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Abstract

Convolutional neural networks learned by minimizing the cross-entropy loss are nowa-
days the standard for image classi�cation. Till now, the statistical theory behind those
networks is lacking. We analyze the rate of convergence of the misclassi�cation risk of the
estimates towards the optimal misclassi�cation risk. Under suitable assumptions on the
smoothness and structure of the aposteriori probability it is shown that these estimates
achieve a rate of convergence which is independent of the dimension of the image. The
study shed light on the good performance of CNNs learned by cross-entropy loss and
partly explains their success in practical applications.

AMS classi�cation: Primary 62G05; secondary 62G20.
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1 Introduction

Deep convolutional neural networks (CNNs) have achieved remarkable success in various
applications, especially in visual recognition tasks, see, e.g., LeCun, Bengio and Hin-
ton (2015), Krizhevsky, Sutskever and Hinton (2012), Schmidhuber (2015), Rawat and
Wang (2017). Recently it was shown in Kohler, Krzy»ak and Walter (2020) that such
networks applied to image classi�cation learned by minimizing the squared loss achieve a
dimension reduction provided suitable assumptions on the smoothness and structure of
the aposteriori probability holds. In practice CNNs are often learned by minimizing the
cross-entropy loss. The aim of this article is to show that these networks also achieve a
dimension reduction in image classi�cation.

1Running title: Statistical theory for image classi�cation
2Corresponding author. Tel: +49-6151-16-23371
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1.1 Image classi�cation

To achieve this goal we study image classi�cation which we formalize as follows: Let
d1, d2 ∈ N and let (X, Y ), (X1, Y1), . . . , (Xn, Yn) be independent and identically dis-
tributed random variables with values in

[0, 1]{1,...,d1}×{1,...,d2} × {−1, 1}.

Here we use the notation

[0, 1]J = {(aj)j∈J : aj ∈ [0, 1] (j ∈ J)}

for a nonempty and �nite index set J , and we describe a (random) image from (random)
class Y ∈ {−1, 1} by a (random) matrix X with d1 columns and d2 rows, which contains
at position (i, j) the grey scale value of the pixel of the image at the corresponding
position. Our aim is to predict Y given X. Therefore we de�ne a classi�er as a function
f : [0, 1]{1,...,d1}×{1,...,d2} → R and predict the value +1 when f(X) ≥ 0 and −1 when
f(X) < 0. Let

η(x) = P{Y = 1|X = x} (x ∈ [0, 1]{1,...,d1}×{1,...,d2}) (1)

be the so�called aposteriori probability. Our aim is to �nd a classi�er which predicts
the right class with high probability. The so-called prediction error of our classi�er is
measured by

P(Y f(X) ≤ 0).

It is well-known, that Bayes' rule

f∗(x) =

{
1, if η(x) ≥ 1

2

−1, elsewhere

minimizes the prediction error

P(Y f(X) ≤ 0),

i.e.
min

f :[0,1]{1,...,d1}×{1,...,d2}→{−1,1}
P{f(X) 6= Y } = P{f∗(X) 6= Y }

holds (cf., e.g., Theorem 2.1 in Devroye, Györ� and Lugosi (1996)). Because we do not
know the distribution of (X, Y ), we cannot �nd f∗. Instead we estimate f∗ by using the
training data

Dn = {(X1, Y1), . . . , (Xn, Yn)} .

A popular approach is estimating f∗ by the empirical risk minimization, i.e.,

fn = arg min
f∈Cn

1

n

n∑
i=1

1{f(Xi) 6= Yi},
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where Cn is a given class of classi�ers. In practice fn is not computational feasible, since
minimizing the empirical risk with the 0/1 loss over Cn is NP hard (Bartlett, Jordan
and McAuli�e (2006)). By replacing the number of misclassi�cations by a surrogate loss
ϕ, one can overcome computational problems. Instead of a class of classi�ers Cn, we
consider a class of real-valued functions Fn. For a given loss ϕ we are searching for an
estimate f̂n ∈ Fn such that the surrogate empirical risk

1

n

n∑
i=1

ϕ
(
Yif̂n(Xi)

)
is small. There are di�erent loss functions to choose (see Friedman, Hastie and Tibishirani
(2009) for an overview). A wide variety of classi�cation methods are based on the idea
to replace the 0/1 loss by some kind of convex surrogate loss. In particular, AdaBoost
(Friedmann, Hastie and Tibshirani (2000)) employs the exponential loss exp(−z), while
support vector machines often use the so�called hinge loss of the form max(1 − z, 0)
(Vapnik (1998)) and logistic regression applies the log loss ϕ(x) = log(1 + exp(−x))
(Friedman, Hastie and Tibishirani (2009)). In the context of CNNs and image classi�-
cation it is a standard to use cross-entropy loss or log loss. That is why we use this loss
function in the following. Cross-entropy loss is Fisher consistent, i.e.

f∗ = sgn

(
arg min

for all f
E(ϕ(Y f(X)))

)
,

where

sgn(z) =

{
1 for z ≥ 0

−1 for z < 0,

which follows since

f∗ϕ := arg min
for all f

E(ϕ(Y f(X))) = log
η(x)

1− η(x)

(see Friedman, Hastie and Tibishirani (2009)). According to this, we de�ne Ĉn(x) =
sgn f̂n(x) as a classi�er, where f̂n minimizes the cross-entropy loss over the function
space Fn. As function space Fn we choose a class of CNNs, which is de�ned in Section
2. Our aim is to construct our classi�er Ĉn such that its misclassi�cation risk

P{Ĉn(X) 6= Y |Dn}

is as small as possible. To analyze the performance of the classi�er we derive a bound on
the expected di�erence of the misclassi�cation risk of Ĉn and the optimal misclassi�cation
risk, i.e., we derive an upper bound on

E

{
P{Ĉn(X) 6= Y |Dn} − min

f :[0,1]{1,...,d1}×{1,...,d2}→{−1,1}
P{f(X) 6= Y }

}
= P{Ĉn(X) 6= Y } −P{f∗(X) 6= Y }.
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1.2 Rate of convergence

In order to derive nontrivial rate of convergence results on the di�erence between the
misclassi�cation risk of any estimate and the minimal possible value it is necessary to
restrict the class of distributions (cf., Cover (1968) and Devroye (1982)). As in Kohler,
Krzy»ak and Walter (2020) we use for this the following assumptions on the structure
and the smoothness of the aposteriori probability. For the formulation of the de�nition
we need the de�nition of (p, C)-smoothness, which is the following:

De�nition 1 Let p = q + s for some q ∈ N0 and 0 < s ≤ 1. A function f : Rd → R
is called (p, C)-smooth, if for every α = (α1, . . . , αd) ∈ Nd0 with

∑d
j=1 αj = q the partial

derivative ∂qf

∂x
α1
1 ...∂x

αd
d

exists and satis�es∣∣∣∣ ∂qf

∂xα1
1 . . . ∂xαdd

(x)− ∂qf

∂xα1
1 . . . ∂xαdd

(z)

∣∣∣∣ ≤ C · ‖x− z‖s

for all x, z ∈ Rd.

For our next de�nition we also need the following notation: For M ⊆ Rd and x ∈ Rd
we de�ne

x +M = {x + z : z ∈M}.

For I ⊆ {1, . . . , d1} × {1, . . . , d2} and x = (xi)i∈{1,...,d1}×{1,...,d2} ∈ [0, 1]{1,...,d1}×{1,...,d2}

we set
xI = (xi)i∈I .

De�nition 2 Let d1, d2 ∈ N with d1, d2 > 1 and m : [0, 1]{1,...,d1}×{1,...,d2} → R.
a) We say that m satis�es a max-pooling model with index set

I ⊆ {0, . . . , d1 − 1} × {0, . . . , d2 − 1},

if there exist a function f : [0, 1](1,1)+I → R such that

m(x) = max
(i,j)∈Z2 : (i,j)+I⊆{1,...,d1}×{1,...,d2}

f
(
x(i,j)+I

)
(x ∈ [0, 1]{1,...,d1}×{1,...,d2}).

b) Let I = {0, . . . , 2l − 1} × {0, . . . , 2l − 1} for some l ∈ N. We say that

f : [0, 1]{1,...,2
l}×{1,...,2l} → R

satis�es a hierarchical model of level l, if there exist functions

gk,s : R4 → [0, 1] (k = 1, . . . , l, s = 1, . . . , 4l−k)

such that we have

f = fl,1
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for some fk,s : [0, 1]{1,...,2
k}×{1,...,2k} → R recursively de�ned by

fk,s(x) = gk,s
(
fk−1,4·(s−1)+1(x{1,...,2k−1}×{1,...,2k−1}),

fk−1,4·(s−1)+2(x{2k−1+1,...,2k}×{1,...,2k−1}),

fk−1,4·(s−1)+3(x{1,...,2k−1}×{2k−1+1,...,2k}),

fk−1,4·s(x{2k−1+1,...,2k}×{2k−1+1,...,2k})
)(

x ∈ [0, 1]{1,...,2
k}×{1,...,2k}

)
for k = 2, . . . , l, s = 1, . . . , 4l−k, and

f1,s(x1,1, x1,2, x2,1, x2,2) = g1,s(x1,1, x1,2, x2,1, x2,2) (x1,1, x1,2, x2,1, x2,2 ∈ [0, 1])

for s = 1, . . . , 4l−1.
c) We say that m : [0, 1]{1,...,d1}×{1,...,d2} → R satis�es a hierarchical max-pooling

model of level l (where 2l ≤ min{d1, d2}), if m satis�es a max-pooling model with

index set

I =
{

0, . . . , 2l − 1
}
×
{

0, . . . , 2l − 1
}

and the function f : [0, 1](1,1)+I → R in the de�nition of this max-pooling model satis�es

a hierarchical model with level l.
d) We say that the hierarchical max-pooling model m : [0, 1]{1,...,d1}×{1,...,d2} → R of level l
is (p, C)�smooth if all functions gk,s in the de�nition of the functions m are (p, C)�smooth
for some C > 0.

This de�nition is motivated by the following observation: Human beings often decide,
whether a given image contains some object, i.e. a car, or not by scanning subparts of
the image and checking, whether the searched object is on this subpart. For each subpart
the human estimates a probability that the searched object is on it. The probability that
the whole image contains the object is then simply the maximum of the probabilities for
each subpart of the image. This leads to the de�nition of a max-pooling model for the
aposteriori probability.
Additionally, the probability that a subpart contains the searched object is composed
by several decisions, if parts of the searched objects are identi�able. This motivates the
hierarchical structure of our model.

1.3 Main result

The goal of this paper is to study CNNs minimized by cross-entropy loss from a statistical
point of view. We show that (under suitable assumptions on the aposteriori probability)
we can derive convergence results for CNN classi�ers (with ReLU activation function)
learned by cross-entropy loss, which are independent of the input dimension of the image.
In particular, we show in Theorem 1 a) below that in case that the aposteriori probability
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satis�es a (p, C)�smooth hierarchical max-pooling model, the expected misclassi�cation
risk of the estimate converges toward the minimal possible value with rate

n
−min

{
p

4p+8
, 1
8

}

(up to some logarithmic factor). If in addition the conditional class probabilities of most
data are su�ciently close to either 1 or zero, the rate can be further improved to

n
−min

{
p

2p+4
, 1
4

}

(see Theorem 1 b)). Since human beings are quite good in recognizing images, this
assumption is not unusual in the context of image classi�cation. In both cases, our
classi�er circumvents the curse of dimensionality in image classi�cation. These results
shed light on the good performance of CNN classi�ers in visual recognition tasks and
partly explain their success from a theoretical point of view.

1.4 Discussion of related results

CNNs trained with logistic loss have achieved remarkable success in various visual recog-
nition tasks, cf., e.g., LeCun et al. (1998), LeCun, Bengio and Hinton (2015), Krizhevsky,
Sutskever and Hinton (2012), He et al. (2016) and the literature cited therein.
But, as already mentioned in Rawat and Wang (2017) and Kohler, Krzy»ak and Walter
(2020) there is a lack of mathematical understanding. There are only a very few papers
analyzing the performance of CNNs from a theoretical point of view. Oono and Suzuki
(2019) (and the literature cited therein) showed that properly de�ned CNNs are able
to mimic feedforward deep neural networks (DNNs) and therefore derive similar rate of
convergence results. Unfortunately, those results do not demonstrate situations, where
CNNs outperform simple feedfoward DNNs, which is the case in many practical appli-
cations, especially in image classi�cation. Lin and Zhang (2019) derived generalization
bounds for CNNs. In case of overparametrized CNNs, e.g. Du et al. (2019) could show
that the gradient descent is able to �nd the global minimum of the empirical loss func-
tion. But, as shown in Kohler and Krzy»ak (2019), overparametrized DNNs minimizing
the empirical loss do not, in general, generalize well. Yarotsky (2018) obtained inter-
esting approximation properties of deep CNNs, but, unfortunately, only in an abstract
setting, where it is unclear how to apply those results. Kohler, Krzy»ak and Walter
(2020) analyzed CNNs in the context of image classi�cation and showed that in case
that the aposteriori probability satis�es a generalized hierarchical max-pooling model
with smoothness constraint p1 and p2 (see De�nition 1 in Kohler, Krzy»ak and Walter
(2020)), suitable de�ned CNNs achieve a rate of convergence which does not depend on
the input dimension of the image. In this result, the CNNs are learned by the squared
loss. As, e.g. experimental results in Golik, Doetsch and Ney (2013) show, DNNs learned
by cross entropy loss allow to �nd a better local optimum than the squared loss criterion.
Thus the CNNs learned by cross entropy loss are of higher practical relevance.
Cross entropy loss or, more general, convex surrogate loss functions have been studied in
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Bartlett, Jordan and McAuli�e (2006) and Zhang (2004). Bartlett, Jordan and McAuli�e
(2006) showed that for convex loss functions satisfying a certain uniform strict convexity
condition the rate of convergence can be strictly faster than the classical n−1/2 , depend-
ing on the strictness of convexity of φ and the complexity of class of classi�ers. Zhang
(2004) analyzed how close the optimal Bayes error rate can be approximately reached
using a classi�cation algorithm that computes a classi�er by minimizing a convex upper
bound of the classi�cation error function. Some results of this article (see Lemma 1) are
also used in our analysis. In Lemma 1 b) we derive a modi�cation of Zhang's bound
which enables us to derive better rate of convergence under proper assumptions on the
aposteriori probability.
Much more theoretical results are known for simple feedforward DNNs. Under suitable
compository assumptions on the structure of the regression function, those networks are
able to circumvent the curse of dimensionality (cf., Kohler and Krzy»ak (2017), Bauer and
Kohler (2019), Schmidt-Hieber (2020), Kohler and Langer (2020), Suzuki and Nitanda
(2019) and Langer (2020)). Imaizumi und Fukumizu (2019) derived results concerning
estimation by neural networks of piecewise polynomial regression functions with parti-
tions having rather general smooth boundaries. Eckle and Schmidt-Hieber (2019) and
Kohler, Krzy»ak and Langer (2019) analyzed regression functions which have the form
of a common statistical model, i.e., which have the form of multivariate adaptive re-
gression splines (MARS), and showed that in this case the convergence rate by DNNs
can also be improved. Kim, Ohn and Kim (2019) analyzed classi�cation problems with
standard feedforward DNNs and derived fast rate of convergence for DNNs learned by
cross-entropy under the condition that the conditional class probabilities of most data
are su�ciently close to either 1 or zero. The condition formulated in this article is also
used in the analysis of our CNNs.

1.5 Notation

Throughout the paper, the following notation is used: The sets of natural numbers,
natural numbers including 0, integers and real numbers are denoted by N, N0, Z and R,
respectively. For z ∈ R, we denote the smallest integer greater than or equal to z by dze.
Let D ⊆ Rd and let f : Rd → R be a real-valued function de�ned on Rd. We write x =
arg minz∈D f(z) if minz∈D f(z) exists and if x satis�es x ∈ D and f(x) = minz∈D f(z).
For f : Rd → R

‖f‖∞ = sup
x∈Rd

|f(x)|

is its supremum norm, and the supremum norm of f on a set A ⊆ Rd is denoted by

‖f‖A,∞ = sup
x∈A
|f(x)|.

Let F be a set of functions f : Rd → R, let x1, . . . ,xn ∈ Rd and set xn1 = (x1, . . . ,xn).
A �nite collection f1, . . . , fN : Rd → R is called an ε� cover of F on xn1 if for any f ∈ F
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there exists i ∈ {1, . . . , N} such that

1

n

n∑
k=1

|f(xk)− fi(xk)| < ε.

The ε�covering number of F on xn1 is the size N of the smallest ε�cover of F on xn1 and
is denoted by N1(ε,F ,xn1 ).
For z ∈ R and β > 0 we de�ne Tβz = max{−β,min{β, z}}. Throughout the remainder

of this paper
ϕ(z) = log(1 + exp(−z))

denotes the cross entropy or logistic loss.

1.6 Outline of the paper

In Section 2 the CNN image classi�ers used in this paper are de�ned. The main result
is presented in Section 3 and proven in Section 4.

2 De�nition of the estimates

The architecture of CNN is inspired by the natural visual perception mechansim of the
humans. The �rst modern framework was published by LeCun et al. (1989), called
LeNet-5, which could classify handwritten digits. Even though today exist numerous
variants of CNN, the basic components are still the same, namely convolutional, pooling
and fully-connected layers. The convolutional layers aims to learn feature representations
of the inputs.

input image
or input feature map

output feature maps

Figure 1: Illustration of a convolutional layer

As shown in Figure 1 each convolutional layer l (l ∈ {1, . . . , L}) consists of kl ∈ N
channels (also called feature maps) and the convolution in layer l is performed by using a
window of values of layer l−1 of sizeMl ∈ {1, . . . ,min{d1, d2}}. Speci�cally, each neuron
of a channel is connected to a region of neighboring neurons in the previous layer. A new
channel can be obtained by �rst convolving the input with a weight matrix (so�called
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�lter) and then applying an element-wise nonlinear activation function σ : R→ R on the
convolved result. As activation function we choose the ReLU function σ(x) = max{x, 0}
in the following. The weight matrix is de�ned by

w =
(
w

(l)
i,j,s1,s2

)
1≤i,j≤Ml,s1∈{1,...,kl−1},s2∈{1,...,kl},l∈{1,...,L}

.

Furthermore we need some weights

wbias = (w(l)
s2 )s2∈{1,...,kr},l∈{1,...,L}

for the bias of the channels and some output weights

wout = (ws)s∈{1,...,kL}.

Mathematically, the channel value at location (i, j) in the kl-th channel of layer l is
calculated by:

o
(l)
(i,j),s2

= σ

kl−1∑
s1=1

∑
t1,t2∈{1,...,Ml}

(i+t1−1,j+t2−1)∈D

w
(l)
t1,t2,s1,s2

o
(l−1)
(i+t1−1,j+t2−1),s1 + w(l)

s2

 , (2)

where D = {1, . . . , d1} × {1, . . . , d2} and

o
(0)
(i,j),1 = xi,j for i ∈ {1, . . . , d1} and j ∈ {1, . . . , d2}.

Here one may see that weights generating the feature map o
(l)
(:,:),s2

are shared, which has
the advantage that it can reduce the model complexity and the duration of the networks'
training. In our network, only in the last step a max-pooling layer is applied to the
values of the last convolutional layer L. Thus, the output of the network is given by a
real-valued function on [0, 1]{1,...,d1}×{1,...,d2} of the form

fw,wbias,wout(x) = max

{ kL∑
s2=1

ws2 · o
(L)
(i,j),s2

: i ∈ {1, . . . , d1 −ML + 1}

, j ∈ {1, . . . , d2 −ML + 1}
}
.

Our class of convolutional neural networks with parameters L, k = (k1, . . . , kL) and
M = (M1, . . . ,ML) is de�ned by FCNNL,k,M. As in Kohler, Krzy»ak and Walter (2020) we
use a so-called zero padding in the de�nition of the index set D in (2). Thus, the size of
a channel is the same as in the previous layer (see Kohler, Krzy»ak and Walter (2020)
for a further illustration). Our �nal estimate is a composition of a convolutional neural
network out of the class FCNNL,k,M and a fully-connected neural network, which is de�ned
as follows: The output of this network is produced by a function g : R→ R of the form

g(x) =

kL∑
i=1

w
(L)
i g

(L)
i (x) + w

(L)
0 , (3)
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where w
(L)
0 , . . . , w

(L)
kL
∈ R denote the output weights and for i ∈ {1, . . . , kL} the g(L)i are

recursively de�ned by

g
(r)
i (x) = σ

kr−1∑
j=1

w
(r−1)
i,j g

(r−1)
j (x) + w

(r−1)
i,0


for w

(r−1)
i,0 , . . . , w

(r−1)
i,kr−1

∈ R, i ∈ {1, . . . , kr}, r ∈ {1, . . . , L}, k0 = 1 and

g
(0)
1 (x) = x.

Here the function σ : R→ R denotes again the ReLU activation function

σ(x) = max{x, 0}.

We de�ne the function class of all real-valued functions on R of the form (3) with pa-
rameters L and k = (k1, . . . , kL) by FFNNL,k .

Our �nal function class Fn is then of the form

Fn =
{
g ◦ f : f ∈ FCNN

L
(1)
n ,k(1),M

, g ∈ FFNN
L
(2)
n ,k(2)

, ‖g ◦ f‖∞ ≤ βn
}
,

which depends on the parameters

L = (L(1)
n , L(2)

n ), k(1) =
(
k
(1)
1 , . . . , k

(1)
L1

)
, k(2) =

(
k
(2)
1 , . . . , k

(2)
L2

)
, M = (M1, . . . ,ML

(2)
n

)

and βn = c1 · log n. Let

f̂n = arg min
f∈Fn

1

n

n∑
i=1

log(1 + exp(−Yi · f(Xi))

be the CNN, which minimizes cross entropy loss on the trainings data Dn. We de�ne our
CNN image classi�er by

Ĉn(x) = sgn(f̂n(x)).

3 Main results

Our main result is the following theorem, which presents two upper bounds on the dis-
tance between the expected misclassi�cation risk of our CNN classi�er and the optimal
misclassi�cation risk.

Theorem 1 Let p ≥ 1 and C > 0 be arbitrary. Assume that the aposteriori probability

η(x) = P{Y = 1|X = x} satis�es a (p, C)�smooth hierarchical max-pooling model of

�nite level l and supp(PX) ⊆ [0, 1]d1×d2. Set

L(1)
n =

4l − 1

3
· dc3 · n2/(2p+4)e+ l and L(2)

n = dc2 · n1/4e,

10



Ms = 2π(s) (s = 1, . . . , L(1)
n ),

where the function π : {1, . . . , L(1)
n } → {1, . . . , l} is de�ned by

π(s) =
l∑

i=1

1{s≥i+
∑l−1
r=l−i+1 4

r·dc3·n2/(2p+4)e},

choose k(1) = (c4, . . . , c4) ∈ NL
(1)
n and k(2) = (c5, . . . , c5) ∈ NL

(2)
n , and de�ne the estimate

Ĉn as in Section 2. Assume that the constants c2, . . . , c5 are su�ciently large.

a) There exists a constant c6 > 0 such that we have for any n > 1

P
{
Y 6= Ĉn(X)

}
−P {Y 6= f∗(X)} ≤ c6 · (log n) · n−min{ p

4p+8
, 1
8
}
.

b) If, in addition,

P

{
X : |f∗ϕ(X)| > 1

2
· log n

}
≥ 1− 1√

n
(n ∈ N) (4)

holds, then there exists a constant c7 > 0 such that we have for any n > 1

P
{
Y 6= Ĉn(X)

}
−P {Y 6= f∗(X)} ≤ c7 · (log n)2 · n−min{ p

2p+4
, 1
4
}
.

Remark 1. The rate of convergence in Theorem 1 does not depend on the dimension
d1 · d2 of the predictor variable, hence under the assumptions on the structure of the
aposteriori probabilities in Theorem 1 our convolutional neural network classi�er is able
to circumvent the curse of dimensionality.
Remark 2. Assumption (4) requires that with high probability the aposteriori proba-
bility is very close to zero or very close to one, and hence the optimal classi�cation rule
makes only a very small error. This is in particular realistic for many applications in
image classi�cation, where often there is not much doubt about the class of objects (cf.,
Kim, Ohn and Kim (2019)).

Remark 3. The de�nition of the parameter L
(2)
n of the estimate in Theorem 1 depends

on the smoothness and the level of the hierarchical max-pooling model for the aposteriori
probability, which are usually unknown in applications. In this case it is possible to de�ne
this parameter in a data-dependent way, e.g., by using a splitting of the sample approach
(cf., e.g., Chapter 7 in Györif et al. (2002)).

4 Proofs

Lemma 1 Let ϕ be the logistic loss. Let (X, Y ), (X1, Y1), . . . , (Xn, Yn) and Dn, f̂n, Ĉn
and f∗ϕ as in Section 1.

a) Then

P
{
Y 6= Ĉn(X)|Dn

}
−P {Y 6= f∗(X)}

11



≤ 1√
2
·
(
E
{
ϕ(Y · Ĉn(X))|Dn

}
−E

{
ϕ(Y · f∗ϕ(X))

})1/2
holds.

b) Then

P
{
Y 6= Ĉn(X)|Dn

}
−P {Y 6= f∗(X)}

≤ 2 ·
(
E
{
ϕ(Y · Ĉn(X))|Dn

}
−E

{
ϕ(Y · f∗ϕ(X))

})
+ 4 ·E

{
ϕ(Y · f∗ϕ(X))

}
.

holds.

c) Assume that

P
{
X : |f∗ϕ(X)| > F̃n

}
≥ 1− e−F̃n

for a given sequence {F̃n}n∈N with Fn →∞. Then

E
{
ϕ(Y · f∗ϕ(X))

}
≤ c8 · F̃n · e−F̃n

holds.

Proof. a) This result follows from Theorem 2.1 in Zhang (2004), where we choose s = 2
and c = 2−1/2.
b) Set f̄n(x) = 1/(1 + exp(−f̂n(x)). Then we have

P
{
Y 6= sgn(f̂n(X))|Dn

}
−P {Y 6= f∗(X)}

≤
∫ (

(1− η(x)) · 1{f̂n(x)≥0}(x) + η(x) · 1{f̂n(x)<0}(x)

− (1− η(x)) · 1{η(x)≥ 1
2
}(x) + η(x) · 1{η(x)< 1

2
}(x)

)
PX(dx)

=

∫ (
(1− η(x)) · 1{f̂n(x)≥0}(x) + η(x) · 1{f̂n(x)<0}(x)

− (1− f̄n(x)) · 1{f̂n(x)≥0}(x)− f̄n(x) · 1{f̂n(x)<0}(x)

+ (1− f̄n(x)) · 1{f̂n(x)≥0}(x) + f̄n(x) · 1{f̂n(x)<0}(x)

− (1− f̄n(x)) · 1{η(x)≥ 1
2
}(x)− f̄n(x) · 1{η(x)< 1

2
}(x)

+ (1− f̄n(x)) · 1{η(x)≥ 1
2
}(x) + f̄n(x) · 1{η(x)< 1

2
}(x)

− (1− η(x)) · 1{η(x)≥ 1
2
}(x)− η(x) · 1{η(x)< 1

2
}(x)

)
PX(dx)

=

∫ (
(1− η(x)− 1 + f̄n(x)) · 1{f̂n(x)≥0}(x) + (η(x)− f̄n(x)) · 1{f̂n(x)<0}(x)

+ (1− f̄n(x)− 1 + η(x)) · 1{η(x)≥ 1
2
}(x) + (f̄n(x)− η(x)) · 1{η(x)< 1

2
}(x)

+ (1− f̄n(x)) · 1{f̂n(x)≥0}(x) + f̄n(x) · 1{f̂n(x)<0}(x)

− (1− f̄n(x)) · 1{η(x)≥ 1
2
}(x)− f̄n(x) · 1{η(x)< 1

2
}(x)

)
PX(dx)

12



≤ 2 ·E{|f̄n(X)− η(X)||Dn}. (5)

Here the last inequality follows since

f̂n(x) ≥ 0 implies f̄n(x) ≥ 1

2
and

f̂n(x) < 0 implies f̄n(x) <
1

2

and consequently we have

(1− f̄n(x)) · 1{f̂n(x)≥0}(x) + f̄n(x) · 1{f̂n(x)<0}(x)

= min{1− f̄n(x), f̄n(x)}
≤(1− f̄n(x)) · 1{η(x)≥ 1

2
}(x) + f̄n(x) · 1{η(x)< 1

2
}(x).

Furthermore we can bound (5) by

2 ·E

{∣∣∣∣ϕ(Y · log
f̄n(X)

1− f̄n(X)

)
− ϕ

(
Y · log

η(X)

1− η(X)

)∣∣∣∣
∣∣∣∣∣Dn

}
. (6)

Here we used that for g(z) = log z
1−z with z ∈ (0, 1),

h1(z) = ϕ(1 · g(z)) = log

(
1 + exp

(
− log

z

1− z

))
= log

(
1 +

1− z
z

)
= log

(
1

z

)
= − log(z)

and

h2(z) = ϕ(−1 · g(z)) = log

(
1 +

z

1− z

)
= log

(
1

1− z

)
= − log(1− z),

we have

h′1(z) = −1

z
and h′2(z) =

1

1− z

and consequently

|h′1(z)| =
1

|z|
≥ 1 and |h′2(z)| =

1

|1− z|
≥ 1 for z ∈ (0, 1).

13



Using mean value theorem it follows for j ∈ {1, 2} and z1, z2 ∈ [0, 1]

|hj(z1)− hj(z2)| ≥ 1 · |z1 − z2|.

Since

|a− b| ≤ |a|+ |b| = a+ b for a, b ≥ 0

we can �nally bound (6) by

2 ·E

{∣∣∣∣ϕ(Y · log
f̄n(X)

1− f̄n(X)

)
− ϕ

(
Y · log

η(X)

1− η(X)

)∣∣∣∣
∣∣∣∣∣Dn

}
≤ 2 ·E

{
ϕ
(
Y · f̂n(X)

)
+ ϕ

(
Y · f∗ϕ(X)

) ∣∣∣Dn}
= 2 ·E

{
ϕ
(
Y · f̂n(X)

)
− ϕ

(
Y · f∗ϕ(X)

) ∣∣∣Dn}+ 4 ·E
{
ϕ
(
Y · f∗ϕ(X)

)
|Dn
}
.

c) This result follows from Lemma 3 in Kim, Ohn and Kim (2019). �

Lemma 2 Let ϕ be the logistic loss. De�ne (X, Y ), (X1, Y1), . . . , (Xn, Yn) and Dn, f̂n
and f∗ϕ as in Section 1. Let Fn be a function space consisting of functions f : Rd1×d2 → R.
Then

E
{
ϕ(Y · f̂n(X))|Dn

}
−E

{
ϕ(Y · f∗ϕ(X))

}
≤ 2 · sup

f∈Fn

∣∣∣∣∣E {ϕ(Y · f(X))} − 1

n

n∑
i=1

ϕ(Yi · f(Xi))

∣∣∣∣∣
+ inf
f∈Fn

E {ϕ(Y · f(X))} −E
{
ϕ(Y · f∗ϕ(X))

}
.

Proof. This result is the standard error bound for empirical risk minimization. For the
sake of completeness we present nevertheless a complete proof.
Let f ∈ Fn be arbitrary. Then the de�nition of f̂n implies

E
{
ϕ(Y · f̂n(X))|Dn

}
−E

{
ϕ(Y · f∗ϕ(X))

}
≤ E

{
ϕ(Y · f̂n(X))|Dn

}
− 1

n

n∑
i=1

ϕ(Yi · f̂n(Xi))

+
1

n

n∑
i=1

ϕ(Yi · f̂n(Xi))−
1

n

n∑
i=1

ϕ(Yi · f(Xi))

+
1

n

n∑
i=1

ϕ(Yi · f(Xi))−E {ϕ(Y · f(X))}

+E {ϕ(Y · f(X))} −E
{
ϕ(Y · f∗ϕ(X))

}
≤ E

{
ϕ(Y · f̂n(X))|Dn

}
− 1

n

n∑
i=1

ϕ(Yi · f̂n(Xi))

14



+0 +
1

n

n∑
i=1

ϕ(Yi · f(Xi))−E {ϕ(Y · f(X))}

+E {ϕ(Y · f(X))} −E
{
ϕ(Y · f∗ϕ(X))

}
≤ 2 · sup

g∈Fn

∣∣∣∣∣E {ϕ(Y · g(X))} − 1

n

n∑
i=1

ϕ(Yi · g(Xi))

∣∣∣∣∣
+E {ϕ(Y · f(X))} −E

{
ϕ(Y · f∗ϕ(X))

}
.

�

Lemma 3 Let ϕ be the logistic loss and (X, Y ), (X1, Y1), . . . , (Xn, Yn) be independent

and identically distributed Rd1×d2 × R-valued random variables. Let Fn be de�ned as in

Section 2. Then

E

{
sup
f∈Fn

∣∣∣∣∣E {ϕ(Y · f(X))} − 1

n

n∑
i=1

ϕ(Yi · f(Xi))

∣∣∣∣∣
}
≤ c9 · (log n)2 · max{L(1)

n , L
(2)
n }√

n
.

In order to prove Lemma 3 we need the following bound on the covering number of
Fn.

Lemma 4 Let σ(x) = max{x, 0} be the ReLU activation function, de�ne Fn as in Sec-

tion 2 and set

kmax = max
{
k
(1)
1 , . . . , k

(1)

L
(1)
n

, k
(2)
1 , . . . , k

(2)

L
(2)
n

}
, Mmax = max{M1, . . . ,ML

(2)
n
}

and

Lmax = max{L(1)
n , L(2)

n }.

Assume d1 · d2 > 1 and βn = c1 · log n ≥ 2. Then we have for any ε ∈ (0, 1):

sup
xn1∈(R{1,...,d1}×{1,...,d2})n

log (N1 (ε,Fn,xn1 ))

≤ c10 · L2
max · log(Lmax · d1 · d2) · log

(
c1 · log n

ε

)
for some constant c10 > 0 which depends only on kmax and Mmax.

Proof. See Lemma 7 in Kohler, Krzy»ak and Walter (2020). �
Proof of Lemma 3. Since f ∈ Fn satis�es ‖f‖∞ ≤ βn = c1 · log n, we have for any
x ∈ Rd1×d2 and y ∈ {−1, 1}

ϕ(y · f(x)) = log(1 + e−y·f(x)) ≤ log(1 + e|f(x)|) ≤ log(1 + eβn) = c11 · log n.

Set

Z = (X, Y ),Z1 = (X1, Y1), . . . ,Zn = (Xn, Yn),
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and

Hn = {h : Rd1×d2 × R→ R : ∃f ∈ Fn such that h(x, y) = ϕ(y · f(x))}.

By Theorem 9.1 in Györ� et al. (2002) one has, for arbitrary ε > 0

P

{
sup
f∈Fn

∣∣∣∣∣E{ϕ(Y · f(X))} − 1

n

n∑
i=1

ϕ(Yi · f(Xi))

∣∣∣∣∣ > ε

}

= P

{
sup
f∈Hn

∣∣∣∣∣Eh(Z)− 1

n

n∑
i=1

h(Zi)

∣∣∣∣∣ > ε

}

≤ 8E
{
N1

( ε
8
,Hn,Zn1

)}
e
− nε2

128·c211·(logn)
2
.

Let hi(x, y) = ϕ(y · fi(x)) ((x, y) ∈ Rd1×d2 ×{−1, 1}) for some fi : Rd1×d2 → R. Then it
follows with the Lipschitz continuity of ϕ, that

1

n

n∑
i=1

|h1(Zi)− h2(Zi)|

=
1

n

n∑
i=1

|ϕ(Yi · f1(Xi))− ϕ(Yi · f2(Xi))|

≤ 1

n

n∑
i=1

|Yif1(Xi)− Yif2(Xi)|

=
1

n

n∑
i=1

|f1(Xi)− f2(Xi)| .

Thus, if {f1, . . . , f`} is a ε-cover of Fn, then {h1, . . . , h`} is a ε-cover of Hn. Then

N1

( ε
8
,Hn,Zn1

)
≤ N1

( ε
8
,Fn,Xn

1

)
.

Set Lmax = max{L(1)
n , L

(2)
n }. Lemma 4 implies

N1

( ε
8
,Fn, Xn

1

)
≤
(
c12 · log n

ε

)c10·L2
max·log(Lmax·d1·d2)

and

P

{
sup
f∈Fn

∣∣∣∣∣E{ϕ(Y · f(X))} − 1

n

n∑
i=1

ϕ(Yi · f(Xi))

∣∣∣∣∣ > ε

}

≤ 8 ·

{(
c12 · log n

ε

)c10·L2
max·log(Lmax·d1·d2)

}
e
− nε2

c13(logn)
2 .
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Set

εn =

√√√√1

2
· c13 · (log n)2

n
· log

(
8

{(
c12 · log n

1/n

)c10·L2
max·log(Lmax·d1·d2)

})

= c14 · (log n)2 · max{L(1)
n , L

(2)
n }√

n
≥ 1

n
.

Here we have used for the last inequality that w.l.o.g. we can assume min{c10, c12, c13} ≥
1. Then

E

{
sup
f∈Fn

∣∣∣∣∣E {ϕ(Y · f(X))} − 1

n

n∑
i=1

ϕ(Yi · f(Xi))

∣∣∣∣∣
}

= εn +

∫ ∞
εn

8

{(
c12 · log n

t

)c10·L2
max·log(Lmax·d1·d2)

}
e
− nt2

c13·(logn)2 dt

= εn +

∫ ∞
εn

8

{(
c12 · log n

t

)c10·L2
max·log(Lmax·d1·d2)

}
e
− nt2

2c13·(logn)2 e
− nt2

2c13·(logn)2 dt

≤ εn +

∫ ∞
εn

e
− nt2

2·c13·(logn)2 dt

≤ εn +

∫ ∞
εn

e
− n·εn·t

2·c13·(logn)2 dt

≤ c15 · (log n)2 · max{L(1)
n , L

(2)
n }√

n
.

�

Lemma 5 Let p ≥ 1 and C > 0 be arbitrary. Assume that η : Rd1×d2 → R satis�es a

(p, C)�smooth hierarchical max-pooling model. Let Fn be the set of all CNNs with ReLU

activation function, which have L
(1)
n convolutional layers with c4 neurons in each layer,

where c4 is su�ciently large, one max pooling layer and L
(2)
n additional layers with 7

neurons per layer. Furthermore assume (L
(1)
n )2p/d ≥ c16 · L(2)

n . Then

inf
f∈Fn

E {ϕ(Y · f(X))} −E
{
ϕ(Y · f∗ϕ(X))

}
≤ c17 ·

(
logL

(2)
n

L
(2)
n

+
1

(L
(1)
n )2p/4

)
.

In order to prove Lemma 5 we need the following four auxiliary results.

Lemma 6 Let d ∈ N, let f : Rd → R be (p, C)�smooth for some p = q + s, q ∈ N0 and

s ∈ (0, 1], and C > 0. Let A ≥ 1 and M ∈ N su�ciently large (independent of the size

of A, but

M ≥ 2 and M2p ≥ c18 ·
(

max
{
A, ‖f‖Cq([−A,A]d)

})4(q+1)
,
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where

‖f‖Cq([−A,A]d) = max
α1,...,αd∈N0,
α1+···+αd≤q

∥∥∥∥ ∂qf

∂xα1
1 . . . ∂xαdd

∥∥∥∥
∞,[−A,A]d

,

must hold for some su�ciently large constant c18 ≥ 1).
a) Let L, r ∈ N be such that

1. L ≥ 5 + dlog4(M
2p)e · (dlog2(max{q, d}+ 1})e+ 1)

2. r ≥ 2d · 64 ·
(
d+q
d

)
· d2 · (q + 1) ·Md

hold. There exists a feedforward neural network fnet,wide with ReLU activation function,

L hidden layers and r neurons per hidden layer such that

‖f − fnet,wide‖∞,[−A,A]d ≤ c19 ·
(

max
{
A, ‖f‖Cq([−A,A]d)

})4(q+1)
·M−2p. (7)

b) Let L, r ∈ N be such that

1. L ≥ 5Md +
⌈
log4

(
M2p+4·d·(q+1) · e4·(q+1)·(Md−1)

)⌉
· dlog2(max{q, d}+ 1)e+ dlog4(M

2p)e

2. r ≥ 132 · 2d · dede ·
(
d+q
d

)
·max{q + 1, d2}

hold. There exists a feedforward neural network fnet,deep with ReLU activation function,

L hidden layers and r neurons per hidden layer such that (7) holds with fnet,wide replaced
by fnet,deep.

Proof. See Theorem 2 in Kohler and Langer (2020). �

Lemma 7 Set

f(z) =


∞ , z = 1

log z
1−z , 0 < z < 1

−∞ , z = 0

and let K ∈ N with K ≥ 6. Let η : Rd → [0, 1] and let ḡ : Rd → R such that ‖ḡ−η‖∞ ≤ ε
for some 0 ≤ ε ≤ 1/K. Then there exists a neural network f̄ : R → R with ReLU

activation function, K + 3 hidden layers with 7 neurons per layer, which is bounded in

absolute value by log(K + 1) and which satis�es

sup
x∈Rd1×d2

(∣∣η(x) ·
(
ϕ(f̄(ḡ(x))− ϕ(f(η(x))

)∣∣+
∣∣(1− η(x)) ·

(
ϕ(−f̄(ḡ(x))− ϕ(−f(η(x))

)∣∣)
≤ c20 ·

(
logK

K
+ ε

)
.
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Proof. For k ∈ {−1, 0, . . . ,K + 1} de�ne

Bk(z) =


0 , z < k−1

K

K · (z − k−1
K ) , k−1K ≤ z < k

K

K · (k+1
K − z) , kK ≤ z <

k+1
K

0 , z ≥ k+1
K ,

(which implies Bk(k/K) = 1 and Bk(j/K) = 0 for j ∈ Z \ {k}) and set

f̄(z) = f(1/K) · (B−1(z) +B0(z)) +

K−1∑
k=1

f(k/K) ·Bk(z) + f(1− 1/K) · (BK(z) +BK+1(z))

=:
K+1∑
k=−1

ak ·Bk(z).

Then f̄ interpolates the points (−1/K, f(1/K)), (0, f(1/K)), (1/K, f(1/K)), (2/K, f(2/K)),
. . . , ((K − 1)/K, f((K − 1)/K)), (1, f((K − 1)/K)) and (1 + 1/K, f((K − 1)/K)),
is zero outside of (−2/K, 1 + 2/K) and is linear on each interval [k/K, (k + 1)/K]
(k ∈ {−2, . . . ,K + 1}). Because of

Bk(z) = σ

(
K ·

(
z − k − 1

K

))
− 2 · σ

(
K ·

(
z − k

K

))
+ σ

(
K ·

(
z − k + 1

K

))
f̄ can be computed by a neural network with ReLU activation function and K+3 hidden
layers with 7 neurons per layer. To see this we use that we have

σ(x)− σ(−x) = max{x, 0} −max{−x, 0} = x for x ∈ R,

which enables us to compute f̄ recursively as follows:

f̄(x) = f̄K+3
1 − f̄K+3

2

where

f̄ l1 = σ(f̄ l−11 − f̄ l−12 ) + al−2 ·Bl−2(f̄ l−13 − f̄ l−14 ) for l ∈ {2, . . . ,K + 3},

f̄ l2 = σ(−f̄ l−11 + f̄ l−12 ) for l ∈ {2, . . . ,K + 3},

f̄ l3 = σ(f̄ l−13 − f̄ l−14 ) for l ∈ {2, . . . ,K + 3},

f̄ l4 = σ(−f̄ l−13 + f̄ l−14 ) for l ∈ {2, . . . ,K + 3}

and
f̄11 = a−1 ·B−1(x), f̄12 = 0, f̄13 = σ(x) and f̄14 = σ(−x).

By induction it is easy to see that the above recursion implies

f̄ l3 − f̄ l4 = x and f̄ l1 − f̄ l2 =

l−2∑
k=−1

ak ·Bk(x)
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for l ∈ {1, . . . ,K + 3}.
Set

h1(z) = ϕ(f(z)) = log

(
1 + exp

(
− log

z

1− z

))
= log

(
1 +

1− z
z

)
= − log z

and

h2(z) = ϕ(−f(z)) = log

(
1 + exp

(
log

z

1− z

))
= − log(1− z).

First we consider the case η(x) ∈ [0, 2/K], which implies f(η(x)) ≤ f(2/K) = − log(K/2−
1) < 0. In this case we have −1/K ≤ ḡ(x) ≤ 3/K and − log(K − 1) = f(1/K) ≤
f̄(ḡ(x)) ≤ f(3/K) = − log(K/3− 1). Consequently we get∣∣η(x) ·

(
ϕ(f̄(ḡ(x))− ϕ(f(η(x))

)∣∣ ≤ η(x) · ϕ(f̄(ḡ(x)) + η(x) · h1(η(x))

≤ 2

K
· log(1 + exp(log(K − 1))) + η(x) · log(

1

η(x)
)

≤ 4 · logK

K

(where we have used z · log(1/z) ≤ (2/K) · log(K/2) for 0 < z < 2/K) and∣∣(1− η(x)) ·
(
ϕ(−f̄(ḡ(x))− ϕ(−f(η(x))

)∣∣
≤ ϕ(−f̄(ḡ(x)) + ϕ(−f(η(x))

= log(1 + exp(f̄(ḡ(x)))) + log(1 + exp(f(η(x))))

≤ log(1 + exp(− log(K/3− 1))) + log(1 + exp(− log(K/2− 1)))

≤ 2 · exp(− log(K/3− 1)) =
6

K − 3
.

Similarly we get in case η(x) ≥ 1− 2/K∣∣η(x) ·
(
ϕ(f̄(ḡ(x))− ϕ(f(η(x))

)∣∣+
∣∣(1− η(x)) ·

(
ϕ(−f̄(ḡ(x))− ϕ(−f(η(x))

)∣∣
≤ 12 · logK

K − 3
.

Hence it su�ces to show

sup
x∈Rd,

η(x)∈[2/K,1−2/K]

(∣∣η(x) ·
(
ϕ(f̄(ḡ(x))− ϕ(f(η(x))

)∣∣
+
∣∣(1− η(x)) ·

(
ϕ(−f̄(ḡ(x))− ϕ(−f(η(x))

)∣∣)

≤ c21 · (
logK

K
+ ε).

By the monotony of f , |f ′(z)| = 1
z·(1−z) ≥ 1 for z ∈ (0, 1), the mean value theorem

and the de�nition of f̄ we can conclude that for any x ∈ Rd with η(x) ∈ [2/K, 1− 2/K]
we �nd ξx, δx ∈ R with |ξx| ≤ 1

K , |δx| ≤ 1
K + ε and η(x) + δx ∈ [1/K, 1− 1/K] such that

f̄(ḡ(x)) = f(ḡ(x) + ξx) = f(η(x) + δx). (8)
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This implies

sup
x∈Rd,

η(x)∈[2/K,1−2/K]

(∣∣η(x) ·
(
ϕ(f̄(ḡ(x))− ϕ(f(η(x))

)∣∣
+
∣∣(1− η(x)) ·

(
ϕ(−f̄(ḡ(x))− ϕ(−f(η(x))

)∣∣)

= sup
x∈Rd,

η(x)∈[2/K,1−2/K]

(
|η(x)| · |h1(η(x) + δx)− h1(η(x))|

+|1− η(x)| · |h2(η(x) + δx)− h2(η(x))|

)
.

Consequently it su�ces to show that there exists a constant c22 such that we have for
any z ∈ [2/K, 1− 2/K] and any δ ∈ R with |δ| ≤ 1

K + ε and z + δ ∈ [1/K, 1− 1/K]

|z| · |h1(z + δ)− h1(z)| ≤ c22 ·
(

1

K
+ ε

)
(9)

and

|1− z| · |h2(z + δ)− h2(z)| ≤ c22 ·
(

1

K
+ ε

)
. (10)

We have

h′1(z) = −1

z
.

By the mean value theorem we get for some ξ ∈ [min{z + δ, z},max{z + δ, z}]

|z| · |h1(z + δ)− h1(z)| = |z| ·
1

|ξ|
· |δ| ≤ 4 · |δ| ≤ 4 ·

(
1

K
+ ε

)
,

where we have used that z, z + δ ∈ [1/K, 1− 1/K] and δ ≤ 2/K imply 4|ξ| ≥ |z|.
In the same way we get

h′2(z) =
1

1− z
and

|1− z| · |h2(z + δ)− h2(z)| = |1− z| ·
1

|1− ξ|
· |δ| ≤ 4 · |δ| ≤ 4 ·

(
1

K
+ ε

)
.

�

Lemma 8 Let d1, d2, l ∈ N with 2l ≤ min{d1, d2} and set I = {0, 1, . . . , 2l − 1} ×
{0, 1, . . . , 2l − 1}. De�ne m and m̄ by

m(x) = max
(i,j)∈Z2 : (i,j)+I⊆{1,...,d1}×{1,...,d2}

f
(
x(i,j)+I

)
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and

m̄(x) = max
(i,j)∈Z2 : (i,j)+I⊆{1,...,d1}×{1,...,d2}

f̄
(
x(i,j)+I

)
,

where f and f̄ satisfy

f = fl,1 and f̄ = f̄l,1

for some fk,s, f̄k,s : R{1,...,2k}×{1,...,2k} → R recursively de�ned by

fk,s(x) = gk,s
(
fk−1,4·(s−1)+1(x{1,...,2k−1}×{1,...,2k−1}),

fk−1,4·(s−1)+2(x{2k−1+1,...,2k}×{1,...,2k−1}),

fk−1,4·(s−1)+3(x{1,...,2k−1}×{2k−1+1,...,2k}),

fk−1,4·s(x{2k−1+1,...,2k}×{2k−1+1,...,2k})
)

and

f̄k,s(x) = ḡk,s
(
f̄k−1,4·(s−1)+1(x{1,...,2k−1}×{1,...,2k−1}),

f̄k−1,4·(s−1)+2(x{2k−1+1,...,2k}×{1,...,2k−1}),

f̄k−1,4·(s−1)+3(x{1,...,2k−1}×{2k−1+1,...,2k}),

f̄k−1,4·s(x{2k−1+1,...,2k}×{2k−1+1,...,2k})
)

for k ∈ {2, . . . , l}, s ∈ {1, . . . , 4l−k}, and

f1,s(x1,1, x1,2, x2,1, x2,2) = g1,s(x1,1, x1,2, x2,1, x2,2)

and

f̄1,s(x1,1, x1,2, x2,1, x2,2) = ḡ1,s(x1,1, x1,2, x2,1, x2,2)

for s = 1, . . . , 4l−1. Assume that all functions gk,s : R4 → [0, 1] are Lipschitz continuous
regarding the Euclidean distance with Lipschitz constant C > 0 and for all k ∈ {1, . . . , l}
and s ∈ {1, . . . , 4l−k} we assume that

‖ḡk,s‖[−2,2]4,∞ ≤ 2. (11)

Then for any x ∈ [0, 1]{1,...,d1}×{1,...,d2} it holds:

|m(x)− m̄(x)| ≤ (2C + 1)l · max
i∈{1,...,l},s∈{1,...,4l−i}

‖gi,s − ḡi,s‖[−2,2]4,∞.

Proof. The assertion follows from Lemma 4 in Kohler, Krzy»ak and Walter (2020). �

Lemma 9 Let d1, d2, l ∈ N with 2l ≤ min{d1, d2}. For k ∈ {1, . . . , l} and s ∈ {1, . . . , 4l−k}
let

ḡnet,k,s : R4 → R

be de�ned by a feedforward neural network with Lnet ∈ N hidden layers and rnet ∈ N
neurons per hidden layer and ReLU activation function. Set

I =
{

0, . . . , 2l − 1
}
×
{

0, . . . , 2l − 1
}
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and de�ne m̄ : [0, 1]{1,...,d1}×{1,...,d2} → R by

m̄(x) = max
(i,j)∈Z2 : (i,j)+I⊆{1,...,d1}×{1,...,d2}

f̄
(
x(i,j)+I

)
,

where f̄ satis�es

f̄ = f̄l,1

for some f̄k,s : [0, 1]{1,...,2
k}×{1,...,2k} → R recursively de�ned by

f̄k,s(x) = ḡnet,k,s
(
f̄k−1,4·(s−1)+1(x{1,...,2k−1}×{1,...,2k−1}),

f̄k−1,4·(s−1)+2(x{2k−1+1,...,2k}×{1,...,2k−1}),

f̄k−1,4·(s−1)+3(x{1,...,2k−1}×{2k−1+1,...,2k}),

f̄k−1,4·s(x{2k−1+1,...,2k}×{2k−1+1,...,2k})
)

for k = 2, . . . , l, s = 1, . . . , 4l−k, and

f̄1,s(x1,1, x1,2, x2,1, x2,2) = ḡnet,1,s(x1,1, x1,2, x2,1, x2,2)

for s = 1, . . . , 4l−1. Set

lnet =
4l − 1

3
· Lnet + l,

ks =
2 · 4l + 4

3
+ rnet (s = 1, . . . , lnet),

and set

Ms = 2π(s) for s ∈ {1, . . . , lnet},

where the function π : {1, . . . , lnet} → {1, . . . , l} is de�ned by

π(s) =
l∑

i=1

I{s≥i+∑l−1
r=l−i+1 4

r·Lnet}.

Then there exists some mnet ∈ F (lnet,k,M) such that

m̄(x) = mnet(x)

holds for all x ∈ [0, 1]{1,...,d1}×{1,...,d2}.

Proof. See Lemma 5 in Kohler, Krzy»ak and Walter (2020). �
Proof of Lemma 5. For each gk,s in the hierarchical max�pooling model for η we select
an approximating neural network from Lemma 6 a) which approximates gk,s : R4 → R up

to an error of order (L
(1)
n )−2p/4. Then we use Lemma 9 to generate with these networks

a convolutional neural network, and combine this network with the feedforward neural

network with L
(2)
n layers and 7 neurons per layer of Lemma 7. For the corresponding

network h ∈ Fn we get by Lemma 7 and Lemma 8

sup
x∈Rd1×d2

(∣∣η(x) ·
(
ϕ(h(x))− ϕ(f∗ϕ(η(x))

)∣∣+
∣∣(1− η(x)) ·

(
ϕ(−h(x))− ϕ(−f∗ϕ(η(x))

)∣∣)
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≤ c23 ·

(
logL

(2)
n

L
(2)
n

+
1

(L
(1)
n )2p/4

)
.

Because of

inf
f∈Fn

E {ϕ(Y · f(X))} −E
{
ϕ(Y · f∗ϕ(X))

}
≤ E {ϕ(Y · h(X))} −E

{
ϕ(Y · f∗ϕ(X))

}
=

∫
(η(x) · ϕ(h(x)) + (1− η(x)) · ϕ(−h(x)))PX(dx)

−
∫

(η(x) · ϕ(f∗ϕ(x)) + (1− η(x)) · ϕ(−f∗ϕ(x)))PX(dx)

≤ sup
x∈[0,1]d1×d2

( ∣∣η(x) ·
(
ϕ(h(x))− ϕ(f∗ϕ(η(x))

)∣∣
+
∣∣(1− η(x)) ·

(
ϕ(−h(x))− ϕ(−f∗ϕ(η(x))

)∣∣ )
this implies the assertion.

�
Proof of Theorem 1. In the sequel we show

E
{
ϕ(Y · sgn(f̂n(X)))

}
−E

{
ϕ(Y · f∗ϕ(X))

}
≤ c24 · (log n)2 · n−min{ p

2p+4
, 1
4
}
. (12)

This implies the assertion, because by Lemma 1 a) we can conclude from (12)

P
{
Y 6= sgn(f̂n(X))|

}
−P {Y 6= f∗(X)}

≤ E

{
1√
2
·
(
E
{
ϕ(Y · sgn(f̂n(X)))|Dn

}
−E

{
ϕ(Y · f∗ϕ(X))

})1/2}
≤ 1√

2
·
√
E
{
ϕ(Y · sgn(f̂n(X)))

}
−E

{
ϕ(Y · f∗ϕ(X))

}
≤ c25 · (log n) · n−min{ p

4p+8
, 1
8
}
.

And from Lemma 1 b), (4) and Lemma 1 c) we can conclude from (12)

P
{
Y 6= sgn(f̂n(X))|

}
−P {Y 6= f∗(X)}

≤ 2 ·
(
E
{
ϕ(Y · sgn(f̂n(X)))

}
−E

{
ϕ(Y · f∗ϕ(X))

})
+ 4 · c26 · log n√

n

≤ c27 · (log n)2 · n−min{ p
2p+4

, 1
4
}
.

So it su�ces to prove (12). Application of Lemma 2, Lemma 3 and Lemma 5 yields

E
{
ϕ(Y · f̂n(X))

}
−E

{
ϕ(Y · f∗ϕ(X))

}
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≤ 2 ·E

{
sup
f∈Fn

∣∣∣∣∣E {ϕ(Y · f(X))} − 1

n

n∑
i=1

ϕ(Yi · f(Xi))

∣∣∣∣∣
}

+ inf
f∈Fn

E {ϕ(Y · f(X))} −E
{
ϕ(Y · f∗ϕ(X))

}
≤ c28 · (log n)2 · max{L(1)

n , L
(2)
n }√

n
+ c29 ·

(
logL

(2)
n

L
(2)
n

+
1

(L
(1)
n )2p/4

)

≤ c28 · (log n)2 · L
(2)
n√
n

+ c29 ·
logL

(2)
n

L
(2)
n

+ c28 · (log n)2 · L
(1)
n√
n

+ c29 ·
1

(L
(1)
n )2p/4

≤ c30 · (log n)2 · n−min{ p
2p+4

, 1
4
}
.

�
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