
On the rate of convergence of a deep recurrent
neural network estimate in a regression problem

with dependent data ∗

Michael Kohler1 and Adam Krzy»ak2,†
1 Fachbereich Mathematik, Technische Universität Darmstadt, Schlossgartenstr. 7,

64289 Darmstadt, Germany, email: kohler@mathematik.tu-darmstadt.de
2 Department of Computer Science and Software Engineering, Concordia University,

1455 De Maisonneuve Blvd. West, Montreal, Quebec, Canada H3G 1M8, email:

krzyzak@cs.concordia.ca

October 25, 2020

Abstract

A regression problem with dependent data is considered. Regularity assumptions on the
dependency of the data are introduced, and it is shown that under suitable structural
assumptions on the regression function a deep recurrent neural network estimate is able
to circumvent the curse of dimensionality.

AMS classi�cation: Primary 62G05; secondary 62G20.

Key words and phrases: Curse of dimensionality, recurrent neural networks, regression
estimation, rate of convergence.

1. Introduction

1.1. Scope of this paper

Motivated by the huge success of deep neural networks in applications (see, e.g., Schmid-
huber (2015), Rawat and Wang (2017), Hewamalage, Bergmeir and Bandara (2020) and
the literature cited therein) there is nowadays a strong interest in showing theoretical
properties of such estimates. In the last years many new results concerning deep feed-
forward neural network estimates have been derived (cf., e.g., Eldan and Shamir (2016),
Lu et al. (2020), Yarotsky (2018) and Yarotsky and Zhevnerchuk (2019) concerning
approximation properties or Kohler and Krzy»ak (2017), Bauer and Kohler (2019) and
Schmidt-Hieber (2020) concerning statistical properties of these estimates). But basi-
cally no theoretical convergence results are known about the recurrent neural network
estimates, which are among those neural network estimates which have been successfully
applied in practice for time series forecasting (Smyl (2020), Mas and Carre (2020) and
Makridakis, Spiliotis and Assimakopolulos (2018)), handwriting recognition (Graves et

∗Running title: Recurrent neural network estimates
†Corresponding author. Tel: +1-514-848-2424 ext. 3007, Fax:+1-514-848-2830

1

al. (2008), Graves and Schmidhuber (2009)), speech recognition (Graves and Schmid-
huber (2005), Graves, Mohamed and Hinton (2013)) and natural language processing
(Pennington, Socher and Manning (2014)). For survey of the recent advances on recur-
rent neural networks see Salehinejad et al. (2018). In this paper we introduce a special
class of deep recurrent neural network estimates and analyze their statistical properties
in the context of regression estimation problem with dependent data.

1.2. A regression problem with dependent data

In order to motivate our regression estimation problem with dependent data, we start by
considering a general time series prediction problem with exogeneous variables described
as follows: Let (Xt, Yt) (t ∈ Z) be Rd × R�valued random variables which satisfy

Yt = F (Xt, (Xt−1, Yt−1), (Xt−2, Yt−2), . . .) + εt (1)

for some measurable function F : Rd × (Rd × R)N → R and some real-valued random
variables εt with the property

E{εt|Xt, (Xt−1, Yt−1), (Xt−2, Yt−2), . . . } = 0 a.s., (2)

where R and N are real numbers and positive integers, respectively. Given the data

Dn = {(X1, Y1), . . . , (Xn, Yn)} (3)

the aim is to construct an estimate mn(·) = mn(·,Dn) : Rd → R such that the mean
squared prediction error

E
{
|Yn+1 −mn(Xn+1,Dn)|2

}
is as small as possible.
In this article we simplify the above general model by imposing �ve main constraints.

Firstly, we assume that F (Xt, (Xt−1, Yt−1), (Xt−2, Yt−2), . . .) does not depend on the
complete in�nite past (Xt−1, Yt−1), (Xt−2, Yt−2), . . . but only on the last k times steps,
where k ∈ N. Secondly, we assume that F (Xt, (Xt−1, Yt−1), (Xt−2, Yt−2), . . .) depends
only on the x-values. Thirdly, we assume that F has, in addition, a special recursive
structure:

F (Xt, (Xt−1, Yt−1), (Xt−2, Yt−2), . . .) = G(Xt, Hk(Xt−1, Xt−2, . . . , Xt−k))

where

Hk(xt−1, xt−2, . . . , xt−k) = H(xt−1, Hk−1(xt−2, xt−3, . . . , xt−k)) (4)

and
H1(xt−1) = H(xt−1, 0). (5)

Here G : Rd × R → R and H : Rd × R → R are smooth functions. Fourthly, we assume
that εt are independent and identically distributed random variables with mean zero
satisfying the following sub-Gaussian assumption:

E
{
ec1·ε

2
t

}
<∞. (6)

2

And �nally we simplify our model further by assuming that X1, X2, . . . are independent
and identically distributed.
In this way we get the following regression problem: Let (Xt)t∈Z be independent

identically distributed random variables with values in Rd and let (εt)t∈Z be indepen-
dent identically distributed random variables with values in R, which are independent of
(Xt)t∈Z. Assume E{εt} = 0 and (6). Set

Yt = G(Xt, Hk(Xt−1, . . . , Xt−k)) + εt

for some (measurable) G : Rd×R→ R and Hk de�ned by (4) and (5) for some (measur-
able) H : Rd × R→ R. Given the data (3) we want to construct an estimate

mn(·) = mn(·,Dn) : Rd × (Rd)k → R

such that
E
{∣∣Yn+1 −mn(Xn+1, Xn, . . . , Xn−(k−1))

∣∣2}
is as small as possible.
In the above model we have

E{Yt|Xt = xt, . . . , Xt−k = xt−k} = G(xt, Hk(xt−1, . . . , xt−k)),

i.e.,
m(x1, . . . , xk+1) = G(xk+1, Hk(xk, . . . , x1)) (7)

is the regression function on

((X1, . . . , Xk+1), Yk+1),

and our estimation problem above is a standard regression estimation problem where we
try to estimate (7) from the data

((X1, . . . , Xk+1), Yk+1), ((X2, . . . , Xk+2), Yk+2), . . . , ((Xn−k, . . . , Xn), Yn). (8)

Here the data (8) is not independent because each of the variables X2, . . . , Xn−1 occur
in several of the data ensembles.

1.3. A recurrent neural network estimate

We construct a recurrent neural network estimate as follows: Below we de�ne a suitable
class Fn of recurrent neural networks and use the least squares principle to de�ne our
estimate by

m̃n = arg min
f∈Fn

1

n− k

n∑
t=k+1

|Yt − f(Xt, Xt−1, . . . , Xt−k)|2 (9)

and
mn(Xn+1,Dn) = Tβnm̃n(Xn+1, Xn, . . . , Xn−(k−1)) (10)

3

where TLz = min{max{z,−L}, L} (for L > 0 and z ∈ R) is a truncation operator and
βn = c2 · log n.
So it remains to de�ne the class Fn of recurrent neural networks. Here we use standard

feedforward neural networks with additional feedback loops. We start by de�ning our
arti�cial neural network by choosing the so�called activation function σ : R → R, for
which we select the ReLU activation function

σ(z) = max{z, 0} (z ∈ R). (11)

Our neural network consists of L layers of hidden neurons with kl neurons in layer l. It
depends on a vector of weights w(l)

i,j and w̄
(l)

j,(r,l̄)
, where w(l)

i,j is the weight between neuron

j in layer l− 1 and neuron i in layer l, and where w̄(l)

j,(r,l̄)
is the recurrent weight between

neuron r in layer l̄ and neuron j in layer l. For each neuron j in layer l the index
set I(l)

j describes the neurons in the neural network from which there exists a recurrent
connection to this neuron. The function corresponding to this network evaluated at
x1, . . . , xt is de�ned recursively as follows:

fnet,w(t) =

kL∑
j=1

w
(L)
1,j · f

(L)
j (t), (12)

where

f
(l)
j (t) = σ

kl−1∑
s=1

w
(l)
j,s · f

(l−1)
s (t) + I{t>1} ·

∑
(r,l̄)∈Ilj

w̄
(l)

j,(r,l̄)
· f (l̄)
r (t− 1)

 (13)

for l = 2, . . . , L and

f
(1)
j (t) = σ

 d∑
s=0

w
(1)
j,s · x

(s)
t + I{t>1} ·

∑
(r,l̄)∈I1j

w̄
(1)

j,(r,l̄)
· f (l̄)
r (t− 1)

 . (14)

Here we have set x(0)
t = 1. In case that fnet,w is computed as above we de�ne

fnet,w(Xt, Xt−1, . . . , Xt−k)

as fnet,w(k + 1) where the function is evaluated at Xt−k, Xt−k+1, . . . , Xt. Here we set
in (14) xk+1 = Xt, xk = Xt−1, . . . , x1 = Xt−k.
In order to describe the above neural networks completely (up to the weights, which

are chosen in data-dependent way by the least squares principle as described in (9)) we
have to choose the number L of hidden layers, the numbers of hidden neurons k1, k2, . . . ,
kL in layers 1, 2, . . . , L, and the location of the recurrent connections described by the
index sets I(l)

j . We set L = Ln,1 + Ln,2, kl = Kn,1 for l = 1, . . . , Ln,1 and kl = Kn,2 for
l = Ln,1 +1, . . . , Ln,1 +Ln,2, where Ln,1, Ln,2, Kn,1, Kn,2 are parameters of the estimate
chosen in Theorem 1 below. The location of the recurrent connections is described in
Figure 1, which sketches the architecture of the recurrent network (see Section 2 for a
formal de�nition).

4

H

G

x

Figure 1: The structure of the recurrent neural networks. The solid arrows are standard
feedforward connections, the dashed arrows represent the recurrent connec-
tions. The two boxes represent the parts of the network which approximate
functions G and H. Here H is approximately computed in layers 1, . . . , Ln,1,
and function G is approximately computed in layers Ln,1 + 1, . . . , Ln,1 + Ln,2.

1.4. Main result

In Theorem 1 we show that the recurrent neural network regression estimate (9) and
(10) with the above class of recurrent neural networks satis�es in case that G and H are
(pG, CG) and (pH , CH)�smooth the error bound

E
{∣∣Yn+1 −mn(Xn+1, Xn, . . . , Xn−(k−1))

∣∣2}
≤ min

g:(Rd)k+1→R
E
{∣∣Yn+1 − g(Xn+1, . . . , Xn−(k−1))

∣∣2}+ c3 · (log n)6 · n−
2·min{pg,pH}

2·min{pg,pH}+(d+1) .

Here the derived rate of convergence depends on d + 1 and not on the dimension
(k+ 1) · (d+ 1) of the predictors in the data set (8). This shows that by using recurrent
neural networks it is possible to get under the above assumptions on the structure of Hk

a rate of convergence which does not depend on k (and hence circumvents the curse of
dimensionality in this setting).

1.5. Discussion of related results

The Recurrent Neural Networks (RNN) are the class of arti�cial neural networks which
can be described by the directed cyclic or acyclic graph and which exhibit temporal dy-
namic behaviour. Such networks can implement time delays and feedback loops. They
are able to learn long-term dependencies from sequential and time-series data. In partic-
ular, properly trained RNN can model an arbitrary dynamical system. The most popu-
lar architectures of RNN are Hop�eld networks in which all connections are symmetric
(Bruck (1990)), Bidirectional Associative Memory, that stores associative data as vectors
(Kosko (1988)), Recursive Neural Networks in which the same set of weights are applied
recursively over the structured input (Socher et al. (2011)), Long-Short Term Memory

5

(LSTM), a network able to model long-term dependencies which has been very popu-
lar in natural language processing and speech recognition (Hochreiter and Schmidhuber
(1997)) and is more robust to vanishing gradients than the classical RNN, and Gated
Recurrent Units which are derived from RNN by adding gating units to them (Cho et
al. (2014)) and which are more capable to learn long-term dependencies and are more
robust to vanishing gradients than the classical RNN. Deep RNN have been surveyed
by Schmidhuber (2015). Recent advances on RNN have been discussed in Salehinejad
et al. (2018). The main problems with training RNNs by backpropagation are over�t-
ting and vanishing gradients. Over�tting has generally been controlled by regularization,
dropout, activation stabilization and hidden activation preservation, see Srivastava et al
(2014) and Krueger et al. (2016). Theoretical analysis of RNNs learning has been lacking
to date.

1.6. Notation

Throughout the paper, the following notation is used: The sets of natural numbers,
natural numbers including 0, integers and real numbers are denoted by N, N0, Z and
R, respectively. For z ∈ R, we denote the greatest integer smaller than or equal to z
by bzc, and dze is the smallest integer greater than or equal to z. Let D ⊆ Rd and let
f : Rd → R be a real-valued function de�ned on Rd. We write x = arg minz∈D f(z) if
minz∈D f(z) exists and if x satis�es x ∈ D and f(x) = minz∈D f(z). For f : Rd → R

‖f‖∞ = sup
x∈Rd

|f(x)|

is its supremum norm, and the supremum norm of f on a set A ⊆ Rd is denoted by

‖f‖∞,A = sup
x∈A
|f(x)|.

Let p = q + s for some q ∈ N0 and 0 < s ≤ 1. A function f : Rd → R is called (p, C)-
smooth, if for every α = (α1, . . . , αd) ∈ Nd0 with

∑d
j=1 αj = q the partial derivative

∂qf

∂x
α1
1 ...∂x

αd
d

exists and satis�es∣∣∣∣ ∂qf

∂xα1
1 . . . ∂xαdd

(x)− ∂qf

∂xα1
1 . . . ∂xαdd

(z)

∣∣∣∣ ≤ C · ‖x− z‖s
for all x, z ∈ Rd.
Let F be a set of functions f : Rd → R, let x1, . . . , xn ∈ Rd and set xn1 = (x1, . . . , xn).

A �nite collection f1, . . . , fN : Rd → R is called an L2 ε�cover of F on xn1 if for any
f ∈ F there exists i ∈ {1, . . . , N} such that(

1

n

n∑
k=1

|f(xk)− fi(xk)|2
)1/2

< ε.

The L2 ε�covering number of F on xn1 is the size N of the smallest L2 ε�cover of F on
xn1 and is denoted by N2(ε,F , xn1).

6

For z ∈ R and β > 0 we de�ne Tβz = max{−β,min{β, z}}. If f : Rd → R is a function
and F is a set of such functions, then we set (Tβf)(x) = Tβ (f(x)).

1.7. Outline of the paper

In Section 2 the deep recurrent neural network estimates used in this paper are de�ned.
The main result is presented in Section 3 and proven in Section 4.

2. A recurrent neural network estimate

We start with the de�nition of our class of the recurrent neural networks. It depends
on parameters k, Ln,1, Ln,2, Kn,1 and Kn,2. As activation function we use the ReLU
activation function de�ned in (11). Depending on a weight vector w which consists of
weights w(l)

i,j and w̄
(l)

j,(r,l̄)
we de�ne our recurrent neural network

fnet,w : (Rd)k+1 → R

by

fnet,w(xk+1, xk, . . . , x1) =

Kn,2∑
j=1

w
(L)
1,j · f

(Ln,1+Ln,2)
j (k + 1),

where f (Ln,1+Ln,2)
j (t) are recursively de�ned as follows:

f
(l)
j (t) = σ

Kn,2∑
s=1

w
(l)
j,s · f

(l−1)
s (t)

 (15)

for l = Ln,1 + 2, . . . , Ln,1 + Ln,2,

f
(Ln,1+1)
j (t) = σ

Kn,1∑
s=1

w
(Ln,1+1)
j,s · f (Ln,1)

s (t) + I{t>1} ·
Kn,1∑
s=1

w̄
(Ln,1+1)

j,(s,Ln,1) · f
(Ln,1)
s (t− 1)

 ,

(16)

f
(l)
j (t) = σ

Kn,1∑
s=1

w
(l)
j,s · f

(l−1)
s (t)

 (17)

for l = 2, . . . , Ln,1 and

f
(1)
j (t) = σ

 d∑
s=0

w
(1)
j,s · x

(s)
t + I{t>1} ·

Kn,1∑
s=1

w̄
(1)
j,(s,Ln,1) · f

(Ln,1)
s (t− 1)

 . (18)

Let F(k,Kn,1,Kn,2, Ln,1, Ln,2) be the class of all such recurrent deep networks. Observe
that here we implement the networks in a slightly di�erent way than in Figure 1 since

7

G

H

x

Figure 2: The structure of the recurrent neural networks in F(k,Kn,1,Kn,2, Ln,1, Ln,2).
The solid arrows are standard feedforward connections, the dashed arrows rep-
resent the recurrent connections. The two boxes represent the parts of the
network which implement approximations of functions G and H. Here the
network which approximates H also feeds the input to G.

we do not use a direct connection from the input to the part of the network in G, instead
we use the network which implements H also to feed the input to G (cf., Figure 2).
Then our estimate is de�ned by

m̃n = arg min
f∈F(k,Kn,1,Kn,2,Ln,1,Ln,2)

1

n− k

n∑
t=k+1

|Yt − f(Xt, Xt−1, . . . , Xt−k)|2 (19)

and
mn(Xn+1,Dn) = Tβnm̃n(Xn+1, Xn, . . . , Xn−(k−1)). (20)

3. Main result

Our main result is described the following theorem.

Theorem 1 Let Xt (t ∈ Z) be independent and identically distributed [0, 1]d�valued ran-
dom variables, and let εt (t ∈ Z) be independent and identically distributed R-valued ran-

dom variables with E{εt} = 0 which satisfy (6) and which are independent from (Xt)t∈Z.
Let G,H : Rd × R→ R be (pG, Cg)� and (pH , CH)�smooth functions which satisfy

|G(x, z1)−G(x, z2)| ≤ C · |z1 − z2| and |H(x, z1)−H(x, z2)| ≤ C · |z1 − z2| (21)

(x ∈ Rd, z1, z2 ∈ R) for some constant C > 1. Let k ∈ N and de�ne

Yt = G(Xt, Hk(Xt−1, . . . , Xt−k)) + εt

8

for Hk recursively de�ned by (4) and (5).

Set

Kn,1 = dc4e, Kn,2 = dc5e, Ln,1 =

⌈
c6 · n

d+1
2·(2pH+d+1)

⌉
and

Ln,2 =

⌈
c7 · n

d+1
2·(2pG+d+1)

⌉
and de�ne the estimate mn as in Section 2. Then we have for c4, . . . , c7 > 0 su�ciently

large and for any n ≥ 2 · k + 2:

E
{∣∣Yn+1 −mn(Xn+1, Xn, . . . , Xn−(k−1))

∣∣2}
≤ min

g:(Rd)k+1→R
E
{∣∣Yn+1 − g(Xn+1, . . . , Xn−(k−1))

∣∣2}+ c8 · (log n)6 · n−
2·min{pG,pH}

2·min{pG,pH}+(d+1) .

Remark 1. Our estimation problem can be considered as a regression problem with
independent variable

(Xt, Xt−1, . . . , Xt−k),

having dimension d ·k. The rate of convergence in Theorem 1 corresponds to the optimal
minimax rate of convergence of a regression problem with dimension d + 1 (cf., Stone
(1982)), hence our assumption on the structure of Ht enables us to get the rate of
convergence independent of k.

4. Proofs

4.1. Auxiliary results from empirical process theory

In our proof we will apply well-known techniques from the empirical process theory as
described, for instance, in van de Geer (2000). We reformulate the results there by the
following two auxiliary lemmas.
Let

Yi = m(xi) +Wi (i = 1, . . . , n)

for some x1, . . . , xn ∈ Rd, m : Rd → R and some random variables W1, . . . , Wn which
are independent and have expectation zero. We assume that the Wi's are sub-Gaussian
in the sense that

max
i=1,...,n

K2E{eW 2
i /K

2 − 1} ≤ σ2
0 (22)

for some K,σ0 > 0. Our goal is to estimate m from (x1, Y1), . . . , (xn, Yn). Let Fn be a
set of functions f : Rd → R and consider the least squares estimate

m̃n(·) = arg min
f∈Fn

1

n

n∑
i=1

|f(xi)− Yi|2 and mn = Tβnm̃n, (23)

where βn = c2 · log n.

9

Lemma 1 Assume that the sub-Gaussian condition (22) and

|m(xi)| ≤ βn/2 (i = 1, . . . , n)

hold, and let the estimate be de�ned by (23). Then there exist constants c9, c10 > 0 which

depend only on σ0 and K such that for any δn > c9/n with

√
n · δ ≥ c9

∫ √48δ

δ/(12σ0)

(
logN2

(
u, {Tβnf − g : f ∈ Fn,

1

n

n∑
i=1

|Tβnf(xi)− g(xi)|2 ≤ 4δ}, xn1

))1/2

du (24)

for all δ ≥ δn/6 and all g ∈ Fn we have

P

{
1

n

n∑
i=1

|mn(xi)−m(xi)|2 > c10

(
δn + min

f∈Fn

1

n

n∑
i=1

|f(xi)−m(xi)|2
)}

≤ c10 · exp

(
−n ·min{δn, σ2

0}
c10

)
+
c10

n
.

Proof. Lemma 1 follows from the proof of proof of Lemma 3 in Kohler and Krzy»ak
(2020). For the sake of completeness a complete proof can be found in the Appendix. �
In order to formulate our next auxiliary result we let (X,Y), (X1, Y1), . . . be indepen-

dent and identically distributed Rd×R valued random variables with EY 2 <∞, and we
let m(x) = E{Y |X = x} be the corresponding regression function.

Lemma 2 Let βn ≥ L ≥ 1 and assume that m is bounded in absolute value by L. Let

n,N ∈ N, let Fn be a set of functions f : Rd → R, let

m̃n(·) = m̃n(·, (X1, Y1), . . . , (Xn+N , Yn+N)) ∈ Fn
and set mn = Tβnm̃n. Then there exist constants c11, c12, c13, c14 > 0 such that for any

δn > 0 which satis�es

δn > c11 ·
β2
n

n
and

c12 ·
√
nδ

β2
n

≥
∫ √δ
c13·δ/β2

n

(
logN2

(
u, {(Tβnf −m)2 : f ∈ Fn}, xn1

))1/2

du (25)

for all δ ≥ δn and all x1, . . . , xn ∈ Rd, we have for n ∈ N \ {1}

P

{∫
|mn(x)−m(x)|2PX(dx) > δn + 3

1

n

n∑
i=1

|mn(Xi)−m(Xi)|2
}

≤ c14 · exp

(
− n · δn
c14 · β2

n

)
.

Proof. The result follows from the proof of Lemma 4 in Kohler and Krzy»ak (2020).
For the sake of completeness a complete proof can be found in the Appendix. �

10

4.2. Approximation results for neural networks

Lemma 3 Let d ∈ N, let f : Rd → R be (p, C)�smooth for some p = q + s, q ∈ N0 and

s ∈ (0, 1], and C > 0. Let A ≥ 1 and M ∈ N su�ciently large (independent of the size

of A, but

M ≥ 2 and M2p ≥ c15 ·
(

max
{
A, ‖f‖Cq([−A,A]d)

})4(q+1)
,

where

‖f‖Cq([−A,A]d) = max
α1,...,αd∈N0,
α1+···+αd≤q

∥∥∥∥ ∂qf

∂xα1
1 . . . ∂xαdd

∥∥∥∥
∞,[−A,A]d

,

must hold for some su�ciently large constant c15 ≥ 1).
a) Let L, r ∈ N be such that

1. L ≥ 5 + dlog4(M2p)e · (dlog2(max{q, d}+ 1})e+ 1)

2. r ≥ 2d · 64 ·
(
d+q
d

)
· d2 · (q + 1) ·Md

hold. There exists a feedforward neural network fnet,wide with ReLU activation function,

L hidden layers and r neurons per hidden layer such that

‖f − fnet,wide‖∞,[−A,A]d ≤ c16 ·
(

max
{
A, ‖f‖Cq([−A,A]d)

})4(q+1)
·M−2p. (26)

b) Let L, r ∈ N be such that

1. L ≥ 5Md +
⌈
log4

(
M2p+4·d·(q+1) · e4·(q+1)·(Md−1)

)⌉
· dlog2(max{q, d}+ 1)e+ dlog4(M2p)e

2. r ≥ 132 · 2d · dede ·
(
d+q
d

)
·max{q + 1, d2}

hold. There exists a feedforward neural network fnet,deep with ReLU activation function,

L hidden layers and r neurons per hidden layer such that (26) holds with fnet,wide replaced
by fnet,deep.

Proof. See Theorem 2 in Kohler and Langer (2020). �

Lemma 4 Let k ∈ N, x1, . . . , xk+1 ∈ [0, 1]d, A ≥ 1, g, ĝ : Rd × R → R, h : Rd × R →
[−A,A], ĥ : Rd × R→ R and assume

|g(x, z)− g(x, z̄)| ≤ CLip,g · |z − z̄| and |h(x, z)− h(x, z̄)| ≤ CLip,h · |z − z̄|

for some CLip,g, CLip,h > 1. Set z0 = ẑ0 = 0,

zt = h(xt, zt−1) and ẑt = ĥ(xt, ẑt−1)

11

for t = 1, . . . , k. Assume

CkLip,h − 1

CLip,h − 1
· ‖h− ĥ‖∞,[−2A,2A]d+1 ≤ 1.

Then we have

|g(xk+1, zk)− ĝ(xk+1, ẑk)|

≤ ‖g − ĝ‖∞,[−2A,2A]d+1 + CLip,g ·
CkLip,h − 1

CLip,h − 1
· ‖h− ĥ‖∞,[−2A,2A]d+1 .

Proof. For t ∈ {1, . . . , k}, zt−1 ∈ [−A,A] and ẑt−1 ∈ [−2A, 2A] we have

|zt − ẑt| = |h(xt, zt−1)− ĥ(xt, ẑt−1)|
≤ |h(xt, zt−1)− h(xt, ẑt−1)|+ |h(xt, ẑt−1)− ĥ(xt, ẑt−1)|
≤ CLip,h · |zt−1 − ẑt−1|+ ‖h− ĥ‖∞,[−2A,2A]d+1 .

In case zs ∈ [−A,A] and ẑs ∈ [−2A, 2A] for s ∈ {0, 1, . . . , t− 1} we can conclude

|zt − ẑt|
≤ ‖h− ĥ‖∞,[−2A,2A]d+1 · (1 + CLip,h + C2

Lip,h + · · ·+ Ck−1
Lip,h) + CkLip,h · |z0 − ẑ0|

= ‖h− ĥ‖∞,[−2A,2A]d+1 ·
CkLip,h − 1

CLip,h − 1
+ 0 ≤ 1

(where the last equality follows from z0 = ẑ0 = 0), which implies

|ẑt| ≤ |zt|+ |zt − ẑt| ≤ A+ 1 ≤ 2A.

Via induction we can conclude that we have zs ∈ [−A,A] and ẑs ∈ [−2A, 2A] for s ∈
{0, 1, . . . , k} and consequently we get

|zk − ẑk| ≤ ‖h− ĥ‖∞,[−2A,2A]d+1 ·
CkLip,h − 1

CLip,h − 1
.

This together with

|g(xk, zk)− ĝ(xk, ẑk)| ≤ |g(xk, zk)− g(xk, ẑk)|+ |g(xk, ẑk)− ĝ(xk, ẑk)|
≤ CLip,g · |zk − ẑk|+ ‖ĝ − g‖[∞,−2A,2A]d

implies the assertion. �

Lemma 5 Let k ∈ N and A ≥ 1. Assume that g and h are (pG, CG)� and (pH , CH)�
smooth functions which satisfy the assumptions of Lemma 4, and de�ne

ht(xt, xt−1, . . . , x1) = h(xt, ht−1(xt−1, xt−2, . . . , x1))

12

t = 2, . . . , k and

h1(x1) = h(x1, 0).

Let hnet be a feedforward neural network with Ln,1 hidden layers and Kn,1 hidden neurons

in each layer and let gnet be a feedforward neural network with Ln,2 hidden layers and

Kn,2 hidden neurons in each layer, which approximate h and g. Let x1, . . . , xn ∈ [0, 1]d

arbitrary and assume

‖hnet − h‖∞,[−2A,2A]d ·
CkLip,h − 1

CLip,h − 1
≤ 1.

Then there exists fnet,rec ∈ F(k,Kn,1 + 2 · d,Kn,2, Ln,1, Ln,2) such that

|g(xk+1, hk(xk, . . . , x1))− fnet,rec(xk+1, . . . , x1)|
≤ c17 ·max{‖gnet − g‖∞,[−2A,2A]d+1 , ‖hnet − h‖∞,[−2A,2A]d+1}

holds for any xk+1, . . . , x1 ∈ [0, 1]d.

Proof. We construct our recurrent neural network as follows:
In layers 1, . . . , Ln,1 it computes in neurons 1, . . . ,Kn,1 hnet(x, z), where x is the input

of the recurrent neural network and z is the output of layer Ln,1 of the network in the
previous time step propagated by the recurrent connections. In the same layer it uses

fid(x) = x = σ(x)− σ(−x)

in order to propagate in the neurons Kn,1 + 1, . . . , Kn,1 + 2 · d the input value of x to
the next layer.
In layers Ln,1 + 1, . . . , Ln,1 + Ln,2 it computes in the neurons 1, . . . ,Kn,2 the function

gnet(x, z). Here the layer Ln,1 + 1 gets as input the value of x propagated to the layer
Ln,1 in the neurons Kn,1 + 1, . . . , Kn,1 + 2 · d in the previous layers, and (via a recurrent
connection) the output z of the network hnet computed in the layers 1, . . . , Ln,1 in the
previous time step.
The output of our recurrent network is the output of gnet computed in layer Ln,1+Ln,2.
By construction, this recurrent neural network computes

fnet,rec(xk+1, . . . , x1) = gnet(xk+1, ẑk),

where ẑk is recursively de�ned by

ẑt = hnet(xt, ẑt−1)

for t = 2, . . . , k and
ẑ1 = hnet(x1, 0).

From this we get the assertion by applying Lemma 4. �

13

4.3. A bound on the covering number

Lemma 6 Let F(k,Kn,1,Kn,2, Ln,1, Ln,2) be the class of deep recurrent networks intro-

duced in Section 2 and assume

max{Ln,1, Ln,2} ≤ Ln ≤ nc18 and max{Kn,1,Kn,2} ≤ Kn.

Then we have for any zs1 ∈ ((Rd)k+1)s and any 1/nc19 < ε < c2 · (log n)/4

log (N2 (ε, {Tβnf : f ∈ F(k,Kn,1,Kn,2, Ln,1, Ln,2)}, zs1))

≤ c20 · k · L2
n ·K2

n · (log n)2.

Proof. By unfolding the recurrent neural networks in F(k,Kn,1,Kn,2, Ln,1, Ln,2) in
time it is easy to see that F(k,Kn,1,Kn,2, Ln,1, Ln,2) is contained in a class of standard
feedforward neural networks with

(k + 1) · (Ln,1 + Ln,2)

layers having at most
max{Kn,1,Kn,2}+ 2d+ 2

neurons per layer. In this unfolded feedforward neural network there are at most

c22 · (Ln,1 ·K2
n,1 + Ln,2 ·K2

n,2)

di�erent weights (since we share the same weights at all time points). By Theorem 6 in
Bartlett et al. (2019) we can conclude that the VC dimension of the set of all subgraphs
from F(k,Kn,1,Kn,2, Ln,1, Ln,2) (cf., e.g., De�nition 9.6 in Györ� et al. (2002)) and
hence also the VC dimension of the set of all subgraphs from

{Tβnf : f ∈ F(k,Kn,1,Kn,2, Ln,1, Ln,2)}

is bounded above by

c22 · (Ln,1 ·K2
n,1 + Ln,2 ·K2

n,2) · (k + 1) · (Ln,1 + Ln,2) · log((k + 1) · (Ln,1 + Ln,2))

≤ c23 · k · L2
n ·K2

n · log(n).

From this together with Lemma 9.2 and Theorem 9.4 in Györ� et al. (2002) we can
conclude

N2

(
ε, {Tβnf : f ∈ F(k,Kn,1,Kn,2, Ln,1, Ln,2)}, zk1

)
≤ 3 ·

(
4e · (c2 · log n)2

ε2
· log

6e · (c2 · log n)2

ε2

)c23·k·L2
n·K2

n·log(n)

,

which implies the assertion. �

14

4.4. Proof of Theorem 1

In the �rst step of the proof we show that the assertion follows from

E

∫
|mn(u, v)−G(u,Hk(v))|2PXn+1(du)P(Xn,...,Xn−k+1)(dv)

≤ (log n)3 · n−
2·min{pG,pH}

2·min{pG,pH}+(d+1) . (27)

Let
m(xk+1, xk, . . . , x1) = E{Yk+1|Xk+1 = xk+1, . . . , X1 = x1}

be the regression function to ((Xk+1, . . . , X1), Yk+1). By the assumptions on (Xt, Yt) we
have

m(xk+1, xk, . . . , x1) = G(xk+1, Hk(xk, . . . , x1))

and

m(xn+1, xn, . . . , xn−(k−1)) = E{Yn+1|Xn+1 = xn+1, . . . , Xn−(k−1) = xn−(k−1)},

from which we can conclude by a standard decomposition of the L2 risk in nonparametric
regression (cf., e.g., Section 1.1 in Györ� et al. (2002))

E
{∣∣Yn+1 −mn(Xn+1, Xn, . . . , Xn−(k−1))

∣∣2}
= E

{∣∣∣∣(Yn+1 −m(Xn+1, Xn, . . . , Xn−(k−1))

+(m(Xn+1, Xn, . . . , Xn−(k−1))−mn(Xn+1, Xn, . . . , Xn−(k−1)))

∣∣∣∣2
}

= E
{∣∣Yn+1 −m(Xn+1, Xn, . . . , Xn−(k−1)

∣∣2}
+E

{∣∣m(Xn+1, Xn, . . . , Xn−(k−1))−mn(Xn+1, Xn, . . . , Xn−(k−1))
∣∣2}

= min
g:(Rd)k+1→R

E
{∣∣Yn+1 − g(Xn+1, Xn, . . . , Xn−(k−1))

∣∣2}
+E

∫
|mn(u, v)−G(u,Hk(v))|2PXn+1(du)P(Xn,...,Xn−k+1)(dv).

In the second step of the proof we show

E

{∫
|mn(u, v)−G(u,Hk(v))|2PXn+1(du)P(Xn,...,Xn−k+1)(dv)

−6 · k + 6

n− k

n∑
i=k+1

|mn(Xi, Xi−1, . . . , Xi−k)−m(Xi, Xi−1, . . . , Xi−k)|2
}

≤ c24 · (log n)6 · n−
2·min{pG,pH}

min{pG,pH}+d+1 (28)

15

Set

Tn =

∫
|mn(u, v)−G(u,Hk(v))|2PXn+1(du)P(Xn,...,Xn−k+1)(dv)

−6 · k + 6

n− k

n∑
i=k+1

|mn(Xi, Xi−1, . . . , Xi−k)−m(Xi, Xi−1, . . . , Xi−k)|2.

Then

Tn ≤
∫
|mn(u, v)−G(u,Hk(v))|2PXn+1(du)P(Xn,...,Xn−k+1)(dv)

−6 · k + 6

n− k
∑

i=k+1+l·(k+1),
l∈N0,k+1+l·(k+1)≤n

|mn(Xi, Xi−1, . . . , Xi−k)−m(Xi, Xi−1, . . . , Xi−k)|2

=

∫
|mn(u, v)−G(u,Hk(v))|2PXn+1(du)P(Xn,...,Xn−k+1)(dv)

−nk · (6 · k + 6)

3 · (n− k)
· 3

nk

∑
i=k+1+l·(k+1),

l∈N0,k+1+l·(k+1)≤n

∣∣∣∣mn(Xi, Xi−1, . . . , Xi−k)

−m(Xi, Xi−1, . . . , Xi−k)

∣∣∣∣2
where

nk = |{l ∈ N0 : k + 1 + l · (k + 1) ≤ n}| ≥
⌊

n

k + 1

⌋
≥ n

2k + 2

is the number of terms in the sum on the right-hand side above and consequently

Tn ≤
∫
|mn(u, v)−G(u,Hk(v))|2PXn+1(du)P(Xn,...,Xn−k+1)(dv)

− 3

nk

∑
i=k+1+l·(k+1),

l∈N0,k+1+l·(k+1)≤n

|mn(Xi, Xi−1, . . . , Xi−k)−m(Xi, Xi−1, . . . , Xi−k)|2.

Let δn ≥ c25/n. Then

E{Tn} ≤ δn +

∫ 4β2
n

δn

P{Tn > t} dt.

We will apply Lemma 2 in order to bound P{Tn > t} for t > δn. Here we will replace n
by nk and Fn by F(k,Kn,1,Kn,2, Ln,1, Ln,2). By Lemma 6 we know for u > c25 · δn/β2

n

logN2

(
u,

{
(Tβnf −m)2 : f ∈ Fn,

1

n

n∑
i=1

|Tβnf(xi)−m(xi)|2 ≤
δ

β2
n

}
, xn1

)
≤ logN2

(
u,
{

(Tβnf −m)2 : f ∈ Fn
}
, xn1
)

≤ logN2

(
u

4βn
, {Tβnf : f ∈ Fn} , xn1

)

16

≤ c26 · k · (max{Ln,1, Ln,2})2 · (max{Kn,1,Kn,2})2 · (log n)2.

≤ c27 · n
(d+1)

2·min{pG,pH}+d+1 · (log n)2.

Consequently (25) is satis�ed for

δn = c28 ·
n

d+1
2·min{pG,pH}+d+1 · (log n)6

n
= c28 · (log n)6 · n−

2·min{pG,pH}
2·min{pG,pH}+d+1 .

Application of Lemma 2 yields

E{Tn} ≤ δn + c29 ·
β2
n

n
· exp

(
− n · δn
c14 · β2

n

)
,

which implies (28).
In the third step of the proof we show

E

{
1

n− k

n∑
i=k+1

|mn(Xi, Xi−1, . . . , Xi−k)−m(Xi, Xi−1, . . . , Xi−k)|2
}

≤ c30 · (log n)6 · n−
2·min{pG,pH}

min{pG,pH}+d+1 . (29)

To do this, we set

T̄n =
1

n− k

n∑
i=k+1

|mn(Xi, Xi−1, . . . , Xi−k)−m(Xi, Xi−1, . . . , Xi−k)|2

and de�ne δn as in the second step of the proof (for c28 su�ciently large). Then

E{T̄n} ≤ δn +

∫ 4β2
n

δn

P{T̄n > t} dt.

To bound P{T̄n > t} for t ≥ δn, we apply Lemma 1 conditioned on X1, . . . , Xn and with
sample size n− k instead of n and with F(k,Kn,1,Kn,2, Ln,1, Ln,2) instead of Fn. As in
the proof of the second step we see that (24) holds for δ ≥ δn/12. Furthermore, we get
by application of Lemma 3 b) and Lemma 5

min
f∈F(k,Kn,1,Kn,2,Ln,1,Ln,2)

1

n− k

n∑
i=k+1

|f(Xi, Xi−1, . . . , Xi−k)−m(Xi, Xi−1, . . . , Xi−k)|2

≤
(

min
f∈F(k,Kn,1,Kn,2,Ln,1,Ln,2)

‖f −m‖∞,[0,1]d

)2

≤ c31 ·max{L
− 2pH
d+1

n,1 , L
− 2pG
d+1

n,2 } ≤ c28/2 · (log n)6 · n−
2·min{pG,pH}

min{pG,pH}+d+1 = δn/2.

Consequently, we get by Lemma 1

E{T̄n} ≤ δn +

∫ 4β2
n

δn

P{T̄n > t} dt.

17

≤ δn + 4β2
n ·P{T̄n > δn/2 + δn/2}

≤ δn + 4β2
n · c32 · exp(−c33 · (n− k) · δn

2
) + 4β2

n ·
c34

n
,

which implies (29).
In the fourth step of the proof we conclude the proof of Theorem 1 by showing (27).

De�ne Tn and T̄n as in the second and in the third step of the proof, resp. Then (28)
and (29) imply

E

∫
|mn(u, v)−G(u,Hk(v))|2PXn+1(du)P(Xn,...,Xn−k+1)(dv)

≤ E{Tn,1}+ (6 · k + 6) ·E{Tn,2} ≤ c35 · (log n)6 · n−
2·min{pG,pH}

min{pG,pH}+d+1 .

�

References

[1] Bartlett, P. L., Harvey, N., Liaw, C., and Mehrabian, A. (2019). Nearly-tight VC-
dimension bounds for piecewise linear neural networks. Journal of Machine Learning

Research, 20, pp. 1�17.

[2] Bauer, B., and Kohler, M. (2019). On deep learning as a remedy for the curse of
dimensionality in nonparametric regression. Annals of Statistics, 47, pp. 2261-2285.

[3] Bruck, J. (1990). On the convergence properties of the Hop�eld model. Proceedings
of the IEEE, 78, pp.1579-1585.

[4] Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,
H., and Bengio, Y. (2014). Learning phrase representations using RNN encoder-
decoder for statistical machine translation. arXiv:1406.1078.

[5] Eldan, R., and Shamir, O. (2016). The Power of Depth for Feedforward Neural Net-
works. Proc. Mach Learn. Res. (PMLR), 49, pp. 907�940.

[6] van de Geer, S. (2000). Empirical Processes in M-Estimation. Cambridge Series in
Statistical and Probabilistic Mathematics, Cambridge University Press.

[7] Graves, A., Liwicki, M., Fernandez, S., Bertolami, R., Bunke, H. and Schmidhuber,
J. (2008). A novel connectionist system for unconstrained handwriting recognition.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 31, pp. 855-868.

[8] Graves, A., Mohamed, A.R., and Hinton, G. (2013). Speech recognition with deep
recurrent neural networks. 2013 IEEE international Conference on Acoustics, Speech

and Signal Processing (ICASSP'2013), pp. 6645-6649.

[9] Graves, A. and Schmidhuber, J. (2005). Framewise phoneme classi�cation with bidi-
rectional LSTM and other neural network architectures. Neural Networks, 18, pp.
602-610.

18

[10] Graves, A. and Schmidhuber, J. (2009). O�ine handwriting recognition with mul-
tidimensional recurrent neural networks. Advances in Neural Information Processing

Systems (NIPS'2009), pp. 545-552.

[11] Györ�, L., Kohler, M., Krzy»ak, A., and Walk, H. (2002). A Distribution�Free

Theory of Nonparametric Regression. Springer.

[12] Hewamalage, H., Bergmeir, C., and Bandara, K. (2020). Recurrent neural networks
for time series forecasting: current status and future directions. To appear in Inter-

national Journal of Forecasting.

[13] Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural Com-
putation, 9, pp.1735-1780.

[14] Kohler, M., and Langer, S. (2020). On the rate of convergence of fully connected
deep neural network regression estimates. To appear in Annals of Statistics 2021,
ArXiv:1908.11133.

[15] Kohler, M., and Krzy»ak, A. (2017). Nonparametric regression based on hierarchical
interaction models. IEEE Transaction on Information Theory, 63, pp. 1620-1630.

[16] Kohler, M. and Krzy»ak, A. (2020). Estimation of a density using an improved
surrogate model. Submitted for publication.

[17] Kosko, B. (1988). Bidirectional associative memories. IEEE Transactions on Sys-

tems, Man and Cybernetics, 18, pp. 49-60.

[18] Krueger, D., Maharaj, T., KramÃ½r, J., Pezeshki, M., Ballas, N., Ke, N.R., Goyal,
A., Bengio, Y., Courville, A. and Pal, C. (2016). Zoneout: Regularizing rnns by
randomly preserving hidden activations. ArXiv:1606.01305.

[19] Lu, J., Shen, Z., Yang, H., and Zhang, S. (2020). Deep network approximation for
smooth functions. ArXiv:2001.03040

[20] Mas, A. and Carre, C. (2020). Prediction of Hilbertian autoregressive processes : a
Recurrent Neural Network approach. ArXiv:2008.11155.

[21] Makridakis, S, Spiliotis, E., and Assimakopolulos, V. (2018) Statistical and machine
learning forecasting methods: Concerns and ways forward. PLOS One, 13, pp. 1-26.

[22] Pennington, J., Socher, R., and Manning, C. D. (2014). Glove: Global vectors for
word representation. Proceedings of the 2014 conference on empirical methods in nat-

ural language processing (EMNLP), pp. 1532-1543.

[23] Rawat, W., and Wang, Z. (2017). Deep convolutional neural networks for image
classi�cation: a comprehensive review. Neural Computation, 29, pp. 2352-2449.

[24] Salehinejad, H., Sankar, S., Barfett, J., Colak, E., and Valaee, S. (2018). Recent
advances in recurrent neural networks. arXiv preprint arXiv:1801.01078.

19

[25] Schmidhuber, J. (2015). Deep learning in neural networks: an overview. Neural
Networks, 61, pp. 85-117.

[26] Schmidt-Hieber, J. (2020). Nonparametric regression using deep neural networks
with ReLU activation function (with discussion). Annals of Statistics, 48, pp. 1875-
1897 .

[27] Smyl, S. (2020). A hybrid method of exponential smoothing and recurrent neural
networks for time series forecasting. International Journal of Forecasting, 36, pp.
75-85.

[28] Socher, R., Lin, C.C.Y., Ng, A.Y., and Manning, C.D. (2011). Parsing natural scenes
and natural language with recursive neural networks. Proceedings of the International
Conference on Machine Learning (ICML'2011).

[29] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.
(2014). Dropout: a simple way to prevent neural networks from over�tting. Journal
of Machine Learning Research, 15, pp. 1929-1958.

[30] Stone, C. J. (1982). Optimal global rates of convergence for nonparametric regres-
sion. Annals of Statistics, 10, pp. 1040-1053.

[31] Yarotsky, D. (2018). Optimal approximation of continuous functions by very deep
ReLU networks. COLT, 75, pp. 639-649.

[32] Yarotsky, D., and Zhevnerchuk, A. (2019). The phase diagram of approximation
rates for deep neural networks. arXiv:1906.09477.

20

A. Proof of Lemma 1

By the Markov inequality and assumption (22) we have

P {∃i ∈ {1, . . . , n} : |Yi| > βn}
≤ P {∃i ∈ {1, . . . , n} : |Wi| > βn/2}
≤ n · max

i=1,...,n
P
{

exp(|Wi|2/K2) > exp((βn/2)2/K2)
}

≤ n

exp((βn)2/(4K2))
·
(

1 +
σ2

0

K2

)
.

This together with Lemma 1 in Kohler and Krzy»ak (2020) implies

P

{
1

n

n∑
i=1

|mn(xi)−m(xi)|2 > 3 ·

(
δn + min

f∈Fn

1

n

n∑
i=1

|f(xi)−m(xi)|2
)}

≤ P

{
1

n

n∑
i=1

|mn(xi)−m(xi)|2 > 3 ·

(
δn + min

f∈Fn

1

n

n∑
i=1

|f(xi)−m(xi)|2
)
,

max
i=1,...,n

|Yi| ≤ βn

}
+
c36

n

≤ P

{
1

n

n∑
i=1

(mn(xi)−m∗n(xi)) ·Wi ≥
1

24
· 1

n

n∑
i=1

|mn(xi)−m∗n(xi)|2 +
δn
2

}
+
c36

n
,

where we have set

m∗n = arg min
f∈Fn

1

n

n∑
i=1

|f(xi)−m(xi)|2.

So it remains to show

P

{
24

n

n∑
i=1

(mn(xi)−m∗n(xi)) ·Wi ≥
1

n

n∑
i=1

|mn(xi)−m∗n(xi)|2 + 12 · δn

}

≤ c37 · exp

(
−n ·min{δn, σ2

0}
c37

)
,

which we do next.
For f : Rd → R set

‖f‖2n =
1

n

n∑
i=1

|f(Xi)|2.

We have

P

{
‖mn −m∗n‖2n + 12 · δn ≤

24

n

n∑
i=1

(mn(xi)−m∗n(xi)) ·Wi

}
≤ P1 + P2

21

where

P1 = P

{
1

n

n∑
i=1

W 2
i > 2σ2

0

}
and

P2 = P

{
1

n

n∑
i=1

W 2
i ≤ 2σ2

0, ‖mn −m∗n‖2n + 12 · δn ≤
24

n

n∑
i=1

(mn(xi)−m∗n(xi)) ·Wi

}
.

By the Markov inequality and assumption (22) we have

P1 = P

{
n∑
i=1

W 2
i /K

2 > 2nσ2
0/K

2

}

≤ P

{
exp

(
n∑
i=1

W 2
i /K

2

)
> exp

(
2nσ2

0/K
2
)}

≤ exp
(
−2nσ2

0/K
2
)
·E

{
exp(

n∑
i=1

W 2
i /K

2)

}
≤ exp

(
−2nσ2

0/K
2
)
·
(
1 + σ2

0/K
2
)n

≤ exp
(
−2nσ2

0/K
2
)
· exp

(
n · σ2

0/K
2
)

= exp
(
−nσ2

0/K
2
)
.

To bound P2, we observe �rst that 1/n
∑n

i=1W
2
i ≤ 2σ2

0 together with the Cauchy-
Schwarz inequality implies

24

n

n∑
i=1

(mn(xi)−m∗n(xi)) ·Wi ≤ 24 ·

√√√√ 1

n

n∑
i=1

(mn(xi)−m∗n(xi))2 ·
√

2σ2
0

hence inside of P2 we have

1

n

n∑
i=1

(mn(xi)−m∗n(xi))
2 ≤ 1152σ2

0.

Set
S = min{s ∈ N0 : 4 · 2sδn > 1152σ2

0}.

Application of the peeling device (cf. Section 5.3 in van de Geer (2000)) yields

P2 =
S∑
s=1

P

{
1

n

n∑
i=1

W 2
i ≤ 2σ2

0, 12 · 2s−1δn · I{s 6=1} ≤ ‖mn −m∗n‖2n < 12 · 2sδn,

‖mn −m∗n‖2n + 12δn ≤
24

n

n∑
i=1

(mn(xi)−m∗n(xi)) ·Wi

}

≤
S∑
s=1

P

{
1

n

n∑
i=1

W 2
i ≤ 2σ2

0, ‖mn −m∗n‖2n < 12 · 2sδn,

22

1

2
· 2sδn ≤

1

n

n∑
i=1

(mn(xi)−m∗n(xi)) ·Wi

}

The probabilities in the above sum can be bounded by Corollary 8.3 in van de Geer
(2000) (use there R =

√
12 · 2sδn, δ = 1

2 · 2
sδn and σ =

√
2σ0). This yields

P2 ≤
∞∑
s=1

c38 · exp

(
−
n · (1

2 · 2
sδn)2

4c60 · 12 · 2sδn

)
=
∞∑
s=1

c38 · exp

(
−n · 2

s · δn
c38

)

≤
∞∑
s=1

c38 · exp

(
−n · (s+ 1) · δn

c38

)
≤ c39 · exp

(
−n · δn

c39

)
.

�

B. Proof of Lemma 2

For f : Rd → R set

‖f‖2n =
1

n

n∑
i=1

|f(Xi)|2.

We have

P

{∫
|mn(x)−m(x)|2PX(dx) > δn + 3

1

n

n∑
i=1

|mn(Xi)−m(Xi)|2
}

= P

{
2

∫
|mn(x)−m(x)|2PX(dx)− 2‖mn −m‖2n

> δn +

∫
|mn(x)−m(x)|2PX(dx) + ‖mn −m‖2n

}

≤ P

{
∃f ∈ Fn :

∣∣∫ |Tβnf(x)−m(x)|2PX(dx)− ‖Tβnf −m‖2n
∣∣

δn +
∫
|Tβnf(x)−m(x)|2PX(dx) + ‖Tβnf −m‖2n

>
1

2

}
.

The probability above can be bounded by Theorem 19.2 in Györ� et al. (2002) (which
we apply with

F =
{

(Tβnf −m)2 : f ∈ Fn
}
,

K = 4β2
n, ε = 1/2, and α = δn.) This yields

P1,n ≤ 15 · exp

(
− n · δn
c40 · β2

n

)
.

�

23

