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Abstract

Pattern recognition based on a high-dimensional predictor is considered. A classi�er is
de�ned which is based on a Transformer encoder. The rate of convergence of the misclas-
si�cation probability of the classi�er towards the optimal misclassi�cation probability is
analyzed. It is shown that this classi�er is able to circumvent the curse of dimensionality
provided the aposteriori probability satis�es a suitable hierarchical composition model.
Furthermore, the di�erence between Transformer classi�ers analyzed theoretically in this
paper and Transformer classi�ers used nowadays in practice are illustrated by considering
classi�cation problems in natural language processing.

AMS classi�cation: Primary 62G05; secondary 62G20.
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1 Introduction

Deep learning has achieved impressive progress in natural language processing (NLP),
e.g. in the areas of understanding, summarizing or generating text, see., e.g., Young et
al. (2018) and the literature cited therein. Among the most successful techniques in
this �eld are Transformers introduced by Vaswani et al. (2017). They used a decoder-
encoder structure based on multi-head attention and piecewise feedforward layers and
achieved a top performance in applications in machine translation. Devlin et al. (2019)
describe how Transformers can be combined with unsupervised pre-training such that the
same pre-trained Transformer encoder can be �ne-tuned to a variety of natural language
processing tasks.
Besides the huge practical success of these estimates, their theoretical performance has

not been studied intensively until now. This is in sharp contrast to deep neural networks,

1Running title: Rate of convergence of a Transformer classi�er
2Corresponding author. Tel: +49-6151-16-23382
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where various results concerning the approximation power of deep neural networks (cf.,
e.g., Yarotsky (2017), Yarotsky and Zhevnerchuck (2020), Lu et al. (2020), Langer
(2021b) and the literature cited therein) or concerning the statistical risk of corresponding
estimates (cf., e.g., Bauer and Kohler (2019), Kohler and Krzy»ak (2017), Schmidt-Hieber
(2019), Kohler and Langer (2020), Langer (2021a), Imaizumi and Fukumizu (2019),
Suzuki (2018), Suzuki and Nitanda (2019), and the literature cited therein) have been
derived in the last few years.
In this paper we aim to shed light on the theoretical performance of Transformers. To

do this, we focus on pattern recognition and consider estimates based on a Transformer
encoder. Here we simplify the learning problem by de�ning our estimate as a plug-
in classi�cation rule based on an abstract least squares estimates, i.e., we ignore the
gradient descent usually applied in practice as this gradient descent is even for deep neural
networks nowadays not well understood. After this simpli�cation the main remaining
challenges in view of a theoretical understanding are the approximation properties and
the generalization abilities of Transformer encoders.
We study these estimates in the context of pattern recognition. Here, (X,Y ), (X1, Y1),

. . . , (Xn, Yn) are independent and identically distributed random variables with values
in Rd·l × {0, 1}, and given the data set

Dn = {(X1, Y1), . . . , (Xn, Yn)}

the goal is to construct a classi�er

ηn(·) = ηn(·,Dn) : Rd·l → {0, 1}

such that the misclassi�cation probability

P{ηn(X) 6= Y |Dn}

is as small as possible. Here the predictor variable X describes the encoding of a sequence
of lenght l consisting of words or tokens, and each word or token is encoded by a value
in Rd.
Let

m(x) = P{Y = 1|X = x} (x ∈ Rd·l) (1)

be the so�called aposteriori probability of class 1. Then

η∗(x) =

{
1, if m(x) > 1

2

0, elsewhere

is the so�called Bayes classi�er, i.e., it satis�es

P{η∗(X) 6= Y } = min
η:Rd·l→{0,1}

P{η(X) 6= Y }

(cf., e.g., Theorem 2.1 in Devroye, Györ� and Lugosi (1996)).
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In the sequel we try to derive upper bounds on

E {P{ηn(X) 6= Y |Dn} −P{η∗(X) 6= Y }}
= P{ηn(X) 6= Y } − min

η:Rd·l→{0,1}
P{η(X) 6= Y }. (2)

It is well-known that in order to derive nontrivial rate of convergence results on the
di�erence between the misclassi�cation risk of any estimate and the minimal possible
value it is necessary to restrict the class of distributions (cf., Cover (1968) and Devroye
(1982)). In this context we will assume that the aposteriori probability is smooth, and
for this we will use our next de�nition.

De�nition 1. Let p = q+ s for some q ∈ N0 and 0 < s ≤ 1. A function m : Rd·l → R is

called (p, C)-smooth, if for every α = (α1, . . . , αd·l) ∈ Nd·l0 with
∑d·l

j=1 αj = q the partial

derivative ∂qm/(∂xα1
1 . . . ∂xαd·ld·l ) exists and satis�es∣∣∣∣ ∂qm

∂xα1
1 . . . ∂xαd·ld·l

(x)− ∂qm

∂xα1
1 . . . ∂xαd·ld·l

(z)

∣∣∣∣ ≤ C‖x− z‖s

for all x, z ∈ Rd·l, where ‖ · ‖ denotes the Euclidean norm.

In order to be able to show good rate of convergences even for high-dimensional pre-
dictors we use a hierarchical composition model as in Schmidt-Hieber (2019), where the
aposteriori probability is represented by a composition of several functions and where
each of these functions depends only on a few variables. We use the following de�nition
of Kohler and Langer (2020) to formalize this assumption.

De�nition 2. Let d, l ∈ N, m : Rd·l → R and let P be a subset of (0,∞)× N.
a) We say that m satis�es a hierarchical composition model of level 0 with order and

smoothness constraint P, if there exists K ∈ {1, . . . , d · l} such that

m(x) = x(K) for all x = (x(1), . . . , x(d·l))> ∈ Rd·l.

b) Let κ ∈ N0. We say that m satis�es a hierarchical composition model of level

κ + 1 with order and smoothness constraint P, if there exist (p,K) ∈ P, C > 0,
g : RK → R and f1, . . . , fK : Rd → R, such that g is (p, C)�smooth, f1, . . . , fK sat-

isfy a hierarchical composition model of level κ with order and smoothness constraint P
and

m(x) = g(f1(x), . . . , fK(x)) for all x ∈ Rd·l.

Let H(κ,P) be the set of all functions m : Rd·l → R which satisfy a hierarchical compo-
sition model of level κ with order and smoothness constraint P.
It was shown in Bauer and Kohler (2019), Schmidt-Hieber (2019) and Kohler and

Langer (2020) that deep neural networks are able to circumvent the curse of dimen-
sionality in case that the function to be estimated is contained in a suitably de�ned
hierarchical composition model. The main contribution of this paper is to show that
classi�ers based on Transformer encoders, which we will introduce in the next section,
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have this property, too. More precisely, we will show that the classi�er ηn, which is
introduced in the next section on the basis of a Transformer encoder, satis�es

P{ηn(X) 6= Y } − min
f :Rd·l→{0,1}

P{f(X) 6= Y } ≤ c1 · (log n)3 · max
(p,K)∈P

n
− p

2p+K (3)

provided the aposteriori probability satis�es a hierarchical composition model with some
�nite level and smoothness and order constraint P. Since the above rate of convergence
does not depend on the dimension d·l ofX, our classi�er is able to circumvent the curse of
dimensionality if the aposteriori probability satis�es a suitable hierarchical composition
model.
In order to show (3) we derive new approximation properties and generalization bounds

for Transformer decoders. The main idea here is to show that the combination of atten-
tion units with piecewise feedforward neural networks enables us to reconstruct piecewise
polynomials by Transformer decoders, and to generalize a bound on the VC dimension of
deep neural networks from Bartlett et al. (2019) such that it is applicable to Transformer
encoders. The Transformer classi�ers analyzed theoretically in this paper are di�erent
from the one used in practice. We illustrate this by describing classi�cation problems in
natural language processing and the methods nowadays used in practice to solve these
problems. This gives us useful hints in which way the theoretical results in this paper
should be generalized in future work.

1.1 Notation

Throughout this paper, the following notation is used: The sets of natural numbers,
natural numbers including 0, integers and real numbers are denoted by N, N0, Z and R,
respectively. For z ∈ R, we denote the smallest integer greater than or equal to z by dze.
Furthermore we set z+ = max{z, 0}. Let D ⊆ Rd and let f : Rd → R be a real-valued
function de�ned on Rd. We write x = arg minz∈D f(z) if minz∈D f(z) exists and if x
satis�es x ∈ D and f(x) = minz∈D f(z). For f : Rd → R

‖f‖∞ = sup
x∈Rd

|f(x)|

is its supremum norm, and the supremum norm of f on a set A ⊆ Rd is denoted by

‖f‖A,∞ = sup
x∈A
|f(x)|.

Furthermore we de�ne the norm ‖ · ‖Cq(A) of the smooth function space Cq(A) by

‖f‖Cq(A) := max
{
‖∂jf‖∞,A : ‖j‖1 ≤ q, j ∈ Nd

}
for any f ∈ Cq(A), where

∂jf =
∂j1+···+jdf

∂xj11 . . . ∂xjdd
for j = (j1, . . . , jd)

T ∈ Nd.
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Let F be a set of functions f : Rd → R, let x1, . . . , xn ∈ Rd and set xn1 = (x1, . . . , xn).
A �nite collection f1, . . . , fN : Rd → R is called an ε� cover of F on xn1 if for any f ∈ F
there exists i ∈ {1, . . . , N} such that

1

n

n∑
k=1

|f(xk)− fi(xk)| < ε.

The ε�covering number of F on xn1 is the size N of the smallest ε�cover of F on xn1 and
is denoted by N1(ε,F , xn1 ).
For z ∈ R and β > 0 we de�ne Tβz = max{−β,min{β, z}}. For i, j ∈ N0 we let δi,j

be the Kronecker delta, i.e., we set

δi,j =

{
1, if i = j,

0, else.

If W is a matrix and b is a vector then we denote the number of nonzero components in
W and b by ‖W‖0 and ‖b‖0, respectively.

1.2 Outline

In Section 2 our classi�er based on a Transformer encoder is de�ned. The main result
is presented in Section 3 and proven in Section 5. Section 4 describes the application of
Transformer classi�ers in natural language processing.

2 De�nition of a classi�er based on a Transformer encoder

The Transformer encoder which we introduce in this section becomes as input a sequence

x = (x1, . . . , xl) ∈ Rl·d (4)

of length l consisting of components xj ∈ Rd (j = 1, . . . , l), where l and d are natural
numbers. As a �rst step it produces from this sequence a new representation

z0 = (z0,1, . . . , z0,l) ∈ Rl·dmodel (5)

for some dmodel ∈ N. This new representation is de�ned as follows: We choose h, I ∈ N
and set

dmodel = h · I · (d+ l + 4). (6)

Here we repeat a coding of the input which includes the original data, a coding of the
position and additional auxiliary values used for later computation of function values h ·I
times. More precisely we set for all k ∈ {1, . . . , h · I}

z
((k−1)·(d+l+4)+s)
0,j =



x
(s)
j if s ∈ {1, . . . , d}

1 if s = d+ 1

δs−d−1,j if s ∈ {d+ 2, . . . , d+ 1 + l}
1 if s = d+ l + 3

0 if s ∈ {d+ l + 2, d+ l + 4}
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After that it computes successively representations

zr = (zr,1, . . . , zr,l) ∈ Rl·dmodel (7)

of the input for r = 1, . . . , N , and uses zN in order to predict a value y ∈ {0, 1}. Here N
is the number of pairs of attention and pointwise feedforward layers of our Transformer
encoder.
Given zr−1 for some r ∈ {1, . . . , N} we compute zr by applying �rst a multi-head

attention and by applying second pointwise a feedforward neural network with one hidden
layer. Both times we will use an additional residual connection.
The computation of the multi-head attention depends on matrices

WQ,r,s,WK,r,s ∈ Rdk×dmodel and WV,r,s ∈ Rdv×dmodel (s = 1, . . . , h), (8)

where h ∈ N is the number of attentions which we compute in parallel, where dk ∈ N
is the dimension of the queries and the keys, and where dv = dmodel/h = I · (d + l + 4)
is the dimension of the values. We use these matrices to compute for each component
zr−1,i of zr−1 corresponding queries

qr−1,s,i = WQ,r,s · zr−1,i, (9)

keys
kr−1,s,i = WK,r,s · zr−1,i (10)

and values
vr−1,s,i = WV,r,s · zr−1,i (11)

(s ∈ {1, . . . , h}, i ∈ {1, . . . , l}). Then the so-called attention between the component i of
zr−1 and the component j of zr−1 is de�ned as the scalar product

< qr−1,s,i, kr−1,s,j > (12)

and the index j for which the maximal value occurs, i.e.,

ĵr−1,s,i = arg max
j∈{1,...,l}

< qr−1,s,i, kr−1,s,j >, (13)

is determined. The value corresponding to this index is multiplied with the maximal
attention in (12) in order to de�ne

ȳr,s,i = vr−1,s,ĵr−1,s,i
· max
j∈{1,...,l}

< qr−1,s,i, kr−1,s,j >

= vr−1,s,ĵr−1,s,i
· < qr−1,s,i, kr−1,s,ĵr−1,s,i

> (s ∈ {1, . . . , h}, i ∈ {1, . . . , l}). (14)

Using a residual connection we compute the output of the multi-head attention by

yr = zr−1 + (ȳr,1, . . . , ȳr,l) (15)

where
ȳr,s = (ȳr,s,1, . . . , ȳr,s,h) ∈ Rdv ·h = Rdmodel (s ∈ {1, . . . , l}).
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Here yr ∈ Rdmodel·l has the same dimension as zr−1.
The output of the pointwise feedforward neural network depends on parameters

Wr,1 ∈ Rdff×dmodel , br,1 ∈ Rdff ,Wr,2 ∈ Rdmodel×dff , br,2 ∈ Rdmodel , (16)

which describe the weights in a feedforward neural network with one hidden layer and
dff ∈ N hidden neurons. This feedward neural network is applied to each component of
(15) (which is analoguous to a convolutionary neural network) and computes

zr,s = yr,s +Wr,2 · σ (Wr,1 · yr,s + br,1) + br,2 (s ∈ {1, . . . , l}), (17)

where we use again a residual connection. Here

σ(x) = max{x, 0}

is the ReLU activation function, which is applied to a vector by applying it in each
component of the vector separately.
Given the output zN of the sequence of N multi-head attention and pointwise feedfor-

ward layers, our �nal classi�er is computed by

ŷ =

{
1 if zN · w + b ≥ 1/2,

0 else,

where w ∈ Rdmodel·l and b ∈ R are parameters of our neural network. I.e., we compute
a linear transformation of zN and use a plug-in classi�cation rule corresponding to the
function

(x1, . . . , xl) 7→ zN · w + b.

This function depends on a parameter vector

θ̄ =
(
(WQ,r,s,WK,r,s,WV,r,s)r∈{1,...,N},s∈{1,...,h}, (Wr,1, br,1,Wr,2, br,2)r∈{1,...,N}, w, b

)
.

We denote this function by fθ̄, i.e., fθ̄ : Rd·l → R is the function

fθ̄(x1, . . . , xl) = zN · w + b,

where zN is the value computed as described above on the basis of the matrices and
vectors contained in θ̄.
In order to learn this function from observed data (X1, Y1), . . . , (Xn, Yn), we use the

principle of least squares to �t such a function to the observed data under a sparsity
constraint. To do this, we denote the number of nonzero parameters of our transformer
network by

‖θ̄‖0 =
N∑
r=1

l∑
s=1

(‖WQ,r,s‖0 + ‖WK,r,s‖0 + ‖WV,r,s‖0)

+
N∑
r=1

(‖Wr,1‖0 + ‖br,1‖0 + ‖Wr,2‖0 + ‖br,2‖0) + ‖w‖0 + ‖b‖0,
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where ‖ · ‖0 is the number of nonzero entries in a matrix or in a vector. We then choose
a sparsity index Ln ∈ N and de�ne

mn(·) = arg min
f∈{fθ̄ : ‖θ̄‖0≤Ln}

1

n

n∑
i=1

|Yi − f(Xi)|2 (18)

and

ηn(x) =

{
1 if mn(x) ≥ 1/2,

0 else.
(19)

In (18) we assume for simplicity that the minima does indeed exist. If this is not the
case, our main result below also holds for any estimate which minimizes the empirical
L2 risk in (18) only up to some additional term of order 1/

√
n.

3 Main result

Our main result is the following theorem, which gives an upper bound on the di�erence
between the misclassi�cation probability of the estimate introduced in Section 2 and the
optimal misclassi�cation probability.

Theorem 1. Let A > 0. Let (X,Y ), (X1, Y1), . . . , (Xn, Yn) be independent and identi-

cally distributed [−A,A]d·l × {0, 1}�valued random variables, and let

η(x) = P{Y = 1|X = x} be the corresponding aposterio probability. Let P be a �-

nite subset of (0,∞) × N and assume that η satis�es a hierarchical composition model

with some �nite level and smoothness and order constraint P. Set

h = max
(p,K)∈P

nK/(2p+K), I = log n,Ln = (log n)2·( max
(p,K)∈P

p)·( max
(p,K)∈P

K)· max
(p,K)∈P

nK/(2·p+K),

choose N ∈ N su�ciently large, dK ≥ 2, dff ≥ 2 · h + 2, and de�ne the estimate ηn by

(18) and (19). Then we have for n su�ciently large

P{ηn(X) 6= Y } − min
f :Rd·l→{0,1}

P{f(X) 6= Y } ≤ c1 · (log n)3 · max
(p,K)∈P

n
− p

2p+K .

Remark 1. It follows from the proof of Theorem 1 that it also holds if we set I = c2 for
some su�ciently large c2 ∈ N, which depends on the level of the hierarchical composition
model and on P.
Remark 2. The structure of the Transformer encoder in Theorem 1, i.e., the multi-
head attention and piecewise feedforward layers and the residual connection, is as it is
proposed in Vaswani et al. (2017). But di�erent from the model proposed there is our
choice of the encoding of the input. It is an open problem whether a similar result as
in Theorem 1 also holds if the coding of the input position is done as in Vaswani et al.
(2017).
Remark 3. The rate of convergence in Theorem 1 does not depend on the dimension
d · l of the predictor variable, hence the Transformer encoder is able to circumvent the
curse of dimensionality in case that the aposteriori probability satis�es a hierarchical
composition model with suitable order and smoothness constraints.
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4 Classi�cation problems in natural language processing

In this section, we describe some of the text classi�cation datasets that have been
traditionally used to evaluate neural models along with the typical NLP models to solve
these tasks, including the Transformer based classi�er. Then, we discuss the evaluation
and the performance of the models on these datasets, and point out the di�erences
between the Transformer classi�ers theoretically analyzed in this paper and the ones
used in practice. This gives us hints for useful generalizations of the theoretical results
in this paper in future work.

4.1 Datasets

The datasets have been constructed in a previous study by Zhang, Zhao and LeCun
(2015) to foster the progress in text classi�cation tasks and to empirically show that
convolutional neural networks can provide competitive results on such tasks.

YELP contains reviews written by the customers about their experience in a location
such as restaurants, bars and doctors. The dataset de�nes the classi�cation task as
predicting the number of stars ranging from 1 to 5 given the review text. It is a balanced
dataset containing equal amount per label of training and testing samples (130K training,
10K testing). This is known as Yelp F. (Full) where the task is to predict the full stars.
There is also a polarity classi�cation version of this dataset, where 1 and 2 star reviews
are merged under the Negative label, and 4 and 5 stars are labeled as Positive. This
version is referred to as Yelp P. (Polarity).

DBPedia is a crowdsourcing project that maps Wikipedia infoboxes to a shared ontol-
ogy (e.g., hierarchical classes of objects) that contains around 320 classes. The dataset
that is derived from DBPedia consists of titles and abstracts of Wikipedia articles and
their corresponding classes in the ontology. The authors construct the dataset by ran-
domly sampling 40K training and 5K test samples from 14 non-overlapping classes from
the DBPedia 2014 release.

4.2 Models

We present three techniques to tackle the aforementioned multilabel classi�cation prob-
lems: a strong baseline model using t�df, the early state-of-the-art-model based on con-
volutional neural networks and the transformer based model.

4.2.1 Baseline

As a baseline, we choose the traditonal n-gram tf-idf model as in Zhang, Zhao and LeCun
(2015). n-gram is one of the most common NLP terms that has been traditionally used
to model text sequences. Here, n refers to the number of sequential text units (typically
words) extracted from running text such as newspaper, wikipedia or web articles. In very
simple terms, given the sentence �I love NLP�, 1-grams that can be extracted from this
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sentence are { 'I', 'love', 'NLP'}, while 2-grams are { 'I love', 'love NLP' }. This baseline
starts with extracting the most frequent 500,000 n-grams from the training sets, where
n is between 1 and 5. Then it de�nes TF (term-frequency) by

tf(t, d) =
ft,d∑
t′∈d ft′,d

(20)

Here ft,d is a raw count of the term (in this case a speci�c n − gram) that occurs in
document d, which is then normalized by the number of times other terms (t′) occur
in the same document, i.e., by the number of di�erent terms which occur in d. It
can be interpreted as certain types of documents containing certain n-grams, such as a
sports article having a higher tf for the 2-gram �football game�. Furthermore it de�nes
IDF (Inverse Document Frequency) by

idf(t,D) = log
N

|{d ∈ D : t ∈ d}|
(21)

Here N is the total number of documents in the training set D. The denominator refers
to the number of documents that contains the term t. It can therefore be interpreted as
the amount of information a term provides. For instance the 1-gram �the� would have
a low idf since it is a common word, while �football� would yield a higher idf since it
occurs only on a subset of documents. Using these two concepts it introduces t�df as
follows:

tfidf(t, d,D) = tf(t, d)× idf(t,D) (22)

The values from the above equation are then used as features to train a multinomial
logistic regression model.

4.2.2 Character-level Convolutional Neural Networks

The overall architecture of the character CNN is given in Fig. 1. First step is the quanti-
zation step, which is also referred to as the encoding step, where characters are encoded
as one-hot vectors, by marking the character to be represented with the value 1 in a
zero-vector (e.g., [0, 0, 1, 0, 0, .., 0]). More formally, given an alphabet of k characters,
each character is indexed and represented with a vector c ∈ Rk, where the component
corresponding to the number of the character in the alphabet is 1, and in all other com-
ponents the value is 0. In Zhang, Zhao and LeCun (2015) an alphabet of 70 characters
is de�ned which is a combination of 26-letter English alphabet, digits, punctuations and
the space character.

1D Convolution : Given the sequence of characters c1:n = (c1, ..., cn), a one dimensional
convolution can simply be de�ned as sliding a window of size k over the character sequence
to apply a convoluton �lter, a.k.a., kernel, to each window. More formally, given the �lter
u = (u1, . . . , uk) ∈ Rd×k, and the window of characters xi = (ci, ci+1, ..., ci+k) ∈ Rd×k,
the convolution is de�ned as a dot-product between xi and u, i.e., by

u · xj =
k∑
j=1

uj · ci+j−1.
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Figure 1: Character-level CNN architecture for text classi�cation taken from Zhang, Zhao
and LeCun (2015).

In practice, however, we use a series of l �lters U1, . . . , Ul ∈ Rd×k and a bias term
b = (b1, . . . , bl) ∈ Rl. The convolution is then followed by the nonlinear ReLU activation
function g(x) = max{0, x}, i.e., the result of the convolution is

si,j = g(xi · Uj + b) (i = 1, . . . , n− k, j = 1, . . . , l). (23)

Max Pooling : This operation simply chooses the maximum of the values from all si
vectors, which yields the �xed l dimensional vector h = (h1, . . . , hl)

T where

hj = max
i=1,...,n−k

si,j .

The sequence of convolution and max pooling operations are referred to as a convolu-
tional layer.
The convolution layer is then followed by a linear layer with weight matrix, W , and a

bias term b. The output of the linear layer is then fed to a softmax function to calculate
the label probabilities for each class, li, as follows:

p(li) = softmax(W · h+ b). (24)

The model is trained with back propagation algorithm using stochastic gradient descent
to minimize the cross-entropy loss, LCE ,

LCE = −
n∑
i=1

ti · log(p(li)) (25)

where n refers to the number of classes, and t is a one-hot vector of dimension n where
the true label of the sample is �agged with 1 (e.g., if the test sample is from class 2, then
t = (t1, . . . , tn) will be (0, 1, 0, .., 0)).
The �nal model consists of 6 convolutional layers which are responsible of extracting

relevant textual features, which is then followed by 3 linear layers that capture the relation
between the features and the classi�cation labels.
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4.2.3 Transformer based Language Models

One of the recent breakthroughs in natural language processing is introduction of pre-
trained large language models, a.k.a., LLMs, that use the Transformer architecture such
as Bidirectional Encoder Representations from Transformers (BERT), cf., Devlin et al.
(2019). Such pretrained models also trigger a new paradigm for training high-level NLP
tasks such as document classi�cation, named entity recognition and question answer-
ing. This new training regime, called �ne-tuning, allows the NLP practitioners and
researchers to bene�t from unlabeled text via performing small weight modi�cations
to LLMs by adding a task-speci�c output layer and performing a minimal supervised
re-training on the task data. Since BERT has been the predominantly used LLM, we
experiment with BERT in this paper. Let us explain the architecture, training objective
and the �ne-tuning process in more details.

Architecture The architecture of the BERT model is identical to the multi-layer bidi-
rectional Transformer encoder described in Vaswani et al. (2017) and released in ten-

sor2tensor library3. This means that it corresponds exactly to the Transformer encoder
de�ned in Section 2.

Training Objective Traditional language modeling objective has been de�ned as pre-
dicting the next token given the previous context. More formally, the objective has been
to maximize the log probability logP (wi+1|wi, wi−1, ..., w1) where wi denotes the word at
index i. Later, researchers introduced a secondary objective which is to predict the pre-

vious token given the future context, i.e., to maximize logP (wi−1|wi, wi+1, ..., wn) where
the maximum number of words is n. Traditionally, two di�erent representations are
learned using these two objectives which are then concatenated and used as the �nal
token representation.
The calculation of this objective has been trivial when sequential neural models such

as recurrent neural networks have been used. However, since Transformer architecture is
not designed to be autoregressive, such bidirectional training objective has not been that
intuitive. To address this gap, BERT uses a combination of di�erent language modeling
objectives. The �rst objective is called a Masked Language Model (MLM). It is
de�ned as predicting the tokens that are masked at random. To learn representations
that can better model the relation between sentences, BERT de�nes the second self-
explanatory objective: Next Sentence Prediction (NSP).
In BERT, words are represented as a sequence of subwords using the WordPiece al-

gorithm which is inspired from an old byte compression idea. The authors introduce a
special token named [CLS] that is placed at the beginning of each sequence. The �nal
hidden state of this token from the multi-layer bidirectional Transformer encoder, i.e., the
hidden state of the pointwise feedforward neural network in (17) corresponding to this
token, is considered as the sequence representation and used for the classi�cation tasks.
Since BERT aims to provide a uni�ed architecture for NLP downstream tasks, including

3https://github.com/tensor�ow/tensor2tensor
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tasks that take a pair of inputs (e.g., question and answer), it introduces another special
token called [SEP] to separate two sentences from each other. The input representation
of BERT is then the sum of three embeddings: the token (or the WordPiece) embed-
ding, Etok, the segment embedding EA|B that identi�es whether the sentence is the prior
(segment A) or the next (segment B) sentence, and a special Positional Embedding

(PE) using sinus and cosine wave frequencies de�ned as follows:

PEpos,2i = sin
pos

10000
2i
d

, PEpos,2i+1 = cos
pos

10000
2i
d

, (26)

where d is the �xed dimension size of the input representation, i refers to the index in
the d dimensional Positional Embedding (PE) and pos refers to the position of the token
within the input. For instance the pos value of the token �I� in the input �I love NLP�
would be 0, and �love� would be 1.

Pretraining The model is pretrained with the two objectives, Masked Language

Model (MLM) and Next Sentence Prediction (NSP), that are mentioned above.
To elaborate, for MLM, 15% of the WordPiece tokens are masked randomly. Later the
hidden vectors for the masked tokens are passed onto a softmax layer that calculates the
probability distribution over the full vocabulary. NSP is formulated as a binary classi�-
cation problem, where [CLS] token is classi�ed either as isNext or notNext. It can
be interpreted as given two sentences, the second sentence is either the next sentence
following the previous one, or not. The training loss is then the sum of the mean MLM
and NSP likelihood. The model is pretrained on a corpus of a large collection (in total
3,3 billion words) of books and wikipedia articles. It should be noted that, in practice,
sequence pairs do not directly refer to linguistically well-formed sentence structures. For
instance, a sequence might contain an un�nished sentence since it contains a �xed num-
ber of tokens and does not take sentence boundaries into account. They are typically
longer spans of text which may contain multiple sentences. For training proper segment
embeddings, training data is constructed in a way that, 50% of the time the second
sentence follows the �rst sentence (i.e., has the label isNext) and 50% it is a randomly
chosen sentence (i.e., has the label notNext).

Fine-tuning Fine-tuning process, in general, aims to introduce a minimal amount of
task-speci�c parameters which are used to de�ne a task-speci�c output layer. This output
layer depends on the NLP task. For instance, for token-level tasks such as Named Entity
Recognition (NER) (i.e., labeling individual tokens as entity names such as organization,
company and city name), token representations are fed into the output layer. In case of
classi�cation tasks such classifying restaurant reviews as in this paper, the �nal hidden
state of the [CLS] token is fed into the output layer. Finally, either all parameters or
only the task-speci�c parameters are updated end-to-end using the task-speci�c objective
(e.g., binary cross-entropy loss for binary classi�cation, categorical cross-entropy loss
for multiple classes) on the task-speci�c labeled data (e.g., the classi�cation datasets
described in Sec. 4.1). An illustration of the pretraining and the �ne-tuning processes is
given in Fig. 2.

13



Figure 2: Illustration of pretraining and �netuning of BERT taken from Devlin et al.
(2019). E refers to embedding, [CLS] and [SEP] denote special tokens de-
signed to perform classi�cation and to separate two sentences, accordingly.
NSP denotes �next sentence prediction�. MNLI (Multi-Genre Natural Lan-
guage Inference), NER (Named Entity Recognition) and SQuAD (Stanford
Question Answering Dataset) are popular NLP tasks for on which the BERT
model is �netuned.

4.3 Evaluation and Results

All models are evaluated on the standard test splits as provided by the data created in
Zhang, Zhao and LeCun (2015) using the empirical misclassi�cation error on the testing
data as the evaluation measure. We show the scores of the baseline as reported by Zhang,
Zhao and LeCun (2015).
We �netune the BERT-base model that consists of 12 Transformer encoder blocks with

hidden dimensionality of 768, and 12 self-attention heads. BERT outputs a representa-
tion of an input sequence including a representation for the special [CLS] token. The
maximum number of tokens that can be processed by BERT is 512. However, since
processing 512 tokens is quite memory demanding for a single GPU, we set the threshold
to 128 tokens. We take the �nal hidden state h of the [CLS] token and introduce a task
speci�c weight matrix W . The output is then fed to a softmax classi�er to calculate the
probability of class l by

p(l|h) = softmax(Wh). (27)

BERT has been shown to capture lower-level linguistic information like sentence structure
in lower layers, while higher-level layers capture higher-level information such as the
sentence semantics. Therefore, instead of �ne-tuning all layers, we �ne-tune only the last
two layers. This strategy does not only reduce the computational workload, but also has
been shown to provide competitive scores, cf., Sun et al. (2019). Finally, we maximize
the log-probability of the correct label by updating the parameters in W and the last
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two layers. We �ne-tune the uncased model (all lower case) for 3 epochs with the batch
size as 32 and the learning rate as 0.00002. We train both the character-level CNN and
the �ne-tuned BERT models using �ve di�erent random seeds and report the averaged
scores in Table 1.
Our results show that, even a simple �ne-tuning strategy on the large pretrained

Transformer-based language model BERT provides substantial improvements over the
baseline and the character-level CNNs.

Model Yelp P. Yelp F. DBP

n-gram TFIDF (Zhang, Zhao and LeCun (2015)) 4.56 45.20 1.31
Char CNN 4.96 39.25 1.78
BERT Fine-Tuning 2.92 32.94 0.75

Table 1: Comparison of test error rates of the baseline, character-level CNN and the
�netuned BERT model.

4.4 Comparison of theory and practice

If we compare our classi�er introduced in Section 2 with the ones used in practice, we
see that the basic structure of the classi�ers, i.e., the use of a sequence of pairs of mulit-
head attention and pointwise feedforward layers, is the same. Di�erent are the coding
of the input (here we used a separate part of the vector in order to encode the position
instead of adding some kind of encoded wave to the vector) and the learning method.
In particular, our theory totally ignores the idea of using a pretrained model as used in
BERT. Instead we focused only on the approximation and generalization properties of
Transformer networks in order to simplify the theory.
This indicates what the main question for future research in this area is: Can one

also come up with a theory for Transformer classi�ers which uses �rstly pretraining and
secondly learning of the classi�ers by gradient descent?

5 Proofs

5.1 Proof of Theorem 1

Set β = 1. Since Tβz ≥ 1/2 if and only if z ≥ 1/2 for any z ∈ R we have

ηn(x) =

{
1 if Tβmn(x) ≥ 1/2,

0 else.

By Theorem 1.1 in Györ� et al. (2002) we know

P{ηn(X) 6= Y |Dn} − min
f :Rd·l→{0,1}

P{f(X) 6= Y } ≤ 2 ·

√∫
|Tβmn(x)− η(x)|2PX(dx),
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hence it su�ces to show

E

∫
|Tβmn(x)− η(x)|2PX(dx) ≤ c3 · (log n)6 · max

(p,K)∈P
n
− 2p

2p+K . (28)

By standard error bounds from empirical process theory (cf., e.g., Lemma 1 in Bauer
and Kohler (2019)) we know

E

∫
|Tβmn(x)− η(x)|2PX(dx)

≤
c4 ·

(
log n)2 · supxn1

(
log
(
N1

(
1
n·β , {Tβfθ̄ : ‖θ̄‖0 ≤ Ln}

)
, xn1

))
+ 1
)

n

+2 · inf
f∈{fθ̄ : ‖θ̄‖0≤Ln}

∫
|f(x)− η(x)|2PX(dx).

We will show in Lemma 8 below that we have

sup
xn1

log

(
N1

(
1

n · β
, {Tβfθ̄ : ‖θ̄‖0 ≤ Ln}, xn1

))
≤ c5 · Ln · (log n)2

= c6 · (log n)4 · max
(p,K)∈P

nK/(2·p+K).

And by Theorem 2 below we get

inf
f∈{fθ̄ : ‖θ̄‖0≤Ln}

∫
|f(x)− η(x)|2PX(dx) ≤ c7 · max

(p,K)∈P
h−2·p/K .

Choose (p̄, K̄) ∈ P with
p̄

K̄
= min

(p,K)∈P

p

K
.

Then the above results imply

E

∫
|Tβmn(x)− η(x)|2PX(dx) ≤ c6 · (log n)6 · nK̄/(2·p̄+K̄)

n
+ c7 · h−2·p̄/K̄

≤ c8 · (log n)6 · n−2·p̄/(2·p̄+K̄)

= c8 · (log n)6 · max
(p,K)∈P

n
− 2p

2p+K .

�

5.2 Approximation of piecewise polynomials by transformer networks with
single-head attention

In this subsection we present results concerning the approximation of piecewise polyno-
mials by Transformer encoders with single-head attention. In the next subsection we will
generalize these results to Transformer encoders with multi-head attention.
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In case of a Transformer encoder with a single-head attention we represent the input
sequence (4) by

z0 = (z0,1, . . . , z0,l) ∈ Rl·dmodel ,

where
dmodel = d+ l + 4. (29)

Here we use d components to represent the original data, we use l components to represent
the position in the original sequence, we use 1 component to have available the constant
1 in our computations, and we use 3 components to be able to save auxiliary results
during our computation. More precisely we set

z
(s)
0,j =



x
(s)
j if s ∈ {1, . . . , d}

1 if s = d+ 1

δs−d−1,j if s ∈ {d+ 2, . . . , d+ 1 + l}
1 if s = d+ l + 3

0 if s ∈ {d+ l + 2, d+ l + 4}

We start with a �rst lemma that shows that a single-head attention unit can be used
to compute linear polynomials in one variable.

Lemma 1. Let xj ∈ Rd and bj ∈ R (j = 1, . . . , l). Let z0 = (z0,1, . . . , z0,l) ∈ Rd be given
by

z
(s)
0,j =



x
(s)
j if s ∈ {1, . . . , d}

1 if s = d+ 1

δs−d−1,j if s ∈ {d+ 2, . . . , d+ 1 + l}
bj if s = d+ l + 3

0 if s ∈ {d+ l + 2, d+ l + 4}

Let j ∈ {1, . . . , l}, k ∈ {1, . . . , d} and u ∈ R be arbitrary. Let

B > 2 · max
s=1,...,d,j=1,...,l

|x(s)
j |.

Then there exists matrices WQ, WK ∈ R2×dmodel and WV ∈ Rdmodel×dmodel , where each

matrix contains at most 3 nonzero entries and where all entries depend only on u and

B, such that qi = WQ · z0,i, ki = WK · z0,i, vi = WV · z0,i,

ĵi = arg max
t∈{1,...,l}

< qi, kt > (i ∈ {1, . . . , l})

and

yi = z0,i + vĵi · < qi, kĵi > (i ∈ {1, . . . , l})
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result in

y
(s)
1 =



x
(s)
1 if s ∈ {1, . . . , d}

1 if s = d+ 1

δs−d−1,j if s ∈ {d+ 2, . . . , d+ 1 + l}
x

(k)
j − u if s = d+ l + 2

b1 if s = d+ l + 3

0 if s = d+ l + 4

and

yj = z0,j for j ∈ {2, . . . , l}.

Proof. We start our proof by de�ning the matrices WQ, WK and WV . We set

WQ =

(
0 . . . 0 1 0 . . . 0
0 . . . 0 B 0 . . . 0

)
where all colums are zero except column number d+ 2,

WK =

(
0 . . . 0 1 0 . . . 0 −u−B 0 . . . 0 0 0 . . . 0
0 . . . 0 0 0 . . . 0 0 0 . . . 0 1 0 . . . 0

)
where all colums are zero except column number k, column number d + 1 and column
number d+ 1 + j, and

WV =



0 . . . 0 0 0 . . . 0
... . . .

...
...

... . . .
...

0 . . . 0 0 0 . . . 0
0 . . . 0 1 0 . . . 0
0 . . . 0 0 0 . . . 0
... . . .

...
...

... . . .
...

0 . . . 0 0 0 . . . 0


where all rows and all colums are zero except row number d+ l+ 2 and column number
d+ 1. For these matrices we get

qi = WQ · z0,i =

(
1 · δi,1
B · δi,1

)
, ki = WK · z0,i =

(
x

(k)
i − u−B

1 · δi,j

)
,

vi = WV · z0,i = (δ1,d+l+2, δ2,d+l+2, . . . , δd+l+4,d+l+2)T = ed+l+2,

where ed+l+2 is the d+ l + 2-th unit vector in Rd+l+4. Consequently we have

< qr, ks >= (x(k)
s − u−B) · δr,1 +B · δr,1 · δs,j ,

< q1, kj >= (x
(k)
j − u−B) +B > x(k)

s − u−B =< q1, ks >
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for all s ∈ {1, . . . , d} \ {j} and
ĵ1 = j,

which implies

vĵ1 · < q1, kĵ1 >= (x
(k)
j − u) · ed+l+2

and
vĵi · < qi, kĵi >= ed+l+2· < 0, kĵi >= 0 · ed+l+2

for i > 1. �

Remark 4. It follows from the proof of Lemma 1 that we can modify WK such that

y
(d+l+2)
1 = 1 holds instead of y

(d+l+2)
1 = x

(k)
j − u.

Our next lemma shows that a single-head attention unit can be used to compute
products.

Lemma 2. Let xs ∈ Rd and as, bs ∈ R (s = 1, . . . , l). Let z0 = (z0,1, . . . , z0,l) ∈ Rd be

given by

z
(s)
0,j =



x
(s)
j if s ∈ {1, . . . , d}

1 if s = d+ 1

δs−d−1,j if s ∈ {d+ 2, . . . , d+ 1 + l}
aj if s = d+ l + 2

bj if s = d+ l + 3

0 if s = d+ l + 4

Let j ∈ {1, . . . , l}. Let B > 2 · maxr,s |ar · bs|. Then there exists matrices WQ, WK ∈
R2×dmodel andWV ∈ Rdmodel×dmodel, where each matrix contains at most 2 nonzero entries
and where all entries depend only on B, such that qi = WQ · z0,i, ki = WK · z0,i, vi =
WV · z0,i,

ĵi = arg max
t∈{1,...,l}

< qi, kt > (i ∈ {1, . . . , l})

and

yi = z0,i + vĵi · < qi, kĵi > (i ∈ {1, . . . , l})

result in

y
(s)
1 =



x
(s)
1 if s ∈ {1, . . . , d}

1 if s = d+ 1

δs−d−1,j if s ∈ {d+ 2, . . . , d+ 1 + l}
a1 if s = d+ l + 2

b1 if s = d+ l + 3

b1 · aj +B if s = d+ l + 4

and

y(i)
s = z

(i)
0,s for i ∈ {1, . . . , d+ l + 3}, s ∈ {1, . . . , l}.
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Proof. De�ne WV as in the proof of Lemma 1 such that all rows and all colums are zero
except row number d+ l + 4 and column number d+ 1, and set

WQ =

(
0 . . . 0 0 0 . . . 0 1 0 . . . 0
0 . . . 0 B 0 . . . 0 0 0 . . . 0

)
where all colums are zero except column number d+ 2 and column number d+ l+ 3 and

WK =

(
0 . . . 0 0 0 . . . 0 1 0 . . . 0
0 . . . 0 1 0 . . . 0 0 0 . . . 0

)
where all colums are zero except column number d+ 1 + j and column number d+ l+ 2.
For these matrices we get

qi = WQ · z0,i =

(
bi

B · δi,1

)
, ki = WK · z0,i =

(
ai

1 · δi,j

)
,

vi = WV · z0,i = (0, . . . , 0, 1)T = ed+l+4.

Consequently we have
< qr, ks >= br · as +B · δr,1 · δs,j .

This implies
ĵ1 = j

and
< qi, kĵi >= max

s
bi · as

for i > 1, from which we can conclude

vĵ1 · < q1, kĵ1 >= (b1 · aj +B) · ed+l+4

and
vĵi · < qi, kĵi >= (max

s
bi · as) · ed+l+4

for i > 1. �
Our next lemma de�nes a special pointwise feedforward neural network, which applies

the function
x 7→ α · (x−B)

to component number d+ l+ 4 of each element in the decoding of the sequence of inputs
and writes the result in component number d + l + 3, and which sets the entries in
components d+ l + 2 and d+ l + 4 to zero.

Lemma 3. Let dmodel = d + l + 4 and let y = (y1, . . . , yl) for some yi ∈ Rdmodel . Let

dff ≥ 8 and let α ∈ R. Then there exists matrices and vectors

W1 ∈ Rdff×dmodel , b1 ∈ Rdff ,W2 ∈ Rdmodel×dff , b2 ∈ Rdmodel ,
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which depend only on B and α and which have at most 10 nonzero entries such that

zs = ys +W2 · σ (W1 · ys + b1) + b2

results in

z(i)
s =


y

(i)
s if i ∈ {1, . . . , d+ l + 1},
α · (y(d+l+4)

s −B) if i = d+ l + 3,

0 if i ∈ {d+ l + 2, d+ l + 4}.

Proof. W.l.o.g. we assume dff = 8. We choose b1 = 0, b2 = 0,

W1 =



0 . . . 0 0 0 . . . 0 1 0 0
0 . . . 0 0 0 . . . 0 −1 0 0
0 . . . 0 0 0 . . . 0 0 1 0
0 . . . 0 0 0 . . . 0 0 −1 0
0 . . . 0 −B 0 . . . 0 0 0 1
0 . . . 0 B 0 . . . 0 0 0 −1
0 . . . 0 0 0 . . . 0 0 0 1
0 . . . 0 0 0 . . . 0 0 0 −1


,

where all columns except columns number d + 1, d + l + 2, d + l + 3 and d + l + 4 are
zero, and

W2 =



0 0 0 0 0 0 0 0
...

...
0 0 0 0 0 0 0 0
−1 1 0 0 0 0 0 0
0 0 −1 1 α −α 0 0
0 0 0 0 0 0 −1 1


,

where all rows except row number d + l + 2, d + l + 3 and d + l + 4 are zero. Then we
have

W2 · σ (W1 · ys + b1) + b2

=



0
...
0

−(σ(y
(d+l+2)
s )− σ(−y(d+l+2)

s ))

−(σ(y
(d+l+3)
s )− σ(−y(d+l+3)

s )) + α · σ(y
(d+l+4)
s −B)− α · σ(B − y(d+l+4)

s )

−(σ(y
(d+l+4)
s )− σ(−y(d+l+4)

s ))


.

Because of
σ(u)− σ(−u) = u

for u ∈ R this implies the assertion. �
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Lemma 4. Let dmodel = d + l + 4 and let y = (y1, . . . , yl) for some yi ∈ Rdmodel . Let

dff ≥ 3 and let α ∈ R. Then there exists matrices and vectors

W1 ∈ Rdff×dmodel , b1 ∈ Rdff ,W2 ∈ Rdmodel×dff , b2 ∈ Rdmodel ,

which have at most three nonzero entries such that

zs = ys +W2 · σ (W1 · ys + b1) + b2

results in

z(i)
s =

{
y

(i)
s if i ∈ {1, . . . , d+ l + 4} \ {d+ l + 2},

max{y(d+l+4)
s , 0} if i = d+ l + 2

(s ∈ {1, . . . , l}).

Proof. Follows as in the proof of Lemma 3 by choosing W2, b2, W1 and b1 such that

W2 · σ (W1 · ys + b1) + b2 =



0
...
0

−(σ(y
(d+l+2)
s )− σ(−y(d+l+2)

s )) + σ(y
(d+l+4)
s )

0
0


holds. �

Remark 5. Assume dff ≥ 4. It follows from the proof of Lemma 4 that we can modify

W2 such that at most four of its entries are nonzero and z
(d+l+2)
s = y

(d+l+4)
s holds instead

of z
(d+l+2)
s = max{y(d+l+4)

s , 0}.

Next we combine the previous results to construct a Transformer encoder which uses
2 · M · d pairs of single-attention layers and piecewise feedforward layers in order to
compute a basis function of a tensor product spline space of degree M .

Lemma 5. Let K ∈ N, let uk ∈ R (k = 1, . . . ,K − 1), set

Bj(x) = xj for j = 0, 1, . . . ,M

and set

Bj(x) = (x− uj−M )M+ for j = M + 1,M + 2, . . . ,M +K − 1.

Let j1, . . . , jd ∈ {0, 1, . . . ,M + K − 1} and α ∈ R. Then there exists a transformer

network consisting of 2 ·M · d pairs of layers layers, where in each pair the �rst layer is

a single-attention layer and the second layer is a piecewise feedforward neural network,

where all matrices and vectors have at most 10 nonzero entries and where all matrices
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and vectors depend only on (uk)k, B and α, which gets as input z as in Lemma 1 (with

bj = 1 (j = 1, . . . , d)) and produces as output zM ·d which satis�es

z
(d+l+3)
M ·d = α

d∏
k=1

Bjk(x(k)).

Proof. Each Bj(x) can be written as

Bj(x) =
M∏
k=1

Bj,k(x)

where Bj,k(x) is one of the functions

x 7→ 1, x 7→ x and x 7→ (x− ur)+.

Using Lemma 1, Lemma 2, Remark 4, Lemma 3, Lemma 4, Remark 5 and Lemma 5
we can combine two pairs of attention layers and piecewise feedforward layers such that
they produce from the input z0,j given as in Lemma 1 with bj ≥ 0 an output yj where

y
(d+l+3)
1 is the product of bj and one of the functions

x(k) 7→ 1, x(k) 7→ x(k) and x(k) 7→ (x(k) − ur)+

and where y
(s)
j is equal to z

(s)
0,j otherwise. Using this repeatedly we get the assertion.

�

5.3 Approximation of piecewise polynomials by transformer networks with
multi-head attention

In this subsection we generalize the results from the previous subsection to Transformer
encoders with multi-head attention. The basic idea is to extend the coding of the input
by repeating the previous coding h times and to de�ne the multi-head attention such
that each attention unit makes the computation of the previous subsection in one of the
copies of the original coding.
We use the following coding of the original input: We represent the input sequence (4)

by
z0 = (z0,1, . . . , z0,l) ∈ Rl·dmodel , (30)

where
dmodel = h · (d+ l + 4). (31)

Here we repeat the coding of the previous subsection h times. More precisely we set for
all k ∈ {1, . . . , h}

z
((k−1)·(d+l+4)+s)
0,j =



x
(s)
j if s ∈ {1, . . . , d}

1 if s = d+ 1

δs−d−1,j if s ∈ {d+ 2, . . . , d+ 1 + l}
1 if s = d+ l + 3

0 if s ∈ {d+ l + 2, d+ l + 4}
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In our next result we compute h basic functions of the truncated power basis in parallel
by using a multi-head attention with h attention heads.

Lemma 6. Let K, uk, M and Bj be as in Lemma 5. Let dk ≥ 2 and dff ≥ 10. Let

h ∈ N and for s ∈ {1, . . . , h} let js,1, . . . , js,d ∈ {0, 1, . . . ,M + K − 1} and αs ∈ R.
Then there exists a Transformer encoder consisting of 2 ·M · d pairs of layers, where the

�rst layer is a multi-head attention layer with h attention units and the second layer is

a piecewise feedforward neural network, and where all matrices and vectors have at most

10 nonzero entries and where all matrices and vectors depend only on (uk)k, B and αs
(s ∈ {1, . . . , k}), which gets as input z0 de�ned in (30) and produces as output zM ·d which
satis�es

z
(s−1)·(d+l+4)+(d+l+3)
M ·d,1 = αs

d∏
k=1

Bjs,k(x(k))

for all s ∈ {1, . . . , h}.

Proof. The result is a straightforward extension of the proof of Lemma 5. The basic idea
is as follows. Each attention head of the network works only on one of the h copies of the
coding of the previous subsection. In each attention unit it makes the same computations
as in the proof of Lemma 5, using only its special part of the coding of the input. �

Lemma 7. Let K, uk, M and Bj be as in Lemma 5. Let h ∈ N and for s ∈ {1, . . . , h} let
js,1, . . . , js,d ∈ {0, 1, . . . ,M+K−1} and αs ∈ R. Let dk ≥ 2 and dff ≥ max{10, 2·h+2}.
Then there exists a Transformer encoder consisting of 2 ·M · d+ 1 pairs of layers, where

the �rst layer is a multi-head attention layer with h attention units and the second layer

is a piecewise feedforward neural network, and where all matrices and vectors in the �rst

2 ·M · d pairs of layers have at most 10 nonzero entries, where the matrices and vectors

in the 2 ·M ·d+1-th pair of layers have together at most 2 ·h+2 nonzero components and

where all matrices and vectors depend only on (uk)k, B and αs (s ∈ {1, . . . , k}), which
gets as input z0 de�ned in (30) and produces as output zM ·d+1 which satis�es

z
h·(d+l+4)
M ·d+1,1 =

h∑
s=1

αs

d∏
k=1

Bjs,k(x(k)).

Proof. We use the construction of the proof of Lemma 6 to de�ne the �rst 2 ·M ·d pairs
of layers. After that we choose WV,M ·d = 0 (which results in yM ·d+1 = zM ·d) and choose
W1,M ·d+1, b1,M ·d+1, W2,M ·d+1, b2,M ·d+1, such that

W2,M ·d+1 · σ (W1,M ·d+1 · ys + b1,M ·d+1) + b2,M ·d+1

=


0
...
0

−(σ(y
h·(d+l+4)
M ·d+1,1 )− σ(−yh·(d+l+h)

M ·d+1,1 )) + σ(
∑h

s=1 y
s·(d+l+4)
M ·d+1,1 )− σ(−

∑h
s=1 y

s·(d+l+4)
M ·d+1,1 )


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holds. �

Remark 6. The transformer network in Lemma 7 has

N · h · (2 · dk · dmodel + dv · dmodel + 2 · dff · dmodel + dff + dmodel)

= (2 ·M · d+ 1) · h · (2 · dk · h · (d+ l + 4) + (d+ l + 4) · h · (d+ l + 4)

+2 · dff · h · (d+ l + 4) + dff + h · (d+ l + 4))

≤ 235 ·M · (max{l, d, dk, dff})3 · h2

many parameters, and of these parameters at most 144 ·M · d · h are not equal to zero.
Here the positions are �xed where nonzero parameters are allowed to appear.

Next we show how we can approximate a function which satis�es a hierarchical com-
position model by a Transformer encoder. In order to formulate this result, we introduce

some additional notation. In order to compute a function h
(κ)
1 ∈ H(κ,P) one has to com-

pute di�erent hierarchical composition models of some level i (i ∈ {1, . . . , κ − 1}). Let
Ñi denote the number of hierarchical composition models of level i, needed to compute

h
(κ)
1 . Let

h
(i)
j : Rd → R (32)

be the j�th hierarchical composition model of some level i (j ∈ {1, . . . , Ñi}, i ∈ {1, . . . , κ}),
that applies a (p

(i)
j , C)�smooth function g

(i)
j : RK

(i)
j → R with p

(i)
j = q

(i)
j + s

(i)
j , q

(i)
j ∈ N0

and s
(i)
j ∈ (0, 1], where (p

(i)
j ,K

(i)
j ) ∈ P. With this notation we can describe the compu-

tation of h
(κ)
1 (x) recursively as follows:

h
(i)
j (x) = g

(i)
j

(
h

(i−1)∑j−1
t=1 K

(i)
t +1

(x), . . . , h
(i−1)∑j
t=1K

(i)
t

(x)

)
(33)

for j ∈ {1, . . . , Ñi} and i ∈ {2, . . . , κ}, and

h
(1)
j (x) = g

(1)
j

(
x

(
π(
∑j−1
t=1 K

(1)
t +1)

)
, . . . , x

(
π(
∑j
t=1K

(1)
t )

))
(34)

holds for j ∈ {1, . . . , Ñ1} for some function π : {1, . . . , Ñ1} → {1, . . . , d}. Here the
recursion

Ñl = 1 and Ñi =

Ñi+1∑
j=1

K
(i+1)
j (i ∈ {1, . . . , κ− 1}) (35)

holds.

Theorem 2. Let m : Rd → R be contained in the class H(κ,P) for some κ ∈ N and

P ⊆ [1,∞) × N. Let Ñi be de�ned as in (35). Each m consists of di�erent functions
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h
(i)
j (j ∈ {1, . . . , Ñi}, i ∈ {1, . . . , κ}) de�ned as in (32), (33) and (34). Assume that the

corresponding functions g
(i)
j are Lipschitz continuous with Lipschitz constant CLip ≥ 1

and satisfy

‖g(i)
j ‖

C
q
(i)
j (Rd)

≤ c9

for some constant c9 > 0. Denote by Kmax = maxi,jK
(i)
j < ∞ the maximal input

dimension and set qmax = maxi,j q
(i)
j <∞, where q

(i)
j is the integer part of the smoothness

p
(i)
j of g

(i)
j . Let A ≥ 1. Choose h ∈ N such that

h ≥ c10 (36)

holds for some su�ciently large constant c10, choose

I ≥
κ∑
i=1

Ñi and dk ≥ 2

and set

N = I · (2 · qmax ·Kmax + 1), dmodel = dv = h · I · (d+ l + 4)

and

Ln = 144 · (qmax + 1) ·Kmax · I · h.

Then there exists a transformer network fθ̄ with ‖θ̄‖0 ≤ Ln which satis�es

‖fθ̄ −m‖∞,[−A,A]d ≤ c11 · (Kmax + 1)κ ·max
j,i

h−p
(i)
j /K

(i)
j .

Proof. From the Lipschitz continuity of the g
(i)
j and the recursive de�nition of the h

(i)
j

we can conclude that there exists Ā ≥ A such that

h
(i)
j (x) ∈ [−Ā, Ā] (37)

holds for all x ∈ [−A,A]d, j ∈ {1, . . . , Ñi} and i ∈ {1, . . . , κ− 1}.
Our Transformer encoder successively approximates h

(1)
1 (x), . . . , h

(1)
N1

(x), h
(2)
1 (x), . . . ,

h
(2)
N2

(x), . . . , h
(κ)
1 (x). Here h

(j)
i is approximated by computing in a �rst step truncated

power basis of a tensorproduct spline space of degree q
(j)
i on a equidistant grid in

[−Ā− 1, Ā+ 1]K
(j)
i

consisting of h basis functions, which are evaluated at the arguments of h
(j)
i in (34), and

by using in a second step a linear combination of these basis functions to approximate

g
(i)
j

(
h

(i−1)∑j−1
t=1 K

(i)
t +1

(x), . . . , h
(i−1)∑j
t=1K

(i)
t

(x)

)
.
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The computation of this truncated power basis can be done as in Lemma 7 using layers
(Ñi−1+j−1)·(2·qmax ·Kmax+1)+1 till (Ñi−1+j)·(2·qmax ·Kmax+1) of our Transformer
encoder and proceeding otherwise as in Lemma 6. Using standard approximation results
from spline theory (cf., e.g., Theorem 15.2 and proof of Theorem 15.1 in Györ� et al.
(2002) and Lemma 1 in Kohler (2014)) this results in an approximation

g̃
(i)
j

of g
(i)
j which satis�es

‖g̃(i)
j − g

(i)
j ‖
∞,[−Ā−1,Ā+1]

K
(i)
j
≤ c12 · h−p

(i)
j /K

(i)
j . (38)

The approximation h̃
(κ)
1 (x) of h

(κ)
1 (x) which our Transformer encoder computes is de�ned

as follows:

h̃
(1)
j (x) = g̃

(1)
j

(
x

(
π(
∑j−1
t=1 K

(1)
t +1)

)
, . . . , x

(
π(
∑j
t=1K

(1)
t )

))
for j ∈ {1, . . . , Ñ1} and

h̃
(i)
j (x) = g̃

(i)
j

(
h̃

(i−1)∑j−1
t=1 K

(i)
t +1

(x), . . . , h̃
(i−1)∑j
t=1K

(i)
t

(x)

)
for j ∈ {1, . . . , Ñi} and i ∈ {2, . . . , κ}.
From (36), (37) and (38) we can conclude

|h̃(i)
j (x)| ≤ |h̃(i)

j (x)− h(i)
j (x)|+ |h(i)

j (x)| ≤ Ā+ 1.

Consequently we get from (38)

|h̃(i)
j (x)− h(i)

j (x)|

≤ |g̃(i)
j

(
h̃

(i−1)∑j−1
t=1 K

(i)
t +1

(x), . . . , h̃
(i−1)∑j
t=1K

(i)
t

(x)

)
− g(i)

j

(
h̃

(i−1)∑j−1
t=1 K

(i)
t +1

(x), . . . , h̃
(i−1)∑j
t=1K

(i)
t

(x)

)
|

+|g(i)
j

(
h̃

(i−1)∑j−1
t=1 K

(i)
t +1

(x), . . . , h̃
(i−1)∑j
t=1K

(i)
t

(x)

)
− g(i)

j

(
h

(i−1)∑j−1
t=1 K

(i)
t +1

(x), . . . , h
(i−1)∑j
t=1K

(i)
t

(x)

)
|

≤ c12 · h−p
(i)
j /K

(i)
j +

|g(i)
j

(
h̃

(i−1)∑j−1
t=1 K

(i)
t +1

(x), . . . , h̃
(i−1)∑j
t=1K

(i)
t

(x)

)
− g(i)

j

(
h

(i−1)∑j−1
t=1 K

(i)
t +1

(x), . . . , h
(i−1)∑j
t=1K

(i)
t

(x)

)
|

≤ c12 · h−p
(i)
j /K

(i)
j + c13 ·

K
(i)
j∑

s=1

|h̃(i−1)∑j−1
t=1 K

(i)
t +s

(x)− h(i−1)∑j−1
t=1 K

(i)
t +s

(x)|,

where the last inequality holds due to the the Lipschitz continuity of g
(i)
j . Together with

|h̃(1)
j (x)− h(1)

j (x)| ≤ c14 · h−p
(1)
j /K

(1)
j ,
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which follows again from (38), an easy induction shows

|h̃(κ)
1 (x)− h(κ)

1 (x)| ≤ c15 · (Kmax + 1)κ ·max
j,i

h−p
(i)
j /K

(i)
j .

�

5.4 A bound on the covering number

In this subsection we prove the following bound on the covering number.

Lemma 8. Let F be the set of all functions

(x1, . . . , xl) 7→ zN · w + b,

where zN is de�ned in Section 2 depending on

(WQ,r,s,WK,r,s,WV,r,s)r∈{1,...,N},s∈{1,...,h}, (Wr,1, br,1,Wr,2, br,2)r∈{1,...,N} (39)

and where the total number of nonzero components in (39) and w and b is bounded by

L ∈ N. Let β ≥ 0 and let TβF be the set of all functions in F truncated on height β and

−β. Then we have for any 0 < ε < β/2

sup
zn1 ∈(Rd·l)n)

logN (ε, TβF , zn1 ) ≤ c16 · L ·N2 · log(max{N,h, dff , dk, l}) log

(
β

ε

)
.

In order to prove Lemma 8 we will �rst show the following bound on the VC-dimension
of subsets of F , where the nonzero components appear only at �xed positions.

Lemma 9. Let G be the set of all functions

(x1, . . . , xl) 7→ zN · w + b,

where zN is de�ned in Section 2 depending on (39) and where there are at most L �xed

components in (39) and w and b where the entries are allowed to be nonzero. Then we

have

VF+ ≤ c17 · L ·N2 · log(max{N,h, dff , l})

The proof of Lemma 9 is a modi�cation of the proof of Theorem 6 in Bartlett et al.
(1999). In the proof of Lemma 9 we will need the following two auxiliary results.

Lemma 10. Suppose W ≤ m and let f1, ..., fm be polynomials of degree at most D in

W variables. De�ne

K := |{(sgn(f1(a)), . . . , sgn(fm(a))) : a ∈ RW }|.

Then we have

K ≤ 2 ·
(

2 · e ·m ·D
W

)W
.
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Proof. See Theorem 8.3 in Anthony and Bartlett (1999). �

Lemma 11. Suppose that 2m ≤ 2L · (m ·R/w)w for some R ≥ 16 and m ≥ w ≥ L ≥ 0.
Then,

m ≤ L+ w · log2(2 ·R · log2(R)).

Proof. See Lemma 16 in Bartlett et al. (2019). �
Proof of Lemma 9. Let H be the set of all functions h de�ned by

h : (Rd)l × R→ R, h(x, y) = g(x)− y

for some g ∈ G. Let (x1, y1), . . . (xm, ym) ∈ Rd·l × R be such that

|{(sgn(h(x1, y1)), . . . , sgn(h(xm, ym))) : h ∈ H}| = 2m. (40)

It su�ces to show
m ≤ c17 · L ·N2 · log(max{N,h, dff , l}). (41)

To show this we partition G in subsets such that for each subset all

g(xi) (i = 1, . . . ,m)

are polynomials of some �xed degree and use Lemma 10 in order to derive an upper
bound on the left-hand side of (40). This upper bound will depend polynomially on m
which will enable us to conclude (41) by an application of Lemma 11.
Let

θ̄ =
(
(WQ,r,s,WK,r,s,WV,r,s)r∈{1,...,N},s∈{1,...,h}, (Wr,1, br,1,Wr,2, br,2)r∈{1,...,N}, w, b

)
be the parameters which determine a function in F . By assumption, each function in
G can be also described by such a parameter vector. Here only L components of the
matrices and vectors occuring in the parameter vector are allowed to be nonzero and the
positions where these nonzero parameters can occur are �xed. Denote the vector in RL
which contains all values of these possible nonzero parameters by θ. Then we can write

G = {g(·, θ) : Rd·l → R : θ ∈ RL}.

In the sequel we construct a partition PN+1 of RL such that for all S ∈ PN+1 we have
that

g(x1, θ), . . . , g(xm, θ)

(considered as functions of θ) are polynomials of degree at most 8N+1 for θ ∈ S.
In order to construct this partition we construct recursively partionions P0, . . . , PN

of RL such that for each r ∈ {1, . . . , N} and all S ∈ Pr all components in

zr

(considered as a function of θ) are polynomials of degree at most 8r in θ for θ ∈ S.
Since all components of z0 are constant as functions of θ this holds if we set P0 = {RL}.
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Let r ∈ {1, . . . , N} and assume that for all S ∈ Pr−1 all components in

zr−1

(considered as a function of θ) are polynomials of degree at most 8r−1 in θ for θ ∈ S.
Then all components in

qr−1,s,i, kr−1,s,i and vr−1,s,i

are on each set S ∈ Pr−1 polynomials of degree 8r−1+1. Consequently, for each S ∈ Pr−1

each value
< qr−1,s,i, kr−1,s,j >

is (considered as a function of θ) a polynomial of degree at most 2 · 8r−1 + 2 for θ ∈ S.
Application of Lemma 10 yields that

< qr−1,s,i, kr−1,s,j1 > − < qr−1,s,i, kr−1,s,j2 > (s ∈ {1, . . . , h}, i, j1, j2 ∈ {1, . . . , l})

has at most

∆ = 2 ·
(

2 · e · h · l3 · (2 · 8r−1 + 2)

L

)L
di�erence sign patterns. If we partiton in each set in Pr−1 according to these sign patterns
in ∆ subsets, then on each set in the new partition all components in

vr−1,s,ĵr−1,s,i
· < qr−1,s,i, kr−1,s,ĵr−1,s,i

>

are polynomials of degree at most 3·8r−1+3 (since on each such set< qr−1,s,i, kr−1,s,ĵr−1,s,i
>

is equal to one of the < qr−1,s,i, kr−1,s,j >). On each set within this partition every com-
ponent of the Rdff -valued vectors

Wr,1 · yr,s + br,1 (s = 1, . . . , h)

is (considered as a function of θ) a polynomial of degree at most 3 · 8r−1 + 4.
By another application of Lemma 10 we can re�ne each set in this partition into

2 ·
(

2 · e · h · dff · (3 · 8r−1 + 4)

L

)L
sets such that all components in

Wr,1 · yr,s + br,1 (42)

have the same sign patterns within the re�ned partition. We call this re�ned partion
Pr. Since on each set of Pr the sign of all components in (42) does not change we can
conclude that all components in

σ(Wr,1 · yr,s + br,1) (43)
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are either equal to zero or they are equal to a polynomial of degree at most 3 · 8r−1 + 4.
Consequently we have that on each set in Pr all components of

zr

are equal to a polynomial of degree at most 3 · 8r−1 + 5 ≤ 8r.
Using PN+1 = PN we have constructed a partition with

|PN+1| =
N∏
r=1

|Pr|
|Pr−1|

≤
N∏
r=1

2 ·
(

2 · e · h · l3 · 8r

L

)L
· 2 ·

(
2 · e · h · dff · 8r

L

)L
such that for each set in this partition for all (x, y) ∈ {(x1, y1), . . . , (xm, ym)}

g(x) = zN · w + b and h(x, y) = zN · w + b− y

(considered as a function of θ) are polynomials of degree at most 8N + 1 ≤ 8N+1 in θ for
θ ∈ S.
Using

|{(sgn(h(x1, y1)), . . . , sgn(h(xm, ym))) : h ∈ H}|
≤

∑
S∈PN+1

|{(sgn(g(x1, θ)− y1), . . . , sgn(g(xm, θ)− ym)) : θ ∈ S}|

we can apply one more time Lemma 10 to conclude

2m = |{(sgn(h(x1, y1)), . . . , sgn(h(xm, ym))) : h ∈ H}|

≤ |PN+1| · 2 ·
(

2 · e ·m · 8N+1

L

)L
≤ 2 ·

(
2 · e ·m · 8N+1

L

)L
·
N∏
r=1

2 ·
(

2 · e · h · l3 · 8r

L

)L
· 2 ·

(
2 · e · h · dff · 8r

L

)L
≤ 22·N+1 ·

(
m · 2 · e · (2N + 1) · h · (max{l, dff})3 · 8N+1

(2N + 1) · L

)(2N+1)·L

.

Assume m ≥ (2N + 1) ·L. Application of Lemma 11 with L = 2 ·N + 1, R = 2 · e · (2N +
1) · h · (max{l, dff})3 · 8N+1 ≥ 16 and w = (2N + 1) · L yields

m ≤ (2 ·N + 1) + (2 ·N + 1) ·L · log2(2 ·R · log2(R)) ≤ c18 ·L ·N2 · log(max{N,h, dff , l}),

which implies (41). �
Proof of Lemma 8. The functions in the function set F depend on at most

dc19 ·N · h2 · (max{dk, dff , d, l})3e

many parameters, and of these parameters at most L are allowed to be nonzero. We
have(

dc19 ·N · h2 · (max{dk, dff , d, l})3e
L

)
≤
(
dc19 ·N · h2 · (max{dk, dff , d, l})3e

)L
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many possibilities to choose these positions. If we �x these positions, we get one function
space G for which we can bound its VC dimension by Lemma 9. Using Lemma 9,
VTβG+ ≤ VG+ , Lemma 9.2 and Theorem 9.4 in Györ� et al. (2002) we get

N1 (ε, TβG,xn1 ) ≤ 3 ·
(

4e · β
ε
· log

6e · β
ε

)VTβG+

≤ 3 ·
(

6e · β
ε

)c20·L·N2·log(max{N,h,dff ,l})
.

From this we can conclude

sup
zn1 ∈(Rd·l)n)

logN (ε, TβF , zn1 )

≤ L · log
(
dc19 ·N · h2 · (max{dk, dff , d, l})3e

)
+c20 · L ·N2 · log(max{N,h, dff , l}) · log

(
β

ε

)
≤ c21 · L ·N2 · log(max{N,h, dff , dk, l}) · log

(
β

ε

)
.

�
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