obtain

o
(r0+Lnet+1)
(i2,j2),s2,9

− o(r0+Lnet+1)
(i2,j2),s2,10

= max

{
gnet

(
f1(x(i2,j2)+I(k−1)), f2(x(i2+2k−1,j2)+I(k−1)),

f3(x(i2,j2+2k−1)+I(k−1)), f4(x(i2+2k−1,j2+2k−1)+I(k−1))
)
, 0

}

−max

{
− gnet

(
f1(x(i2,j2)+I(k−1)), f2(x(i2+2k−1,j2)+I(k−1)),

f3(x(i2,j2+2k−1)+I(k−1)), f4(x(i2+2k−1,j2+2k−1)+I(k−1))
)
, 0

}
= gnet

(
f1(x(i2,j2)+I(k−1)), f2(x(i2+2k−1,j2)+I(k−1)),

f3(x(i2,j2+2k−1)+I(k−1)), f4(x(i2+2k−1,j2+2k−1)+I(k−1))
)
.

�
Proof of Lemma 5. In the proof we will use the network fid : R→ R de�ned by

fid(x) = σ(x)− σ(−x) = max{x, 0} −max{−x, 0} = x,

which enables us to save a value computed in layer r − 1 in channel s at position (i, j)
by a di�erence of the outputs of two neurons in distinct channels s1 and s2 in layer r by

o
(r)
(i,j),s1

− o(r)(i,j),s2
= σ

(
o
(r−1)
(i,j),s

)
− σ

(
− o(r−1)(i,j),s

)
= o

(r−1)
(i,j),s. (19)

Once a value has been saved in layer r by the di�erence of two neurons, it will be
propagated analogously to the next layer r + 1 by calculating

o
(r+1)
(i,j),s1

− o(r+1)
(i,j),s2

= σ
(
o
(r)
(i,j),s1

− o(r)(i,j),s2

)
−σ
(
o
(r)
(i,j),s2

− o(r)(i,j),s1

)
= o

(r)
(i,j),s1

− o(r)(i,j),s2
. (20)

In case we want to make use of equation (19) or equation (20), we have to choose the
�lters (and the bias weights) of the convolutional neural network in layer r in the channels
s1 and s2 accordingly from the set {−1, 0, 1}.
With this approach of storing and propagating calculated values, the idea of our proof

is to choose the �lters (and the bias weights) such that our convolutional neural network
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saves in channels corresponding to position (i, j) the values of xi,j , f̄1,s(x(i,j)+I(1)) (s =

1, . . . , 4l−1), f̄2,s(x(i,j)+I(2)) (s = 1, . . . , 4l−2), . . . , f̄l,s(x(i,j)+I(l)) (s = 1), where we set

I(m) = {0, . . . , 2m − 1} × {0, . . . , 2m − 1}

for m ∈ N0. To do this we need two neurons for each of the above values, so altogether

2 · (1 + 4l−1 + 4l−2 + · · ·+ 40) = 2 ·
(

1 +
4l − 1

4− 1

)
=

2 · 4l + 4

3

channels or neurons for each position (i, j). Furthermore, we will need rnet additional
channels to compute the networks ḡnet,k,s. So altogether we need

2 · 4l + 4

3
+ rnet = kr

many channels in each convolutional layer r.
The convolutional neural network mnet ∈ F (lnet,k,M), which we will construct to

prove the assertion, has the parameters lnet,k and M of Lemma 5. We make use of the
above idea by choosing the �lters (and bias weights) of the convolutional neural mnet

network so that it has the following property for any k ∈ {1, . . . , l}:

For any s ∈ {1, . . . , 4l−k}, (i, j) ∈ {1, . . . , d1 − 2k + 1} × {1, . . . , d2 − 2k + 1}
and any r ∈ {4l−1 · Lnet + · · ·+ 4l−k · Lnet + k, . . . , lnet} it holds that

o
(r)

(i,j),2+2·4l−1+···+2·4l−k+1+2·s−1 − o
(r)

(i,j),2+2·4l−1+···+2·4l−k+1+2·s

= f̄k,s(x(i,j)+I(k)).
(21)

Due to equation (20) is su�ces to show equation (21) for r = 4l−1·Lnet+· · ·+4l−k·Lnet+k.
To construct our convolutional neural network mnet so that the above property (21) is
ful�lled, we use an induction on k.
We start with k = 1. First we note that

f̄1,s(x(i,j)+I(1)) = ḡnet,1,s(x(i,j), x(i+1,j), x(i,j+1), x(i+1,j+1))

for s ∈ {1, . . . , 4l−1} and (i, j) ∈ {1, . . . , d1−1}×{1, . . . , d2−1}. So we have to compute
the networks ḡnet,1,1,. . . ,ḡnet,1,4l−1 applied to the input of our convultional network. The
idea is to use Lemma 6 for each network ḡnet,1,s. Therefore, we �rst make sure that the
assumptions (13)�(16) are ful�lled as we need them. In the �rst convolutional layer we
copy xi,j in the �rst two channels using the weights as in equation (19), and we propagate
these values in the successive layers using the weights as in equation (20). So after the
�rst layer we have available the input in the �rst two channels in all convolutional layers,
so that for all r ∈ {2, . . . , lnet} and all (i, j) ∈ {1, . . . , d1} × {1, . . . , d2} it holds that

o
(r)
(i,j),1 − o

(r)
(i,j),2 = x(i,j).
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For the �lter size it holds that

Mr = 2 (r ∈ π−1(1) = {1, 2, . . . , 4l−1 · Lnet + 1}).

Starting already in parallel in the �rst layer, we compute successively the networks
ḡnet,1,1,. . . ,ḡnet,1,4l−1 in layers

1, 2, . . . , 4l−1 · Lnet + 1

in the channels
2 · 4l + 4

3
+ 1,

2 · 4l + 4

3
+ 2, . . . ,

2 · 4l + 4

3
+ rnet

for the computation of their hidden layers and the ouput layers in channels 2+1, . . . , 2+
2 · 4l−1 by applying Lemma 6 4l−1 times. We now describe how to use Lemma 6 to
compute ḡnet,1,s (s = 1, . . . , 4l−1). In particular, we specify how to choose the parameters
s2,1, . . . , s2,10 from Lemma 6. The computation of ḡnet,1,s takes place in layers

(s− 1) · Lnet + 1, . . . , s · Lnet

in channels
2 · 4l + 4

3
+ 1,

2 · 4l + 4

3
+ 2, . . . ,

2 · 4l + 4

3
+ rnet

for the computation of its hidden layers and its output layer is computed in layer s·Lnet+1
in channels s2,9 = 2 + 2s − 1 and s2,10 = 2 + 2s. As input the network ḡnet,1,s uses the
�rst two channels for s > 1 such that

s2,1 = s2,3 = s2,5 = s2,7 = 1 and s2,2 = s2,4 = s2,6 = s2,8 = 2,

and in case s = 1 it selects its input from the input of the convolutional network and
then use a simple variation of Lemma 6 by adapting the assumptions (13)�(16). The
computed function value of ḡnet,1,s is then saved in the two channels s2,9 = 2 + 2s − 1
and s2,10 = 2 + 2s. Here we propagate again the value of these neurons successively to
the next layer by using the weights as in equation (20). So after layer 4l−1 · Lnet + 1 we
have available the values of all f̄1,s in the channels 2 + 1, . . . , 2 + 2 · 4l−1, so that for any
s ∈ {1, . . . , 4l−1} and any (i, j) ∈ {1, . . . , d1 − 1} × {1, . . . , d2 − 1} it holds that

o
(4l−1·Lnet+1)
(i,j),2+2·s−1 − o

(4l−1·Lnet+1)
(i,j),2+2·s = ḡnet,1,s(x(i,j), x(i+1,j), x(i,j+1), x(i+1,j+1))

= f̄1,s(x(i,j)+I(1)).

Thus property (21) holds for k = 1.
Now we assume that equation (21) holds for k ∈ {1, . . . , l − 1}. We use the values

f̄k,s(x(i,j)+I(k)), which are given by equation (21), to compute all values of

f̄k+1,s(x(i,j)+I(k+1)) = ḡnet,k+1,s

(
f̄k,4·(s−1)+1(x(i2,j2)+I(k)), f̄k,4·(s−1)+2(x(i2+2k,j2)+I(k)

),

f̄k,4·(s−1)+3(x(i2,j2+2k)+I(k)), f̄k,4·s(x(i2+2k,j2+2k)+I(k))
)
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for s ∈ {1, . . . 4l−(k+1)} using Lemma 6. We proceed similarly to the above case of k = 1.
For the �lter size it holds that

Mr = 2k+1 (r ∈ π−1(k + 1)),

where π−1(k + 1) is given by

{4l−1 · Lnet + · · ·+ 4l−k · Lnet + (k + 1), . . . , 4l−1 · Lnet + · · ·+ 4l−(k+1) · Lnet + (k + 1)}.

By applying Lemma 6 4l−(k+1) times we compute successively the networks ḡnet,k+1,1,. . . ,
ḡnet,k+1,4l−(k+1) , in the corresponding layers

4l−1 ·Lnet+ · · ·+4l−k ·Lnet+k+1, . . . , 4l−1 ·Lnet+ · · ·+4l−k ·Lnet+4l−(k+1) ·Lnet+k+1,

where the computation of their hidden layers takes place in channels

2 · 4l + 4

3
+ 1,

2 · 4l + 4

3
+ 2, . . . ,

2 · 4l + 4

3
+ rnet

and the computation of their ouput layers takes place in channels

2 + 2 · 4l−1 + · · ·+ 2 · 4l−k + 1, . . . , 2 + 2 · 4l−1 + · · ·+ 2 · 4l−(k+1).

As above we describe how to use Lemma 6 to compute ḡnet,k+1,s (s = 1, . . . , 4l−(k+1)) and
specify how to choose the parameters s2,1, . . . , s2,10 from Lemma 6. The computation of
ḡnet,k+1,s (s = 1, . . . , 4l−(k+1)) takes place in layers

4l−1 ·Lnet+· · ·+4l−k ·Lnet+k+(s−1)·Lnet+1, . . . , 4l−1 ·Lnet+· · ·+4l−k ·Lnet+k+s·Lnet

in channels
2 · 4l + 4

3
+ 1,

2 · 4l + 4

3
+ 2, . . . ,

2 · 4l + 4

3
+ rnet

for the computation of its hidden layers and its output layer is computed in layer

4l−1 · Lnet + · · ·+ 4l−k · Lnet + k + s · Lnet + 1

in channels
s2,9 = 2 + 2 · 4l−1 + · · ·+ 2 · 4l−k + 2s− 1 (22)

and
s2,10 = 2 + 2 · 4l−1 + · · ·+ 2 · 4l−k + 2s. (23)

We choose

s2,m = 2 +

(
l−1∑

i=l−(k−1)

2 · 4i
)

+ 2 · 4 · (s− 1) +m

for m ∈ {1, . . . , 8}, because then we have

o
(r)
(i,j),s2,2·m−1

− o(r)(i,j),s2,2·m
= f̄k,4·(s−1)+m(x(i,j)+I(k))
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for m ∈ {1, . . . , 4} and any r ∈ {4l−1 · Lnet + · · · + 4l−k · Lnet + k, . . . , lnet} and any
(i, j) ∈ {1, . . . , d1− 2k + 1}× {1, . . . , d2− 2k + 1} due to the induction hypothesis. Then
Lemma 6 let us choose the corresponding weights of the network mnet such that

o
(4l−1·Lnet+···+4l−k·Lnet+k+s·Lnet+1)
(i,j),s2,9

− o(4
l−1·Lnet+···+4l−k·Lnet+k+s·Lnet+1)

(i,j),s2,10

= ḡnet,k+1,s

(
f̄k,4·(s−1)+1(x(i,j)+I(k)), f̄k,4·(s−1)+2(x(i+2k,j)+I(k)),

f̄k,4·(s−1)+3(x(i,j+2k)+I(k)), f̄k,4·s(x(i+2k,j+2k)+I(k))
)

= f̄k+1,s(x(i,j)+I(k+1)).

for any (i, j) ∈ {1, . . . , d1− 2k+1 + 1}×{1, . . . , d2− 2k+1 + 1}. By propagating again the
values of these neurons successively to the next layer we have available the values of all
f̄k+1,s after layer

4l−1 · Lnet + · · ·+ 4l−k · Lnet + 4l−(k+1) · Lnet + k + 1

in the channels

2 + 2 · 4l−1 + · · ·+ 2 · 4l−k + 1, . . . , 2 + 2 · 4l−1 + · · ·+ 2 · 4l−(k+1)

so that for any s ∈ {1, . . . , 4l−(k+1)} and any (i, j) ∈ {1, . . . , d1−2k+1−1}×{1, . . . , d2−
2k+1 − 1} it holds that

o
(4l−1·Lnet+···+4l−k·Lnet+4l−(k+1)·Lnet+k+1)

(i,j),2+2·4l−1+···+2·4l−k+2s−1 − o(4
l−1·Lnet+···+4l−k·Lnet+4l−(k+1)·Lnet+k+1)

(i,j),2+2·4l−1+···+2·4l−k+2s−1

= f̄k+1,s(x(i,j)+I(k+1)).

So property (21) holds for all k ∈ {1, . . . , l}.
Hence in layer

lnet = 4l−1 · Lnet + 4l−2 · Lnet + · · ·+ 40 · Lnet + l =
4l − 1

3
· Lnet + l

we have by equation (21)

o
(lnet)

(i,j),2+2·4l−1+···+2·4+1
− o(lnet)

(i,j),2+2·4l−1+···+2·4+2
= f̄l,1(x(i,j)+I(l))

for all (i, j) ∈ {1, . . . , d1−2l+ 1}×{1, . . . , d2−2l+ 1}. Now we choose the outer weights
wout of our convolutional neural network mnet such that

ws =


1, if s = 2 + 2 · 4l−1 + · · ·+ 2 · 4 + 1

−1, if s = 2 + 2 · 4l−1 + · · ·+ 2 · 4 + 2

0, else.
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This implies that the output of our network is given by

mnet(x) = max

{
o
(lnet)

(i,j),2+2·4l−1+···+2·4l−l+1+1
− o(lnet)

(i,j),2+2·4l−1+···+2·4l−l+1+2
:

(i, j) ∈ {1, . . . , d1 − 2l + 1} × {1, . . . , d2 − 2l + 1}

}

= max

{
f̄(x(i,j)+I) : (i, j) ∈ Z2, (i, j) + I ⊆ {1, . . . , d1} × {1, . . . , d2}

}
= m̄(x).

�

6.3 A bound on the covering number

The purpose of the subsection is to show the following bound on the covering number of
Ft
(
L,k(1),k(2),M

)
.

Lemma 7 Let σ(x) = max{x, 0} be the ReLU activation function, de�ne

F := Ft
(
L,k(1),k(2),M

)
as in Section 2 and set

kmax = max
{
k
(1)
1 , . . . , k

(1)
L1
, t, k

(2)
1 , . . . , k

(2)
L2

}
, Mmax = max{M1, . . . ,ML}

and

Lmax = max{L1, L2}.

Assume d1 · d2 > 1 and c4 · log n ≥ 2. Then we have for any ε ∈ (0, 1):

sup
xn1∈(R{1,...,d1}×{1,...,d2})n

log (N1 (ε, Tc4·lognF ,xn1 ))

≤ c7 · L2
max · log(Lmax · d1 · d2) · log

(
c4 · log n

ε

)
for some constant c7 > 0 which depends only on kmax and Mmax.

With the aim of proving Lemma 7, we �rst have to study the VC dimension of our
function class Ft

(
L,k(1),k(2),M

)
. For a class of subsets of Rd, the VC dimension is

de�ned as follows:

De�nition 2 Let A be a class of subsets of Rd with A 6= ∅ and m ∈ N.

1. For x1, ...,xm ∈ Rd we de�ne

s(A, {x1, ...,xm}) := | {A ∩ {x1, ...,xm} : A ∈ A} |.
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2. Then the mth shatter coe�cient S(A,m) of A is de�ned by

S(A,m) := max
{x1,...,xm}⊂Rd

s(A, {x1, ...,xm}).

3. The VC dimension (Vapnik-Chervonenkis-Dimension) VA of A is de�ned as

VA := sup{m ∈ N : S(A,m) = 2m}.

For a class of real-valued functions, we de�ne the VC dimension as follows:

De�nition 3 Let H denote a class of functions from Rd to {0, 1} and let F be a class

of real-valued functions.

1. For any non-negative integer m, we de�ne the growth function of H as

ΠH(m) := max
x1,...,xm∈Rd

|{(h(x1), . . . , h(xm)) : h ∈ H}|.

2. The VC dimension (Vapnik-Chervonenkis-Dimension) of H we de�ne as

VCdim(H) := sup{m ∈ N : ΠH(m) = 2m}.

3. For f ∈ F we denote sgn(f) := I{f≥0} and sgn(F) := {sgn(f) : f ∈ F}. Then the

VC dimension of F is de�ned as

VCdim(F) := VCdim(sgn(F)).

A connection between both de�nitions is given by the following lemma.

Lemma 8 Suppose F is a class of real-valued functions on Rd. Furthermore, we de�ne

F+ := {{(x, y) ∈ Rd × R : f(x) ≥ y} : f ∈ F}

and de�ne the class H of real-valued functions on Rd × R by

H := {h((x, y)) = f(x)− y : f ∈ F}.

Then, it holds that

VF+ = VCdim(H).

Proof. For all (x1, y1), . . . , (xm, ym) ∈ Rd × R with m ∈ N it holds that

s(F+, {(x1, y1), . . . , (xm, ym)})
=
∣∣{A ∩ {(x1, y1), . . . , (xm, ym)} : A ∈ F+

}∣∣
=
∣∣∣{{(x, y) ∈ Rd × R : f(x) ≥ y} ∩ {(x1, y1), . . . , (xm, ym)} : f ∈ F

}∣∣∣
= | {{(x, y) ∈ {(x1, y1), . . . , (xm, ym)} : f(x) ≥ y} : f ∈ F} |
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= | {{i ∈ {1, . . . ,m} : f(xi) ≥ yi} : f ∈ F} |
= |{(sgn(f(x1)− y1), . . . , sgn(f(xm)− ym)) : f ∈ F}|
= |{(sgn(h(x1, y1)), . . . , sgn(h(xm, ym))) : h ∈ H}|.

It follows that
S(F+,m) = ΠH(m)

holds for all m ∈ N, which implies

VF+ = VCdim(H).

�
In order to bound the VC dimension of our function class, we need the following two
auxiliary results. The �rst one is also known as weighted AM-GM inequality.

Lemma 9 Suppose x1, . . . , xn > 0 and w1, . . . , wn > 0. We denote w :=
∑n

i=1wi. Then,
it holds that

n∏
i=1

(
xi
wi

)wi
≤
(∑n

i=1 xi
w

)w
. (24)

Proof. Since the natural logarithm is a concave function on {x ∈ R : x > 0} and∑n
i=1

wi
w = 1, Jensen's inequality implies that

log

((∑n
i=1 xi
w

)w)
= w · log

∑n
i=1wi

(
xi
wi

)
w


≥ w ·

n∑
i=1

wi
w

log

(
xi
wi

)

= log

(
n∏
i=1

(
xi
wi

)wi)
.

Furthermore, the inverse function of the logarithm u 7→ eu (u ∈ R) is an increasing
function, hence we get

n∏
i=1

(
xi
wi

)wi
≤
(∑n

i=1 xi
w

)w
.

�

The second auxiliary result is about the number of possible sign vectors attained by
polynomials of bounded degree.

Lemma 10 Suppose W ≤ m and let f1, ..., fm be polynomials of degree at most D in W
variables. De�ne

K := |{(sgn(f1(a)), . . . , sgn(fm(a))) : a ∈ RW }|.

Then we have

K ≤ 2 ·
(

2 · e ·m ·D
W

)W
.
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Proof. See Theorem 8.3 in Anthony and Bartlett (1999). �

To get an upper bound for the VC dimension of our function class Ft
(
L,k(1),k(2),M

)
de�ned as in Section 2 we will use a modi�cation of Theorem 6 in Bartlett et al. (2019).

Lemma 11 Let σ(x) = max{x, 0} be the ReLU activation function, de�ne

F := Ft
(
L,k(1),k(2),M

)
as in Section 2, set

kmax = max
{
k
(1)
1 , . . . , k

(1)
L1
, t, k

(2)
1 , . . . , k

(2)
L2

}
, Mmax = max{M1, . . . ,ML1}

and

Lmax = max{L1, L2}.

Assume d1 · d2 > 1. Then, we have

VF+ ≤ c10 · L2
max · log2(Lmax · d1 · d2)

for some constant c10 > 0 which depends only on kmax and Mmax.

Proof. We want to use Lemma 8 to bound VF+ by VCdim(H), where H is the class of
real-valued functions on [0, 1]{1,...,d1}×{1,...,d2} × R de�ned by

H := {h((x, y)) = f(x)− y : f ∈ F}.

Let h ∈ H. Then h depends on t convolutional neural networks

f1, . . . , ft ∈ F(L1,k
(1),M)

and one standard feedforward neural network g ∈ Gt(L2,k
(2)) such that

h((x, y)) = g ◦ (f1, . . . , ft)(x)− y

Each one of the convolutional neural networks f1, . . . , ft depends on a weight matrix

w(b) =
(
w

(b,r)
i,j,s1,s2

)
1≤i,j≤Mr,s1∈{1,...,k(1)r−1},s2∈{1,...,k

(1)
r },r∈{1,...,L1}

,

the weights

w
(b)
bias =

(
w(b,r)
s2

)
s2∈{1,...,k(1)r },r∈{1,...,L1}

for the bias in each channel and each convolutional layer, the output weights

w
(b)
out = (w(b)

s )
s∈{1,...,k(1)L1

}

for b ∈ {1, . . . , t}. The standard feedforward neural network g ∈ Gt(L2,k
(2)) depends on

the inner weigths

w
(r−1)
i,j
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for j ∈ {0, . . . , k(2)r−1}, i ∈ {1, . . . , k
(2)
r } and r ∈ {1, . . . , L2} and the outer weights

w
(L2)
i

for i ∈ {0, . . . , k(2)L2
} (where k(2)0 = t).

We set
k = (k0, . . . , kL1+L2+1) = (1, k

(1)
1 , . . . , k

(1)
L1
, t, k

(2)
1 , . . . , k

(2)
L2

)

and count the number of weights used up to layer r ∈ {1, . . . , L1} in the convolutional
part by

Wr := t ·

(
r∑
s=1

M2
s · ks · ks−1 +

r∑
s=1

ks

)
,

for r ∈ {1, . . . , L1} (where we set W0 := 0) and

WL1+1 := WL1 + t · kL1 .

We continue in the part of the standard feedforward neural network by counting the
weights used up to layer r ∈ {1, . . . , L2} by

WL1+1+r = WL1+r + (kL1+r + 1) · kL1+r+1

and denote the total number of weights by

W = WL1+L2+2

= WL1+L2+1 + kL1+L2+1 + 1

≤ L1 · t ·
(
M2
max · k2max + kmax

)
+ t · kmax

+ L2 · ((kmax + 1) · kmax) + kmax + 1

≤ L1 · t ·
(
M2
max · (kmax + 1) · kmax

)
+ L2 · ((kmax + 1) · kmax)

+ 2 · t · (kmax + 1)

≤ (L1 + L2 + 2) · t ·M2
max · (kmax + 1) · kmax

≤ 2 · (L1 + L2 + 2) · t ·M2
max · k2max.

(25)

We de�ne I(0) = ∅ and for r ∈ {1, . . . , L1 + L2 + 2} we de�ne the index sets

I(r) = {1, . . . ,Wr}.

Furthermore, we de�ne a sequence of vectors containing the weights used up to layer
r ∈ {1, . . . , L1} in the convolutional part by

aI(r) :=
(
aI(r−1) , w

(1,r)
1,1,1,1, . . . , w

(1,r)
Mr,Mr,kr−1,kr

, w
(1,r)
1 , . . . , w

(1,r)
kr

,

. . . , w
(t,r)
1,1,1,1, . . . , w

(t,r)
Mr,Mr,kr−1,kr

, w
(t,r)
1 , . . . , w

(t,r)
kr

)
∈ RWr
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(where a∅ denotes the empty vector),

aI(L1+1) := (aI(L1) , w
(1)
1 , . . . , w

(1)
kL1

, . . . , w
(t)
1 , . . . , w

(t)
kL1

) ∈ RWL1+1 ,

and by continuing with the part of the standard feedforward neural network we get for
r ∈ {1, . . . , L2}

aI(r+L1+1) :=
(
aI(r+L1) , w

(r−1)
1,0 , . . . , w

(r−1)
kr+L1+1,kr+L1

)
∈ RWr+L1+1

and
a :=

(
aI(L1+L2+1) , w

(L2)
0 , . . . , w

(L2)
L2

)
∈ RW .

With this notation we can write

H = {(x, y) 7→ h((x, y),a) : a ∈ RW }

and for b ∈ {1, . . . , t}

F(L1,k
(1),M) = {x 7→ fb(x,a) : a ∈ RW },

where the convolutional networks f1, . . . , ft ∈ F(L1,k
(1),M), as described above, each

depends only on WL1+1/t variables of a. To get an upper bound for the VC-dimension
of H, we will bound the growth function Πsgn(H)(m). In the following we assume that m
is a positiv integer with

m ≥W (26)

since this will allow us several uses of Lemma 10. To bound the growth function
Πsgn(H)(m), we �x the input values

(x1, y1), . . . , (xm, ym) ∈ [0, 1]{1,...,d1}×{1,...,d2} × R

and consider h ∈ H as a function of the weight vector a ∈ RW of h

a 7→ h((xk, yk),a) = g ◦ (f1, . . . , ft)(xk,a)− yk = hk(a)

for any k ∈ {1, . . . ,m}. Then, an upper bound for

K := |{(sgn(h1(a)), . . . , sgn(hm(a))) : a ∈ RW }|

implies an upper bound for the growth function Πsgn(H)(m). For any partition

S = {S1, . . . , SM}

of RW it holds that

K ≤
M∑
i=1

|{(sgn(h1(a)), . . . , sgn(hm(a)) : a ∈ Si}|. (27)
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We will construct a partition S of RW such that within each region S ∈ S , the func-
tions hk(·) are all �xed polynomials of bounded degree for k ∈ {1, . . . ,m}, so that each
summand of equation (27) can be bounded via Lemma 10. We do this in two steps.
In the �rst step we construct a partition S(1) of RW such that within each S ∈ S(1)

the t convolutional neural networks f1,k (a) , . . . , ft,k (a) are all �xed polynomials with
dergee of at most L1 + 1 for all k ∈ {1, . . . ,m}, where we denote

fb,k (a) = fb (xk,a)

for b ∈ {1, . . . , t}. We de�ne

D = {1, . . . , d1} × {1, . . . , d2}.

For b ∈ {1, . . . , t} we have

fb,k (a) = max

{ kL1∑
s=1

w(b)
s · o

(L1)
(i,j),b,s,xk

(aI(L1)) : (i, j) ∈ D

}
,

where o
(L1)
(i,j),b,s2,x

(aI(L1)) is recursively de�ned by

o
(r)
(i,j),b,s2,x

(aI(r))

= σ

kr−1∑
s1=1

∑
t1,t2∈{1,...,Mr}

(i+t1−1,j+t2−1)∈D

w
(b,r)
t1,t2,s1,s2

· o(r−1)(i+t1−1,j+t2−1),b,s1,x(aI(r−1)) + w(b,r)
s2


for (i, j) ∈ D and r ∈ {1, . . . , L1}, and by

o
(0)
(i,j),b,1,x(aI(0)) = xi,j for (i, j) ∈ D.

Firstly, we construct a partition SL1 = {S1, . . . , SM} of RW such that within each S ∈ SL1

o
(L1)
(i,j),b,s,xk

(aI(L1))

is a �xed polynomial for all k ∈ {1, . . . ,m}, s ∈ {1, . . . , kL}, b ∈ {1, . . . , t} and (i, j) ∈ D
with degree of at most L1 in the WL1 variables aI(L1) of a ∈ S. We construct the
partition SL1 iteratively layer by layer, by creating a sequence S0, . . . ,SL1 , where each
Sr is a partition of RW with the following properties:

1. We have |S0| = 1 and, for each r ∈ {1, . . . , L1},

|Sr|
|Sr−1|

≤ 2

(
2 · e · t · kr · d1 · d2 ·m · r

Wr

)Wr

, (28)

38



2. For each r ∈ {0, . . . , L1}, and each element S ∈ Sr, each (i, j) ∈ D, each s ∈
{1, . . . , kr}, each k ∈ {1, . . . ,m}, and each b ∈ {1, . . . , t} when a varies in S,

o
(r)
(i,j),b,s,xk

(aI(r))

is a �xed polynomial function in theWr variables aI(r) of a, of total degree no more
than r.

We de�ne S0 := {RW }. Since

o
(0)
(i,j),b,s,xk

(aI(0)) = (xk)i,j

is a constant polynomial, property 2 above is satis�ed for r = 0. Now suppose that
S0, . . . ,Sr−1 have been de�ned, and we want to de�ne Sr. For S ∈ Sr−1 let

p(i,j),b,s1,xk,S(aI(r−1))

denote the function o
(r−1)
(i,j),b,s1,xk

(aI(r−1)), when a ∈ S. By induction hypothesis

p(i,j),b,s1,xk,S(aI(r−1))

is a polynomial with total degree no more than r−1, and depends on the Wr−1 variables
aI(r−1) of a for any b ∈ {1, . . . , t}, k ∈ {1, . . . ,m}, (i, j) ∈ D and s1 ∈ {1, . . . , kr−1}.
Hence for any b ∈ {1, . . . , t} k ∈ {1, . . . ,m}, (i, j) ∈ D and s2 ∈ {1, . . . , kr}

kr−1∑
s1=1

∑
t1,t2∈{1,...,Mr}

(i+t1−1,j+t2−1)∈D

w
(r)
t1,t2,s1,s2

· p(i+t1−1,j+t2−1),b,s1,xk,S(aI(r−1)) + w(b,r)
s2

is a polynomial in the Wr variables aI(r) of a with total degree no more than r. Because
of condition (26) we have t · kr ·m · d1 · d2 ≥Wr. Hence, by Lemma 10, the collection of
polynomials

kr−1∑
s1=1

∑
t1,t2∈{1,...,Mr}

(i+t1−1,j+t2−1)∈D

w
(b,r)
t1,t2,s1,s2

· p(i+t1−1,j+t2−1),b,s1,xk,S(aI(r−1)) + w(b,r)
s2 :

b ∈ {1, . . . , t}, k ∈ {1, . . . ,m}, (i, j) ∈ D, s2 ∈ {1, . . . , kr}


attains at most

Π := 2

(
2 · e · t · kr ·m · d1 · d2 · r

Wr

)Wr
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distinct sign patterns when aI(r) ∈ RWr and therefore the above collection of polynomi-
als also attains at most Π distinct sign patterns when a varies in RW since the above
polynomials depend only on the Wr variables aI(r) of a. Therefore, we can partition
S ⊂ RW into Π subregions, such that all the polynomials don't change their signs within
each subregion. Doing this for all regions S ∈ Sr−1 we get our required partition Sr
by assembling all of these subregions. In particular, property 1 (inequality (28)) is then
satis�ed.
Fix some S′ ∈ Sr. Notice that, when a varies in S′, all the polynomials

kr−1∑
s1=1

∑
t1,t2∈{1,...,Mr}

(i+t1−1,j+t2−1)∈D

w
(b,r)
t1,t2,s1,s2

· p(i+t1−1,j+t2−1),b,s1,xk,S(aI(r−1)) + w(b,r)
s2 :

b ∈ {1, . . . , t}, k ∈ {1, . . . ,m}, (i, j) ∈ D, s2 ∈ {1, . . . , kr}


don't change their signs, hence

o
(r)
(i,j),b,s2,xk

(aI(r))

= σ

kr−1∑
s1=1

∑
t1,t2∈{1,...,Mr}

(i+t1−1,j+t2−1)∈D

w
(b,r)
t1,t2,s1,s2

· o(r−1)(i+t1−1,j+t2−1),b,s1,xk(aI(r−1)) + w(b,r)
s2



= max


kr−1∑
s1=1

∑
t1,t2∈{1,...,Mr}

(i+t1−1,j+t2−1)∈D

w
(b,r)
t1,t2,s1,s2

· o(r−1)(i+t1−1,j+t2−1),b,s1,xk(aI(r−1)) + w(b,r)
s2 , 0


is either a polynomial of degree no more than r in the Wr variables aI(r) of a or a
constant polynomial with value 0 for all (i, j) ∈ D, b ∈ {1, . . . , t}, s2 ∈ {1, . . . , kr} and
k ∈ {1, . . . ,m}. Hence, property 2 is also satis�ed and we are able to construct our
desired partition SL1 . Because of inequality (28) of property 1 it holds that

|SL1 | ≤
L1∏
r=1

2

(
2 · e · t · kr · d1 · d2 ·m · r

Wr

)Wr

.

For any (i, j) ∈ D, b ∈ {1, . . . , t} and k ∈ {1, . . . ,m}, we de�ne

f(i,j),b,xk(aI(L1+1)) :=

kL1∑
s2=1

w(b)
s2 · o

(L1)
(i,j),b,s2,xk

(aI(L1)).
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For any �xed S ∈ SL1 , let p(i,j),b,S,xk(aI(L1+1)) denote the function f(i,j),b,xk(aI(L1+1)),
when a ∈ S. By construction of SL1 this is a polynomial of degree no more than L1+1 in
theWL1+1 variables aI(L1+1) of a. Because of condition (26) we have t·d21 ·d22 ·m ≥WL1+1.
Hence, by Lemma 8, the collection of polynomials{

p(i1,j1),b,S,xk(aI(L1+1))− p(i2,j2),b,S,xk(aI(L1+1)) :

(i1, j1), (i2, j2) ∈ D, (i1, j1) 6= (i2, j2), b ∈ {1, . . . , t}, k ∈ {1, . . . ,m}
}

attains at most

∆ := 2

(
2 · e · t · d21 · d22 ·m · (L1 + 1)

WL1+1

)WL1+1

distinct sign patterns when aI(L1+1) ∈ RWL1+1 and therefore the above collection of
polynomials also attains at most ∆ distinct sign patterns when a varies in RW since
the above polynomials depend only on the WL1+1 variables aI(L1+1) of a. Therefore, we
can partition S ⊂ RW into ∆ subregions, such that all the polynomials don't change
their signs within each subregion. Doing this for all regions S ∈ SL1 we get our required
partition S(1) by assembling all of these subregions. For the size of our partition S(1) we
get

|S(1)| ≤
L1∏
r=1

2 ·
(

2 · t · e · kr · d1 · d2 ·m · r
Wr

)Wr

· 2 ·
(

2 · e · t · d21 · d22 ·m · (L1 + 1)

WL1+1

)WL1+1

.

Fix some S′ ∈ S(1). Notice that, when a varies in S′, all the polynomials{
p(i1,j1),b,S,xk(aI(L1+1))− p(i2,j2),b,S,xk(aI(L1+1)) :

(i1, j1), (i2, j2) ∈ D, (i1, j1) 6= (i2, j2), b ∈ {1, . . . , t}, k ∈ {1, . . . ,m}
}

don't change their signs. Hence, there is a permutation π(b,k) of the set

{1, . . . , d1 −ML1 + 1} × {1, . . . , d2 −ML1 + 1}

for any b ∈ {1, . . . , t} and k ∈ {1, . . . ,m} such that

fπ(b,k)((1,1)),b,xk
(aI(L1+1)) ≥ · · · ≥ fπ(b,k)((d1−ML1

+1,d2−ML1
+1)),b,xk

(aI(L1+1))

for a ∈ S′ and any k ∈ {1, . . . ,m} and b ∈ {1, . . . , t}. Therefore, it holds that

fb,k(a) = max
{
f(1,1),b,xk

(
aI(L1+1)

)
, . . . , f(d1−ML1

+1,d2−ML1
+1),b,xk

(
aI(L1+1)

)}
= fπ(b,k)((1,1)),b,xk

(aI(L1+1)),

for a ∈ S′. Since fπ(b,k)((1,1)),b,xk
(aI(L1+1)) is a polynomial within S′, also fb,k(a) is a

polynomial within S′ with degree no more than L1 + 1 and in the WL1+1 variables
aI(L1+1) of a ∈ RW .
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In the second step we construct the partition S starting from partition S(1) such that
within each region S ∈ S the functions hk(·) are all �xed polynomials of degree of at
most L1 + L2 + 2 for k ∈ {1, . . . ,m}. We have

hk(a) =

kL1+L2+1∑
i=1

w
(L2)
i g

(L2)
i,k

(
aI(L1+L2+1)

)
+ w

(L2)
0 − yk

where the g
(L2)
i,k are recursively de�ned by

g
(r)
i,k

(
aI(L1+r+1)

)
= σ

kL1+r∑
j=1

w
(r−1)
i,j g

(r−1)
j,k (aI(L1+r))


for r ∈ {1, . . . , L2} and

g
(0)
i,k (aI(L1+1)) = fi,k(a)

for i ∈ {1, . . . , kL1+1} (kL1+1 = t). As above we construct the partition S iteratively
layer by layer, by creating a sequence S0, . . . ,SL2 , where each Sr is a partition of RW
with the following porperties:

1. We set S0 = S(1) and, for each r ∈ {1, . . . , L2},

|Sr|
|Sr−1|

≤ 2

(
2 · e · kL1+r+1 ·m · (L1 + r + 1)

WL1+r+1

)WL1+r+1

, (29)

2. For each r ∈ {0, . . . , L2}, and each element S ∈ Sr, each i ∈ {1, . . . , kL1+r+1}, and
each k ∈ {1, . . . ,m} when a varies in S,

g
(r)
i,k (aI(L1+r+1))

is a �xed polynomial function in the WL1+r+1 variables aI(L1+r+1) of a, of total
degree no more than L1 + r + 1.

As we have already shown in step 1, property 2 above is satis�ed for r = 0. Now suppose
that S0, . . . ,Sr−1 have been de�ned, and we want to de�ne Sr. For S ∈ Sr−1 and

j ∈ {1, . . . , kL1+r} let pj,k,S(aI(L1+r)) denote the function g
(r−1)
j,k (aI(L1+r)), when a ∈ S.

By induction hypothesis pj,k,S(aI(L1+r)) is a polynomial with total degree no more than
L1 + r, and depends on the WL1+r variables aI(L1+r) of a. Hence for any k ∈ {1, . . . ,m}
and i ∈ {1, . . . , kL1+r+1}

kL1+r∑
j=1

w
(r−1)
(i,j) pj,k,S(aI(L1+r)) + w

(r−1)
i,0
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is a polynomial in the WL1+r+1 variables aI(L1+r+1) variables of a with total degree no
more than L1 + r+1. Because of condition (26) we have kL1+r+1 ·m ≥WL1+r+1. Hence,
by Lemma 8, the collection of polynomials

kL1+r∑
j=1

w
(r−1)
(i,j) pj,k,S(aI(L1+r)) + w

(r−1)
i,0 : k ∈ {1, . . . ,m}, i ∈ {1, . . . , kL1+r+1}


attains at most

Π := 2

(
2 · e · kL1+r+1 ·m · (L1 + r + 1)

WL1+r+1

)WL1+r+1

distinct sign patterns when aI(L1+r+1) ∈ RWL1+r+1 and therefore the above collection of
polynomials also attains at most Π distinct sign patterns when a varies in RW since the
above polynomials depend only on the WL1+r+1 variables aI(L1+r+1) of a. Therefore, we
can partition S ⊂ RW into Π subregions, such that all the polynomials don't change
their signs within each subregion. Doing this for all regions S ∈ Sr−1 we get our required
partition Sr by assembling all of these subregions. In particular property 1 is then
satis�ed. In order to see that condition 2 is also satis�ed, we can proceed analogously to
step 1. Hence, when a varies in S ∈ S the function

hk(a) =

kL1+L2+1∑
i=1

w
(L)
i g

(L2)
i,k

(
aI(L1+L2+1)

)
+ w

(L)
0 − yk

is a polynomial of degree no more than L1 + L2 + 2 in the W variables of a ∈ RW for
any k ∈ {1, . . . ,m}. For the size of our partition S we get

|S| ≤
L1∏
r=1

2 ·
(

2 · e · t · kr · d1 · d2 ·m · r
Wr

)Wr

· 2 ·
(

2 · e · d21 · d22 ·m · (L1 + 1)

WL1+1

)WL1+1

·
L2∏
r=1

2 ·
(

2 · e · kL1+r+1 ·m · (L1 + r + 1)

WL1+r+1

)WL1+r+1

≤
L1+L2+1∏

r=1

2 ·
(

2 · e · t · kr · d21 · d22 ·m · r
Wr

)Wr

By condition (26) and another application of Lemma 10 it holds for any S′ ∈ S that

|{(sgn(h1(a)), . . . , sgn(hm(a))) : a ∈ S′}|

≤ 2 ·
(

2 · e ·m · (L1 + L2 + 2)

W

)W
.

Now we are able to bound K via equation (27) and because K is an upper bound for the
growth function we set kL1+L2+2 = 1 and get

Πsgn(H)(m) ≤
L1+L2+2∏

r=1

2 ·
(

2 · e · t · kr · d21 · d22 · r ·m
Wr

)Wr
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(24)

≤ 2L1+L2+2 ·

(∑L1+L2+2
r=1 2 · e · t · kr · d21 · d22 · r ·m∑L1+L2+2

r=1 Wr

)∑L1+L2+2
r=1 Wr

= 2L1+L2+2 ·

(
R ·m∑L1+L2+2

r=1 Wr

)∑L1+L2+2
r=1 Wr

, (30)

with R := 2etd21d
2
2

∑L1+L2+2
r=1 kr · r. In the third row we used inequation (24) of Lemma

7. Without loss of generality, we can assume that VCdim(H) ≥
∑L1+L2+2

r=1 Wr because

in the case VCdim(H) <
∑L1+L2+2

r=1 Wr we have

VCdim(H) < (L1 + L2 + 2) ·W
(25)

≤ 2 · (L1 + L2 + 2)2 · t ·M2
max · k2max

≤ c10 · L2
max

for some constant c10 > 0 which only depends on Mmax and kmax and get the assertion
by Lemma (8). Hence we get by the de�nition of the VC�dimension and inequality (30)
(which only holds for m ≥W )

2VCdim(H) = Πsgn(H)(VCdim(H)) ≤ 2L1+L2+2 ·

(
R ·VCdim(H)∑L1+L2+2

r=1 Wr

)∑L1+L2+2
r=1 Wr

.

Since

R ≥ 2 · e · t · d21 · d22 ·
1+1+2∑
r=1

r ≥ 2 · e · t · d21 · d22 · 10 ≥ 16

Lemma 12 below (with parameters R, m = VCdim(H), w =
∑L1+L2+2

r=1 Wr and L =
L1 + L2 + 2) implies that

VCdim(H) ≤ (L1 + L2 + 2) +

(
L1+L2+2∑

r=1

Wr

)
· log2(2 ·R · log2(R))

≤ (L1 + L2 + 2) + (L1 + L2 + 2) ·W
· log2(2 · (2 · e · t · d21 · d22 · (L1 + L2 + 2) · kmax)2)

≤ 2 · (L1 + L2 + 2) ·W · log2

(
(2 · e · t · (L1 + L2 + 2) · kmax · d1 · d2)4

)
(25)

≤ 16 · t · (L1 + L2 + 2)2 · k2max ·M2
max

· log2 (2 · e · t · (L1 + L2 + 2) · kmax · d1 · d2)
≤ c10 · L2

max · log2(Lmax · d1 · d2),

for some constant c10 > 0 which only depends on kmax and Mmax. In the third row we
used equation (25) for the total number of weights W . Now we make use of Lemma 8
and �nally get

VF+ ≤ c10 · L2
max · log2(Lmax · d1 · d2).

44



�

Lemma 12 Suppose that 2m ≤ 2L · (m · R/w)w for some R ≥ 16 and m ≥ w ≥ L ≥ 0.
Then,

m ≤ L+ w · log2(2 ·R · log2(R)).

Proof. See Lemma 16 in Bartlett et al. (2019). �

Proof of Lemma 7. Using Lemma 11 and

VTc4·lognF
+ ≤ VF+ ,

we can conclude from this together with Lemma 9.2 and Theorem 9.4 in Györ� et al.
(2002)

N1 (ε, Tc4·lognF ,xn1 )

≤ 3 ·
(

4e · c4 · log n

ε
· log

6e · c4 · log n

ε

)VTc4·lognF+

≤ 3 ·
(

6e · c4 · log n

ε

)2·c10·L2
max·log(Lmax·d1·d2)

.

This completes the proof of Lemma 7. �

6.4 Proof of Theorem 1

W.l.o.g. we assume that n is so large that c4 · log n ≥ 2 holds. Then z > 1/2 holds if and
only if Tc4·lognz > 1/2 holds, and consequently we have

fn(x) =

{
1, if Tc4·lognηn(x) ≥ 1

2

0, elsewhere

Hence Lemma 1 implies that it su�ces to show

E

∫
|Tc4·lognηn(x)−η(x)|2PX(dx) ≤ c11 ·log(d1 ·d2)·(log n)4 ·max

{
n
− 2·p1

2·p1+4 , n
− 2·p2

2·p2+d∗

}
.

By Lemma 2 we know

E

∫
|Tc4·lognηn(x)− η(x)|2PX(dx)

≤
c12 · (log n)2 · supxn1

(
log
(
N1

(
1

n·c4 log(n) , Tc4 log(n)F ,x
n
1

))
+ 1
)

n

+2 · inf
f∈F

∫
|f(x)− η(x)|2PX(dx),
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where F := Ft
(
L,k(1),k(2),M

)
. Application of Lemma 7 yields

c12 · (log n)2 · supxn1

(
log
(
N1

(
1

n·c4 log(n) , Tc4 log(n)F ,x
n
1

))
+ 1
)

n

≤ c13 ·
log(d1 · d2) · (log n)3 · L2

max · logLmax
n

≤ c14 · log(d1 · d2) · log(n)4 ·max

{
n
− 2·p1

2·p1+4 , n
− 2·p2

2·p2+d∗

}
,

where Lmax = max{L1, L2}. Next we derive a bound on the approximation error

inf
f∈F

∫
|f(x)− η(x)|2PX(dx).

Because of the assumption on η, we have

η(x) = g(m1(x), . . . ,md∗(x))

such that ma satis�es a max-pooling with index set

I = {0, . . . , 2l − 1} × {0, . . . , 2l − 1}

for any a ∈ {1, . . . , d∗} and ma satis�es a hierarchical model with level l with functions

g
(a)
k,s : R4 → [0, 1].

for a ∈ {1, . . . , d∗}, k ∈ {1, . . . , l} and s ∈ {1, . . . , 4l−k}. Then, for any a ∈ {1, . . . , d∗},
k ∈ {1, . . . , l} and any s ∈ {1, . . . , 4l−k} let ḡ(a)net,k,s ∈ G4

(
Ln,k

(2)
)
and ḡnet ∈ Gd∗

(
Ln,k

(2)
)

be the neural networks from Lemma 3 which satis�es

‖g(a)k,s − ḡ
(a)
net,k,s‖[−2,2]4,∞ ≤ c14 · L

− 2·p1
4

n ≤ c15 · n
− p1

2·p1+4 , (31)

and

‖g − ḡnet‖[−2,2]d∗ ,∞ ≤ c14 · L
− 2·p2

d∗
n ≤ c15 · n

− p2
2·p2+d∗ . (32)

Then Lemma 5 let us choose

m̄1, . . . , m̄d∗ ∈ F(L1,k
(1),M, d̃) (33)

such that
m̄a(x) = max

(i,j)∈Z2:(i,j)+I⊂{1,...,d1}×{1,...,d2}
f̄(x(i,j)+I),

where f̄ satis�es
f̄ = f̄I,1

for some f̄k,s : [0, 1]{1,...,2
k}×{1,...,2k} → R recursively de�ned by

f̄k,s(x) = ḡnet,k,s
(
f̄k−1,4·(s−1)+1(x{1,...,2k−1}×{1,...,2k−1}),
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f̄k−1,4·(s−1)+2(x{2k−1+1,...,2k}×{1,...,2k−1}),

f̄k−1,4·(s−1)+3(x{1,...,2k−1}×{2k−1+1,...,2k}),

f̄k−1,4·s(x{2k−1+1,...,2k}×{2k−1+1,...,2k})
)

for k = 2, . . . , l, s = 1, . . . , 4l−k, and

f̄1,s(x1,1, x1,2, x2,1, x2,2) = ḡnet,1,s(x1,1, x1,2, x2,1, x2,2)

for s = 1, . . . , 4l−1. Due to property (33) it holds that

ḡnet ◦ (m̄1, . . . , m̄d∗) ∈ F . (34)

Since the functions g
(a)
k,s are [0, 1]�valued, inequalities (31) and (32) let us choose c1 in

the de�nition of Ln su�ciently large such that the triangle inequality implies that

‖ḡ(a)net,k,s‖[−2,2]4,∞ ≤ 2

for all a ∈ {1, . . . , d∗}, k ∈ {1, . . . , l} and s ∈ {1, . . . , 4l−k}. Then Lemma 4 implies

inf
f∈F

∫
|f(x)− η(x)|2PX(dx)

(34)

≤
∫
|ḡnet(m̄1(x), . . . , m̄d∗(x))− g(m1(x), . . . ,md∗(x))|2PX(dx)

≤ c16 ·
(

max
a∈{1,...,d∗},k∈{1,...,l},s∈{1,...,4l−j}

{
‖g(a)k,s − ḡ

(a)
net,k,s‖[−2,2]4,∞, ‖g − ḡnet‖[−2,2]d∗ ,∞

})2

(31),(32)

≤ c17 ·max

{
n
− 2·p1

2·p1+4 , n
− 2·p2

2·p2+d∗

}
.

Summarizing the above results, the proof is complete. �
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