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Abstract

Estimation of univariate regression function by a neural network with one hidden layer
is considered, where the weight vector is determined by applying gradient descent to a
regularized empirical Ly risk. Here the number of hidden neurons is chosen much larger
than the sample size. It is shown that the estimate nevertheless generalizes well in case
that the Fourier transform of the regression function decays suitably fast, and that in
this case over-parametrization leads to a particular good rate of convergence.
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1. Introduction

1.1. Scope of this article

In the last decade deep learning was successfully applied in many areas. Deep convolu-
tional networks have been applied in image classification by Krizhevsky, Sutskever and
Hinton (2012), in language processing by Ni et al. (2021), in machine translation by
Wu et al. (2016), in medical diagnosis by Mondal et al. (2021), and in many other
areas. Despite impressive successes in applications there are very few theoretical studies
explaining reasons for strong performance of deep networks in practice. Recently, several
theoretical studies investigating deep neural networks appeared, see, e.g., Kohler and
Krzyzak (2017), Bauer and Kohler (2019), Schmidt-Hieber (2020), Kohler and Langer
(2021), Suzuki and Nitanda (2019) and Kohler and Krzyzak (2021).

Backpropagation is the most common method for training neural networks in practice.
Braun et al. (2021) analyze the Ly error of neural network regression estimates with
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one hidden layer. They showed that in the class of regression functions having Fourier
transform decreasing suitably fast, a neural network estimate whose weights are initial-
ized randomly according to a proper uniform distributions and then are learned by the
gradient descent, achieves a rate of convergence of 1/y/n (up to a logarithmic factor).
Kohler and Krzyzak (2021) demonstrated that over-parametrized deep neural networks
with the sigmoidal squasher interpolating the data do not generalize well on a new data,
i. e., the networks which minimize the empirical risk do not achieve the optimal minimax
rate of convergence for estimation of smooth regression functions and for design points
having discrete distribution. In the present paper we show that over-parametrization of
one hidden layer neural network with properly regularized Lo risk trained by the gradient
descent achieves the rate of convergence n=2/3 in one dimensional case in the class of
regression functions having Fourier transform decreasing suitably fast. So in this case
over-parametrization leads to a better rate of convergence than in Braun et al. (2021).

1.2. Regression estimation

In this paper we study neural network regression estimates in connection with nonpara-
metric regression. To do this we consider an R? x R-valued random vector (X,Y’), where
X is the so—called observation vector and Y is the so-called response. Assume the condi-
tion E{Y?2} < oo. We are interested in the functional correlation between the response
Y and the observation vector X. In applications the distribution of (X,Y") is unknown,
therefore we want to recover the functional correlation between X and Y using only a
sample of (X,Y), i.e., a data set

Dn:{(Xl»Yl)v"-a(XnaYn)}a (1)
where (X,Y), (X1,Y1), ..., (X,,Y,) are i.i.d. We are searching for an estimate
mn(-) =mp(-,Dy) : RT = R

of the so—called regression function m : R = R, m(z) = E{Y|X = z} such that the
so—called Ly error

/ () — () PP x (da)

is “small” (cf., e.g., Gyorfi et al. (2002) for a systematic introduction to nonparametric
regression and motivation for the Ly error).

1.3. Neural networks

Neural networks try to mimic the human brain in order to define classes of functions. The
starting point is a very simple model of a nerve cell, in which some kind of thresholding is
applied to a linear combination of the outputs of other nerve cells. This leads to functions
of the form

d
fa)=o > wi-aD+w | (2=@",... 2T eRr?),
=1



where we call wg, ..., wg € R weights of the neuron and where we call 0 : R — R an
activation function. Traditionally, so—called squashing functions are chosen as activation
functions, which are nondecreasing and satisfy lim;_, o o(2) = 0 and lim,_,~ o(z) = 1.
An example of a squashing function is the sigmoidal or logistic squasher

o(2) !

1+ exp(—x)
Recently, also unbounded activation functions have been used, e.g., the ReLU activation
function

(z €R). 2)

o(x) = max{x,0}.

The simplest form of neural networks are shallow networks, i.e., neural networks with
one hidden layer, in which a simple linear combination of the above neurons is used to
define a function f:R¢ — R by

K d
f@) =Y ar-o | > Brj-2Y +Bro | + o (3)
k=1 Jj=1

Here K € N is the number of hidden neurons, and the weights o, € R (k =0,..., K),
Brj R (k=1,...,K,j=0,...,d) can be adapted to the data (1) in order to define an
estimate of the regression function. This can be achieved by, for example, applying the
principle of least squares, i.e., by defining the regression estimate m,, by

n
() = argyin > = OO @
where F is the set of all functions of the form (3) with a fixed number of neurons K and
fixed activation function o.

The rate of convergence of the shallow neural networks regression estimates has been
analyzed in Barron (1994) and McCaffrey and Gallant (1994). Barron (1994) proved a
dimensionless rate of n=1/2 (up to some logarithmic factor), provided the Fourier trans-
form of the regression function has a finite first moment, which basically requires that the
function becomes smoother with increasing dimension d of X. McCaffrey and Gallant

(1994) showed a rate of n” %R T in case of a (p, C)-smooth regression function, but
their study was restricted to the use of a certain cosine squasher as activation function.

In deep learning neural networks with several hidden layers are used to define classes of
functions. Here, the neurons are arranged in L € N layers, where the ks € N neurons in
layer s € {2,..., L} get the output of the ks_; neurons in layer s — 1 as input, and where
the neurons in the first layer are applied to the d components of the input. We denote
the weight between neuron j in layer s — 1 and neuron ¢ in layer s by wl(fj). This leads
to the following recursive definition of a neural network with L layers and ks neurons in
layer s € {1,...,L}:

f@) =3 P () + wlfy (5)



for some wgfo% . ,wiLk)L € R and for fi(L)’s recursively defined by

k571
1@ =0 | 3wy @)+l (6)
j=1

for some wlgvsofl), ... ,wﬁ;i)l eR,se{2,...,L}, and

d
@) =0 | Y wa® +ulf (7)
j=1

for some wz(%), R wg(l)i) eR.

The rate of converé;ence of least squares estimates based on multilayer neural networks
has been analyzed in Kohler and Krzyzak (2017), Imaizumi and Fukamizu (2018), Bauer
and Kohler (2019), Kohler, Krzyzak and Langer (2019), Suzuki and Nitanda (2019),
Schmidt-Hieber (2020) and Kohler and Langer (2021). One of the main results achieved
in this context shows that neural networks can achieve some kind of dimension reduction,
provided the regression function is a composition of (sums of) functions, where each of
the function is a function of at most d* < d variables (see Kohler and Langer (2020) for
a motivation of such a function class). In Kohler and Krzyzak (2017) it was shown that
in this case suitably defined least squares estimates based on multilayer neural networks
achieve the rate of convergence n~=2P/(2P+d") (yp to some logarithmic factor) for p < 1.
This result also holds for p > 1 provided the squashing function is suitably smooth as
was shown in Bauer and Kohler (2019). Schmidt-Hieber (2020) showed the surprising
result that this is also true for neural networks which use the non-smooth ReLLU activa-
tion function. In Kohler and Langer (2021) it was shown that such results also hold for
very simply constructed fully connected feedforward neural networks. Kohler, Krzyzak
and Langer (2019) considered regression functions with a low local dimensionality and
demonstrated that neural networks are also able to circumvent the curse of dimension-
ality in this context. Results regarding the estimation of regression functions which are
piecewise polynomials having partitions with rather general smooth boundaries by neural
networks have been derived in Imaizumi and Fukamizu (2018). That neural networks
can also achieve a dimension reduction in Besov spaces was shown in Suzuki and Nitanda

(2019).

1.4. Gradient descent

In Subsection 1.3 the neural network regression estimates are defined as nonlinear least
squares estimates, i.e., as functions which minimize the empirical Lo risk over nonlinear
classes of neural networks. In practice, it is usually not possible to find the global
minimum of the empirical Lo risk over a nonlinear class of neural networks and we try
to find a local minimum using, for instance, the gradient descent algorithm (so-called
backpropagation).



Denote by fpetw the neural network defined by (5)—(7) with weight vector

_ (s
W = (W} )20, Lj =1, g1,k =0,... ks

(where we have set kg = d and kr4+1 = 1), and set
1 n
F(w) = =3 ¥i = faerw(X)[. (8)
i=1

In backpropagation gradient descent is used to minimize (8) with respect to w. Here, set
w(0)=v 9)

for some (usually randomly chosen) initial weight vector v and define
w(t+1) =w(t) — Ay - VwF(w(t)) (10)

fort =0,1,...,t,—1, where \,, > 0 is the stepsize and ¢,, € N is the number of performed
gradient descent steps. The estimate is then defined by

mn() = fnet,w(tn)('>' (11)

1.5. Main results

We study the rate of convergence of the univariate neural network regression estimate
with one hidden layer where the weights of the network are determined by the gradient
descent of a regularized empirical Ls risk. The number of neurons is chosen much larger
than the sample size. We assume that the Fourier transform

. . 1 .
F:R—C, F(w):W~/Rel'w"”-m(x)da:

of the regression function satisfies

F(w)| < -

for some ¢; > 0. We show that the neural network estimate with the logistic squasher
activation function generalizes well regardless of the number of hidden neurons (as long as
this number is bounded by some polynomial in the sample size), if the initial weights of the
neural network are chosen from some uniform distribution, if a suitable penalty is added
to the empirical Lo risk during backpropagation and if a suitable number of gradient
descent steps is performed. In particular, we show that any value of the number of hidden
neurons larger than n?/3 leads under the above assumptions to the rate of convergence
n=2/3 (up to some logarithmic factor), which improves the rate of convergence achieved
in Braun et al. (2021) in case K, = /n.



1.6. Discussion of related results

Study of deep learning has been very active field of research in recent years, see Berner
et al. (2021) for a recent survey of progress in mathematics of deep learning. A large
number of results were recently obtained for neural network regression estimates learned
by the gradient descent. Braun et al. (2021) showed rate of convergence 1/y/n (up to a
logarithmic factor) for regression functions that have Fourier transforms with polynomi-
ally decreasing tails (an assumption slightly stronger than the finite first moment of the
Fourier transform assumption of Barron (1993)).

Many recent papers tried to demonstrate theoretically that backpropagation learning
works for deep neural networks. The most popular approach which emerged in this
context is so—called landscape approach. Choromanska et al. (2015) used random matrix
theory to derive a heuristic argument showing that the risk of most of the local minima of
the empirical Lo risk F,(w) is not much larger than the risk of the global minimum. This
claim was validated for neural networks with special activation function by, e.g., Arora
et al. (2018), Kawaguchi (2016), and Du and Lee (2018), which have analyzed gradient
descent for neural networks with a linear or quadratic activation function. No good
approximation results exist for such neural networks, and consequently one cannot deduce
from these results good rates of convergence for neural network regression estimates. Du
et al. (2018) analyzed gradient descent learning for neural networks with one hidden layer
and Gaussian inputs. As they used the expected gradient instead of the gradient in their
gradient descent routine, one cannot apply their results to derive the rate of convergence
for neural network regression estimates learned by the gradient descent. Liang et al.
(2018) applied gradient descent to a modified loss function in classification, where it is
assumed that the data can be interpolated by a neural network. Neural tangent kernel
networks (NTK) were introduced by Jacot, Gabriel and Honger (2020). They showed
that in the infinite-width limit case NTK converges to a deterministic limit kernel which
stays constant during Gaussian descent training of the random weights initialized with
the Gaussian distributions. These results were extended by Huang, Du and Xu (2020) to
orthogonal initialization which was shown to speed up training of fully connected deep
networks. Nitanda and Suzuki (2017) obtained global convergence rate for the averaged
stochastic gradient descent for over-parametrized shallow neural networks.

Recently it was shown in several papers, see, e.g., Allen-Zhu, Li and Song (2019),
Kawaguchi and Huang (2019) and the literature cited therein, that the gradient descent
leads to a small empirical Lo risk in over-parametrized neural networks. Here the results
in Allen-Zhu, Li and Song (2019) are proven for the ReLU activation function and neural
networks with a polynomial size in the sample size. The neural networks in Kawaguchi
and Huang (2019) use squashing activation functions and are much smaller (in fact,
they require only a linear size in the sample size). In contrast to Allen-Zhu, Li and
Song (2019) there the learning rate is set to zero for all neurons except for neurons in
the output layer and consequently in different layers of the network different learning
rates are used. Actually, they compute a linear least squares estimate with the gradient
descent, which is not used in practice. It was shown in Kohler and Krzyzak (2021) that
any estimate which interpolates the training data does not generalize well in a sense



that it can, in general, not achieve the optimal minimax rate of convergence in case of a
general design measure.

In recent survey paper Bartlett et al. (2021) conjectured that over-parametrization
allows gradient descent to find interpolating solutions which implicitly impose regular-
ization, and that over-parametrization leads to benign overfiting. For related results
involving the truncated Hilbert kernel regression estimate refer to Belkin et al. (2019)
and to Wyner et al. (2017) for the results involving AdaBoost and random forests. Lin-
ear regression in overfitting regime has been also considered in Bartlett et al. (2020).
Benign over-parametrization in shallow ReLU networks has been analyzed by Wang and
Lin (2021). They showed Ly error rate of y/logn/n for over-parametrized neural network
when the number of hidden neurons exceeds the number of samples. In the present paper
we show that over-parametrization in learning the regularized Lo risk by the gradient
descent leads to excellent generalization.

1.7. Notation

Throughout the paper, the following notation is used: The sets of natural numbers, nat-
ural numbers including 0, real numbers, nonegative real numbers and complex numbers
are denoted by N, Ny, R, Ry and C, respectively. For z € R, we denote the small-
est integer greater than or equal to z by [z]| and the largest integer smaller or equal
to z by |z]. Let D C R? and let f : RY — R be a real-valued function defined on
RY. We write 2 = argmin,cp f(2) if min.ep f(2) exists and if = satisfies € D and
f(x) = min,ep f(2). The Euclidean norm of z € R? is denoted by [|z||. For f:R% = R

[flloo = sup |f(z)

z€R4

is its supremum norm. Furthermore we set

[1flloc,a = sup | f(z)]
z€A

for A C R?. S, denotes the ball with radius r in R% and center 0 (with respect to the
Euclidean norm). Let F be a set of functions f : R — R, let 21,...,2, € R, set
27 = (z1,...,2,) and let p > 1. A finite collection fi,..., fy : R? = R is called an L,
e—cover of F on z7 if for any f € F there exists ¢ € {1,..., N} such that

n 1/17
(i S f ) — fi<xk>|f’> <.
k=1

The L, e-covering number of F on z7 is the size N of the smallest L, e—cover of F on
z7 and is denoted by N (e, F,zT).

For z € R and 5 > 0 we define Tz = max{—f, min{f, z}}. If f : R? — R is a function
and F is a set of such functions, then we set (T3f)(z) = T (f(z)) and

T,B]:: {Tﬁf : f e ]:}



1.8. Outline

In Section 2 we define our estimate. In Section 3 we present our main result concerning
the rate of convergence of a neural network estimate with one hidden layer learned by
gradient descent. The proof of the main result is given in Section 4. In the appendix
we present the proof of an auxiliary result from empirical process theory applied in the
proof of our main result.

2. An over-parametrized neural network regression estimator

We consider neural networks with one hidden layer defined by

d
Freta(z) = wi) + Z o (D wl) 2 ® —ao+20«g [z +y) (12)

j=1 k=1
where K, € N is the number of hidden neurons,
v e€R (i=0,....,K,), Bi=Bi1,---,0a) €R? (i=1,...,K,),
veER (i=1,...,K,)

and

l
W = (w§7])§)j,k,l = (0%57’7) = (a()valv"'?aKnv/Bl)' "aBKna’ylv"‘77Kn)

is the vector of the 1 + K, - (d + 2) many weights of the neural network fpesw. In the
sequel we use the logistic squasher

o(z) = 1/(1+e77) (13)

as the activation function.
We will learn the weight vector w by applying gradient descent to the regularized
empirical Lo risk

:li|fnetw(Xi>_1/i|2+C2' <ag+ Kn '%0;) . (14)
n & , n2/3 " p2/3 — k
To do this, we initialize w(0) randomly (independent from D,,) as follows: We set
B,=12-n- K,

and choose B uniformly distributed on {z € R? : ||z| = B,} and 5, uniformly dis-
tributed on [—By, By,] such that 51, ..., Bk,, 71, - .-, Yk, are independent, we choose
ar=0(k=0,...,K,) and then we set

w(0) = (a0, -k, B1y- s BKy s Y05 -+« s VK, )-

Next we compute

w(t+1) = w(t) = A Vi Fr(w(t) (15)



fort =0,1,...,t, — 1. Here t, € N is the number of gradient descent steps which we
perform.
Our estimate is then defined by

mn(m) = fnet,w(tn)(w) (16)

and
mp(z) = T, Mn(x), (17)

where Tgz = max{min{z, 8}, —f} is a truncation operator and £, = c3 - log n.

3. Main results

Theorem 1 Assume d = 1. Let (X,Y) be an [0,1] x R-valued random vector such that
E {604'Y2} < (18)

holds for some constant c4 > 0 and assume that the corresponding regression function
m(x) = E{Y|X =z} is bounded, satisfies

[ m@)de <o,

and that its Fourier transform 3 satisfies

F(w)| < -

for some c¢1 > 0. Choose c5 > 0, let cg > 0 be sufficiently large, and set
1
K,=n%, L,=cg- (logn)5 .n2/3. K, M= T B,=12-n-K,
n

and
tn = [(logn)?-n?3 . L,],

let o be the logistic squasher and define the estimate as in Section 2. Then one has for
n sufficiently large
B / () — m(@)]P x (d) < o7 - (logn)® -0~ mn{es3 )

Remark 1. In Theorem 1 the number of parameters of the network can be arbitrarily
large, as long as it is bounded by a polynomial in the sample size n. In particular, it
may be much larger than the sample size n, and nevertheless the estimate generalizes well.

Remark 2. In Braun et al. (2021) neural network estimates with one hidden layer
learned by gradient descent have been analyzed and the generalization error was bounded



using the classical Vapnik-Chervonenkis theory. There the optimal rate of convergence
of (up to some logarithmic factor) n~ /2 was shown and this rate has occurred for K, of
order y/n. In contrast, Theorem 1 above shows that in case of a proper regularization of
the empirical Lo risk any value of K,, = n with ¢5 > 1/2 leads (up to some logarithmic
factor) to the better rate of convergence of n~ min{2/3.¢5}  In particular, as soon as we
choose K, larger than n?/3 we get (up to some logarithmic factor) the rate of convergence
n=2/3. So in our theoretical setting the over-parametrization improves up to some point
the rate of convergence, and from this point on any further over-parametrization achieves
this better rate (as soon as it is not too large, i.e., as long as the number K, of hidden
neurons is a polynomial in the sample size n).

4. Proofs

4.1. Auxiliary results concerning the estimation error

Lemma 1 Let F : REX — R, be a nonnegative differentiable function. Lett € N, L > 0,

ap € RE and set .
A= —

L

and

agt1 =ag — A- (VaF)(ak) (k € {0,1,...,t — 1})

Assume

I(VaF)(a)| < v/2-t- L-max{F(ao),1} (20)
for all a € RE with ||a — ap|| < /2t -max{F(ag),1}/L, and

[(VaF)(a) = (VaF)(b)[| < L - [la —b] (21)

for all a,b € RE satisfying

||a—ag||§\/8~z-max{F(ao),1} and ]b—a0||§\/8-£-max{F(ag),1}. (22)

Then we have

llax — ap|| < \/2-2-(F(a0) — F(ag)) forallke{l,... t},

s—1

2
D llagsr —al* < 7 (Flao) = F(ay)) forall s € {1,....t}
k=0
and
F(ay) < F(ag_1) forallke{1,...,t}.
Proof. See Lemma 2 in Braun et al. (2021). O

10



Lemma 2 Assume supp(X) C [0,1]¢, 4 > 1, 2-t, > Ly, ¢ <n*3/16 and
W< x (= K d 2 o 2tn
‘wl,k‘ > ( =1..., n) an HW_VH = fn -max{Fn(v),l}. (23)

Then we have with probability one

(FwE) )] < 26 d ()7 K212 mas{Fuw), 1),

Proof. Using (a +b)2 <2-a?+2-b% (a,b € R) we get

(Ve Fr) ()

2 & 9
= E <n§ (Yi—fnet,w(Xi))'anetw(Xi)
ik \" i Ok
R A
L0 (e e 2 K SR s
+8wj('fl)c (”2/3 (wio)™+ = 57 E(MU) >>

2
" 1 " 0 8- 62 . Kg il 1
S Z Z Y fnetw z))2 : ﬁ Z (anet,w(Xi)) + % . Z(wg,]z)Q
ij,l =1

i=1 W; k k=0
From this we get the assertion as in the proof of Lemma 5 in Braun et al. (2021). O

Lemma 3 Assume supp(X) C [0,1]¢, 4% > 1, t, > L, and

ln
max{](W2)§1,l| ]v(l) } <At (k=1,....K,) and |we—v|?< 8-L—-maX{F(v), 1}.
' (24)
Then we have with probability one

(T FEa)(W1) — (Vo F)(92)]

<1312 max(/F 9], 1) (L2} G0 K[ s |
Proof. We have

(T Ea)(W1) — (Vo Fr(w2)

2 — 0
= Z *Z(Yi - fnet,wl(Xi)) : @ fnetwl(X)
, n- ow; owl)
7.kl =1 7.k
(2w + 2 fﬁ«w )2
2 — )
**Z(Yi - fnet,wz(Xi)) : )fnet WQ(X)
i O ke

11



(0
.k

2 @ )
S 4. Z <TL Z(}/z - fnet,wl (Xz)) : anet,w1 (Xz)
7.kl

i=1 W; &

2
2 ¢ 0
_ﬁ Z(K - fn€t7W2 (Xz)) ’ anet,wl (Xz)>
i=1

8wj7 i

2 & 0
+4 - Z (n Z(Y; — fret,ws (Xi)) - anet,w1 (Xi)

4.kl i=1 W; k

2
2 — 9
_E ;(Y; - fnet,WQ (Xz)) : mfnet,w2 (Xz)>

2
0 Co (1)\2 , c2 Kp o (1)2
T a0 \ s ~((wa)1 )" + 273 ‘Z((W2)1,l)

j?k
2 2 Kn
c5 - K, 1 1
8 L DI - (W)l
k=0
From this we get the assertion as in the proof of Lemma 6 in Braun et al. (2021). O

Lemma 4 Let 8, = c3 -log(n) for some suitably large constant c3 > 0. Assume that
the distribution of (X,Y) satisfies (18) for some constant ¢y > 0 and that the regression
function m is bounded in absolute value. Let A, be an arbitrary event. Let F, be a set
of functions f : R* — R and assume that on the event A, the estimate m,, satisfies

my, = Tg, My
for some m,, which satisfies
Thn() - mn(, (le Yl)v cee (XTH Yn)) € Fn.

Let 6, > cg - (logn)?/n be such that we have for any & > 6,/(8 - B2)

. V5

Then my, satisfies

E(( [ 1mata) = m) PP

(log No(w - B, T3, Fn, x?))l/Q du.

10°6

1 Lo
—9. <n D i (Xi) = Yil? - Ly 1<, Geltmh)) — - > Im(Xi)
=1

=1

2
<o (5n+<10gn>)

n

—Yz\?)) -1An>

for n > 1 and some constant cqg > 0, which does not depend on n or By.

12



Proof. This lemma follows in a straightforward way from the proof of Theorem 1 in
Bagirov, Clausen and Kohler (2009). A complete proof is given in the appendix. O

Lemma 5 Letp > 1, L,V >0, K € N, let 0 : R — [0,1] be a continuous squashing
function, and let F be the set of all functions

K
fTR—>R, f(aj)ZCO—I—ZCk'O’(ak'ZE—Fbk)
k=1
where
K
ai,...,ag,b1,...br,co,c1,...,cx €ER  with Z|ck\ <V
k=1

are arbitrary. Then we have for any 0 < 0 < 2- L and =7 € [0,1]"

1%
spsmrans (oY1) 25

Proof. Let
K

fl@)=co+ Y cr-olag-z+bg).

k=1
Then we can rewrite f as
f(x) =co+ Z ck - o(bk) + Z ck-oag - o+ bg),
k=1,...,K:a,=0 k=1,...,K:a;#0

hence we can assume without loss of generality that in the definition of F all aj are
nonzero.

Choose u; e R (j =1,...,J = [V/d] — 1) such that

a(uj):j-% (j=1,...,J).

Then u; < ug < --- < uy holds and for k € {1,...,J — 1} and x € (ug, up+1] we have

<l

5 R
Sol@)<(k+1) 5 kg < Z Luyo0)(#) < (k4 1) -

<l

and



and

J
0 1)
su Y/ (uj,00 < =
CEGE ;V 7 ) |4
This implies
K K
CoJchk-O'(ak-l‘erk)fCo—Z ({ak>0} Z . uj,oo ak93+bk)
k=1 k=1
L5
+1{ak<0} ’ Z V ’ 1(uj,oo)(ak -+ bk)) |
j=1

<

M=

J
0
‘ck’ ’ 1{ak>0} ak x+bk ZV [u,00) ak .%'—l—bk)
‘7:

e
Il
—

J
1)
+Z‘ck|‘1{ak<0} ak :L’—i—bk ZV'l(Uj:OO)(ak'x—i_bk)
k=1 j=1

0

[~ .

<

i
I

In case ax > 0 we have
1[Uj,oo) (ak ‘T A+ bk) = 1[uj—bk,oo)(ak : SL') = 1[(uj-—bk)/ak,oo) (l‘),
and in case ai < 0 we have
Luy00) (@k * @ + b)) = 1(u;—by 00) (@k ) = Loo,(uj—by) far) (T) = 1 = L[ —b,) fag,00) (T)-
Using this together with
J

J=1

o
| =lenl - <o

we can rewrite

K
CO+ch' <1{ak>0} Z [u],oo ak x+bk)+1{ak<0} Z : uj,oo)(ak'x+bk>)
k=1

]—1
on [0,1] as
K
g(@) =2+ > 1z, 00)(x)
k=1
where K =K -J,0<a; <as < --- < ag <1 and where ¢, ...,Ccg € R satisfy
K
> e <V
k=1

14



Let G be the set of all functions g of the above form. Then we have shown that for any
f € F there exists g € G such that

sup |f(z) — g(z)| < 6.
z€[0,1]

Hence it suffices to show that we have for any 0 < 6 < 2- L and z} € [0, 1]"

1% 9. L\ 512
Np(2-5,TLQ,m’f)§<<n+5+1>-5) :

which we will show next.
Let g € F be arbitrary, i.e., assume that g : [0, 1] — R is given by

k=1
where
0<a<azs<---<ag <1
and _
K
Co,....Cx ER with Y | <V
k=1

Choose N € N and t1,...,tny11 € R with
hh=0<t1 < - <tn <1< tng

such that
lg(tipi—) —g(ti)| <6 (i=1,...,N) (25)
and
l9(tiva) —g(ts)[ 20 (i=1,...,N —1)
hold. Then we have

N-1 K
D o lglti) —glt)l < > el <V,
i=1 k=1
which implies
N-1
(N - 1) o< Z |g(t1+1) - g(tz)| <V
i=1
and v
N < 5 + 1.

15



Let Gn be the set of all piecewise constant functions g : [0,1] — R which are piecewise
constant with respect to a partition of [0,1] into N + 1 intervals. By (25) we know

inf ||g — 7|l < 4.
Jnf 19 = Glloo,j0,1]
Together with Lemma 13.1 and Example 13.1 in Gyorfi et al. (2002) this implies
NP(2 : 67 TLgvleL) < Np(éa TLngxqf)
B AN AN
- n )

< (n+ NV <2.5L>N+1

1% 9. L\ 512

[l
4.2. Auxiliary results concerning the approximation error
Lemma 6 Letr > 1 and f(n € N with
_ logn)? 1
Kn . exp (_(mgm> S -,
Ci12°T 4
and set K, = 8- ([logn])? - K,. Let m : R* = R be a function with
/ im(a)| dz < oo, (26)
R4
and assume that the Fourier transform E of m satisfies
/ lwl|-  sup  |F(@)]dw < 0. (27)
R4 DER: || @] =||w]l
Let (X,Y), (X1,Y1), ..., (X0, Yy) be R? x R-valued random variables with supp(Px) C
Sy, and let Wy, ..., Wk,,, Th, ..., Tk, be independent random variables, independent
from (X,Y), (X1,Y1), ..., (Xpn,Yn), such that Wy, ..., Wik, are uniformly distributed
on{x € R : ||z| =1} and Ty, ..., Tk, are uniformly distributed on [—r,r]. Then for
n sufficiently large there exist (random,)
c13 ¢
ag € [—ci3,¢13) and  aq,...,ak, € [—f;i, f;i] ,
which are independent of (X,Y), (X1,Y1), ..., (Xn,Yn), such that outside of an event

with probability less than or equal to

1
n

16



one has )

Ky,
c
[ o) =0 =Sty (97 a2 7)| Pty 2 o
r k=1 Kn
and
L WX+ T 2 6, (29)
ap#0
where .
n

- 16-n- K, - ([logn])?

Proof. The proof is an modification of the proof of Lemma 1 in Braun et al. (2021).
The assertion depends only on the joint distribution of

(Xv Y)7 (Xb Y1)> RN} (Xn7Yn)’ (Th Wl)7 R (TKna WK},)

In the sequel we construct (11, W1),...,(Tk,, Wk, ) in a special way such that this joint
distribution remains fixed and that the assertion holds.
To do this, define g : R x R — R by

Ly (t) - e15 - [Jwl| - sup 1P (@)]

1
g(t,w) 5.
2.1 WeER?: [|0]|=(lw]l

where ¢15 > 0 is chosen such that g is a density, i.e., we have

1

Cl15 = T .

Jra Wl - suPgera . )=o) [F'(@)] dw
Set Rn = 8. [lognw . kn Let Al,l = <T1,17W1,1)7 ALQ = (TLQ,WLQ), ceey A2,1 =
(To,1, Wan), A2 = (To2, Wa2), -y Agn = Tkt Wiot)s Arne = Tk, 2 Wik, 2)s

..., be independent and identically distributed random variables with density g, which
are independent from (X,Y), (X1,Y1), ..., (Xn,Yn), and let Ur 1, Uay, ..., Ug, 1, U2,
Usg, ..., Ug, 9, ---be independent uniformly on [0, 1] distributed random variables,
which are independent of all other random variables.

Since g is a product of the density of an uniform distribution on [—r,7] and a radially
symmetric density on R we can assume without loss of generality that (T7,W1), ...,
(Tk, , Wk, ) are in fact given by

Wia W1 (Nogn)?
_1)'T1,177’)7"'7 _1)T n277—7"'7
(( ||W171 (( H(flogn) HWL(ﬂogn-\VH
Wf(n WR'", logn])?
((=1) T 1o ™) (21) - T, T )

R Wil E W, oIl
hence it suffices to show that there exist (random)

d ~ ~ C13 C13
op € [—613,613] an O‘Lh"'aal,(]'logn])Qv"'704Kn,1>"'O‘Kn,([logn])2 S _?a? )
n n

17



which are independent of (X,Y), (X1,Y1), ..., (Xn,Yn), such that outside of an event
with probability less than or equal to 1/n we have

(ogn)” WkT : C14
m(z) — ag — g, 10,00 Lox— Ty || Px(dz) <= (30)
/&, kZ Z i ><Hwk,ju ! K,
and
T
min - X =Ty il > 0n. 31
i=1,..;nk=1,....Kn.j=1,....([log n])2: ||ij|| k’J‘ (31)
ak’j;é()
Define
h(t,w) = sin([lw]| -t +0(w)) - [lo]| - |F(w)],
where 6(w) € [0, 27), ) ' )
F(w) = @) |F()],
and
-|h(t if ((t,w) € [-r,7] x RY
Fltw) = 0 (t,w)| if ((t,w) € [=rr ,
| if ((t,w) € (R\ [—r,7]) x RY,
where
1
Cl16 — .
f[_w]de |h(t,w)|d(t,w)
Then f is a density on R x R? and
0 < L <
= S C16
2.7 Jga W]l - |F(w)] dw
1
= - B < 00
Jirrxga [sin(llw]] -t + 0(w))] - w]| - [F(w)]d(t, w)
By the definitions of f and g we know
1 A
ft,w) < 2r oA @ eelol s (@) = argltw) ((tw) € RRY,
T DER?: | @]|=]|w]| (32)
32
where .
cirr=2-1- 18
C15

From the properties of the Fourier transform and the fact that m is real—valued, it follows
that

18



( W)d/Z
1
~ G L, (oSt 6(0) — cos(B(@) - [Pl do
; (cos (Ilwll - 5% +0(w) ) = cos(0(w))) i
- o7 L, ol )] de
- (2m)d [lwl]
1 .
27r)d/2/ /| sl £+ 0 - o] P Gl o
Assume ||z|| < r, which implies
ool el _
[[w]] [ —
By considering the cases H ” >0 and ‘ﬁ ﬁ < 0 separately, we get

0
/ sin ([l - £+ 0(e)) dt

llwll

[t (S5 =) ssn ol £+ 00 a
# [ 1o (1= 22 sl -2+ 0000 at

r T
= _/ 10,00) (“ —t) csin (Jwl| - £ + 0(w)) dt
0 [[w]]
0 T
—l—/ (1 — 1[0700) <wwﬁ — t)) . Sin(HWH -t 4+ 9(&))) dt

0
_ / sin ([Jw|| - £ + 0(w)) dt

-

" wlz .
- /_r 110,00) <||WH - t> -sin (||lw]| - t + 6(w)) dt.

Consequently we get for any = € R?, ||z|| < r

1
mie) = mO)+ g [ /“ sl 00) - ol P

1 .
- W [ [ s e+ o) dt ol )

S 1 22t s 40 dt - | F(w)|d
s [, oo (555 =) sl -+ 00) db- ol 1)
1 wla
=18 — o5 1 S —t) - h(tw)d(t
U (a2 /[_r,r]xw [0’°°><ku ) (1) d(t )

19



1 1 Wl
T T ond2 e 1 Tt h(t CF (W) d(tw).
o~ it a0 (T 1) somtbit - s

]

Here c1g is a constant which is bounded independent of r since

0
|/R/_ sin ([|w|| - ¢ + 6(w)) dt - ]| - [F(w)] dul
= ’/]Rd ((—=1) - cos (|[w]| - 0 + B(w)) + cos (|[w]| - 7 + O(w))) - | F(w)] dw]
§2-/Rd |F(w)|dw < oo

(where the last inequality followed from (26)).
For k€ {1,...,K,} let j; € N be the minimal j € N which satisfies

f(A)

U ——
c17 - 9(Ag5)

kj S

For any ¢ € N we have
J(Ar,) } { { f(Ar) }} { f(Ar) }
plu, <) |\ _glply, . < W)y UL _gl Tk
{ h ci7 - 9(Aki) M=y 'g(Ak,i)‘ & c17 - 9(Ar,i)

_ fl2) _ L1
B /Rde c17 - 9(2) 9(z)dz = /Rde fz) dz C17 - a7’

hence -
) J(Ary) } - ( 1 )Z‘ 1
P{JieN: U< ——r<r=> (1-— — =1.
{ M= 9(Ag;) P

Consequently j, € N exists with probability one.
Furthermore we have for any measurable B C R x R¢

P{A;, € B} = Y P{jr=i, A, € B}
=1

) i—1
A s
— <11> P{U,Hgf( k’l) ,AkiEB}
c17 ’ c17 - 9(Axy) '

() e{a i )

(- 17) Y SRR e

20



Hence for any [ € {1,...,8:[logn]|} the random elements (Akyji ) k= (1=1) B 1 (1= 1)Kot o
are independent with density f and

. . 1 1—1 1
P{j. =i} = <1_017> e

holds for any i € N, k € {1,..., K, }.
Set
(1-1)-Kn+Kp 1)

1 —
ha ) =osti Y Gn

2
_ - C1
" k=(-1)-Kn+1 6

. Wl;[jk "X
'SZgn(h(Tka?Wkajk))'l[o,oo) HWk ] H - Tkv]'k .
sJk

For any x € S, we have that the random variables

Zim D (T W) - Loy [ ™ gy
(2m)4/2 - 16 ’ ’ ’ Wi ’

(k=(1-1)-K,+1,...,(1—1)- K, + K,) are independent and identically distributed
with expectation equal to m(z) — c¢15. Consequently we have

Sr

E /S Im(e) ~ i, () Px(de) = / Elm(z) — f, 7. (2)/*Px (d)

(1-1)-Kn+Kp,

1
= /TVar = Y Zp| Px(dx)

" k=(1-1)-Kn+1

= = / Var(Zl) Px(dl")
Sy

/ E (Z}) Px(dx)

r

1 1 Wi, -x c19
< = Ellpe [ 1y ) b < 22
T K, (@mfdg {[0’ )<|!W1,j1\| 1’”)}—Kn

By Markov inequality this implies that we have for any [ € {1,..., ([logn])?} at least
with probability 1/2

IA
14

G (@)Px(dz) < ffn

For any [ € {1,...,8 - [logn]} the probability that j; > ([log n])? holds for some k €

{l-1)-K,+1,...,1- K,} is bounded from above by

. (Mlogn])* 2

1
c17 c17 4
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Furthermore we have

P{aie{1,...,n}3ke{(l—l).f%n+1,...,l-l%n:

2 b X
ji < ([logn])* and | S — Th i

Wil

<5n}

§P{3i€{1,...,n}§|k€{(l—1)~f(n+1,...,l-f(n5|j6{1,...,([logn])2}:
<5n}
r =8

Hence for any [ € {1,...,8 [logn]} at least with probability 1/8 we know that

— T
Wil 7

Sn-.f(n-(ﬂogn})llé

g,

1

" m(z) = f, &, (@) "Px (dz) < Ién :

gk < ([logn])* for all k € {(1 —1)- K, +1,...,1- K,}
and T
WL - X;
min — DIk Ty
Wi | o

) ) > On
ie{l,..n}ke{(l-1)-Kn+1,...,l. Kp}

hold. Consequently it holds at least with probability

1 8-([log n]) 1 1
— i >1— _Z.8. >1_ =
1 <1 8) >1—exp < S 8 (Hogn])) >1 -

that there exists [ € {1,...,8- ([logn])} such that we have

5 m(z) - f, &, (@) PPx (dz) < K'n :

gk < ([logn])? forall k € {(1 —1)- K, +1,...,1- K,}

and
. Wl;fjk - T
_ min = Tk | = On.
i€{1ym b KE{(I=1) K41, K j€{1,o (Mo n))2} | Wi |

Let I € {1,...,([logn])?} be minimal such that the above three properties hold and set

1 1 . 1 1
ki = g Ry Ok W) € [z o

for all k € {(1—1)-K,+1,...,1- K,} and set all other aj ; = 0. (In case that the above
two properties do not hold for all [ € {1,...,8 - ([logn])} set o ; = 0 for all k£ and j.)

22



Then (30) and (31) hold with probability at least 1 — n. O

4.3. Auxiliary results concerning the optimization error

Let (1,41),. .., (Tn,yn) € R x R, let K € N, let By,...,Bg : R = R and let cp > 0.
In this subsection we consider the problem to minimize

1 a K,
F(a) = - E lag + g ag - Bi(xi) — yil* + c2 - <n233 s E a%) ;o (33)
i=1 k=1 k=1

where a = (ag, ...,ax)T, by gradient descent. To do this, we choose a(®) € RX and set
alt) —a® _ ) . (V.F)(a®) (34)
for some properly chosen A\, > 0.

Lemma 7 Let F be defined by (33) and choose agy such that

F(agy) = min F(a).

acRK+1

Then for any a € RE*! we have

4-c
1(VaF)(a)|* > n2/32 - (F(a) — F(aop)).

Proof. The proof if a modification of the proof of Lemma 3 in Braun, Kohler and Walk

(2019).
Set Bo(z) =1,
1 0 0 ... O
e 0 K, 0 ... 0
N DT T
O 0 0 ... K,
B:(Bj(xi))lgign,OSjSK and A:a-B 'B+n2/3'E'

Then A is positive definite and hence regular, from which we can conclude
_ 1 T ©2 T
F(a) = E-(B-a—y) -(B~a—y)+W-a ‘E-a

1 1
= al’Aa—2y"-Ba+ —yly
n n
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1 1
= (a— A_IEBTy)TA(a - A‘lﬁBTy) + F(aop),

where 1 1 !
Flag) =—-y'y—y' -—-BA™".—.BTy.
n n n
Usi
e b’Ab > 2 .bTEb > -2 . bTh
= n2/3 = n2/3

and AT = A we conclude
F(a) — F(agp)
41 .1
= (AT (a- A7 -BTy)TAY?(a— A~ BTy)

n2/3 1 1
<™ (A (a— A7 BTy))TAA}(a— A1 BTy)
2 n n
n?/? T alor W alor
:?'((A) (a—A"-B'y)) A(a— A" -B'y)
2 n n
2/3 1 1
L (Aa— —BTy)T'(Aa— —BTy)
co n n
n2/3 2 2
n2/3 )
= o 1VaP) @),

where the last equality follows from

1 1 2
(VaF)(a) = Va <aTAa — 2yTEBa + nyTy> =2Aa— EBTy.

4.4. Proof of Theorem 1

Our proof is an extension of the proof of Theorem 1 in Braun et al. (2021).
W.lo.g. we assume ||m|os < Bn. Set K, = |K,/(8 ([logn])3)] and let A, be the
event that |Y;| < (3, holds for all i = 1,...,n and that there exist (random)

€13 (13
ap € [—c13,¢13] and  ay,...,ak, € {—f(n,f(n} ,
which are independent of (X,Y), (X1,Y1), ..., (Xy,Y,), such that
K, 2
/[0,1}01 m(z) — ap — ; - 119,00) (WkT -z + Tk) Px(dx) < % (35)
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and

0 0
omin (B X > 6 (36)
o, #0
_ Bn
hold for 677, = W > 6 - 10gn
We have
/‘mn )‘QP)((dx)
—E</|mn —m(z)]’Px(dz) - )+E</\mn —m(z)*Px(dz) - 1A%>
<B( [ (o) m(a)PPx(dn) 1, ) + 452 - PLA)

_ <</|mn($) — m(z)*Px (dz)

n n

1 7 1
—92. (n D o Imn(Xi) = Yil* - 1y, <, ieftn)} — - > m(Xq) - yi|2)> . 1An>

=1 =1

1 n
2o (320 ¥ iz et~ 3o <) 1,

=1
+46; - P(A7)
= Tl,n + T2,n + TS,n-

In the remainder of the proof we derive bounds on T;,, for i € {1, 2, 3}.
In the first step of the proof we show that we have on A,

F,(w(0)) < ¢y - (log n)z.

On A,, it holds

1 s 2 02 Kn o 2 2 2
o (w(0) = EZm—m + ¢y - WJFW.ZO <2 - (logn)2.
i=1 k=1

In the second step of the proof we show that we have on A,

K,
>l | < car - (logm) - n'/%,
k=1

To do this, we show first that on A, the assumptions (20) and (21) of Lemma 1 hold,
i.e., we show that on A, we have

[(Vw Fn) (W)l < \/2 “tn - L - max{F,(w(0)), 1} (37)

for all w with

lw —w(0)|| < /2 tn - max{F,(w(0)), 1}/Ln
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and
[(VwEn)(W1) = (Ve Fp)(W2)[| < Ly - w1 — wo| (38)

for all wy, wo satisfying

i = wlO)] <[5+ 7 max({Fa(w(0), 1}
and
I = wlO)] <[5+ £ max({Fa(w(0), 1}

By the result of the first step we know that we have F,(w(0)) < cag - (logn)2. Together
with
W] < w—wO)|+0 (k=1,....K,)

(where we have used that the initial weights satisfy o =0 (k =0,...,K,,)) and

t

< 2.0%3 . (logn)?

L,
this implies that in order to prove (37) we can assume that the assumptions of Lemma
2 hold with 4 = ¢g; - n'/3 - (logn)?. From this and

co - (logn)* - n*? - K} < L,

we can derive (37) by an application of Lemma 2. In the same way we can prove (38) by
applying Lemma 3 with 4% = co1 - n'/3 - (logn)>.
From this we can conclude by Lemma 1 and the first step of the proof that we have

on A,
F(w(tn)) < F(w(0)) < ¢ - (logn)?, (39)

which implies

K, 2 Kn
(Zm%) < Kool
k=1 k=1
n?/? (06™)? | K S5 ()
2/3 2/3
< T F(wlta)) £ - F(w(0))
Cc2 c2
c? .
< 2.p23 . (logn)
C2
In the third step of the proof we show
Tin < co3 - (logn)t - n=2/3, (40)
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By the results of the second step we know that on A, it holds
z) = ™ +Z (i) gy i)y e F

where F is defined as in Lemma 5 with V = ¢g; - (logn) - n'/3. By Lemma 5 we know

log N3 (6, T, F, )

co1 - (logn) - nt/? co1 - (logn) - nt/? 2. Bn
< - - .
< ( 5 +2] log| |n+ 5/3 +1 5/3

Consequently,

. Ve
cg - \/Z 0 2/ (log Nao(u, Ts, F, x?))l/Q du
n €106

is for 6 > co3 - n=2/3/(8 - 52) implied by

which in turn is implied by
d > co5 - (log n)4 .n2/3,

Application of Lemma 4 yields the assertion.
In the fourth step of the proof we show

Ty < 26 (log n)z- (41)
By Lemma 6 (applied with r = 1) we get
Tsn < 4-52. <711 + P {|Y;| > B, for some i € {1,...,n}}>
= 027'(10gnn)2+4-5721-P{Y;;] > B, for some i € {1,...,n}}.
Using (18), which implies
P{|Yi| > B, for some i € {1,...,n}} < n-P {exp(04 . YQ) > exp(ey - 53)}
Blowle V) o

“exp (ca-c3 - (logn)?)

we get (41).

In the fifth step of the proof we derive an upper bound on T3, by a sum of several
terms. For that, let ag ... ak, be defined as in the definition of the event A,, and define
on [0, 1] a piecewise constant approximation of m by

K,
f(x) = a0+ Z g - 1[0,00) Z wk,] )+ w;(c?())

k=1
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(In case that A,, does not hold set oy = a1 = -+ = ag, =0.) Set

Kn d
x):ao—{—Zak-a Zw,(g?j).'m(])—i—w,(g
k=1 j=1

For g(z) = oo + Z,{;"l ag - o(BL - x4+ ) we define

pen(g) = cz - <n2/3 n2/3 Zak>

)

We have
1
T
2 2.n
1A ) 1 ¢
=E | (=D 1in(X:) = Yil* Ly <p, Gty — 5 D Im(X
i=1 i=1
n (tn)y\2
1 - 2 (O‘ )
gE((n;!mn(Xi)—Yil e ( n2/3 n2/3 Z
1 n
T Z |m (X;) — Yz|2> : 1An>
=1

1 < 1 &

+E <pen(f*) . ]‘A’n,)
=:T5 0 +Ton+T7pn+ T3y
In the sizth step of the proof we show
~2/3

Tspn < c29 - (logn)® - n

On A,, we have

CQ‘Kn

a? K, K ey - C2
* _ 0 Z 2413
pen(f ) : lAn = C2- <n2/3 / < ) >~ 2/3 +
(logn)°
S C29 - n2/3 ’
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which implies (43).
In the seventh step of the proof we show

(logn)® (logn)®

T7n < c30- K, G313 (44)
Let A, be the event that there exists (random)
c13 ¢
Qo € [_0137 613] and at, ..., 0K, € |:_ ]N;z ’ Iéi:|
which are independent of (X,Y), (X1,Y1), ..., (Xn,Ys), such that (35) and (36) hold
for §,, = #{Lﬂogn])? > 6-logn. By the Cauchy Schwarz inequality, by (42), by (18)
(which implies EY* < 00), and by conditioning inside the expectation on the random
variables w,(gog, ey w](fol)i (k=1,...,K,) and «ay, ..., ak,, which are independent of D,,,
we get
1 1o
T < B(1 3 M- 007 - LY () - %) 15,
i=1 =1
2
E ! Y — - Y;? E{(1 17 )2
+ nz; f(X ——Zrm )b B, — )%
(2
< B{ [ 1) - mPPx() 15, }

+e30 - (logn)® - /P{|Y;| > B, for some i € {1,...,n}}
log n)°
< {/‘f |2P)((d.1‘) 1An} +c33 - (71?)/2)

On A,, we have by (35)

1 ~(logn)
2
— Px(dz) < — <c
[ 15() = m(a) P o) < e - e
which implies (44).
In the eighth step of the proof we show
1
Ton < cs6- (45)

We have

o = B((E 00— £ r - - R -, )

3

IN
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;ZEOf(Xz‘) — f5(X0)] - (2Bn + c37 - (logn)?) - 1An>-
=1

On A, we have by |o(z) — 1jg00)(z)| < el (cf., Lemma 9 a) in Braun et al. (2021)),
(36) and §,, > 6 -logn

£~ F(X)] = |Zak (B Xi+2,”) Zak Lio,00) (8" Xi 4 71”)
< Z|ak| exp (18T Xi +94)1)
Kn
< ) low| - exp (—6,)
k=0
< 2-(logn)* - exp (=6 -logn)
2 (logn)?
né
Hence, we have
2 - (logn)* 1
T < (n‘;g) - (280 + c78 - (logn)*) < c36 - -

which implies (45).
In the ninth step of the proof we show that we have on A,, for any ¢t € {1,...,t, — 1}

F(a(t-i-l) Bt

)

77(t+1)) _ %Z ‘}/; _ f*(XZ)’2 o pen(f*)

=1
202 ) alt) (t 1 ¢ X 2 N
< (1— an) ‘ (F(a“ﬁ“m”)—n;m—f (X)) = pen(f?)
2 + 5(0) . (0) v gl ()
Ln.ng/g'(F(Omﬁ ) = F(a®, B,y )>, (46)

where o = (o) k=0,... k,, With oy, defined as in the fifth step of the proof. On A,, we know
from the second step of the proof that Lemma 1 holds, and from the proof of Lemma 1
(cf., proof of Lemma 2 in Braun et al. (2021)) we know

F(altHD), 0+, 4(0H) < Pal), 60,9) = S [ V(a5 F(a®, 50,9 O) 2

By Lemma 7 we know

Hv(a,ﬂ,'y)F(a(t)a B(t) ’ V(t)) ”2

9 2
F(a®, 30 5®)

9 P, g0 )

2 Knp d
2.2
k=1 j=

— | OBk,
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2

0
EF(O‘(U’ B(t) ) ’y(t))

Consequently we get

1 n
(t4+1) pt+1) . (+1)y _ — k(Y2 *
Pt 500, 5(050) = &3 1% £ (XD = pen( )

= F(a), g0, 4 0)) — F(a*, O, 4©)

IA

1 *
F(a®, 80,70) = —— - [V o 5.y P(a®, 50,90) |2 - F(a*, 6,7

1 4-62

< F(a®, 8041 - o (F(a(t),ﬁ(t)m(t)) - F(Oé*ﬂ“%%”))

—F(o, 5(0)77(0))

which implies (46).
In the tenth step of the proof we show that we have on A,

F(a*, 89,4 — F(a*, 51, 4®)

d
<egs (Bt (Qogn)®) - > 00180 -8+ =) @)
k=1,..,Kn: j=1
ap#0

On A, we have |Y;| < 3, for i = 1,...,n. From this, X; € [0,1] a.s. and Lipschitz
continuity of the logistic squasher we get

F(a*, 89,40y — F(a*, 30,41
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1 n n

1
D 1Y = Fret(ar 50 40 (Xi)[* = - D 1Y = Fet,ar,50 40y (X
=1 =1

d
es- (Bt (logn)) - 0 (1B - A1+ i =),
k:1,¥é<n: j=1
Y

<

n

which implies (47).
In the eleventh step of the proof we show that on A,, we have for any ¢t € {1,...,t,—1}

d

t 0 t 0 1
S OB B =) < e . (48)
k=1,..,Kn: j=1
ap#0

For this we show 5

SINT (s) n
s NG X = G (49)

o, #0

and

d
s s 1
> OCIBE =B+ =) < s- e ear - (logn)? - — - exp(=6,/2)  (50)
k=1,...,Kn: j=1 n
ap #0

for all s € {0,...,t,} by induction on s. Observe that (50) directly implies (48).
Trivially, (49) and (50) hold on A,, for s = 0. Next we show that if (49) and (50) hold
for some s € {1,...,t, — 1}, then (50) also holds for s + 1. To do this, set

(Ba’_)/) = (577) - )\n : V(B,w)F(((%BafY))‘
Using
|0’ ()] = |o(z) - (1 = o(2))] < min{|o(@)],[1 — o(2)[} < [o() = Ljp,00)(7)]

(where the first inequality holds due to o(x) € [0,1]) we can conclude from |o(z) —
Ljo,00) (@)] < el (cf., Lemma 9 a) in Braun et al. (2021)) that

X o' (B - Xi+w)| < [max exp (= 8¢ Xi + )

-----

As a consequence, we get for k € {1,...,K,} and j € {1,...,d} by the Cauchy-Schwarz
inequality

'8F

e (a,ﬁ,w'
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(fnet,(a,,@,'y) (XZ) - Yl) S o' (ﬂl{ - Xi + ’Yk) ’ Xi(j)

<2 oyl - Z\fm s (X)) = Vil - [ X9 - o' (BF - X + )|

J Z|fnet (.8 (Xi) = Yil? - |ag] - JiZo’(ﬁ,{-Xﬁw)z
=1

<z-¢m-ak¢;zwwm+w
i=1
<2 VFa, 52l (~ min {157 X +ul}).

Hence, we have shown

|Br.j — Bl
oF
|2 J(( 8, w)]

-----

for any k€ {1,..., K,}.
For 7; we get in a similar fashion

oF
Vi — - )\n |l \&, O,
|k — Vil ‘8%( B ’7)‘

< 20V F(a,8,7) 1 o] - exp <—i:rrlli}?n{\ﬂzf-Xi+vk!}>

for any k € {1,..., K,}.
Using
F(al,59),41)) < F(w(0)) < ¢ - (logn)”

(cf., (39)), (49) and (50) we can conclude

S« Zw““ — B+ e =42

k=1,..Kn: j=1
ap#0

<s-c3cor - (logn)? s — exp(—8,/2) + Y (ZW“ BN+ Iy =)
ak;éO

1
< s-cg-cor - (log n)2 T exp(—0n/2) + c3 - co1 - (logn)2 T - exp(—dn/2)
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<(s41)-c3-co - (logn)?- Li - exp(—6n/2).

n

Furthermore, if (49) holds for some s € {1,...,t, — 1} and (50) holds for s + 1, then
(49) also holds for s + 1, since

(s+1 (s+1)
i Zﬁ
ap#0
: 0) 3@ (0)
. 0 j 0
= 1217{1115%;% Zﬁk,j 'Xi + %%
) j=1
+1) (s+1) 0
= T ZW = BNXD 4 Y =)
ak#()
- ) (0)
(s+1 (s+1) 0
Zén_i:l ,,,,, 71}}2}1( ..... Kn: ka Bkj|+|7 Yk |
o #0 j=1
t
> 8, — c3 - ca1 - (logn)? - L—" -exp (—0,/2)
n
t
> 6, —c3-co1 - (logn)?- L—n -exp (—6 - logn)
n
> on.
-2

In the twelfth step of the proof we finish the proof by showing

1 4
T5,n S C40 ( o8 n) . (51)

Applying the result of the ninth step recursively together with the results of the steps
ten and eleven we get that we have on A,

n

1 " .
Ty = F(alt), 500 50)) - = 713, f2(X) = pen(f°)
=1
2-c tn *
< <1_L-n§/3> ) (F(Q(O)vﬁ(o)ﬁ(o)) Z‘Y X )| —pen(f ))
n z:l
2-c 1
+tp - TT;/?) -c41 - (B + (log n)g) "C42 ¢ 2

Bn + (logn)?
n

2-co

1 3 1 4
z,ﬁn+7(;gn) S040,(02;7%)'

< exp(—cas - (logn)?) - a5 - (logn)® + a5 - (logn)

Summarizing the above results we get the assertion. U
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A. Proof of Lemma 4

In the proof we use the following error decomposition:

(( [ 1mata) = m() PPt
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3\'—‘

=

_ [E{ymn@() _yp ypn} —E{Im(X) —Y\Z}

— (B{lma(X) = T3, Y PIDn } = B{Jms, (X) = T, Y 2}) ] - 1,

Z —Yil® - 1y, <60 Gef1,m) }—*Z!m KP))-IA")

=1

| B Ima(X) = T3, Y PDu } = B{ Ims, (X) - T, Y[*}
1 n
—2-n_§;(\mn<xi>—Tﬁnm2 M, (X0) = Ty, Yil?) | - 14,
(2
2- *Zlmn i) = Tp,Yil> —2- *Z|m5n i) = Tp,Yil?
=1
(2 —Z]mn D —-Yi[2—2. —Z|m y;|2> g,

(Zlmn ) Yl?—*Z'm Y')
( Z’mn i) =Yl Ly <p, Geqt,n) }—*Z!m Yz\2>

=1
4
= Z,-rl,n : ]-Anv
=1

where T, Y is the truncated version of ¥ and mg, is the regression function of Tp Y,
i.e.,

g,

mg, (@) = B{T5,Y|X =},
We start with bounding Ty, - 14,. By using a® — b* = (a — b)(a + b) we get
Tin = E{ma(X) = Y = jma(X) = T, Y| Dy }
~E{[m(X) = Y| — [mg, (X) = T, Y|
- E{(Tﬁny —Y)@2ma(X) - Y — Tﬁny)’Dn}

—E{ <(m(X) — mg, (X)) + (Ts,Y — Y)) (m(X) +mg, (X)—Y — Tﬂny)}
= Ty, + Tom.

With the Cauchy-Schwarz inequality and

; _ exp(ea/2 - V)
tY16n) = "exp(ea/2 - B2)
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we conclude

Tonl < B{T5,Y = Y2} \/B{|2ma(X) =¥ = T5, Y 2[ D, }
S \/E{\Y\Q Ty ) \/E{2 “2ma(X) = T, Y2+ 2 [Y 2| Dy }
exp(ca/2- |[Y]?)
< E{|Y|2. ez ) }
E{2 - [2ma(X) — Tp, Y2|D, } + 2E{|Y 2}
cq - 2
< B{rE e ) e (-522) - yforem)? + 2B (V).

With z < exp(x) for x € R we get

2
Y2 <= exp (5 VP (53)
4

and hence \/E{]YP -exp(cq/2 - |Y|2)} is bounded by

2 2
E <c4 - exp (04/2 . |Y|2) ~exp(cy/2 - |Y|2)> <E <C4 - exp (04 . \Y2)> < ca7

which is less than infinity by the assumptions of the lemma. Furthermore the third term
is bounded by /1832 + cag because

E(]Y|2) < E(1/e¢q - exp(cy - ]Y!z) < g9 < 00, (54)

which follows again as above. With the setting 8, = c3 - log(n) it follows for some
constants csg, c51 > 0 that

log(n
o g(n)

< C47 - €XP (—050 - (log n)2) . \/(18 -3 - (logn)? + ca9) < c51 -

From the Cauchy-Schwarz inequality we get

‘Tﬁ,n

< 2-E{r<m<x> —m, ()2} +2- BT,V - Y)P}

E{‘m(X) s, (X) Y — Tgan},

where we can bound the second factor on the right-hand side in the above inequality
in the same way we have bounded the second factor from 75 ,, because by assumption
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||m|| is finite and furthermore mg, is bounded by 3,. Thus we get for some constant
cso >0

2
E{’m(X) +mg, (X)—-Y — TﬂnY’ } < ¢52 - log(n).
Next we consider the first term. With Jensen’s inequality it follows that

E{\m(X)—mﬁn(X)yQ} < E{E(;Y—Tﬁnw?‘X)}:E{;Y—Tﬁnw?}.

Hence we get

Tonl < \J4-B{Y T5, Y[} 52 -log(n)

and therefore with the calculations from 75 ,, it follows that T¢, < cs3-log(n)/n for some
constant cs3 > 0. Altogether we get

log(n)

Tim-1a, <|Tsnl+ |Ton| < csa-

for some constant cs4 > 0.
Next we consider 75, - 14, and conclude for ¢t > 0

Bn Bn

L~ (£ Ts,Yi
‘nZO B Ba

=1

3 (e (|-

2
P{Ty, 14, >t} <P {af €Ts,Fn: E (' ) _E (‘mﬁ"(X) _IsY

Bn Br
2 ‘mﬁn(Xz‘) TYi|
Bn Bn

) B (\m(x) _TY

)
i

Application of Theorem 19.3 in Gyorfi et al. (2002) (with K7 = 4 and K9 = 16) and the
relation Vo (5, {ﬁ%g 1g € g} ,az’f) < N2 (0 - Bn,G,x) for an arbitrary function space G

2\ 5 B Bn Bn Bn

and § > 0 imply that we have for any t > §,

n
P{T5, -14, >t} <60-exp (—M . t> )
This implies
E(TQ,n . ]-An)

o)
<6, +/ P{T, 14, > t}dt
Sn

n 10° - 532
§5n+60€xp<—w5n) n n§055'5n-
n
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By bounding 73 ,, - 14, similarly to 71, - 14, we get

—_—
]
S

~—

E(T3,-14,) < c56-

for some large enough constant csg > 0 and hence we get in total

> (log n)?
E(> Tinla, | < esre(ont—2"
=1

for some sufficient large constant cs7 > 0.
We finish the proof by bounding 7%, - 14,,. We have

1 n
— Y Ima(X3) — Yif?
n =1

n

1

<= Ima(Xa) = Vil 1y, i<, et
=1

1~ .
< oD n(X0) = Vil 1y <, Gegr )
=1

1 2
T Z mn (Xi) = Y5[” - Li1v;1>8, for some jefl,..n}}
i=1

where we have used that [Tz — y| < |z — y| holds for |y| < 8. Consequently we have
E{Tyn-14,}

1 < )
<E {n Z [mn (Xi) — Yil® - 1{|Yj\>,8n for some je{l,...,n}}}
i=1

2
=E {‘mn(Xl) - Yi[*- 1{|Yj\>ﬁn for some je{l,...,n}}}

< VE {[mn(X1) — Yi[1} - \/P{|¥;| > i for some j € {1,.....n}}
1
<csg- B -,
n
where the last inequality followed from the proof of Theorem 1 (cf., (42)) and (18) and
(53), which imply
4
B{lma(6) - T} < 16- 31+ B <16- (614 5 Blow (0012}
4

4
< c59- B

In combination with the other considerations in the proof this implies the assertion of
Lemma 4. ([
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