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Abstract

Estimation of univariate regression function by a neural network with one hidden layer
is considered, where the weight vector is determined by applying gradient descent to a
regularized empirical L2 risk. Here the number of hidden neurons is chosen much larger
than the sample size. It is shown that the estimate nevertheless generalizes well in case
that the Fourier transform of the regression function decays suitably fast, and that in
this case over-parametrization leads to a particular good rate of convergence.
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1. Introduction

1.1. Scope of this article

In the last decade deep learning was successfully applied in many areas. Deep convolu-
tional networks have been applied in image classi�cation by Krizhevsky, Sutskever and
Hinton (2012), in language processing by Ni et al. (2021), in machine translation by
Wu et al. (2016), in medical diagnosis by Mondal et al. (2021), and in many other
areas. Despite impressive successes in applications there are very few theoretical studies
explaining reasons for strong performance of deep networks in practice. Recently, several
theoretical studies investigating deep neural networks appeared, see, e.g., Kohler and
Krzyzak (2017), Bauer and Kohler (2019), Schmidt-Hieber (2020), Kohler and Langer
(2021), Suzuki and Nitanda (2019) and Kohler and Krzy»ak (2021).
Backpropagation is the most common method for training neural networks in practice.

Braun et al. (2021) analyze the L2 error of neural network regression estimates with
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one hidden layer. They showed that in the class of regression functions having Fourier
transform decreasing suitably fast, a neural network estimate whose weights are initial-
ized randomly according to a proper uniform distributions and then are learned by the
gradient descent, achieves a rate of convergence of 1/

√
n (up to a logarithmic factor).

Kohler and Krzy»ak (2021) demonstrated that over-parametrized deep neural networks
with the sigmoidal squasher interpolating the data do not generalize well on a new data,
i. e., the networks which minimize the empirical risk do not achieve the optimal minimax
rate of convergence for estimation of smooth regression functions and for design points
having discrete distribution. In the present paper we show that over-parametrization of
one hidden layer neural network with properly regularized L2 risk trained by the gradient
descent achieves the rate of convergence n−2/3 in one dimensional case in the class of
regression functions having Fourier transform decreasing suitably fast. So in this case
over-parametrization leads to a better rate of convergence than in Braun et al. (2021).

1.2. Regression estimation

In this paper we study neural network regression estimates in connection with nonpara-
metric regression. To do this we consider an Rd×R�valued random vector (X,Y ), where
X is the so�called observation vector and Y is the so-called response. Assume the condi-
tion E{Y 2} < ∞. We are interested in the functional correlation between the response
Y and the observation vector X. In applications the distribution of (X,Y ) is unknown,
therefore we want to recover the functional correlation between X and Y using only a
sample of (X,Y ), i.e., a data set

Dn = {(X1, Y1), . . . , (Xn, Yn)} , (1)

where (X,Y ), (X1, Y1), . . . , (Xn, Yn) are i.i.d. We are searching for an estimate

mn(·) = mn(·,Dn) : Rd → R

of the so�called regression function m : Rd → R, m(x) = E{Y |X = x} such that the
so�called L2 error ∫

|mn(x)−m(x)|2PX(dx)

is �small� (cf., e.g., Györ� et al. (2002) for a systematic introduction to nonparametric
regression and motivation for the L2 error).

1.3. Neural networks

Neural networks try to mimic the human brain in order to de�ne classes of functions. The
starting point is a very simple model of a nerve cell, in which some kind of thresholding is
applied to a linear combination of the outputs of other nerve cells. This leads to functions
of the form

f(x) = σ

 d∑
j=1

wj · x(j) + w0

 (x = (x(1), . . . , x(d))T ∈ Rd),
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where we call w0, . . . , wd ∈ R weights of the neuron and where we call σ : R → R an
activation function. Traditionally, so�called squashing functions are chosen as activation
functions, which are nondecreasing and satisfy limx→−∞ σ(x) = 0 and limx→∞ σ(x) = 1.
An example of a squashing function is the sigmoidal or logistic squasher

σ(x) =
1

1 + exp(−x)
(x ∈ R). (2)

Recently, also unbounded activation functions have been used, e.g., the ReLU activation
function

σ(x) = max{x, 0}.

The simplest form of neural networks are shallow networks, i.e., neural networks with
one hidden layer, in which a simple linear combination of the above neurons is used to
de�ne a function f : Rd → R by

f(x) =

K∑
k=1

αk · σ

 d∑
j=1

βk,j · x(j) + βk,0

+ α0. (3)

Here K ∈ N is the number of hidden neurons, and the weights αk ∈ R (k = 0, . . . ,K),
βk,j ∈ R (k = 1, . . . ,K, j = 0, . . . , d) can be adapted to the data (1) in order to de�ne an
estimate of the regression function. This can be achieved by, for example, applying the
principle of least squares, i.e., by de�ning the regression estimate mn by

mn(·) = arg min
f∈F

1

n

n∑
i=1

|Yi − f(Xi)|2, (4)

where F is the set of all functions of the form (3) with a �xed number of neurons K and
�xed activation function σ.
The rate of convergence of the shallow neural networks regression estimates has been

analyzed in Barron (1994) and McCa�rey and Gallant (1994). Barron (1994) proved a
dimensionless rate of n−1/2 (up to some logarithmic factor), provided the Fourier trans-
form of the regression function has a �nite �rst moment, which basically requires that the
function becomes smoother with increasing dimension d of X. McCa�rey and Gallant

(1994) showed a rate of n
− 2p

2p+d+5
+ε

in case of a (p, C)-smooth regression function, but
their study was restricted to the use of a certain cosine squasher as activation function.
In deep learning neural networks with several hidden layers are used to de�ne classes of

functions. Here, the neurons are arranged in L ∈ N layers, where the ks ∈ N neurons in
layer s ∈ {2, . . . , L} get the output of the ks−1 neurons in layer s−1 as input, and where
the neurons in the �rst layer are applied to the d components of the input. We denote

the weight between neuron j in layer s − 1 and neuron i in layer s by w
(s)
i,j . This leads

to the following recursive de�nition of a neural network with L layers and ks neurons in
layer s ∈ {1, . . . , L}:

f(x) =

kL∑
i=1

w
(L)
1,i f

(L)
i (x) + w

(L)
1,0 (5)
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for some w
(L)
1,0 , . . . , w

(L)
1,kL
∈ R and for f

(L)
i 's recursively de�ned by

f
(s)
i (x) = σ

ks−1∑
j=1

w
(s−1)
i,j f

(s−1)
j (x) + w

(s−1)
i,0

 (6)

for some w
(s−1)
i,0 , . . . , w

(s−1)
i,ks−1

∈ R, s ∈ {2, . . . , L}, and

f
(1)
i (x) = σ

 d∑
j=1

w
(0)
i,j x

(j) + w
(0)
i,0

 (7)

for some w
(0)
i,0 , . . . , w

(0)
i,d ∈ R.

The rate of convergence of least squares estimates based on multilayer neural networks
has been analyzed in Kohler and Krzy»ak (2017), Imaizumi and Fukamizu (2018), Bauer
and Kohler (2019), Kohler, Krzy»ak and Langer (2019), Suzuki and Nitanda (2019),
Schmidt-Hieber (2020) and Kohler and Langer (2021). One of the main results achieved
in this context shows that neural networks can achieve some kind of dimension reduction,
provided the regression function is a composition of (sums of) functions, where each of
the function is a function of at most d∗ < d variables (see Kohler and Langer (2020) for
a motivation of such a function class). In Kohler and Krzy»ak (2017) it was shown that
in this case suitably de�ned least squares estimates based on multilayer neural networks
achieve the rate of convergence n−2p/(2p+d∗) (up to some logarithmic factor) for p ≤ 1.
This result also holds for p > 1 provided the squashing function is suitably smooth as
was shown in Bauer and Kohler (2019). Schmidt-Hieber (2020) showed the surprising
result that this is also true for neural networks which use the non-smooth ReLU activa-
tion function. In Kohler and Langer (2021) it was shown that such results also hold for
very simply constructed fully connected feedforward neural networks. Kohler, Krzy»ak
and Langer (2019) considered regression functions with a low local dimensionality and
demonstrated that neural networks are also able to circumvent the curse of dimension-
ality in this context. Results regarding the estimation of regression functions which are
piecewise polynomials having partitions with rather general smooth boundaries by neural
networks have been derived in Imaizumi and Fukamizu (2018). That neural networks
can also achieve a dimension reduction in Besov spaces was shown in Suzuki and Nitanda
(2019).

1.4. Gradient descent

In Subsection 1.3 the neural network regression estimates are de�ned as nonlinear least
squares estimates, i.e., as functions which minimize the empirical L2 risk over nonlinear
classes of neural networks. In practice, it is usually not possible to �nd the global
minimum of the empirical L2 risk over a nonlinear class of neural networks and we try
to �nd a local minimum using, for instance, the gradient descent algorithm (so-called
backpropagation).
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Denote by fnet,w the neural network de�ned by (5)�(7) with weight vector

w = (w
(s)
j,k)s=0,...,L,j=1,...,ks+1,k=0,...,ks

(where we have set k0 = d and kL+1 = 1), and set

F (w) =
1

n

n∑
i=1

|Yi − fnet,w(Xi)|2. (8)

In backpropagation gradient descent is used to minimize (8) with respect to w. Here, set

w(0) = v (9)

for some (usually randomly chosen) initial weight vector v and de�ne

w(t+ 1) = w(t)− λn · ∇wF (w(t)) (10)

for t = 0, 1, . . . , tn−1, where λn > 0 is the stepsize and tn ∈ N is the number of performed
gradient descent steps. The estimate is then de�ned by

mn(·) = fnet,w(tn)(·). (11)

1.5. Main results

We study the rate of convergence of the univariate neural network regression estimate
with one hidden layer where the weights of the network are determined by the gradient
descent of a regularized empirical L2 risk. The number of neurons is chosen much larger
than the sample size. We assume that the Fourier transform

F̂ : R→ C, F̂ (ω) =
1

(2π)1/2
·
∫
R
e−i·ω·x ·m(x) dx

of the regression function satis�es

|F̂ (ω)| ≤ c1

|ω|2 · (log |ω|)2
for all ω ∈ R with |ω| ≥ 2

for some c1 > 0. We show that the neural network estimate with the logistic squasher
activation function generalizes well regardless of the number of hidden neurons (as long as
this number is bounded by some polynomial in the sample size), if the initial weights of the
neural network are chosen from some uniform distribution, if a suitable penalty is added
to the empirical L2 risk during backpropagation and if a suitable number of gradient
descent steps is performed. In particular, we show that any value of the number of hidden
neurons larger than n2/3 leads under the above assumptions to the rate of convergence
n−2/3 (up to some logarithmic factor), which improves the rate of convergence achieved
in Braun et al. (2021) in case Kn ≈

√
n.
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1.6. Discussion of related results

Study of deep learning has been very active �eld of research in recent years, see Berner
et al. (2021) for a recent survey of progress in mathematics of deep learning. A large
number of results were recently obtained for neural network regression estimates learned
by the gradient descent. Braun et al. (2021) showed rate of convergence 1/

√
n (up to a

logarithmic factor) for regression functions that have Fourier transforms with polynomi-
ally decreasing tails (an assumption slightly stronger than the �nite �rst moment of the
Fourier transform assumption of Barron (1993)).
Many recent papers tried to demonstrate theoretically that backpropagation learning

works for deep neural networks. The most popular approach which emerged in this
context is so�called landscape approach. Choromanska et al. (2015) used random matrix
theory to derive a heuristic argument showing that the risk of most of the local minima of
the empirical L2 risk Fn(w) is not much larger than the risk of the global minimum. This
claim was validated for neural networks with special activation function by, e.g., Arora
et al. (2018), Kawaguchi (2016), and Du and Lee (2018), which have analyzed gradient
descent for neural networks with a linear or quadratic activation function. No good
approximation results exist for such neural networks, and consequently one cannot deduce
from these results good rates of convergence for neural network regression estimates. Du
et al. (2018) analyzed gradient descent learning for neural networks with one hidden layer
and Gaussian inputs. As they used the expected gradient instead of the gradient in their
gradient descent routine, one cannot apply their results to derive the rate of convergence
for neural network regression estimates learned by the gradient descent. Liang et al.
(2018) applied gradient descent to a modi�ed loss function in classi�cation, where it is
assumed that the data can be interpolated by a neural network. Neural tangent kernel
networks (NTK) were introduced by Jacot, Gabriel and Honger (2020). They showed
that in the in�nite-width limit case NTK converges to a deterministic limit kernel which
stays constant during Gaussian descent training of the random weights initialized with
the Gaussian distributions. These results were extended by Huang, Du and Xu (2020) to
orthogonal initialization which was shown to speed up training of fully connected deep
networks. Nitanda and Suzuki (2017) obtained global convergence rate for the averaged
stochastic gradient descent for over-parametrized shallow neural networks.
Recently it was shown in several papers, see, e.g., Allen-Zhu, Li and Song (2019),

Kawaguchi and Huang (2019) and the literature cited therein, that the gradient descent
leads to a small empirical L2 risk in over-parametrized neural networks. Here the results
in Allen-Zhu, Li and Song (2019) are proven for the ReLU activation function and neural
networks with a polynomial size in the sample size. The neural networks in Kawaguchi
and Huang (2019) use squashing activation functions and are much smaller (in fact,
they require only a linear size in the sample size). In contrast to Allen-Zhu, Li and
Song (2019) there the learning rate is set to zero for all neurons except for neurons in
the output layer and consequently in di�erent layers of the network di�erent learning
rates are used. Actually, they compute a linear least squares estimate with the gradient
descent, which is not used in practice. It was shown in Kohler and Krzy»ak (2021) that
any estimate which interpolates the training data does not generalize well in a sense
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that it can, in general, not achieve the optimal minimax rate of convergence in case of a
general design measure.
In recent survey paper Bartlett et al. (2021) conjectured that over-parametrization

allows gradient descent to �nd interpolating solutions which implicitly impose regular-
ization, and that over-parametrization leads to benign over�ting. For related results
involving the truncated Hilbert kernel regression estimate refer to Belkin et al. (2019)
and to Wyner et al. (2017) for the results involving AdaBoost and random forests. Lin-
ear regression in over�tting regime has been also considered in Bartlett et al. (2020).
Benign over-parametrization in shallow ReLU networks has been analyzed by Wang and
Lin (2021). They showed L2 error rate of

√
log n/n for over-parametrized neural network

when the number of hidden neurons exceeds the number of samples. In the present paper
we show that over-parametrization in learning the regularized L2 risk by the gradient
descent leads to excellent generalization.

1.7. Notation

Throughout the paper, the following notation is used: The sets of natural numbers, nat-
ural numbers including 0, real numbers, nonegative real numbers and complex numbers
are denoted by N, N0, R, R+ and C, respectively. For z ∈ R, we denote the small-
est integer greater than or equal to z by dze and the largest integer smaller or equal
to z by bzc. Let D ⊆ Rd and let f : Rd → R be a real-valued function de�ned on
Rd. We write x = arg minz∈D f(z) if minz∈D f(z) exists and if x satis�es x ∈ D and
f(x) = minz∈D f(z). The Euclidean norm of x ∈ Rd is denoted by ‖x‖. For f : Rd → R

‖f‖∞ = sup
x∈Rd

|f(x)|

is its supremum norm. Furthermore we set

‖f‖∞,A = sup
x∈A
|f(x)|

for A ⊆ Rd. Sr denotes the ball with radius r in Rd and center 0 (with respect to the
Euclidean norm). Let F be a set of functions f : Rd → R, let x1, . . . , xn ∈ Rd, set
xn1 = (x1, . . . , xn) and let p ≥ 1. A �nite collection f1, . . . , fN : Rd → R is called an Lp
ε�cover of F on xn1 if for any f ∈ F there exists i ∈ {1, . . . , N} such that(

1

n

n∑
k=1

|f(xk)− fi(xk)|p
)1/p

< ε.

The Lp ε�covering number of F on xn1 is the size N of the smallest Lp ε�cover of F on
xn1 and is denoted by Np(ε,F , xn1 ).
For z ∈ R and β > 0 we de�ne Tβz = max{−β,min{β, z}}. If f : Rd → R is a function

and F is a set of such functions, then we set (Tβf)(x) = Tβ (f(x)) and

TβF = {Tβf : f ∈ F}.
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1.8. Outline

In Section 2 we de�ne our estimate. In Section 3 we present our main result concerning
the rate of convergence of a neural network estimate with one hidden layer learned by
gradient descent. The proof of the main result is given in Section 4. In the appendix
we present the proof of an auxiliary result from empirical process theory applied in the
proof of our main result.

2. An over-parametrized neural network regression estimator

We consider neural networks with one hidden layer de�ned by

fnet,w(x) = w
(1)
1,0 +

Kn∑
j=1

w
(1)
1,j · σ(

d∑
k=1

w
(0)
j,k · x

(k) + w
(0)
j,0 ) = α0 +

Kn∑
j=1

αj · σ(βTj · x+ γj) (12)

where Kn ∈ N is the number of hidden neurons,

αi ∈ R (i = 0, . . . ,Kn), βi = (βi,1, . . . , βi,d)
T ∈ Rd (i = 1, . . . ,Kn),

γi ∈ R (i = 1, . . . ,Kn)

and
w = (w

(l)
j,k)j,k,l = (α, β, γ) = (α0, α1, . . . , αKn , β1, . . . , βKn , γ1, . . . , γKn)

is the vector of the 1 + Kn · (d + 2) many weights of the neural network fnet,w. In the
sequel we use the logistic squasher

σ(x) = 1/(1 + e−x) (13)

as the activation function.
We will learn the weight vector w by applying gradient descent to the regularized

empirical L2 risk

Fn(w) =
1

n

n∑
i=1

|fnet,w(Xi)− Yi|2 + c2 ·

(
α2

0

n2/3
+

Kn

n2/3
·
Kn∑
k=1

α2
k

)
. (14)

To do this, we initialize w(0) randomly (independent from Dn) as follows: We set

Bn = 12 · n ·Kn

and choose βk uniformly distributed on {x ∈ Rd : ‖x‖ = Bn} and γk uniformly dis-
tributed on [−Bn, Bn] such that β1, . . . , βKn , γ1, . . . , γKn are independent, we choose
αk = 0 (k = 0, . . . ,Kn) and then we set

w(0) = (α0, . . . , αKn , β1, . . . , βKn , γ0, . . . , γKn).

Next we compute
w(t+ 1) = w(t)− λn · ∇wFn(w(t)) (15)
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for t = 0, 1, . . . , tn − 1. Here tn ∈ N is the number of gradient descent steps which we
perform.
Our estimate is then de�ned by

m̃n(x) = fnet,w(tn)(x) (16)

and
mn(x) = Tβnm̃n(x), (17)

where Tβz = max{min{z, β},−β} is a truncation operator and βn = c3 · log n.

3. Main results

Theorem 1 Assume d = 1. Let (X,Y ) be an [0, 1]×R�valued random vector such that

E
{
ec4·Y

2
}
<∞ (18)

holds for some constant c4 > 0 and assume that the corresponding regression function

m(x) = E{Y |X = x} is bounded, satis�es∫
R
|m(x)| dx <∞,

and that its Fourier transform F̂ satis�es

|F̂ (ω)| ≤ c1

|ω|2 · (log |ω|)2
for all ω ∈ R with |ω| ≥ 2 (19)

for some c1 > 0. Choose c5 > 0, let c6 > 0 be su�ciently large, and set

Kn = nc5 , Ln = c6 · (log n)5 · n2/3 ·Kn, λn =
1

Ln
, Bn = 12 · n ·Kn

and

tn = d(log n)2 · n2/3 · Lne,

let σ be the logistic squasher and de�ne the estimate as in Section 2. Then one has for

n su�ciently large

E

∫
|mn(x)−m(x)|2PX(dx) ≤ c7 · (log n)8 · n−min{c5, 23}.

Remark 1. In Theorem 1 the number of parameters of the network can be arbitrarily
large, as long as it is bounded by a polynomial in the sample size n. In particular, it
may be much larger than the sample size n, and nevertheless the estimate generalizes well.

Remark 2. In Braun et al. (2021) neural network estimates with one hidden layer
learned by gradient descent have been analyzed and the generalization error was bounded
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using the classical Vapnik-Chervonenkis theory. There the optimal rate of convergence
of (up to some logarithmic factor) n−1/2 was shown and this rate has occurred for Kn of
order

√
n. In contrast, Theorem 1 above shows that in case of a proper regularization of

the empirical L2 risk any value of Kn = nc5 with c5 > 1/2 leads (up to some logarithmic
factor) to the better rate of convergence of n−min{2/3,c5}. In particular, as soon as we
choose Kn larger than n

2/3 we get (up to some logarithmic factor) the rate of convergence
n−2/3. So in our theoretical setting the over-parametrization improves up to some point
the rate of convergence, and from this point on any further over-parametrization achieves
this better rate (as soon as it is not too large, i.e., as long as the number Kn of hidden
neurons is a polynomial in the sample size n).

4. Proofs

4.1. Auxiliary results concerning the estimation error

Lemma 1 Let F : RK → R+ be a nonnegative di�erentiable function. Let t ∈ N, L > 0,
a0 ∈ RK and set

λ =
1

L

and

ak+1 = ak − λ · (∇aF )(ak) (k ∈ {0, 1, . . . , t− 1}).

Assume

‖(∇aF )(a)‖ ≤
√

2 · t · L ·max{F (a0), 1} (20)

for all a ∈ RK with ‖a− a0‖ ≤
√

2 · t ·max{F (a0), 1}/L, and

‖(∇aF )(a)− (∇aF )(b)‖ ≤ L · ‖a− b‖ (21)

for all a,b ∈ RK satisfying

‖a− a0‖ ≤
√

8 · t
L
·max{F (a0), 1} and ‖b− a0‖ ≤

√
8 · t

L
·max{F (a0), 1}. (22)

Then we have

‖ak − a0‖ ≤
√

2 · k
L
· (F (a0)− F (ak)) for all k ∈ {1, . . . , t},

s−1∑
k=0

‖ak+1 − ak‖2 ≤
2

L
· (F (a0)− F (as)) for all s ∈ {1, . . . , t}

and

F (ak) ≤ F (ak−1) for all k ∈ {1, . . . , t}.

Proof. See Lemma 2 in Braun et al. (2021). �
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Lemma 2 Assume supp(X) ⊆ [0, 1]d, γ∗n ≥ 1, 2 · tn ≥ Ln, c2
2 ≤ n4/3/16 and

|w(1)
1,k| ≤ γ

∗
n (k = 1, . . . ,Kn) and ‖w − v‖2 ≤ 2tn

Ln
·max{Fn(v), 1}. (23)

Then we have with probability one

‖(∇wFn)(w)‖ ≤ 26 · d · (γ∗n)2 ·K3/2
n ·

√
tn
Ln
·max{Fn(v), 1}.

Proof. Using (a+ b)2 ≤ 2 · a2 + 2 · b2 (a, b ∈ R) we get

‖(∇wFn)(w)‖2

=
∑
j,k,l

(
2

n

n∑
i=1

(Yi − fnet,w(Xi)) ·
∂

∂w
(l)
j,k

fnet,w(Xi)

+
∂

∂w
(l)
j,k

(
c2

n2/3
· (w(1)

1,0)2 +
c2 ·Kn

n2/3
·
Kn∑
l=1

(w
(1)
1,l )

2

))2

≤
∑
j,k,l

8

n

n∑
i=1

(Yi − fnet,w(Xi))
2 · 1

n

n∑
i=1

 ∂

∂w
(l)
j,k

fnet,w(Xi)

2

+
8 · c2

2 ·K2
n

n4/3
·
Kn∑
k=0

(w
(1)
1,k)

2.

From this we get the assertion as in the proof of Lemma 5 in Braun et al. (2021). �

Lemma 3 Assume supp(X) ⊆ [0, 1]d, γ∗n ≥ 1, tn ≥ Ln and

max
{
|(w2)

(1)
1,k|, |v

(1)
1,k|
}
≤ γ∗n (k = 1, . . . ,Kn) and ‖w2−v‖2 ≤ 8 · tn

Ln
·max{F (v), 1}.

(24)
Then we have with probability one

‖(∇wFn)(w1)− (∇wFn)(w2)‖

≤ 131 · d3/2 ·max{
√
Fn(v), 1} ·max{1, c2} · (γ∗n)2 ·Kn ·

√
tn
Ln
· ‖w1 −w2‖.

Proof. We have

‖(∇wFn)(w1)− (∇wFn(w2)‖2

=
∑
j,k,l

(
2

n

n∑
i=1

(Yi − fnet,w1(Xi)) ·
∂

∂w
(l)
j,k

fnet,w1(Xi)

+
∂

∂w
(l)
j,k

(
c2

n2/3
· ((w1)

(1)
1,0)2 +

c2 ·Kn

n2/3
·
Kn∑
l=1

((w1)
(1)
1,l )

2

)

− 2

n

n∑
i=1

(Yi − fnet,w2(Xi)) ·
∂

∂w
(l)
j,k

fnet,w2(Xi)

11



− ∂

∂w
(l)
j,k

(
c2

n2/3
· ((w2)

(1)
1,0)2 +

c2 ·Kn

n2/3
·
Kn∑
l=1

((w2)
(1)
1,l )

2

))2

≤ 4 ·
∑
j,k,l

(
2

n

n∑
i=1

(Yi − fnet,w1(Xi)) ·
∂

∂w
(l)
j,k

fnet,w1(Xi)

− 2

n

n∑
i=1

(Yi − fnet,w2(Xi)) ·
∂

∂w
(l)
j,k

fnet,w1(Xi)

)2

+4 ·
∑
j,k,l

(
2

n

n∑
i=1

(Yi − fnet,w2(Xi)) ·
∂

∂w
(l)
j,k

fnet,w1(Xi)

− 2

n

n∑
i=1

(Yi − fnet,w2(Xi)) ·
∂

∂w
(l)
j,k

fnet,w2(Xi)

)2

+8 · c
2
2 ·K2

n

n4/3
·
Kn∑
k=0

|(w1)
(1)
1,k − (w2)

(1)
1,k|

2.

From this we get the assertion as in the proof of Lemma 6 in Braun et al. (2021). �

Lemma 4 Let βn = c3 · log(n) for some suitably large constant c3 > 0. Assume that

the distribution of (X,Y ) satis�es (18) for some constant c4 > 0 and that the regression

function m is bounded in absolute value. Let An be an arbitrary event. Let Fn be a set

of functions f : Rd → R and assume that on the event An the estimate mn satis�es

mn = Tβnm̃n

for some m̃n which satis�es

m̃n(·) = m̃n(·, (X1, Y1), . . . , (Xn, Yn)) ∈ Fn.

Let δn > c8 · (log n)2/n be such that we have for any δ > δn/(8 · β2
n)

c9 ·
√
n · δ
βn

≥
∫ √δ
c10·δ

(logN2(u · βn, TβnFn, xn1 ))1/2 du.

Then mn satis�es

E

((∫
|mn(x)−m(x)|2PX(dx)

−2 ·
(

1

n

n∑
i=1

|m̃n(Xi)− Yi|2 · 1{|Yj |≤βn (j∈{1,...,n})} −
1

n

n∑
i=1

|m(Xi)− Yi|2
))
· 1An

)

≤ c11 ·
(
δn +

(log n)2

n

)
for n > 1 and some constant c46 > 0, which does not depend on n or βn.
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Proof. This lemma follows in a straightforward way from the proof of Theorem 1 in
Bagirov, Clausen and Kohler (2009). A complete proof is given in the appendix. �

Lemma 5 Let p ≥ 1, L, V > 0, K ∈ N, let σ : R → [0, 1] be a continuous squashing

function, and let F be the set of all functions

f : R→ R, f(x) = c0 +

K∑
k=1

ck · σ(ak · x+ bk)

where

a1, . . . , aK , b1, . . . bK , c0, c1, . . . , cK ∈ R with

K∑
k=1

|ck| ≤ V

are arbitrary. Then we have for any 0 < δ < 2 · L and xn1 ∈ [0, 1]n

Np (3 · δ, TLF , xn1 ) ≤
((

n+
V

δ
+ 1

)
· 2 · L

δ

)V
δ

+2

.

Proof. Let

f(x) = c0 +

K∑
k=1

ck · σ(ak · x+ bk).

Then we can rewrite f as

f(x) = c0 +
∑

k=1,...,K:ak=0

ck · σ(bk) +
∑

k=1,...,K:ak 6=0

ck · σ(ak · x+ bk),

hence we can assume without loss of generality that in the de�nition of F all ak are
nonzero.
Choose uj ∈ R (j = 1, . . . , J = dV/δe − 1) such that

σ(uj) = j · δ
V

(j = 1, . . . , J).

Then u1 < u2 < · · · < uJ holds and for k ∈ {1, . . . , J − 1} and x ∈ (uk, uk+1] we have

k · δ
V
≤ σ(x) ≤ (k + 1) · δ

V
, k · δ

V
≤

J∑
j=1

δ

V
· 1[uj ,∞)(x) ≤ (k + 1) · δ

V

and

k · δ
V
≤

J∑
j=1

δ

V
· 1(uj ,∞)(x) ≤ (k + 1) · δ

V
.

From this we can conclude

sup
x∈R

∣∣∣∣∣∣σ(x)−
J∑
j=1

δ

V
· 1[uj ,∞)(x)

∣∣∣∣∣∣ ≤ δ

V

13



and

sup
x∈R

∣∣∣∣∣∣σ(x)−
J∑
j=1

δ

V
· 1(uj ,∞)(x)

∣∣∣∣∣∣ ≤ δ

V
.

This implies∣∣∣∣∣c0 +
K∑
k=1

ck · σ(ak · x+ bk)− c0 −
K∑
k=1

ck ·
(

1{ak>0} ·
J∑
j=1

δ

V
· 1[uj ,∞)(ak · x+ bk)

+1{ak<0} ·
J∑
j=1

δ

V
· 1(uj ,∞)(ak · x+ bk)

)∣∣∣∣∣
≤

K∑
k=1

|ck| · 1{ak>0} ·

∣∣∣∣∣∣σ(ak · x+ bk)−
J∑
j=1

δ

V
· 1[uj ,∞)(ak · x+ bk)

∣∣∣∣∣∣
+

K∑
k=1

|ck| · 1{ak<0} ·

∣∣∣∣∣∣σ(ak · x+ bk)−
J∑
j=1

δ

V
· 1(uj ,∞)(ak · x+ bk)

∣∣∣∣∣∣
≤

K∑
k=1

|ck| ·
δ

V
≤ δ.

In case ak > 0 we have

1[uj ,∞)(ak · x+ bk) = 1[uj−bk,∞)(ak · x) = 1[(uj−bk)/ak,∞)(x),

and in case ak < 0 we have

1(uj ,∞)(ak · x+ bk) = 1(uj−bk,∞)(ak · x) = 1(−∞,(uj−bk)/ak)(x) = 1− 1[(uj−bk)/ak,∞)(x).

Using this together with

J∑
j=1

∣∣∣∣ck · δV
∣∣∣∣ = |ck| · J ·

δ

V
≤ |ck|

we can rewrite

c0 +
K∑
k=1

ck ·
(

1{ak>0} ·
J∑
j=1

δ

V
· 1[uj ,∞)(ak · x+ bk) + 1{ak<0} ·

J∑
j=1

δ

V
· 1(uj ,∞)(ak · x+ bk)

)
on [0, 1] as

g(x) = c̄0 +

K̄∑
k=1

c̄k · 1[āk,∞)(x)

where K̄ = K · J , 0 ≤ ā1 < ā2 < · · · < āK̄ ≤ 1 and where c̄0, . . . , c̄K̄ ∈ R satisfy

K̄∑
k=1

|c̄k| ≤ V.

14



Let G be the set of all functions g of the above form. Then we have shown that for any
f ∈ F there exists g ∈ G such that

sup
x∈[0,1]

|f(x)− g(x)| ≤ δ.

Hence it su�ces to show that we have for any 0 < δ < 2 · L and xn1 ∈ [0, 1]n

Np (2 · δ, TLG, xn1 ) ≤
((

n+
V

δ
+ 1

)
· 2 · L

δ

)V
δ

+2

,

which we will show next.
Let g ∈ F be arbitrary, i.e., assume that g : [0, 1]→ R is given by

g(x) = c̄0 +
K̄∑
k=1

c̄k · 1[āk,∞)(x)

where
0 ≤ ā1 < ā2 < · · · < āK̄ ≤ 1

and

c̄0, . . . , c̄K̄ ∈ R with
K̄∑
k=1

|c̄k| ≤ V.

Choose N ∈ N and t1, . . . , tN+1 ∈ R with

t1 = 0 < t1 < · · · < tN ≤ 1 ≤ tN+1

such that
|g(ti+1−)− g(ti)| < δ (i = 1, . . . , N) (25)

and
|g(ti+1)− g(ti)| ≥ δ (i = 1, . . . , N − 1)

hold. Then we have

N−1∑
i=1

|g(ti+1)− g(ti)| ≤
K̄∑
k=1

|c̄k| ≤ V,

which implies

(N − 1) · δ ≤
N−1∑
i=1

|g(ti+1)− g(ti)| ≤ V

and

N ≤ V

δ
+ 1.

15



Let GN be the set of all piecewise constant functions g : [0, 1] → R which are piecewise
constant with respect to a partition of [0, 1] into N + 1 intervals. By (25) we know

inf
ḡ∈GN

‖g − ḡ‖∞,[0,1] < δ.

Together with Lemma 13.1 and Example 13.1 in Györ� et al. (2002) this implies

Np(2 · δ, TLG, xn1 ) ≤ Np(δ, TLGN , xn1 )

≤
(
n+N + 1− 1

n

)
·
(

2 · L
δ

)N+1

≤ (n+N)N ·
(

2 · L
δ

)N+1

=

((
n+

V

δ
+ 1

)
· 2 · L

δ

)V
δ

+2

.

�

4.2. Auxiliary results concerning the approximation error

Lemma 6 Let r ≥ 1 and K̃n ∈ N with

K̃n · exp

(
−(log n)2

c12 · r

)
≤ 1

4
,

and set Kn = 8 · (dlog ne)3 · K̃n. Let m : Rd → R be a function with∫
Rd
|m(x)| dx <∞, (26)

and assume that the Fourier transform F̂ of m satis�es∫
Rd
‖ω‖ · sup

ω̃∈Rd : ‖ω̃‖=‖ω‖
|F̂ (ω̃)| dω <∞. (27)

Let (X,Y ), (X1, Y1), . . . , (Xn, Yn) be Rd×R�valued random variables with supp(PX) ⊆
Sr, and let W1, . . . , WKn, T1, . . . , TKn be independent random variables, independent

from (X,Y ), (X1, Y1), . . . , (Xn, Yn), such that W1, . . . , WKn are uniformly distributed

on {x ∈ Rd : ‖x‖ = 1} and T1, . . . , TKn are uniformly distributed on [−r, r]. Then for

n su�ciently large there exist (random)

α0 ∈ [−c13, c13] and α1, . . . , αKn ∈
[
− c13

K̃n

,
c13

K̃n

]
,

which are independent of (X,Y ), (X1, Y1), . . . , (Xn, Yn), such that outside of an event

with probability less than or equal to
1

n
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one has ∫
Sr

∣∣∣∣∣m(x)− α0 −
Kn∑
k=1

αk · 1[0,∞)

(
W T
k · x+ Tk

)∣∣∣∣∣
2

PX(dx) ≤ c14

K̃n

(28)

and

min
i=1,...,n,k=1,...,Kn:

αk 6=0

|W T
k Xi + Tk| ≥ δn, (29)

where

δn =
r

16 · n · K̃n · (dlog ne)2
.

Proof. The proof is an modi�cation of the proof of Lemma 1 in Braun et al. (2021).
The assertion depends only on the joint distribution of

(X,Y ), (X1, Y1), . . . , (Xn, Yn), (T1,W1), . . . , (TKn ,WKn).

In the sequel we construct (T1,W1), . . . , (TKn ,WKn) in a special way such that this joint
distribution remains �xed and that the assertion holds.
To do this, de�ne g : R× Rd → R by

g(t, ω) =
1

2 · r
· 1[−r,r](t) · c15 · ‖ω‖ · sup

ω̃∈Rd : ‖ω̃‖=‖ω‖
|F̂ (ω̃)|

where c15 > 0 is chosen such that g is a density, i.e., we have

c15 =
1∫

Rd ‖ω‖ · supω̃∈Rd : ‖ω̃‖=‖ω‖ |F̂ (ω̃)| dω
.

Set K̄n = 8 · dlog ne · K̃n. Let A1,1 = (T1,1,W1,1), A1,2 = (T1,2,W1,2), . . . , A2,1 =
(T2,1,W2,1), A2,2 = (T2,2,W2,2), . . . , AK̄n,1 = (TK̄n,1,WK̄n,1), AK̄n,2 = (TK̄n,2,WK̄n,2),
. . . , be independent and identically distributed random variables with density g, which
are independent from (X,Y ), (X1, Y1), . . . , (Xn, Yn), and let U1,1, U2,1, . . . , UK̄n,1, U1,2,
U2,2, . . . , UK̄n,2, . . . be independent uniformly on [0, 1] distributed random variables,
which are independent of all other random variables.
Since g is a product of the density of an uniform distribution on [−r, r] and a radially

symmetric density on Rd, we can assume without loss of generality that (T1,W1), . . . ,
(TKn ,WKn) are in fact given by

((−1) · T1,1,
W1,1

‖W1,1‖
), . . . , ((−1) · T1,(dlogne)2 ,

W1,(dlogne)2

‖W1,(dlogne)2‖
), . . . ,

((−1) · TK̄n,1,
WK̄n,1

‖WK̄n,1‖
), . . . , ((−1) · TK̄n,(dlogne)2 ,

WK̄n,(dlogne)2

‖WK̄n,Cn‖
),

hence it su�ces to show that there exist (random)

α0 ∈ [−c13, c13] and α1,1, . . . , α1,(dlogne)2 , . . . , αK̄n,1, . . . αK̄n,(dlogne)2 ∈
[
− c13

K̃n

,
c13

K̃n

]
,
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which are independent of (X,Y ), (X1, Y1), . . . , (Xn, Yn), such that outside of an event
with probability less than or equal to 1/n we have

∫
Sr

∣∣∣∣∣∣m(x)− α0 −
K̄n∑
k=1

(dlogne)2∑
j=1

αk,j · 1[0,∞)

(
W T
k,j

‖Wk,j‖
· x− Tk,j

)∣∣∣∣∣∣
2

PX(dx) ≤ c14

K̃n

(30)

and

min
i=1,...,n,k=1,...,K̄n,j=1,...,(dlogne)2:

αk,j 6=0

|
W T
k,j

‖Wk,j‖
·Xi − Tk,j | ≥ δn. (31)

De�ne
h(t, ω) = sin(‖ω‖ · t+ θ(ω)) · ‖ω‖ · |F̂ (ω)|,

where θ(ω) ∈ [0, 2π),
F̂ (ω) = ei·θ(ω) · |F̂ (ω)|,

and

f(t, ω) =

{
c16 · |h(t, ω)| if ((t, ω) ∈ [−r, r]× Rd,
0 if ((t, ω) ∈ (R \ [−r, r])× Rd,

where

c16 =
1∫

[−r,r]×Rd |h(t, ω)|d(t, ω)
.

Then f is a density on R× Rd and

0 <
1

2 · r ·
∫
Rd ‖ω‖ · |F̂ (ω)| dω

≤ c16

=
1∫

[−r,r]×Rd | sin(‖ω‖ · t+ θ(ω))| · ‖ω‖ · |F̂ (ω)|d(t, ω)
<∞.

By the de�nitions of f and g we know

f(t, ω) ≤ 2·r· 1

2 · r
·1[−r,r](t)·c16·‖ω‖· sup

ω̃∈Rd : ‖ω̃‖=‖ω‖
|F̂ (ω̃)| = c17·g(t, ω) ((t, ω) ∈ R×Rd),

(32)
where

c17 = 2 · r · c16

c15
.

From the properties of the Fourier transform and the fact thatm is real�valued, it follows
that

m(x)−m(0)

= Re
1

(2π)d/2

∫
Rd

(
eiω

T x − eiωT 0
)
· F̂ (ω) dω

= Re
1

(2π)d/2

∫
Rd

(
eiω

T x − 1
)
· ei·θ(ω) · |F̂ (ω)| dω

18



= Re
1

(2π)d/2

∫
Rd

(
ei(ω

T x+θ(ω)) − ei·θ(ω)
)
· |F̂ (ω)| dω

=
1

(2π)d/2

∫
Rd

(
cos(ωTx+ θ(ω))− cos(θ(ω))

)
· |F̂ (ω)| dω

=
1

(2π)d/2

∫
Rd

(
cos
(
‖ω‖ · ωT x‖ω‖ + θ(ω)

)
− cos(θ(ω))

)
‖ω‖

· ‖ω‖ · |F̂ (ω)| dω

=
1

(2π)d/2

∫
Rd

∫ 0

ωT x
‖ω‖

sin (‖ω‖ · t+ θ(ω)) dt · ‖ω‖ · |F̂ (ω)| dω.

Assume ‖x‖ ≤ r, which implies

|ω
Tx

‖ω‖
| ≤ ‖ω‖ · ‖x‖

‖ω‖
≤ r.

By considering the cases ωT x
‖ω‖ ≥ 0 and ωT x

‖ω‖ < 0 separately, we get∫ 0

ωT x
‖ω‖

sin (‖ω‖ · t+ θ(ω)) dt

= −
∫ r

0
1[0,∞)

(
ωTx

‖ω‖
− t
)
· sin (‖ω‖ · t+ θ(ω)) dt

+

∫ 0

−r
1(0,∞)

(
t− ωTx

‖ω‖

)
· sin (‖ω‖ · t+ θ(ω)) dt

= −
∫ r

0
1[0,∞)

(
ωTx

‖ω‖
− t
)
· sin (‖ω‖ · t+ θ(ω)) dt

+

∫ 0

−r

(
1− 1[0,∞)

(
ωTx

‖ω‖
− t
))
· sin (‖ω‖ · t+ θ(ω)) dt

=

∫ 0

−r
sin (‖ω‖ · t+ θ(ω)) dt

−
∫ r

−r
1[0,∞)

(
ωTx

‖ω‖
− t
)
· sin (‖ω‖ · t+ θ(ω)) dt.

Consequently we get for any x ∈ Rd, ‖x‖ ≤ r

m(x) = m(0) +
1

(2π)d/2

∫
Rd

∫ 0

ωT x
‖ω‖

sin (‖ω‖ · t+ θ(ω)) dt · ‖ω‖ · |F̂ (ω)| dω

= m(0) +
1

(2π)d/2

∫
Rd

∫ 0

−r
sin (‖ω‖ · t+ θ(ω)) dt · ‖ω‖ · |F̂ (ω)| dω

− 1

(2π)d/2

∫
Rd

∫ r

−r
1[0,∞)

(
ωTx

‖ω‖
− t
)
· sin (‖ω‖ · t+ θ(ω)) dt · ‖ω‖ · |F̂ (ω)| dω

= c18 −
1

(2π)d/2
·
∫

[−r,r]×Rd
1[0,∞)

(
ωTx

‖ω‖
− t
)
· h(t, ω) d(t, ω)
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= c18 −
1

(2π)d/2
· 1

c16
·
∫

[−r,r]×Rd
1[0,∞)

(
ωTx

‖ω‖
− t
)
· sgn(h(t, ω)) · f(t, ω) d(t, ω).

Here c18 is a constant which is bounded independent of r since

|
∫
Rd

∫ 0

−r
sin (‖ω‖ · t+ θ(ω)) dt · ‖ω‖ · |F̂ (ω)| dω|

= |
∫
Rd

((−1) · cos (‖ω‖ · 0 + θ(ω)) + cos (‖ω‖ · r + θ(ω))) · |F̂ (ω)| dω|

≤ 2 ·
∫
Rd
|F̂ (ω)| dω <∞

(where the last inequality followed from (26)).
For k ∈ {1, . . . , K̄n} let jk ∈ N be the minimal j ∈ N which satis�es

Uk,j ≤
f(Ak,j)

c17 · g(Ak,j)
.

For any i ∈ N we have

P

{
Uk,i ≤

f(Ak,i)

c17 · g(Ak,i)

}
= E

{
P

{
Uk,i ≤

f(Ak,i)

c17 · g(Ak,i)

∣∣Ak,i}} = E

{
f(Ak,i)

c17 · g(Ak,i)

}
=

∫
R×Rd

f(z)

c17 · g(z)
· g(z) dz =

∫
R×Rd

f(z) dz · 1

c17
=

1

c17
,

hence

P

{
∃i ∈ N : Uk,i ≤

f(Ak,i)

c17 · g(Ak,i)

}
=
∞∑
i=1

(
1− 1

c17

)i−1

· 1

c17
= 1.

Consequently jk ∈ N exists with probability one.
Furthermore we have for any measurable B ⊆ R× Rd

P{Ak,jk ∈ B} =
∞∑
i=1

P{jk = i, Ak,i ∈ B}

=
∞∑
i=1

(
1− 1

c17

)i−1

·P
{
Uk,i ≤

f(Ak,i)

c17 · g(Ak,i)
, Ak,i ∈ B

}

=
∞∑
i=1

(
1− 1

c17

)i−1

·E
{

f(Ak,i)

c17 · g(Ak,i)
· 1B(Ak,i)

}

=

∞∑
i=1

(
1− 1

c17

)i−1

·
∫
R×Rd

f(z)

c17 · g(z)
· IB(z) · g(z) dz

=

∫
B
f(z) dz.
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Hence for any l ∈ {1, . . . , 8·dlog ne} the random elements (Ak,jk)k=(l−1)·K̃n+1,...,(l−1)·K̃n+K̃n
are independent with density f and

P{jk = i} =

(
1− 1

c17

)i−1

· 1

c17

holds for any i ∈ N, k ∈ {1, . . . , K̄n}.
Set

fl,K̃n(x) = c18+
1

K̃n

·
(l−1)·K̃n+K̃n∑
k=(l−1)·K̃n+1

(−1)

(2π)d/2 · c16
·sign(h(Tk,jk ,Wk,jk))·1[0,∞)

(
W T
k,jk
· x

‖Wk,jk‖
− Tk,jk

)
.

For any x ∈ Sr we have that the random variables

Zk =
(−1)

(2π)d/2 · c16
· sign(h(Tk,jk ,Wk,jk)) · 1[0,∞)

(
W T
k,jk
· x

‖Wk,jk‖
− Tk,jk

)

(k = (l − 1) · K̃n + 1, . . . , (l − 1) · K̃n + K̃n) are independent and identically distributed
with expectation equal to m(x)− c18. Consequently we have

E

∫
Sr

|m(x)− fl,K̃n(x)|2PX(dx) =

∫
Sr

E|m(x)− fl,K̃n(x)|2PX(dx)

=

∫
Sr

Var

 1

K̃n

·
(l−1)·K̃n+K̃n∑
k=(l−1)·K̃n+1

Zk

 PX(dx)

=
1

K̃n

·
∫
Sr

Var (Z1) PX(dx)

≤ 1

K̃n

·
∫
Sr

E
(
Z2

1

)
PX(dx)

≤ 1

K̃n

· 1

(2π)d · c2
16

·E

{
1[0,∞)

(
W T

1,j1
· x

‖W1,j1‖
− T1,j1

)}
≤ c19

K̃n

.

By Markov inequality this implies that we have for any l ∈ {1, . . . , (dlog ne)2} at least
with probability 1/2 ∫

Sr

|m(x)− fl,K̃n(x)|2PX(dx) ≤ 2 · c19

K̃n

.

For any l ∈ {1, . . . , 8 · dlog ne} the probability that jk > (dlog ne)2 holds for some k ∈
{(l − 1) · K̃n + 1, . . . , l · K̃n} is bounded from above by

K̃n ·
(

1− 1

c17

)(dlogne)2

≤ K̃n · exp

(
−(dlog ne)2

c17

)
≤ 1

4
.
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Furthermore we have

P

{
∃i ∈ {1, . . . , n} ∃k ∈ {(l − 1) · K̃n + 1, . . . , l · K̃n :

jk ≤ (dlog ne)2 and

∣∣∣∣∣W T
k,jk
·Xi

‖Wk,jk‖
− Tk,jk

∣∣∣∣∣ < δn

}

≤ P

{
∃i ∈ {1, . . . , n} ∃k ∈ {(l − 1) · K̃n + 1, . . . , l · K̃n ∃j ∈ {1, . . . , (dlog ne)2} :∣∣∣∣∣W T

k,j ·Xi

‖Wk,j‖
− Tk,j

∣∣∣∣∣ < δn

}

≤ n · K̃n · (dlog ne)2 · 2 · δn
r
≤ 1

8
.

Hence for any l ∈ {1, . . . , 8 · dlog ne} at least with probability 1/8 we know that∫
Sr

|m(x)− fl,K̃n(x)|2PX(dx) ≤ 2 · c19

K̃n

,

jk ≤ (dlog ne)2 for all k ∈ {(l − 1) · K̃n + 1, . . . , l · K̃n}

and

min
i∈{1,...,n},k∈{(l−1)·K̃n+1,...,l·K̃n}

∣∣∣∣∣W T
k,jk
·Xi

‖Wk,jk‖
− Tk,jk

∣∣∣∣∣ ≥ δn
hold. Consequently it holds at least with probability

1−
(

1− 1

8

)8·(dlogne)
≥ 1− exp

(
−1

8
· 8 · (dlog ne)

)
≥ 1− 1

n

that there exists l ∈ {1, . . . , 8 · (dlog ne)} such that we have∫
Sr

|m(x)− fl,K̃n(x)|2PX(dx) ≤ 2 · c19

K̃n

,

jk ≤ (dlog ne)2 for all k ∈ {(l − 1) · K̃n + 1, . . . , l · K̃n}

and

min
i∈{1,...,n},k∈{(l−1)·K̃n+1,...,l·K̃n,j∈{1,...,(dlogne)2}

∣∣∣∣∣W T
k,jk
· x

‖Wk,jk‖
− Tk,jk

∣∣∣∣∣ ≥ δn.
Let l ∈ {1, . . . , (dlog ne)2} be minimal such that the above three properties hold and set

αk,jk = − 1

(2π)d/2 · c16
· 1

K̃n

· sign(h(Tk,jk ,Wk,jk)) ∈
[
−c13 ·

1

K̃n

, c13 ·
1

K̃n

]
for all k ∈ {(l− 1) · K̃n + 1, . . . , l · K̃n} and set all other αk,j = 0. (In case that the above
two properties do not hold for all l ∈ {1, . . . , 8 · (dlog ne)} set αk,j = 0 for all k and j.)
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Then (30) and (31) hold with probability at least 1− n. �

4.3. Auxiliary results concerning the optimization error

Let (x1, y1), . . . , (xn, yn) ∈ Rd × R, let K ∈ N, let B1, . . . , BK : Rd → R and let c2 > 0.
In this subsection we consider the problem to minimize

F (a) =
1

n

n∑
i=1

|a0 +

K∑
k=1

ak ·Bk(xi)− yi|2 + c2 ·

(
a2

0

n2/3
+

Kn

n2/3
·
Kn∑
k=1

a2
k

)
, (33)

where a = (a0, . . . , aK)T , by gradient descent. To do this, we choose a(0) ∈ RK and set

a(t+1) = a(t) − λn · (∇aF )(a(t)) (34)

for some properly chosen λn > 0.

Lemma 7 Let F be de�ned by (33) and choose aopt such that

F (aopt) = min
a∈RK+1

F (a).

Then for any a ∈ RK+1 we have

‖(∇aF )(a)‖2 ≥ 4 · c2

n2/3
· (F (a)− F (aopt)).

Proof. The proof if a modi�cation of the proof of Lemma 3 in Braun, Kohler and Walk
(2019).
Set B0(x) = 1,

E =
c2

n2/3
·


1 0 0 . . . 0
0 Kn 0 . . . 0
...

...
...

...
...

0 0 0 . . . Kn

 ,

B = (Bj(xi))1≤i≤n,0≤j≤K and A =
1

n
·BT ·B +

c2

n2/3
·E.

Then A is positive de�nite and hence regular, from which we can conclude

F (a) =
1

n
· (B · a− y)T · (B · a− y) +

c2

n2/3
· aT ·E · a

= aTAa− 2yT
1

n
Ba +

1

n
yTy
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= (a−A−1 1

n
BTy)TA(a−A−1 1

n
BTy) + F (aopt),

where

F (aopt) =
1

n
yTy − yT · 1

n
·BA−1 · 1

n
·BTy.

Using

bTAb ≥ c2

n2/3
· bTEb ≥ c2

n2/3
· bTb

and AT = A we conclude

F (a)− F (aopt)

= ((A1/2)T (a−A−1 1

n
BTy))TA1/2(a−A−1 1

n
BTy)

≤ n2/3

c2
· ((A1/2)T (a−A−1 1

n
BTy))TAA1/2(a−A−1 1

n
BTy)

=
n2/3

c2
· ((A)T (a−A−1 1

n
BTy))TA(a−A−1 1

n
BTy)

=
n2/3

c2
· (Aa− 1

n
BTy)T (Aa− 1

n
BTy)

=
n2/3

4 · c2
· (2Aa− 2

n
BTy)T (2Aa− 2

n
BTy)

=
n2/3

4 · c2
· ‖(∇aF )(a)‖2 ,

where the last equality follows from

(∇aF )(a) = ∇a

(
aTAa− 2yT

1

n
Ba +

1

n
yTy

)
= 2Aa− 2

n
BTy.

�

4.4. Proof of Theorem 1

Our proof is an extension of the proof of Theorem 1 in Braun et al. (2021).
W.l.o.g. we assume ‖m‖∞ ≤ βn. Set K̃n = bKn/(8 · (dlog ne)3)c and let An be the

event that |Yi| ≤ βn holds for all i = 1, . . . , n and that there exist (random)

α0 ∈ [−c13, c13] and α1, . . . , αKn ∈
[
− c13

K̃n

,
c13

K̃n

]
,

which are independent of (X,Y ), (X1, Y1), . . . , (Xn, Yn), such that

∫
[0,1]d

∣∣∣∣∣m(x)− α0 −
Kn∑
k=1

αk · 1[0,∞)

(
W T
k · x+ Tk

)∣∣∣∣∣
2

PX(dx) ≤ c14

K̃n

(35)
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and
min

i=1,...,n,k=1,...,Kn:
αk 6=0

∣∣∣(β(0)
k )TXi + γ

(0)
k

∣∣∣ ≥ δn (36)

hold for δn = Bn
16·n·K̃n·(dlogne)2

≥ 6 · log n.

We have

E

∫
|mn(x)−m(x)|2PX(dx)

= E

(∫
|mn(x)−m(x)|2PX(dx) · 1An

)
+ E

(∫
|mn(x)−m(x)|2PX(dx) · 1Acn

)
≤ E

(∫
|mn(x)−m(x)|2PX(dx) · 1An

)
+ 4β2

n ·P(Acn)

= E

((∫
|mn(x)−m(x)|2PX(dx)

−2 ·
(

1

n

n∑
i=1

|m̃n(Xi)− Yi|2 · 1{|Yj |≤βn (j∈{1,...,n})} −
1

n

n∑
i=1

|m(Xi)− Yi|2
))
· 1An

)

+2 ·E

((
1

n

n∑
i=1

|m̃n(Xi)− Yi|2 · 1{|Yj |≤βn (j∈{1,...,n})} −
1

n

n∑
i=1

|m(Xi)− Yi|2
)
· 1An

)
+4β2

n ·P(Acn)

=: T1,n + T2,n + T3,n.

In the remainder of the proof we derive bounds on Ti,n for i ∈ {1, 2, 3}.
In the �rst step of the proof we show that we have on An

Fn(w(0)) ≤ c20 · (log n)2.

On An it holds

Fn(w(0)) =
1

n

n∑
i=1

|0− Yi|2 + c2 ·

(
02

n2/3
+

Kn

n2/3
·
Kn∑
k=1

02

)
≤ c2

3 · (log n)2.

In the second step of the proof we show that we have on An

Kn∑
k=1

|α(tn)
k | ≤ c21 · (log n) · n1/3.

To do this, we show �rst that on An the assumptions (20) and (21) of Lemma 1 hold,
i.e., we show that on An we have

‖(∇wFn)(w)‖ ≤
√

2 · tn · Ln ·max{Fn(w(0)), 1} (37)

for all w with
‖w −w(0)‖ ≤

√
2 · tn ·max{Fn(w(0)), 1}/Ln
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and
‖(∇wFn)(w1)− (∇wFn)(w2)‖ ≤ Ln · ‖w1 −w2‖ (38)

for all w1,w2 satisfying

‖w1 −w(0)‖ ≤
√

8 · tn
Ln
·max{Fn(w(0)), 1}

and

‖w2 −w(0)‖ ≤
√

8 · tn
Ln
·max{Fn(w(0)), 1}.

By the result of the �rst step we know that we have Fn(w(0)) ≤ c20 · (log n)2. Together
with

|w(1)
1,k| ≤ ‖w −w(0)‖+ 0 (k = 1, . . . ,Kn)

(where we have used that the initial weights satisfy αk = 0 (k = 0, . . . ,Kn)) and

tn
Ln
≤ 2 · n2/3 · (log n)2

this implies that in order to prove (37) we can assume that the assumptions of Lemma
2 hold with γ∗n = c21 · n1/3 · (log n)2. From this and

c22 · (log n)4 · n2/3 ·K3/2
n ≤ Ln

we can derive (37) by an application of Lemma 2. In the same way we can prove (38) by
applying Lemma 3 with γ∗n = c21 · n1/3 · (log n)2.
From this we can conclude by Lemma 1 and the �rst step of the proof that we have

on An
F (w(tn)) ≤ F (w(0)) ≤ c2

3 · (log n)2, (39)

which implies(
Kn∑
k=1

|α(tn)
k |

)2

≤ Kn ·
Kn∑
k=1

|α(tn)
k |2

≤ n2/3

c2
· c2 ·

(
(α

(tn)
0 )2

n2/3
+

Kn

n2/3
·
Kn∑
k=1

(α
(tn)
k )2

)

≤ n2/3

c2
· F (w(tn)) ≤ n2/3

c2
· F (w(0))

≤ c2
3

c2
· n2/3 · (log n)2.

In the third step of the proof we show

T1,n ≤ c23 · (log n)4 · n−2/3. (40)
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By the results of the second step we know that on An it holds

m̃n(x) = α
(tn)
0 +

Kn∑
k=1

α
(tn)
k · σ(β

(tn)
k · x+ γ

(tn)
k ) ∈ F ,

where F is de�ned as in Lemma 5 with V = c21 · (log n) · n1/3. By Lemma 5 we know

logN2 (δ, TβnF , xn1 )

≤

(
c21 · (log n) · n1/3

δ
+ 2

)
· log

((
n+

c21 · (log n) · n1/3

δ/3
+ 1

)
· 2 · βn
δ/3

)
.

Consequently,

c9 ·
√
n · δ
βn

≥
∫ √δ
c10·δ

(logN2(u, TβnF , xn1 ))1/2 du

is for δ ≥ c23 · n−2/3/(8 · β2
n) implied by
√
n · δ
βn

≥ c24 · (log n) · n1/6 ·
√
δ,

which in turn is implied by
δ ≥ c25 · (log n)4 · n−2/3.

Application of Lemma 4 yields the assertion.
In the fourth step of the proof we show

T3,n ≤ c26 ·
(log n)2

n
. (41)

By Lemma 6 (applied with r = 1) we get

T3,n ≤ 4 · β2
n ·
(

1

n
+ P {|Yi| > βn for some i ∈ {1, . . . , n}}

)
= c27 ·

(log n)2

n
+ 4 · β2

n ·P {|Yi| > βn for some i ∈ {1, . . . , n}} .

Using (18), which implies

P {|Yi| > βn for some i ∈ {1, . . . , n}} ≤ n ·P
{

exp(c4 · Y 2) > exp(c4 · β2
n)
}

≤ n ·
E
{

exp(c4 · Y 2)
)

exp
(
c4 · c2

3 · (log n)2
) ≤ c28

n3
, (42)

we get (41).
In the �fth step of the proof we derive an upper bound on T2,n by a sum of several

terms. For that, let α0 . . .αKn be de�ned as in the de�nition of the event An and de�ne
on [0, 1] a piecewise constant approximation of m by

f(x) = α0 +

Kn∑
k=1

αk · 1[0,∞)

 d∑
j=1

w
(0)
k,j · x

(j) + w
(0)
k,0

 .
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(In case that An does not hold set α0 = α1 = · · · = αKn = 0.) Set

f∗(x) = α0 +

Kn∑
k=1

αk · σ

 d∑
j=1

w
(0)
k,j · x

(j) + w
(0)
k,1


For g(x) = α0 +

∑Kn
k=1 αk · σ(βTk · x+ γk) we de�ne

pen(g) = c2 ·

(
α2

0

n2/3
+

Kn

n2/3
·
Kn∑
k=1

α2
k

)
.

We have

1

2
· T2,n

= E

((
1

n

n∑
i=1

|m̃n(Xi)− Yi|2 · 1{|Yj |≤βn (j∈{1,...,n})} −
1

n

n∑
i=1

|m(Xi)− Yi|2
)
· 1An

)

≤ E

((
1

n

n∑
i=1

|m̃n(Xi)− Yi|2 + c2 ·

(
(α

(tn)
0 )2

n2/3
+

Kn

n2/3
·
Kn∑
k=1

(α
(tn)
k )2

)

− 1

n

n∑
i=1

|m(Xi)− Yi|2
)
· 1An

)

= E

((
F (α(tn), β(tn), γ(tn))− 1

n

n∑
i=1

|Yi − f∗(Xi)|2 − pen(f∗)

)
· 1An

)

+E

((
1

n

n∑
i=1

(|Yi − f∗(Xi)|2 −
1

n

n∑
i=1

|Yi − f(Xi)|2
)
· 1An

)

+E

((
1

n

n∑
i=1

|Yi − f(Xi)|2 −
1

n

n∑
i=1

|m(Xi)− Yi|2
)
· 1An

)
+E

(
pen(f∗) · 1An

)
=: T5,n + T6,n + T7,n + T8,n.

In the sixth step of the proof we show

T8,n ≤ c29 · (log n)6 · n−2/3. (43)

On An we have

pen(f∗) · 1An = c2 ·

(
α2

0

n2/3
+

Kn

n2/3
·
Kn∑
k=1

α2
k

)
≤ c2 · c2

13

n2/3
+
c2 ·Kn

n2/3
·
Kn∑
k=1

c2
13

K̃2
n

≤ c29 ·
(log n)6

n2/3
,
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which implies (43).
In the seventh step of the proof we show

T7,n ≤ c30 ·
(log n)3

Kn
+ c31 ·

(log n)8

n3/2
. (44)

Let Ãn be the event that there exists (random)

α0 ∈ [−c13, c13] and α1, . . . , αKn ∈
[
− c13

K̃n

,
c13

K̃n

]
,

which are independent of (X,Y ), (X1, Y1), . . . , (Xn, Yn), such that (35) and (36) hold
for δn = Bn

16·n·K̃n·(dlogne)2
≥ 6 · log n. By the Cauchy-Schwarz inequality, by (42), by (18)

(which implies EY 4 < ∞), and by conditioning inside the expectation on the random

variables w
(0)
k,0, . . . , w

(0)
k,d (k = 1, . . . ,Kn) and α0, . . . , αKn , which are independent of Dn,

we get

T7,n ≤ E

(
1

n

n∑
i=1

|Yi − f(Xi)|2 −
1

n

n∑
i=1

|m(Xi)− Yi|2
)
· 1Ãn

)

+

√√√√√E


(

1

n

n∑
i=1

|Yi − f(Xi)|2 −
1

n

n∑
i=1

|m(Xi)− Yi|2
)2
 ·√E{(1An − 1Ãn)2}

≤ E

{∫
|f(x)−m(x)|2PX(dx) · 1Ãn

}
+c32 · (log n)6 ·

√
P{|Yi| > βn for some i ∈ {1, . . . , n}}

≤ E

{∫
|f(x)−m(x)|2PX(dx) · 1Ãn

}
+ c33 ·

(log n)6

n3/2
.

On Ãn we have by (35)∫
|f(x)−m(x)|2PX(dx) ≤ c34 ·

1

K̃n

≤ c35 ·
(log n)3

Kn
,

which implies (44).
In the eighth step of the proof we show

T6,n ≤ c36 ·
1

n
. (45)

We have

T6,n = E

((
1

n

n∑
i=1

(|Yi − f∗(Xi)|2 −
1

n

n∑
i=1

|Yi − f(Xi)|2
)
· 1An

)

≤ 1

n

n∑
i=1

E

(
|f(Xi)− f∗(Xi)| · |2Yi − f(Xi)− f∗(Xi)| · 1An

)
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≤ 1

n

n∑
i=1

E

(
|f(Xi)− f∗(Xi)| · (2βn + c37 · (log n)3) · 1An

)
.

On An we have by |σ(x) − 1[0,∞)(x)| ≤ e−|x| (cf., Lemma 9 a) in Braun et al. (2021)),
(36) and δn ≥ 6 · log n

|f∗(Xi)− f(Xi)| = |
Kn∑
k=0

αk · σ((β
(0)
k )T ·Xi + γ

(0)
k )−

Kn∑
k=0

αk · 1[0,∞)((β
(0)
k )T ·Xi + γ

(0)
k )|

≤
Kn∑
k=0

|αk| · exp
(
−|(β(0)

k )T ·Xi + γ
(0)
k )|

)
≤

Kn∑
k=0

|αk| · exp (−δn)

≤ 2 · (log n)4 · exp (−6 · log n)

=
2 · (log n)4

n6
.

Hence, we have

T6,n ≤
2 · (log n)4

n6
· (2βn + c78 · (log n)4) ≤ c36 ·

1

n
,

which implies (45).
In the ninth step of the proof we show that we have on An for any t ∈ {1, . . . , tn − 1}

F (α(t+1), β(t+1), γ(t+1))− 1

n

n∑
i=1

|Yi − f∗(Xi)|2 − pen(f∗)

≤
(

1− 2 · c2

Ln · n2/3

)
·

(
F (α(t), β(t), γ(t))− 1

n

n∑
i=1

|Yi − f∗(Xi)|2 − pen(f∗)

)

+
2 · c2

Ln · n2/3
·
(
F (α∗, β(0), γ(0))− F (α∗, β(t), γ(t))

)
, (46)

where α∗ = (αk)k=0,...,Kn with αk de�ned as in the �fth step of the proof. On An we know
from the second step of the proof that Lemma 1 holds, and from the proof of Lemma 1
(cf., proof of Lemma 2 in Braun et al. (2021)) we know

F (α(t+1), β(t+1), γ(t+1)) ≤ F (α(t), β(t), γ(t))− 1

2Ln
· ‖∇(α,β,γ)F (α(t), β(t), γ(t))‖2.

By Lemma 7 we know

‖∇(α,β,γ)F (α(t), β(t), γ(t))‖2

=

Kn∑
k=0

∣∣∣∣ ∂∂αkF (α(t), β(t), γ(t))

∣∣∣∣2 +

Kn∑
k=1

d∑
j=1

∣∣∣∣ ∂

∂βk,j
F (α(t), β(t), γ(t))

∣∣∣∣2
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+

Kn∑
k=1

∣∣∣∣ ∂∂γkF (α(t), β(t), γ(t))

∣∣∣∣2

≥
Kn∑
k=0

∣∣∣∣ ∂∂αkF (α(t), β(t), γ(t))

∣∣∣∣2
= ‖∇αF (α(t), β(t), γ(t))‖2

≥ 4 · c2

n2/3
·
(
F (α(t), β(t), γ(t))− min

a∈RKn+1
F (a, β(t), γ(t))

)
≥ 4 · c2

n2/3
·
(
F (α(t), β(t), γ(t))− F (α∗, β(t), γ(t))

)
.

Consequently we get

F (α(t+1), β(t+1), γ(t+1))− 1

n

n∑
i=1

|Yi − f∗(Xi)|2 − pen(f∗)

= F (α(t+1), β(t+1), γ(t+1))− F (α∗, β(0), γ(0))

≤ F (α(t), β(t), γ(t))− 1

2Ln
· ‖∇(α,β,γ)F (α(t), β(t), γ(t))‖2 − F (α∗, β(0), γ(0))

≤ F (α(t), β(t), γ(t))− 1

2Ln
· 4 · c2

n2/3
·
(
F (α(t), β(t), γ(t))− F (α∗, β(t), γ(t))

)
−F (α∗, β(0), γ(0))

=

(
1− 2 · c2

Ln · n2/3

)
·
(
F (α(t), β(t), γ(t))− F (α∗, β(0), γ(0))

)
+

2 · c2

Ln · n2/3
·
(
F (α∗, β(0), γ(0))− F (α∗, β(t), γ(t))

)
=

(
1− 2 · c2

Ln · n2/3

)
·

(
F (α(t), β(t), γ(t))− 1

n

n∑
i=1

|Yi − f∗(Xi)|2 − pen(f∗)

)

+
2 · c2

Ln · n2/3
·
(
F (α∗, β(0), γ(0))− F (α∗, β(t), γ(t))

)
,

which implies (46).
In the tenth step of the proof we show that we have on An

F (α∗, β(0), γ(0))− F (α∗, β(t), γ(t))

≤ c38 · (βn + (log n)3) ·
∑

k=1,...,Kn:
αk 6=0

(

d∑
j=1

|β(t)
k,j − β

(0)
k,j |+ |γ

(t)
k − γ

(0)
k |). (47)

On An we have |Yi| ≤ βn for i = 1, . . . , n. From this, Xi ∈ [0, 1] a.s. and Lipschitz
continuity of the logistic squasher we get

F (α∗, β(0), γ(0))− F (α∗, β(t), γ(t))
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≤ 1

n

n∑
i=1

|Yi − fnet,(α∗,β(0),γ(0))(Xi)|2 −
1

n

n∑
i=1

|Yi − fnet,(α∗,β(t),γ(t))(Xi)|2

≤ c38 · (βn + (log n)3) ·
∑

k=1,...,Kn:
αk 6=0

(
d∑
j=1

|β(t)
k,j − β

(0)
k,j |+ |γ

(t)
k − γ

(0)
k |),

which implies (47).
In the eleventh step of the proof we show that on An we have for any t ∈ {1, . . . , tn−1}

∑
k=1,...,Kn:
αk 6=0

(
d∑
j=1

|β(t)
k,j − β

(0)
k,j |+ |γ

(t)
k − γ

(0)
k |) ≤ c39 ·

1

n2
. (48)

For this we show

min
i=1,...,n,k=1,...,Kn:

αk 6=0

∣∣∣(β(s)
k )T ·Xi + γ

(s)
k

∣∣∣ ≥ δn
2

(49)

and

∑
k=1,...,Kn:
αk 6=0

(
d∑
j=1

|β(s)
k,j − β

(0)
k,j |+ |γ

(s)
k − γ

(0)
k |) ≤ s · c3 · c21 · (log n)2 · 1

Ln
· exp(−δn/2) (50)

for all s ∈ {0, . . . , tn} by induction on s. Observe that (50) directly implies (48).
Trivially, (49) and (50) hold on An for s = 0. Next we show that if (49) and (50) hold

for some s ∈ {1, . . . , tn − 1}, then (50) also holds for s+ 1. To do this, set

(β̄, γ̄) = (β, γ)− λn · ∇(β,γ)F ((α, β, γ)).

Using

|σ′(x)| = |σ(x) · (1− σ(x))| ≤ min {|σ(x)|, |1− σ(x)|} ≤ |σ(x)− 1[0,∞)(x)|

(where the �rst inequality holds due to σ(x) ∈ [0, 1]) we can conclude from |σ(x) −
1[0,∞)(x)| ≤ e−|x| (cf., Lemma 9 a) in Braun et al. (2021)) that

max
i=1,...,n

∣∣σ′ (βTk ·Xi + γk
)∣∣ ≤ max

i=1,...,n
exp

(
−
∣∣βTk ·Xi + γk

∣∣)
= exp

(
− min
i=1,...,n

{∣∣βTk ·Xi + γk
∣∣}) .

As a consequence, we get for k ∈ {1, . . . ,Kn} and j ∈ {1, . . . , d} by the Cauchy-Schwarz
inequality ∣∣∣∣ ∂F∂βk,j

(α, β, γ)

∣∣∣∣
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=

∣∣∣∣∣ 2n
n∑
i=1

(fnet,(α,β,γ)(Xi)− Yi) · αk · σ′
(
βTk ·Xi + γk

)
·X(j)

i

∣∣∣∣∣
≤ 2 · |αk| ·

1

n

n∑
i=1

|fnet,(α,β,γ)(Xi)− Yi| · |X(j)
i | ·

∣∣σ′ (βTk ·Xi + γk
)∣∣

≤ 2 ·

√√√√ 1

n

n∑
i=1

|fnet,(α,β,γ)(Xi)− Yi|2 · |αk| ·

√√√√ 1

n

n∑
i=1

|σ′(βTk ·Xi + γk)|2

≤ 2 ·
√
F (α, β, γ) · |αk| ·

√√√√ 1

n

n∑
i=1

|σ′(βTk ·Xi + γk)|2

≤ 2 ·
√
F (α, β, γ) · |αk| · exp

(
− min
i=1,...,n

{∣∣βTk ·Xi + γk
∣∣}) .

Hence, we have shown

|β̄k,j − βk,j |

= λn ·
∣∣∣∣ ∂F∂βk,j

((α, β, γ))

∣∣∣∣
≤ λn · 2 ·

√
F ((α, β, γ)) · |αk| · exp

(
− min
i=1,...,n

{∣∣βTk ·Xi + γk
∣∣})

for any k ∈ {1, . . . ,Kn}.
For γj we get in a similar fashion

|γ̄k − γk| = λn ·
∣∣∣∣ ∂F∂γk (α, β, γ)

∣∣∣∣
≤ λn · 2 ·

√
F (α, β, γ) · 1 · |αk| · exp

(
− min
i=1,...,n

{∣∣βTk ·Xi + γk
∣∣})

for any k ∈ {1, . . . ,Kn}.
Using

F (α(s), β(s), γ(s)) ≤ F (w(0)) ≤ c2
3 · (log n)2

(cf., (39)), (49) and (50) we can conclude

∑
k=1,...,Kn:
αk 6=0

(
d∑
j=1

|β(s+1)
k,j − β(0)

k,j |+ |γ
(s+1)
k − γ(0)

k |)

≤ s · c3 · c21 · (log n)2 · 1

Ln
· exp(−δn/2) +

∑
k=1,...,Kn:
αk 6=0

(

d∑
j=1

|β(s+1)
k,j − β(s)

k,j |+ |γ
(s+1)
k − γ(s)

k |)

≤ s · c3 · c21 · (log n)2 · 1

Ln
· exp(−δn/2) + c3 · c21 · (log n)2 · 1

Ln
· exp(−δn/2)
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≤ (s+ 1) · c3 · c21 · (log n)2 · 1

Ln
· exp(−δn/2).

Furthermore, if (49) holds for some s ∈ {1, . . . , tn − 1} and (50) holds for s + 1, then
(49) also holds for s+ 1, since

min
i=1,...,n,k=1,...,Kn:

αk 6=0

∣∣∣∣∣∣
d∑
j=1

β
(s+1)
k,j ·X(j)

i + γ
(s+1)
k

∣∣∣∣∣∣
≥ min

i=1,...,n,k=1,...,Kn:
αk 6=0

∣∣∣∣∣∣
d∑
j=1

β
(0)
k,j ·X

(j)
i + γ

(0)
k

∣∣∣∣∣∣
− max

i=1,...,n,k=1,...,Kn:
αk 6=0

 d∑
j=1

|β(s+1)
k,j − β(0)

k,j ||X
(j)
i |+ |γ

(s+1)
k − γ(0)

k |


≥ δn − max

i=1,...,n,k=1,...,Kn:
αk 6=0

 d∑
j=1

|β(s+1)
k,j − β(0)

k,j |+ |γ
(s+1)
k − γ(0)

k |


≥ δn − c3 · c21 · (log n)2 · tn

Ln
· exp (−δn/2)

≥ δn − c3 · c21 · (log n)2 · tn
Ln
· exp (−6 · log n)

≥ δn
2
.

In the twelfth step of the proof we �nish the proof by showing

T5,n ≤ c40 ·
(log n)4

n
. (51)

Applying the result of the ninth step recursively together with the results of the steps
ten and eleven we get that we have on An

T5,n = F (α(tn), β(tn), γ(tn))− 1

n

n∑
i=1

|Yi − f∗(Xi)|2 − pen(f∗)

≤
(

1− 2 · c2

Ln · n2/3

)tn
·

(
F (α(0), β(0), γ(0))− 1

n

n∑
i=1

|Yi − f∗(Xi)|2 − pen(f∗)

)

+tn ·
2 · c2

Ln · n2/3
· c41 · (βn + (log n)3) · c42 ·

1

n2

≤ exp

(
− 2 · c2

Ln · n2/3
· tn
)
· F (α(0), β(0), γ(0)) + c43 · (log n)2 · βn + (log n)3

n

≤ exp(−c44 · (log n)2) · c45 · (log n)2 + c46 · (log n)2 · βn + (log n)3

n2
≤ c40 ·

(log n)4

n
.

Summarizing the above results we get the assertion. �
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A. Proof of Lemma 4

In the proof we use the following error decomposition:((∫
|mn(x)−m(x)|2PX(dx)
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−2 ·
(

1

n

n∑
i=1

|m̃n(Xi)− Yi|2 · 1{|Yj |≤βn (j∈{1,...,n})} −
1

n

n∑
i=1

|m(Xi)− Yi|2
))
· 1An

)
=
[
E

{
|mn(X)− Y |2|Dn

}
−E

{
|m(X)− Y |2

}
−
(
E

{
|mn(X)− TβnY |2|Dn

}
−E

{
|mβn(X)− TβnY |2

}) ]
· 1An

+

[
E

{
|mn(X)− TβnY |2|Dn

}
−E

{
|mβn(X)− TβnY |2

}
−2 · 1

n

n∑
i=1

(
|mn(Xi)− TβnYi|2 − |mβn(Xi)− TβnYi|2

)]
· 1An

+

[
2 · 1

n

n∑
i=1

|mn(Xi)− TβnYi|2 − 2 · 1

n

n∑
i=1

|mβn(Xi)− TβnYi|2

−

(
2 · 1

n

n∑
i=1

|mn(Xi)− Yi|2 − 2 · 1

n

n∑
i=1

|m(Xi)− Yi|2
)]
· 1An

+

[
2

(
1

n

n∑
i=1

|mn(Xi)− Yi|2 −
1

n

n∑
i=1

|m(Xi)− Yi|2
)

−2 ·
(

1

n

n∑
i=1

|m̃n(Xi)− Yi|2 · 1{|Yj |≤βn (j∈{1,...,n})} −
1

n

n∑
i=1

|m(Xi)− Yi|2
)]
· 1An

=

4∑
i=1

Ti,n · 1An ,

where TβnY is the truncated version of Y and mβn is the regression function of TβnY ,
i.e.,

mβn(x) = E

{
TβnY |X = x

}
.

We start with bounding T1,n · 1An . By using a2 − b2 = (a− b)(a+ b) we get

T1,n = E

{
|mn(X)− Y |2 − |mn(X)− TβnY |2

∣∣∣Dn}
−E
{
|m(X)− Y |2 − |mβn(X)− TβnY |2

}
= E

{
(TβnY − Y )(2mn(X)− Y − TβnY )

∣∣∣Dn}
−E
{(

(m(X)−mβn(X)) + (TβnY − Y )
)(
m(X) +mβn(X)− Y − TβnY

)}
= T5,n + T6,n.

With the Cauchy-Schwarz inequality and

I{|Y |>βn} ≤
exp(c4/2 · |Y |2)

exp(c4/2 · β2
n)

(52)
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we conclude

|T5,n| ≤
√
E
{
|TβnY − Y |2

}
·
√
E
{
|2mn(X)− Y − TβnY |2

∣∣Dn}
≤

√
E
{
|Y |2 · I{|Y |>βn}

}
·
√
E
{

2 · |2mn(X)− TβnY |2 + 2 · |Y |2
∣∣Dn}

≤

√√√√E

{
|Y |2 · exp(c4/2 · |Y |2)

exp(c4/2 · β2
n)

}

·
√
E
{

2 · |2mn(X)− TβnY |2
∣∣Dn}+ 2E

{
|Y |2

}
≤

√
E

{
|Y |2 · exp(c4/2 · |Y |2)

}
· exp

(
−c4 · β2

n

4

)
·
√

2(3βn)2 + 2E
{
|Y |2

}
.

With x ≤ exp(x) for x ∈ R we get

|Y |2 ≤ 2

c4
· exp

(c4

2
· |Y |2

)
(53)

and hence

√
E

{
|Y |2 · exp(c4/2 · |Y |2)

}
is bounded by

E

(
2

c4
· exp

(
c4/2 · |Y |2

)
· exp(c4/2 · |Y |2)

)
≤ E

(
2

c4
· exp

(
c4 · |Y |2

))
≤ c47

which is less than in�nity by the assumptions of the lemma. Furthermore the third term
is bounded by

√
18β2

n + c48 because

E(|Y |2) ≤ E(1/c4 · exp(c4 · |Y |2) ≤ c49 <∞, (54)

which follows again as above. With the setting βn = c3 · log(n) it follows for some
constants c50, c51 > 0 that

|T5,n| ≤
√
c47 · exp

(
−c50 · (log n)2

)
·
√

(18 · c2
3 · (log n)2 + c49) ≤ c51 ·

log(n)

n
.

From the Cauchy-Schwarz inequality we get

|T6,n| ≤

√√√√2 ·E

{
|(m(X)−mβn(X))|2

}
+ 2 ·E

{
|(TβnY − Y )|2

}

·

√√√√E

{∣∣∣m(X) +mβn(X)− Y − TβnY
∣∣∣2},

where we can bound the second factor on the right-hand side in the above inequality
in the same way we have bounded the second factor from T5,n, because by assumption
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||m||∞ is �nite and furthermore mβn is bounded by βn. Thus we get for some constant
c52 > 0 √√√√E

{∣∣∣m(X) +mβn(X)− Y − TβnY
∣∣∣2} ≤ c52 · log(n).

Next we consider the �rst term. With Jensen's inequality it follows that

E

{
|m(X)−mβn(X)|2

}
≤ E

{
E

(
|Y − TβnY |2

∣∣∣X)} = E

{
|Y − TβnY |2

}
.

Hence we get

|T6,n| ≤
√

4 ·E {|Y − TβnY |2} · c52 · log(n)

and therefore with the calculations from T5,n it follows that T6,n ≤ c53 · log(n)/n for some
constant c53 > 0. Altogether we get

T1,n · 1An ≤ |T5,n|+ |T6,n| ≤ c54 ·
log(n)

n

for some constant c54 > 0.
Next we consider T2,n · 1An and conclude for t > 0

P{T2,n · 1An > t} ≤ P

{
∃f ∈ TβnFn : E

(∣∣∣∣f(X)

βn
−
TβnY

βn

∣∣∣∣2
)
−E

(∣∣∣∣mβn(X)

βn
−
TβnY

βn

∣∣∣∣2
)

− 1

n

n∑
i=1

(∣∣∣∣f(Xi)

βn
−
TβnYi
βn

∣∣∣∣2 − ∣∣∣∣mβn(Xi)

βn
−
TβnYi
βn

∣∣∣∣2
)

>
1

2

(
t

β2
n

+ E

(∣∣∣∣f(X)

βn
−
TβnY

βn

∣∣∣∣2
)
−E

(∣∣∣∣mβn(X)

βn
−
TβnY

βn

∣∣∣∣2
))}

.

Application of Theorem 19.3 in Györ� et al. (2002) (with K1 = 4 and K2 = 16) and the

relation N2

(
δ,
{

1
βn
g : g ∈ G

}
, xn1

)
≤ N2 (δ · βn,G, xn1 ) for an arbitrary function space G

and δ > 0 imply that we have for any t > δn

P{T2,n · 1An > t} ≤ 60 · exp

(
− n

108 · β2
n

· t
)
.

This implies

E(T2,n · 1An)

≤ δn +

∫ ∞
δn

P{T2,n · 1An > t}dt

≤ δn + 60 · exp

(
− n

108 · β2
n

· δn
)
· 108 · β2

n

n
≤ c55 · δn.
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By bounding T3,n · 1An similarly to T1,n · 1An we get

E(T3,n · 1An) ≤ c56 ·
log(n)

n

for some large enough constant c56 > 0 and hence we get in total

E

(
3∑
i=1

Ti,n · 1An

)
≤ c57 ·

(
δn +

(log n)2

n

)
for some su�cient large constant c57 > 0.
We �nish the proof by bounding T4,n · 1An . We have

1

n

n∑
i=1

|mn(Xi)− Yi|2

≤ 1

n

n∑
i=1

|mn(Xi)− Yi|2 · 1{|Yj |≤βn (j∈{1,...,n})}

+
1

n

n∑
i=1

|mn(Xi)− Yi|2 · 1{|Yj |>βn for some j∈{1,...,n}}

≤ 1

n

n∑
i=1

|m̃n(Xi)− Yi|2 · 1{|Yj |≤βn (j∈{1,...,n})}

+
1

n

n∑
i=1

|mn(Xi)− Yi|2 · 1{|Yj |>βn for some j∈{1,...,n}}

where we have used that |Tβz − y| ≤ |z − y| holds for |y| ≤ β. Consequently we have

E{T4,n · 1An}

≤ E

{
1

n

n∑
i=1

|mn(Xi)− Yi|2 · 1{|Yj |>βn for some j∈{1,...,n}}

}
= E

{
|mn(X1)− Y1|2 · 1{|Yj |>βn for some j∈{1,...,n}}

}
≤
√
E {|mn(X1)− Y1|4} ·

√
P{|Yj | > βn for some j ∈ {1, . . . , n}}

≤ c58 · β2
n ·

1

n
,

where the last inequality followed from the proof of Theorem 1 (cf., (42)) and (18) and
(53), which imply

E
{
|mn(X1)− Y1|4

}
≤ 16 · (β4

n + E{Y 4})) ≤ 16 ·
(
β4
n +

4

c2
4

·E
{

exp
(
c4 · Y 2

)})
≤ c59 · β4

n.

In combination with the other considerations in the proof this implies the assertion of
Lemma 4. �
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