
Analysis of convolutional neural network image
classifiers in a rotationally symmetric model ∗

Michael Kohler† and Benjamin Walter†,‡
Fachbereich Mathematik, Technische Universität Darmstadt, Schlossgartenstr. 7, 64289

Darmstadt, Germany, email: kohler@mathematik.tu-darmstadt.de,
bwalter@mathematik.tu-darmstadt.de

October 3, 2022

Abstract
Convolutional neural network image classifiers are defined and the rate of convergence
of the misclassification risk of the estimates towards the optimal misclassification risk is
analyzed. Here we consider images as random variables with values in some functional
space, where we only observe discrete samples as function values on some finite grid.
Under suitable structural and smoothness assumptions on the functional a posteriori
probability, which includes some kind of symmetry against rotation of subparts of the
input image, it is shown that least squares plug-in classifiers based on convolutional
neural networks are able to circumvent the curse of dimensionality in binary image
classification if we neglect a resolution-dependent error term. The finite sample size
behavior of the classifier is analyzed by applying it to simulated and real data.
AMS classification: Primary 62G05; secondary 62G20.
Key words and phrases: Curse of dimensionality, convolutional neural networks, image
classification, rate of convergence.

1 Introduction
In image classification, the task is to assign a given image to a class, where the class of
the image depends on what kind of objects are represented on the image. For several
years, the most successful methods in real-world applications are based on convolutional
neural networks (CNNs), cf., e.g., He et al. (2016), Goodfellow, Bengio and Courville
(2016), and Rawat and Wang (2017). For some image classification problems, it does
not matter whether objects are rotated by arbitrary angles concerning a correct clas-
sification. This is the case, for example, in visual medical diagnosis applications, see,
Veeling et al. (2018), or in galaxy morphology prediction, see, Dieleman, Willett and
Dambre (2015), and further applications, see, e.g., Delchevalerie et al. (2021) and the

∗Running title: Rotationally symmetric image classification
†Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - Projektnum-

mer 449102119.
‡Corresponding author. Tel: +49-6 151-16-23386

1

literature cited therein. A large number of papers demonstrate the empirical success of
increasing complex network architectures, especially for image classification tasks with
rotated objects, many architectures try to exploit this symmetry, e.g., by some kind
of invariance to rotation, see, e.g., Delchevalerie et al. (2021), Dieleman, Willett and
Dambre (2015), and Cohen and Welling (2016). However, a theoretical justification for
this empirical success exists only partially, see, Rawat and Wang (2017). The aim of
this article is, on the one hand, to introduce a statistical setting for image classification
that includes the irrelevance of rotation of objects by arbitrary angles, and, on the other
hand, to derive in this setting a rate of convergence of image classifiers based on CNNs,
which is independent of the dimension of the input image.

1.1 Image classification
In order to introduce the statistical setting for image classification, we describe idealized
(random) images as [0, 1]-valued functions on the cube

Ch =
[
−h2 ,

h

2

]
×
[
−h2 ,

h

2

]
⊂ R2

for h > 0. The function value at position (i, j) ∈ Ch describes the corresponding gray
scale value and the width h define the size of the image area. We denote the space of all
gray scaled images of width h by

[0, 1]Ch := {f : Ch → [0, 1] : f is a mapping}.

Since the space of all [0, 1]-valued functions on Ch equipped with the metric induced by
the supremum norm ‖ · ‖∞ defines a metric space, we obtain a measurable space(

[0, 1]Ch ,B
(
[0, 1]Ch

))
([0, 1]Ch ,B([0, 1]Ch)) with the corresponding Borel σ-algebra. Next we introduce our
statistical setting for image classification: Let (Φ, Y), (Φ1, Y1), . . . , (Φn, Yn) be inde-
pendently and identically distributed random variables with values in [0, 1]C1 × {0, 1}.
Here the (random) image Φ has the (random) class Y ∈ {0, 1}. In practice, we can
only observe discrete images consisting of a finite number of pixels. To obtain discrete
observations from our idealized images, we evaluate them on a corresponding finite grid.
To obtain a corresponding grid, we divide the cube C1 into λ2 equal sized cubes and
choose the grid points as the centers of the small cubes. Formally, this means that we
define the grid Gλ ⊂ C1 with resolution λ ∈ N by

Gλ =
{(

i− 1
2

λ
− 1

2 ,
j − 1

2
λ
− 1

2

)
: i, j ∈ {1, . . . , λ}

}
. (1)

The corresponding (continuous) function gλ : [0, 1]C1 → [0, 1]Gλ , which evaluates a
idealized continuous image on the grid Gλ, is defined by

gλ(φ) = (φ (u))u∈Gλ
(
φ ∈ [0, 1]C1

)
,

2

where for [0, 1]Gλ we use the notation

AI = {(ai)i∈I : ai ∈ A (i ∈ I)}

for a nonempty and finite index set I and some A ⊆ R. Based on the observations

Dn = {(gλ(Φ1), Y1), ..., (gλ(Φn), Yn)},

we aim to construct a classifier fn = fn(·,Dn) : [0, 1]Gλ → {0, 1} such that its misclassi-
fication risk P{fn(gλ(Φ)) 6= Y |Dn} is as small as possible. The misclassification risk is
minimized by the so-called Bayes classifier, which is defined as

f∗(x) =
{

1 , if η(λ)(x) > 1
2

0 , elsewhere,

where η(λ) is the a posteriori probability of class 1 for discrete images of resolution λ
given by

η(λ)(x) = P{Y = 1|gλ(Φ) = x}
(
x ∈ [0, 1]Gλ

)
. (2)

Thus we have

min
f :[0,1]Gλ→[0,1]

P{f(gλ(Φ)) 6= Y } = P{f∗(gλ(Φ)) 6= Y }

(cf., e.g., Theorem 2.1 in Devroye, Györfi and Lugosi (1996)). Since the a posteriori
probability (2) is unknown in general we evaluate the statistical performance of our
classifier fn by deriving an upper bound on the expected misclassification risk of our
classifier and the optimal misclassification risk, i.e. we want to derive an upper bound
on

E
{

P{fn(gλ(Φ)) 6= Y |Dn} − min
f :[0,1]Gλ→[0,1]

P{f(gλ(Φ)) 6= Y }
}

= P{fn(gλ(Φ)) 6= Y } −P{f∗(gλ(Φ)) 6= Y }.
(3)

Here we use so-called plug-in classifiers, which are defined by

fn(x) =
{

1 , if ηn(x) ≥ 1
2

0 , elsewhere,

where ηn(·) = ηn(·,Dn) : [0, 1]Gλ → R is an estimate of the a posteriori porbability (2).
To derive nontrivial rates of convergence for (3), it is necessary to restrict the class of
distributions of (gλ(Φ), Y) (cf., Cover (1968) and Devroye (1982)). For this purpose, in
Kohler, Krzyżak and Walter (2022) they have introduced the hierarchical max-pooling
model for the a posteriori probability of class 1 for discrete images (2) (see Definition
1 in Section 2). A drawback of this model, which is also used in Kohler and Langer
(2020) and in a generalized form in Walter (2021), is that it does not include some kind
of symmetry against rotation of subparts of the input image.

3

1.2 Main results
In this article we introdue a new model for the functional a posteriori probability

η(φ) = P{Y = 1|Φ = φ}
(
φ ∈ [0, 1]C1

)
(4)

for continuous images. The model is based on the following three structural assumptions,
which seem plausible for some image classification problems:

1. The crucial object is contained in a subpart of the image.

2. The rotation of objects by arbitrary angels is irrelevant concerning a correct clas-
sification.

3. An image is hierarchically composed of adjacent subparts.

These assumptions then lead to a model in which the a posteriori probability (4) is
computed by the supremum over all possible rotated subparts of a fixed width h of the
input image φ, inserting them into a function f : [0, 1]Ch → [0, 1] that satisfies appropri-
ate compository assumptions. Besides the compository assumptions, this function also
satisfies smoothness assumptions, which depend on a smoothness parameter p. Due to
the second point above, objects of one class can appear in differently rotated positions,
which makes this new model more difficult to capture by a CNN than the discrete model
from Kohler, Krzyżak and Walter (2022).
Assuming the new model for the functional a posteriori probability (4), we show that

least-squares plug-in CNN image classifiers (with ReLU activation function) achieve an
upper bound on the expected difference of the misclassification risk of the classifier and
the optimal misclassification risk (3) of√

log(λ) · (logn)4 · n−
2·p

2·p+4 + ελ

(up to some constant factor), where ελ is an error term depending on the image res-
olution. Thus, if we neglect the resolution-depending error term ελ our CNN image
classifiers are able to circumvent the curse of dimensionality assuming the new model
for the functional a posteriori probability (4).
In the proof we use standard bounds of empirical process theory (cf., Lemma 6 in

the supplement) to decompose our error (3) into an approximation error and the model
complexity. The main technical novelty is then an approximation result for the functional
a posteriori probability by convolutional neural networks (see Lemma 1). For model
complexity, we use a slight modification of Lemma 4 from Kohler, Krzyżak and Walter
(2022) that provides an upper bound on the covering number of convolutional neural
networks.

1.3 Discussion of related results
A statistical theory for image classification using CNNs (with ReLU activation function)
is considered in Kohler, Krzyżak and Walter (2022), Walter (2021), and Kohler and

4

Langer (2020). Kohler, Krzyżak and Walter (2022) and Walter (2021) study plug-in
CNN image classifiers learned by minimizing the squares loss, assuming generalizations
of the hierarchical max-pooling model (see Definition 1) for the a posteriori probability
of class 1. The model in Kohler, Krzyżak and Walter (2022) consists of several hierar-
chical max-pooling models and the model in Walter (2021) generalizes the hierarchical
max-pooling model in the sense that the relative distances of hierarchically combined
subparts are variable. In Kohler and Langer (2020), the hierarchical max-pooling model
from Definition 1 is considered, where the CNN image classifiers minimize the cross-
entropy loss. All three papers achieve a rate of convergence that is independent of the
input image dimension. The statistical performance of CNNs for classification problems
where the data is assumed to have a low-dimensional geometric structure is studied
in Liu et al. (2021). Here as well, a dimension reduction is achieved while residual
convolutional neural network architectures are used, i.e., convolutional neural networks
containing skip layer connections. Lin and Zhang (2019) obtained generalization bounds
for CNN architectures in a setting of multiclass classification. Classification problems
using standard deep feedforward neural networks were analyzed in Kim, Ohn and Kim
(2021), Bos and Schmidt-Hieber (2021) and Hu, Shang and Cheng (2020).
Much more theoretical results exist in the context of regression estimation. Oono and

Suzuki (2019) use a similar residual CNN network architecture as Liu et al. (2021) and
obtain estimation error rates that are optimal in the minimax sense. While they show
that application-preferred architectures (especially in image classification applications)
perform as well as standard feedforward neural networks, they do not identify situa-
tions in which CNN architectures outperform standard feedforward neural networks.
For standard deep feedforward neural networks, rate of convergence results with dimen-
sion reduction could be shown under the assumption that the regression function is a
hierarchical composition of functions of small input dimension (cf., Kohler and Krzyżak
(2017), Bauer and Kohler (2019), Schmidt-Hieber (2020), Kohler and Langer (2021),
Suzuki and Nitanda (2019) and Langer (2021)). Kohler, Krzyzak and Langer (2019)
have shown that in case where the regression function has a low local dimensionality,
sparse neural network estimates achieve a dimension reduction. Imaizumi and Fukamizu
(2019) obained generalization error rates for the estimation of regression functions with
partitions having rather general smooth boundaries by neural networks.
Approximation results for CNNs were obtained by Zhou (2020), Petersen and Voigt-

laender (2020) and Yarotsky (2018). That the gradient descent finds the global minimum
of the empirical risk with squares loss is shown for CNN architectures, e.g., in Du et al.
(2018). The networks used here are overparameterized. In Kohler and Krzyżak (2021),
it was shown that overparametrized deep neural networks minimizing the empirical L2
risk do not, in general, generalize well.

1.4 Notation
Throughout the paper, the following notation is used: The sets of natural numbers,
natural numbers including zero, integers and real numbers are denoted by N, N0, Z and

5

R, respectively. For x = (x1, . . . , xd) ∈ Rd we denote the maximum norm by

‖x‖∞ = max(|x1|, . . . , |xd|),

and for f : Rd → R
‖f‖∞ = sup

x∈Rd
|f(x)|

is its supremum norm, and the supremum norm of f on a set A ⊆ Rd is denoted by

‖f‖A,∞ = sup
x∈A
|f(x)|.

Let p = q + s for some q ∈ N0 and 0 < s ≤ 1. A function f : Rd → R is called (p, C)-
smooth, if for every ααα = (α1, . . . , αd) ∈ Nd0 with ∑d

j=1 αj = q the partial derivative
∂qf

∂x
α1
1 ...∂x

αd
d

exists and satisfies

∣∣∣∣∣ ∂qf

∂xα1
1 . . . ∂xαdd

(x)− ∂qf

∂xα1
1 . . . ∂xαdd

(z)
∣∣∣∣∣ ≤ C · ‖x− z‖s

for all x, z ∈ Rd. Notice that in the case of p ≤ 1 a function (p, C)-is smooth if and only
if it is Hölder continuous with exponent p and Hölder constant C.
Let F be a set of functions f : Rd → R, let x1, . . . ,xn ∈ Rd and set xn1 = (x1, . . . ,xn).

A finite collection f1, . . . , fN : Rd → R is called an ε– cover of F on xn1 if for any f ∈ F
there exists i ∈ {1, . . . , N} such that

1
n

n∑
k=1
|f(xk)− fi(xk)| < ε.

The ε–covering number of F on xn1 is the size N of the smallest ε–cover of F on xn1 and
is denoted by N1(ε,F ,xn1).

For z ∈ R and β > 0 we define Tβz = max{−β,min{β, z}}. If f : Rd → R is a function
and F is a set of such functions, then we set

(Tβf)(x) = Tβ (f(x)) and TβF = {Tβf : f ∈ F} .

Let I be a nonempty and finite index set. For x ∈ Rd we use the notation xI = (xi)i∈I
and for M ⊂ Rd we define x +M = {x + z : z ∈M}.

1.5 Outline of the paper
In Section 2 the new model for the functional a posteriori probability is introduced and
the CNN image classifiers used in this paper are defined in Section 3. The main result
is presented in Section 4 and proven in Section 6. In Section 5 the finite sample size
behavior of our classifier is analyzed by applying it to simulated and real data.

6

2 A rotationally symmetric hierarchical max-pooling model for
the functional a posteriori probability

Before we introduce the new model for the functional a posteriori probability (4), we
present the hierarchical max-pooling model from Kohler, Krzyżak and Walter (2022) for
the a posteriori probability for discrete images (2). Here a (random) image is directly
defined as a [0, 1]{1,...,d1}×{1,...,d2}-valued random variable for some image dimensions
d1, d2 ∈ N. In the hierarchical max-pooling model, the following two main ideas are
used: The first idea is that the class of an image is determined by whether the image
contains an object that is contained in a subpart of the image. The approach is then
to estimate for all subparts of the image whether they contain the corresponding object
or not. The probability that the image contains the object is then assumed to be the
maximum of the probabilities of all subparts (see Definition 1 a)). The second idea is that
the probabilities for the individual subparts are composed hierarchically by combining
decisions from smaller subparts (see Definition 1 b)).

Definition 1 Let d1, d2 ∈ N with d1, d2 > 1 and m : [0, 1]{1,...,d1}×{1,...,d2} → R.
a) We say that m satisfies a max-pooling model with index set

I ⊆ {0, . . . , d1 − 1} × {0, . . . , d2 − 1},

if there exists a function f : [0, 1](1,1)+I → R such that

m(x) = max
(i,j)∈Z2 : (i,j)+I⊆{1,...,d1}×{1,...,d2}

f
(
x(i,j)+I

)
(x ∈ [0, 1]{1,...,d1}×{1,...,d2}).

b) Let I = {0, . . . , 2l − 1} × {0, . . . , 2l − 1} for some l ∈ N. We say that

f : [0, 1]{1,...,2l}×{1,...,2l} → R

satisfies a hierarchical model of level l, if there exists functions

gk,s : R4 → [0, 1] (k = 1, . . . , l, s = 1, . . . , 4l−k)

such that we have
f = fl,1

for some fk,s : [0, 1]{1,...,2k}×{1,...,2k} → R recursively defined by

fk,s(x) = gk,s
(
fk−1,4·(s−1)+1(x{1,...,2k−1}×{1,...,2k−1}),
fk−1,4·(s−1)+2(x{2k−1+1,...,2k}×{1,...,2k−1}),
fk−1,4·(s−1)+3(x{1,...,2k−1}×{2k−1+1,...,2k}),
fk−1,4·s(x{2k−1+1,...,2k}×{2k−1+1,...,2k})

)(
x ∈ [0, 1]{1,...,2k}×{1,...,2k}

)

7

for k = 2, . . . , l, s = 1, . . . , 4l−k, and

f1,s(x1,1, x1,2, x2,1, x2,2) = g1,s(x1,1, x1,2, x2,1, x2,2) (x1,1, x1,2, x2,1, x2,2 ∈ [0, 1])

for s = 1, . . . , 4l−1.
c) We say that m : [0, 1]{1,...,d1}×{1,...,d2} → R satisfies a hierarchical max-pooling
model of level l (where 2l ≤ min{d1, d2}), if m satisfies a max-pooling model with
index set

I = {0, . . . , 2l − 1} × {0, . . . 2l − 1}
and the function f : [0, 1]{1,...,2l}×{1,...,2l} → R in the definition of this max-pooling model
satisfies a hierarchical model with level l.

In addition to these structural assumptions on the a posteriori probability, Kohler,
Krzyżak and Walter (2022) also assume that the functions gk,s of the hierarchical model
are (p, C)-smooth (for the definition of (p, C)-smoothness, see Section 1.4). We aim to
extend the above model so that it becomes more realistic for practical applications of
image classification. We do this by introducing a model for the functional a posteriori
probability η(φ) = P{Y = 1|Φ = φ}. Here we are able to introduce some kind of sym-
metry against rotation of subparts of the input image. In order to rotate a subpart of
an image, we define the function rot(α) : R2 → R2 given by

rot(α)(x) =
(

cos(α) − sin(α)
sin(α) cos(α)

)
· x (x ∈ R2)

which rotates its input through an angle α ∈ [0, 2π] about the origin 0 ∈ R2. Further-
more, we define the translation function τv : R2 → R2 with translation vector v ∈ R2

by
τv(x) = x + v

(
x ∈ R2).

Besides the ideas of the hierarchical max-pooling model from Kohler, Krzyżak and Wal-
ter (2022), we want to integrate the following idea into our model: We consider an
image classification problem, where rotated objects correspond to each other, i.e., when
asking whether an image contains a particular object, it does not matter for the correct
classification whether the corresponding object is shown in some rotated position (cf.,
Figure 1). We solve this problem by assuming that there is a function into which we

Figure 1: All three images are assigned to the class ‘dog’.

can insert differently rotated subparts of an image (this function corresponds to the

8

function f : [0, 1]Ch → [0, 1] in part a) of the definition below). For a given subpart, the
function estimates the probability whether the subpart contains a specific non-rotated
object. We then estimate the probability whether a subpart contains the object rotated
by an arbitrary angle as follows: We rotate the subpart through different angles and
estimate for each angle by the above function whether the subpart contains the object.
The probability that the subpart contains the object rotated by an arbitrary angle is
then assumed to be the supremum of the estimated probabilities for the various rotated
subparts.
In the following definition we consider subparts of images φ ∈ [0, 1]C1 . The subparts

will have the form of possibly rotated cubes Ch of side length h > 0, which are subsets
of C1. A subpart of the image φ ∈ [0, 1]C1 with side length h rotated by an angle α ∈ R
and located at position v is given by the function

φ ◦ τv ◦ rot(α)∣∣
Ch
∈ [0, 1]Ch ,

where we require h ≤ 1/
√

2 and v ∈ [−1/2 + h/
√

2, 1/2 − h/
√

2]2 to ensure that the
function τv ◦ rot(α)∣∣

Ch
maps into the image area C1 for all angles α ∈ [0, 2π] (for an

illustration see Figure 2). A non-rotated subpart with side length 0 < h′ ≤ h of an image
φ ∈ [0, 1]Ch is then given by φ ◦ τv

∣∣
Ch′
∈ [0, 1]Ch′ for some v ∈ R2 with v + Ch′ ⊆ Ch.

y

x

v

α

1/2

1/2

h/2

h/2

y

x

resulting subpart
original image

Figure 2: Illustration of an image φ and a subpart of the image, which is given by
φ ◦ τv ◦ rot(α)∣∣

Ch
as used in Definition 2 a).

Definition 2 Let m : [0, 1]C1 → [0, 1].
a) Let 0 < h ≤ 1/

√
2 and let

h/
√

2 ≤ b ≤ 1/2. (5)

We say that m satisfies a rotationally symmetric max-pooling model of width h

9

and border distance b, if there exists a function f : [0, 1]Ch → [0, 1] such that

m(φ) = sup
v∈[−(1

2−b),
1
2−b]

2
sup

α∈[0,2π]
f
(
φ ◦ τv ◦ rot(α)∣∣

Ch

) (
φ ∈ [0, 1]C1

)
.

b) Let l ∈ N and h > 0 and define hk = h/2l−k for k ∈ Z. We say that f : [0, 1]Ch → [0, 1]
satisfies a hierarchical model of level l, if there exists functions

gk,s : R4 → [0, 1] (k = 1, . . . , l, s = 1, . . . , 4l−k)

and functions
f0,s : [0, 1]Ch0 → [0, 1] (s = 1, . . . , 4l) (6)

such that we have
f = fl,1

for some fk,s : [0, 1]Chk → R recursively defined by

fk,s(φ) = gk,s
(
fk−1,4·(s−1)+1

(
φ ◦ τ(−hk−2,−hk−2)

∣∣
Chk−1

)
,

fk−1,4·(s−1)+2
(
φ ◦ τ(hk−2,−hk−2)

∣∣
Chk−1

)
,

fk−1,4·(s−1)+3
(
φ ◦ τ(−hk−2,hk−2)

∣∣
Chk−1

)
,

fk−1,4·s
(
φ ◦ τ(hk−2,hk−2)

∣∣
Chk−1

))
(
φ ∈ [0, 1]Chk

)
for k = 1, . . . , l and s = 1, . . . , 4l−k.
c) We say that m satisfies a rotationally symmetric hierarchical max-pooling
model of level l, width h and border distance b, if m satisfies a rotationally
symmetric max-pooling model with width h and border distance b, and the function
f : [0, 1]Ch → [0, 1] in the definition of this rotationally symmetric max-pooling model
satisfies a hierarchical model of level l.
d) Let p = q+s for some q ∈ N0 and s ∈ (0, 1], and let C > 0. We say that a hierarchical
model is (p, C)–smooth if all functions gk,s in its definition are (p, C)–smooth.

Remark 1. Condition (5) for the border distance ensures that the considered subparts
do not extend beyond the border of the image area and that the set of centers v of the
subparts is not empty.

For an illustration of the subdivisions of a subpart in Definition 1 b) and Definition 2
b), see Figure 3.

10

Figure 3: Illustration of the subdivisions used in Definition 1 b) and Definition 2 b).

3 Convolutional neural network image classifiers
In this section, we define the CNN architecture that we will use in this paper. Our
network architecture consists of t ∈ N convolutional neural networks computed in par-
allel, followed by a fully connected standard feedforward neural network. Each of the t
convolutional neural networks consists of L ∈ N convolutional layers, a linear layer and
a global max-pooling layer. As activation function we use the ReLU function σ : R→ R,
which is given by σ(x) = max{x, 0}.
In the r-th convolutional layer we have kr ∈ N channels and use filters of size Mr ∈ N,

where the global max-pooling layer computes the output of the convolutional neural
network by a linear layer and by the computation of the maximum over (almost) all
neurons of the output of the linear layer (the set of neurons whose maximum is computed
depends on an output bound B ∈ N0). Our convolutional neural network architecture
depends on a weight vector (so-called filters)

w =
(
w

(r)
i,j,s1,s2

)
1≤i,j≤Mr,s1∈{1,...,kr−1},s2∈{1,...,kr},r∈{1,...,L}

,

bias weights
wbias =

(
w(r)
s2

)
s2∈{1,...,kr},r∈{1,...,L}

,

and output weights
wout =

(
ws
)
s∈{1,...,kL}

.

The output of the convolutional neural network is given by a real-valued function on
[0, 1]Gλ of the form

f
(B)
w,wbias,wout(x) = max

{
kL∑
s2=1

ws2 · o
(L)
(i,j),s2

: (i, j) ∈ {1 +B, . . . , λ−B}2
}
, (7)

which depends on some output bound B ∈ {0, . . . , b(λ−1)/2c}, and where o(L)
(i,j),s2

is the
output of the last convolutional layer, which is recursively defined as follows:
We start with

o
(0)
(i,j),1 = x(i−1/2

λ
− 1

2 ,
j−1/2
λ
− 1

2

) for (i, j) ∈ {1, . . . , λ}2

11

and define recursively

o
(r)
(i,j),s2

= σ

(kr−1∑
s1=1

∑
t1,t2∈{1,...,Mr}

i+t1−dMr/2e∈{1,...,λ}
j+t2−dMr/2e∈{1,...,λ}

w
(r)
t1,t2,s1,s2 ·o

(r−1)
(i+t1−dMr/2e,j+t2−dMr/2e),s1

+w(r)
s2

)
(8)

for (i, j) ∈ {1, . . . , λ}2, s2 ∈ {1, . . . , kr} and r ∈ {1, . . . , L}. For k = (k1, . . . , kL) and
M = (M1, . . . ,ML) we introduce the function class

FCNNL,k,M,B = {f : f is of the form (7)} .

In definition (8) we use a so-called zero padding, which ensures that the size of a channel
is the same as in the previous layer. For odd filter sizes Mr we obtain a symmetric zero
padding as illustrated in Figure 4.

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

input channel output channel

Figure 4: Example of symmetric zero padding for Mr = 3 and λ = 4.

A fully connected standard feedforward neural network gnet : Rt → R with ReLU
activation function, Lnet ∈ N0 hidden layers and kr neurons in the r-th layer (r =
1, . . . , Lnet) is defined by

gnet(x) =
kLnet∑
i=1

w
(Lnet)
i g

(Lnet)
i (x) + w

(Lnet)
0 (9)

for some output weights w(Lnet)
0 , . . . , w

(Lnet)
kLnet

∈ R, where g(Lnet)
i is recursively defined by

g
(r)
i (x) = σ

kr−1∑
j=1

w
(r−1)
i,j g

(r−1)
j (x) + w

(r−1)
i,0


for w(r−1)

i,0 , . . . , w
(r−1)
i,kr−1

∈ R, i ∈ {1, . . . , rnet}, r ∈ {1, . . . , Lnet}, k0 = t and

g
(0)
i (x) = xi

12

for i = 1, . . . , k0. We define the class of fully connected standard feedforward neural
networks with Lnet layers and rnet ∈ N neurons per layer by

Gt(Lnet, rnet) = {gnet : gnet is of the form (9) with k1 = · · · = kLnet = rnet} . (10)

Our overall convolutional neural network architecture is then defined by

FCNNθθθ =
{
f(x) = gnet(f1(x), . . . , ft(x)) : f1, . . . , ft ∈ FCNNL,k,M,B, gnet ∈ Gt(Lnet, rnet)

}
for a parameter vector θθθ = (t, L,k,M, B, Lnet, rnet).
We define the least squares estimate of η(λ)(x) = E{Y = 1|gλ(Φ) = x} by

ηn = arg min
f∈FCNN

θθθ

1
n

n∑
i=1
|Yi − f(gλ(Φi))|2 (11)

and define our classifier fn by

fn(x) =
{

1, if ηn(x) ≥ 1
2

0, elsewhere.

For simplicity, we assume that the minimum of the empirical L2 risk (11) exists. If this is
not the case, our result also holds for an estimator whose empirical L2 risk is close enough
to the infimum. In practical applications, cross entropy loss or hinge loss is commonly
used instead of mean squared error considering classification problems. However, in
theoretical analysis, further assumptions on the distribution of (gλ(Φ), Y) are necessary
(see, e.g., Kim, Ohn and Kim (2021), Kohler and Langer (2020), and Liu et al. (2021)),
which is why we nevertheless use least squares estimates for the a posteriori probability.

4 Main result
In the sequel, let λ ∈ N be the resolution of the observed images defined as in Section 1.2,
i.e., the discretized quadratic images consist of λ2 pixels. Futhermore, we assume that
the functional a posteriori probability η(φ) = P{Y = 1|Φ = φ} satisfies a (p, C)-smooth
rotationally symmetric hierarchical max-pooling model of level l and width h. Before
presenting the main result, we introduce two further assumptions on the a posteriori
probability η. In order to formulate these assumptions we need the following notation:
For a subset A ⊆ R2 let 1

∣∣
A

: A → R denote the constant function with value one. Let
f0,s : [0, 1]Ch0 → [0, 1] (s = 1, . . . , 4l) be the functions from the hierarchical model of
η, where h0 = h/2l. We will use the assumptions below to approximate a rotationally
symmetric hierarchical max-pooling model by a convolutional neural network. The first
assumption is a smoothness assumption on the functions f0,s if we apply them to constant
images.
Assumption 1. For all s ∈ {1, . . . , 4l} there exists a (p, C)-smooth function g0,s : R→
[0, 1] such that

g0,s(x) = f0,s

(
x · 1

∣∣
Ch0

)

13

holds for all x ∈ [0, 1].
In the second assumption we bound the error that occurs if we replace the input of
the function f0,s, which is an possibly rotated subpart of an image φ ∈ [0, 1]C1 (cf.,
Definition 2), by a constant image whose gray scale value is chosen from the local neigh-
borhood of the corresponding subpart. The size of the subpart, as well as the size of the
neighborhood of the subpart, depends on the resolution λ, as shown in Figure 5.
Assumption 2. There exists a measurable A ⊂ [0, 1]C1 with PΦ(A) = 1, ελ ∈ [0, 1]
and a scaling factor c > 1 with h0 ≤ min{(c ·

√
2)/λ, 1/

√
2} such that for all φ ∈ A,

v ∈ [h0/
√

2− 1/2, 1/2− h0/
√

2]2, α ∈ [0, 2π], and s ∈ {1, . . . , 4l}:

sup
z∈C1 : ‖v−z‖∞≤ c

λ

∣∣∣∣∣f0,s
(

φ ◦ τv ◦ rot(α)∣∣
Ch0︸ ︷︷ ︸

subpart of φ with center v

)
− f0,s

(
φ(z) · 1

∣∣
Ch0

)∣∣∣∣∣ ≤ ελ.

Remark 2. Note that φ ◦ τv ◦ rot(α)∣∣
Ch0

is a subpart of φ with center v and width h0

rotated by α as illustrated in Figure 2. So we apply f0,s to an arbitrary subpart of φ with
center v and let z be choosen from the neighborhood of v. The condition h0 ≤ (c ·

√
2)/λ

ensures that the subpart of width h0 is contained in the corresponding neighborhood.
As illustrated in Figure 5, for a small scaling factor c, we consider subparts whose size
approximately corresponds to the resolution.

v

z
2 · cλ

Figure 5: Illustration of a subpart with center v and a point z as in Assumption 2,
where we choosed c = 1.05 and h0 = (c ·

√
2)/λ. In the background one can

see possible pixel values on the corresponding grid Gλ ⊂ C1.

To motivate that Assumption 2 seems realistic for some small ελ ∈ [0, 1], we consider
the following example:
Example 1 We assume that there exists a resolution λmax ∈ N with λmax ≥ 2, so that
an image is uniquely defined by the values on the grid

Hλmax =
{(

i

λmax − 1 −
1
2 ,

j

λmax − 1 −
1
2

)
: i, j ∈ {0, . . . , λmax − 1}

}
.

We can motivate this by the fact that humans have limited vision (cf., e.g., Gimel’farb
and Delmas (2018)), but are still good at classifying images. Therefore we assume that
PΦ(A) = 1 for A ⊂ [0, 1]C1 defined by

A = {φx ∈ [0, 1]C1 : x ∈ [0, 1]Hλmax},

14

where the image φx : C1 → [0, 1] corresponds to the bilinear interpolation of x ∈
[0, 1]Hλmax (for a definition of φx see Section E in the supplement). Furthermore, we
suppose that the functions f0,s : [0, 1]Ch0 → [0, 1], which compute the decisions for the
lowest level subparts, compute the average pixel value of the corresponding subpart:

f0,s(φ) = 1
h2

0

∫
Ch0

φ(x)dx
(
φ ∈ [0, 1]Ch0

)
(without loosing generality, we can ignore measurability issues here). Then, for
λ ≥ 32 · c · λ2

max we have

sup
z∈C1 : ‖v−z‖∞≤ c

λ

∣∣∣∣∣f0,s
(
φ ◦ τv ◦ rot(α)∣∣

Ch0

)
− f0,s

(
φ(z) · 1

∣∣
Ch0

)∣∣∣∣∣ ≤ 32 · c · λ2
max

λ
=: ελ (12)

under the conditions of Assumption 2 (the proof of inequality (12) can be found in the
supplement in Section E).

Theorem 1 Let n ∈ N \ {1} and l ∈ N, choose λ ∈ N with

λ ≥ 2l+2 · l−1, (13) let 0 < h ≤ 2l√
2 · λ

, (14) set b = 2l + 2 · l − 1
2 · λ , (15)

and let p ∈ [1,∞). Let (Φ, Y), (Φ1, Y1), ...,(Φn, Yn) be independent and identically dis-
tributed [0, 1]C1×{0, 1}-valued random variables. Assume that the functional a posteriori
probability η(φ) = P{Y = 1|Φ = φ} satisfies a (p, C)-smooth rotationally symmetric hi-
erarchical max-pooling model of level l, width h and border distance b. Furthermore,
assume Assumption 1 for (p, C)-smooth functions {g0,s}s=1,...,4l and Assumption 2 for
some ελ ∈ [0, 1], some measurable A ⊂ [0, 1]C1 and some scaling factor c > 1.

Choose Ln = dc1 · n2/(2p+4)e for some sufficiently large constant c1 > 0, set

L = 4l+1 − 1
3 · (Ln + 1), t =

⌈
2l−1/2 · π
c− 1

⌉
, B = 2l−1 + l − 1, Lnet = dlog2 te,

rnet = 3 · t and kr = 5 · 4l−1 + c2 (r = 1, . . . , L) for c2 > 0 sufficiently large, and for
k = 0, . . . , l set

Mr = 1{k>1} · 2k−1 + 3
(
r =

k−1∑
i=0

4l−i · (Ln + 1) + 1, . . . ,
k∑
i=0

4l−i · (Ln + 1)
)
,

where we define the empty sum as zero. Define fn as in Section 3. Then we have

P{fn(gλ(Φ)) 6= Y } − min
f :[0,1]Gλ→[0,1]

P{f(gλ(Φ)) 6= Y }

≤ c3 ·
√

log(λ) · (logn)4 · n−
2·p

2·p+4 + ελ

(16)

for some constant c3 > 0 which does not depend on λ and n.

15

Remark 3. The constant c3 in (16) depends polynomially on 2l. Therefore the resolu-
tion λ occurs logarithmically in (16) only in the case where 2l � λ, which leads to small
widths h (cf., equation (14)). Since the term

n
− 2·p

2·p+4

in (16) does not depend on the resoluation λ, our CNN image classifier is able to cir-
cumvent the curse of dimensionality in case that the a posteriori probability satisfies a
(p, C)-smooth rotationally symmetric hierarchical max-pooling model if we neglect the
resolution-depending error term ελ.

Remark 4. In our approximation result of Lemma 1, we can choose the function fCNN ∈
FCNNθθθ such that its t CNNs, which are computed in parallel, share the same weights.
More precisely, we can choose fCNN such that each filter of any layer corresponds to a
rotated filter in the same layer in a CNN computed in parallel (the weights only have
different positions within the filters). Therefore, with an appropriate restriction to our
function class FCNNθθθ so that the weights of the t CNNs are shared, one could improve
the rate of convergence in Theorem 1 by a constant factor. In some image classification
applications where rotated objects correspond to each other, such a constraint increases
the performance, see, e.g., Marcos, Volpi and Tuia (2016), Dieleman, Willett and Dambre
(2015), Wu, Hu and Kong (2015), and Cabrera-Vives et al. (2017). Our theoretical
analysis therefore supports the use of such additional weight sharing, in addition to the
weight sharing of the convolutional operation, and provides a theoretical indication of
why such CNN architectures have better generalization properties.

Remark 5. Condition (13) ensures that the border distance b defined as in (15) remains
less than or equal to 1/2 and that the width h satisfies h ≤ 1/

√
2 (cf., equation (14)).

Moreover, condition (13) ensures that h/
√

2 ≤ b. In the case of maximum width h =
2l/(
√

2 · λ) and for large l, we get close to the minimum border distance h/
√

2, since

b = 2l + 2 · l − 1
2 · λ = h√

2
· 2l + 2 · l − 1

2l︸ ︷︷ ︸
≈1

.

Condition (13) and choice (15) are therefore no real limitations on our model and we
obtain, as we have shown in Figure 6 for applications, reasonable border distances b and
widths h of the subparts.

Remark 6. Some of the network parameters depend on the rotationally symmetric
hierarchical max-pooling model. In applications, these network parameters can be chosen
in a data-dependent way, e.g., by using the splitting of the sample technique as used in
the next section.

16

b

h
b

h

Figure 6: The figure shows possible subparts of width h for the rotationally symmetric
hierarchical max-pooling model used in Theorem 1. On both sides we consider
an example in which we have λ = 29 and h = 2l/(

√
2 · λ), where on the left

hand side we have chosen l = 7 and on the right hand side l = 8.

5 Application to simulated and real data
In this section, we study the finite sample size behavior of our CNN image classifier
introduced in Section 3 by applying it to synthetic and real image data sets. Furthermore,
we introduce three other CNN architectures that we can motivate from our theory. We
compare the performance of all four CNN image classifiers with two alternative image
classifiers that are not specifically designed with the rotation aspect in mind.
We denote the function class introduced in Section 3 by F1 = FCNNθθθ for a parameter

vector θθθ = (t, L,k,M, B, Lnet, rnet). For the first alternative CNN architecture, we re-
place the fully connected feedforward neural network by simply computing the maximum
over the outputs of the t convolutional neural networks:

F2 =
{
f(x) = max{f1(x), . . . , ft(x)} : f1, . . . , ft ∈ FCNNL,k,M,B

}
.

Following the proof of Theorem 1, it is easy to see that the corresponding least squares
plug-in image classifier over this function class, achieve the same rate of convergence
as in Theorem 1. Our second alternative approach is inspired by the observation from
Remark 4. Here we follow, e.g., Dieleman, Willett and Dambre (2015) or Cabrera-Vives
et al. (2017) by applying the same CNN to multiple rotated versions of the input image
and then compute the overall output as the maximum of the individual outputs. We
rotate the input image by 90◦, 180◦, and 270◦, since multiples of 90◦ rotations map the
grid Gλ onto itself. Because it does not matter whether we rotate the input feature
maps of a convolutional layer and then inversely rotate the output feature maps, or
whether we rotate the corresponding filters, this architecture corresponds in our case to
an architecture that has shared rotated filters (for an illustration and a more detailed
explanation, see Dieleman, De Fauw and Kavukcuoglu (2016)). The rotation function
rot90◦ : [0, 1]Gλ → [0, 1]Gλ which rotates a discretized image with resolution λ ∈ N by
90◦ is given by(

rot90◦(x)
)(

i−1/2
λ
− 1

2 ,
j−1/2
λ
− 1

2

) = x(λ−j+1−1/2
λ

− 1
2 ,
i−1/2
λ
− 1

2

) (
x ∈ [0, 1]Gλ

)

17

for all i, j ∈ {1, . . . , λ} and our function class is defined by

F3 =
{
f(x) = max{g(x), g(rot90◦(x)), . . . , g(rot90◦ ◦ · · · ◦ rot90◦︸ ︷︷ ︸

3 times

(x))} : g ∈ F2
}
.

For our third alternative network architecture, we extend the idea from the function
class F3 by first rotating an input image by all angles of the discretization

{α1, . . . , αt} =
{2π
t
· 0, 2π

t
· 1, . . . , 2π

t
· (t− 1)

}
of [0, 2π) for some t ∈ N. The corresponding function class is defined by

F4 =
{
f(x) = max{g(f (α1)

rot (x)), g(f (α2)
rot (x)), . . . , g(f (αt)

rot (x))} : g ∈ FCNNL,k,M,B

}
,

where we use a nearest neighbor interpolation for the rotation function f (αi)
rot , which we

define and explain in detail in Section A.2 of the supplement.
In our first application, we apply our CNN image classifiers to simulated synthetic

image datasets. A synthetic image dataset consists of finitely many realizations

DN = {(x1, y1), . . . , (xN , yN)}

of a [0, 1]Gλ×{0, 1}-valued random variable (X, Y). Here, as in Section 1, λ ∈ N denotes
the resolution of the images and the value of Y denotes the class of the image. In our
first example, we use the values λ = 32 and λ = 64. The images of both classes contain
three randomly rotated geometric objects each, where images of class 0 contain three
squares. The images of class 1 also contain three squares, although at least one of the
squares is missing exactly one quarter (see Figure 7). For a detailed explanation of the
creation of the image data sets, see Section A.1 in the supplement.

Figure 7: Some random images as realizations of the random variable X, where the first
row show images of class 0 and the lower row show images of class 1.

Since our image classifiers depend on parameters that influence their performance,
we select them in a data-dependent manner by splitting our training data Dn into a
learning set of size nl = b4/5 · nc and a validation set of size nv = n− nl. We then train
our classifiers with different choices of parameter combinations on the learning set and
choose the parameter combination that minimizes the empirical misclassification risk on

18

the validation set. Finally, we train our classifier with the best parameter combination
on the entire training set Dn. For all four network architectures, we adaptively choose
the parameters l ∈ {2, 3}, k ∈ {2, 4} and Ln ∈ {1, 2}, where the network parameters are
then given by L = Ln · l, k = (k, . . . , k), M = (M1, . . . ,ML), B = 2l−1 − (l − 1) with
filter sizes M1, . . . ,ML defined by

M(r−1)·Ln+1, . . . ,Mr·Ln = 1{r>2} · 2r−2 + 3 (r = 1, . . . , l)

(note that the choice of layers and filter sizes is a simplification contrary to the choice in
Theorem 1). To make the comparison of the four CNN architectures fairer, i.e., to avoid
that the network architectures F3 and F4 are able to learn more angles, we adaptively
choose t ∈ {4, 8} for the function classes F1 and F2, t ∈ {1, 2} for the function class F3
and t = 8 for the function class F4. In particular, F3 depends on t, since the function
class F2 depends on t. For the function class F1 we additionally set Lnet = dlog2 te
and rnet = 3 · t. Finally, for the two alternative image classifiers that are not specifically
designed with the rotation aspect in mind, we use a standard fully connected feedforward
neural network (abbr. neural-s) with an adaptively chosen number of hidden layers
and neurons per layer from {1, 2, . . . , 8} and {10, 20, 50, 100, 200}, respectively, and a
kn–nearest neighbor estimator (abbr. neighbor) with an adaptively chosen kn from
{1, 2, 3} ∪ {4, 8, 12, 16, . . . , 4 · bntrain4 c}, using the KNeighborsClassier function from the
scikit-learn library.
In our example, we consider n = 200 and n = 400, using the Adam method of

the Python library Keras for the least-squares minimization problem (11). For the
implementation of the five neural network architectures, which are all defined as least
squares plug-in classifiers, we also use the Keras library.

The performance of each estimate is measured by its empirical misclassification risk

εN (fn) = 1
N

N∑
k=1

1{fn(xn+k)6=yn+k} (17)

where fn is the corresponding plug-in image classifier based on the training data and
(xn+1, yn+1), . . . , (xn+N , yn+N) are newly generated independent realizations of the ran-
dom variable (X, Y). In our example we choose N = 104. Since our estimates and the
corresponding errors (17) depend on randomly chosen data, we compute the classifiers
and their errors (17) on 20 independently generated data sets Dn+N . Table 1 lists the
median and interquartile range (IQR) of all runs. We observe that the two classifiers
using the architectures F3 and F4 outperform the two CNN classifiers that do not in-
clude additional weight sharing, which supports Remark 5. In two out of four cases,
the classifier with architecture F4 performs best. Moreover, the fourth classifier has the
largest relative improvement with increasing sample size, which could be an indicator
of a better rate of convergence. The fully connected neural network classifier and the
kn nearest neighbor estimator are not able to achieve satisfactory results because the
errors of these estimates roughly correspond to the expected error of a classifier that
always estimates the same class. We also observe that a larger resolution leads to a

19

λ = 32 λ = 64
n = 200 n = 400 n = 200 n = 400

approach median (IQR) median (IQR) median (IQR) median (IQR)
F1 0.3972 (0.0998) 0.2139 (0.1553) 0.4044 (0.1379) 0.2850 (0.3038)
F2 0.3926 (0.0728) 0.2312 (0.0768) 0.2013 (0.2668) 0.0768 (0.0351)
F3 0.1247 (0.0786) 0.0610 (0.0322) 0.0476 (0.0263) 0.0209 (0.0114)
F4 0.1386 (0.0862) 0.0357 (0.0301) 0.0521 (0.0666) 0.0206 (0.0154)

neural-s 0.4913 (0.0132) 0.4847 (0.0066) 0.4869 (0.0088) 0.4854 (0.0102)
neighbor 0.4939 (0.0055) 0.4957 (0.0059) 0.4937 (0.0056) 0.4934 (0.0067)

Table 1: Median and interquartile range of the empirical misclassification risk εN (fn).

better performance, which suggests that the error term ελ from Assumption 2 is small
for large resolutions.
In our second application, we test our image classifiers on real images. Here we use the

classes ‘4’ and ‘9’ of the MNIST-rot dataset (Larochelle et al. (2007)), which contains
images of handwritten digits. The digits are randomly rotated by angles from [0, 2π)
(see Figure 8). The resulting data set consists of 2, 400 training images and N = 10, 000

Figure 8: The first row show some images of the fours and the lower row show images of
the nines of the MNIST-rot data set.

test images of resolution λ = 28. Out of the 2,400 training images, we randomly select
n/2 training images per class and evaluate our classifiers using the corresponding N
test images. We choose the parameters of our image classfiers as above. The median
and interquartile range (IQR) of the empirical misclassification risk (17) of 20 runs
are presented in Table 2. We observe that the classifier using the function class F4
outperforms the other classfiers. The CNN architecture F3 performs second best, while
the alternative approaches not based on CNNs perform roughly as well as the CNN
architectures of classes F1 and F2.

6 Proofs
6.1 An approximation result
In this subsection, we show that a rotationally symmetric hierarchical max-pooling model
can be approximated by a convolutional neural network.

20

λ = 28
n = 200 n = 400

approach median (IQR) median (IQR)
F1 0.2965 (0.0669) 0.2123 (0.0492)
F2 0.3201 (0.0482) 0.2153 (0.0421)
F3 0.1627 (0.0577) 0.1106 (0.0397)
F4 0.1169 (0.0397) 0.0771 (0.0246)

neural-s 0.3061 (0.0321) 0.2044 (0.0343)
neighbor 0.2682 (0.0158) 0.2112 (0.0107)

Table 2: Median and interquartile range of the empirical misclassification risk εN (fn)
based on the corresponding subsets of the MNIST-rot data set.

Lemma 1 Let n, l, λ ∈ N with (2l + 2 · l − 1) ≤ λ. Let 0 < h ≤ 2l/(
√

2 · λ), set
b = (2l + 2 · l − 1)/(2 · λ) and let p ∈ [1,∞). Let η : [0, 1]C1 → [0, 1] be a function
that satisfies a (p, C)-smooth rotationally symmetric hierarchical max-pooling model of
level l, width h and border distance b. Furthermore, assume Assumption 1 for (p, C)-
smooth functions {g0,s}s=1,...,4l and Assumption 2 for some ελ ∈ [0, 1], some measurable
A ⊂ [0, 1]C1 and c > 1. Choose the parameters Ln and θθθ = (t, L,k,M, B, Lnet, rnet) as
in Theorem 1. Then there exists some fCNN ∈ FCNNθθθ such that

|fCNN (gλ(φ))− η(φ)|2 ≤ c4 ·
(
n
− 2·p

2·p+4 + ε2λ

)
holds for all φ ∈ A and some constant c4 > 0 which does not depend on λ and n.

In the points below, we first explain the steps in which we will prove Lemma 1. After-
wards we prove these steps by the auxiliary results of Lemma 2, 3 and 4 to prove Lemma
1 at the end of this subsection.

• First, we introduce a new model, namely the discretized hierarchical max-pooling
model of order d (see Definition 3 below).

• In the first step, we then show that we can approximate the rotationally symmetric
hierarchical max-pooling model by the new discretized model if the functions ḡ(i)

k,s of
the discretized model correspond to the functions gk,s from the continuous model.

• In the second step, we show how to bound the error that occurs once the functions
g

(i)
k,s in the discretized hierarchical max-pooling model are replaced by approxima-
tions ḡ(i)

k,s.

• In the third step, we show that we can compute a discretized hierarchical max-
pooling model by a convolutional neural network from the above class FCNNθθθ if
the functions ḡ(i)

k,s correspond to standard feedforward neural networks. This step
is similar to Lemma 5 from Kohler, Krzyżak and Walter (2022) for the generalized
hierarchical max-pooling model.

21

Since the functions gk,s of the continuous rotationally symmetric hierarchical max-
pooling model are (p, C)-smooth, we can then use the standard feedforward neural
networks from Kohler and Langer (2021) and the corresponding approximation
result to bound the overall error by combining the three steps.

The new discretized hierarchical max-pooling model is similar to the hierarchical max-
pooling model of Kohler, Krzyżak and Walter (2022) (see Definition 1) with the main dif-
ference that the positions of the hierarchically combined subparts are variable. Through-
out this subsection we will use the following notation: For k ∈ N0 and λ ∈ N we define
the index set

I(k) =
{
−d2

k−1e+ k − 1
λ

, . . . ,
−1
λ
, 0, 1

λ
, . . . ,

d2k−1e+ k − 1
λ

}2

⊂ R2,

where we have I(0) = {0} × {0}.

Definition 3 Let λ, l, d ∈ N with 2l + 2 · l − 1 ≤ λ.
a) We say that η̄ : [0, 1]Gλ → R satisfies a discretized max-pooling model of order
d if there exists functions f̄ (i) : [0, 1]I(l) → R for i ∈ {1, . . . , d} such that

η̄(x) = max
u∈Gλ : u+I(l)⊆Gλ

max
i∈{1,...,d}

f̄ (i)(xu+I(l)).

b) We say that f̄ : [0, 1]I(l) → R satisfies a discretized hierarchical model of level
l with functions {ḡk,s}k∈{0,...,l},s∈{1,...,4l−k}, where

ḡk,s : R4 → R+
(
k = 1, . . . , l, s = 1, . . . , 4l−k

)
and

ḡ0,s : [0, 1]→ R+
(
s = 1, . . . , 4l

)
,

if there exist grid points

ik,s ∈
{
−b2

k−1c+ 1
λ

, . . . , 0, . . . , b2
k−1c+ 1
λ

}2 (
k = 0, . . . , l − 1, s = 1, . . . , 4l−k

)
such that we have

f̄ = f̄l,1

for some f̄k,s : [0, 1]I(k) → R recursively defined by

f̄k,s(x) = ḡk,s
(
f̄k−1,4·(s−1)+1(xik−1,4·(s−1)+1+I(k−1)), f̄k−1,4·(s−1)+2(xik−1,4·(s−1)+2+I(k−1)),

f̄k−1,4·(s−1)+3(xik−1,4·(s−1)+3+I(k−1)), f̄k−1,4·s(xik−1,4·s+I(k−1))
)

for k = 1, . . . , l and s = 1, . . . , 4l−k and

f̄0,s(x) = ḡ0,s(x)

22

for s = 1, . . . , 4l.
c) We say that η̄ : [0, 1]Gλ → R satisfies a discretized hierarchical max-pooling
model of level l and order d with functions

{
ḡ

(i)
k,s

}
i∈{1,...,d},k∈{0,...,l},s∈{1,...,4l−k}, if η̄

satisfies a discretized max-pooling model of order d and the functions f̄ (i) : [0, 1]I(l) → R
in the definition of this discretized max-pooling model satisfy a discretized hierarchical
model of level l with functions

{
ḡ

(i)
k,s

}
k∈{0,...,l},s∈{1,...,4l−k} for all i ∈ {1, . . . , d}.

Lemma 2 Let λ, l ∈ N with 2l + 2 · l − 1 ≤ λ, and set b = (2l + 2 · l − 1)/(2 · λ).
Furthermore, let 0 < h ≤ 2l/(

√
2 · λ) and set hk = h/2l−k for k ∈ Z. We assume that

η : [0, 1]C1 → R satisfies a rotationally symmetric max-pooling model of level l, width h,
and border distance b given by the functions

gk,s : R4 → [0, 1] (k = 1, . . . , l, s = 1, . . . , 4l−k)

and functions
f0,s : [0, 1]Ch0 → [0, 1] (s = 1, . . . , 4l),

and let the functions fk,s : [0, 1]Chk → [0, 1] (k = 1, . . . , l, s = 1, . . . , 4l−k) defined as in
Definition 2. Moreover, we assume that all restrictions gk,s

∣∣
[0,1]4 : [0, 1]4 → [0, 1] are

Lipschitz continous regarding the maximum metric with Lipschitz constant L > 0 and
that Assumption 2 is satisfied for some ελ ∈ [0, 1], some measurable A ⊂ [0, 1]C1 and
c > 1. Then there exists a discretized hierarchical max-pooling model η̄ : [0, 1]Gλ → R of
level l and order

d =
⌈

2l−1/2 · π
c− 1

⌉
(18)

with functions {ḡ(i)
k,s}, where

ḡ
(i)
k,s = gk,s

(
i = 1, . . . , d, k = 0, . . . , l, s = 1, . . . , 4l−k

)
with g0,s(x) = f0,s(x · 1

∣∣
Ch0

) (x ∈ [0, 1]) for s = 1, . . . , 4l such that

|η̄(gλ(φ))− η(φ)| ≤ Ll · ελ
(
φ ∈ A).

Remark 7. For p ∈ [1,∞), the Lipschitz continuity of the restrictions gk,s
∣∣
[0,1]4 is a

consequence of the (p, C)-smoothness of the functions gk,s.
Proof. In the proof we use that for n ∈ N, a1, . . . , an, b1, . . . , bn ∈ R it holds that∣∣∣∣ max

i=1,...,n
ai − max

i=1,...,n
bi

∣∣∣∣ ≤ max
i=1,...,n

|ai − bi|, (19)

which follows from the fact that in case aj = maxi=1,...,n ai ≥ maxi=1,...,n bi (which we
can assume w.l.o.g.) we have∣∣∣∣ max

i=1,...,n
ai − max

i=1,...,n
bi

∣∣∣∣ = aj − max
i=1,...,n

bi ≤ aj − bj ≤ max
i=1,...,n

|ai − bi|.

23

Before we completely define the discretized hierarchical max-pooling model η̄, i.e., before
we define the corresponding grid points, we will bound |η̄(gλ(φ))− η(φ)| using equation
(19). Therefore we define the grid G = {u ∈ Gλ : u + I(l) ⊆ Gλ} and the cubes

Pu =
(

u +
[
− 1

2λ,
1

2λ

]2
)
∩
[
−1

2 + b,
1
2 − b

]2 (
u ∈ G)

such that the definitions of Gλ, I(l) and b yield

⋃
u∈G

Pu =
⋃

u∈Gλ : u+I(l)⊆Gλ

(
u +

[
− 1

2λ,
1

2λ

]2
)
∩
[
−1

2 + b,
1
2 − b

]2

=
⋃{

u +
[
− 1

2λ,
1

2λ

]2
: u ∈

{
−1

2 +
2l−1 + l − 1

2
λ

, . . . ,
1
2 −

2l−1 + l − 1
2

λ

}2}

∩
[
−1

2 +
2l−1 + l − 1

2
λ

,
1
2 −

2l−1 + l − 1
2

λ

]2

=
[
−1

2 +
2l−1 + l − 1

2
λ

,
1
2 −

2l−1 + l − 1
2

λ

]2

=
[
−1

2 + b,
1
2 − b

]2

(20)

Furthermore, definition (18) allows us to cover [0, 2π] by intervals {Θi}i=1,...,d of side
length (c − 1)/(2l−3/2) with centers {αi}i=1,...,d. Then, for φ ∈ A and x := gλ(φ)
inequality (19) and equation (20) imply

|η̄(x)− η(φ)|

=

∣∣∣∣∣∣ max
u∈Gλ : u+I(l)⊆Gλ

max
i∈{1,...,d}

f̄
(i)
l,1 (xu+I(l))− sup

v∈[− 1
2 +b, 1

2−b]
2

sup
α∈[0,2π]

fl,1(φ ◦ τv ◦ rot(α)∣∣
Ch

)

∣∣∣∣∣∣
=
∣∣∣∣∣max

u∈G
max

i∈{1,...,d}
f̄

(i)
l,1 (xu+I(l))−max

u∈G
sup

v∈Pu

max
i∈{1,...,d}

sup
α∈Θi

fl,1(φ ◦ τv ◦ rot(α)∣∣
Ch

)
∣∣∣∣∣

≤ max
u∈G

∣∣∣∣∣ max
i∈{1,...,d}

f̄
(i)
l,1 (xu+I(l))− sup

v∈Pu

max
i∈{1,...,d}

sup
α∈Θi

fl,1(φ ◦ τv ◦ rot(α)∣∣
Ch

)
∣∣∣∣∣

≤ max
u∈G

sup
v∈Pu

max
i∈{1,...,d}

sup
α∈Θi

∣∣∣f̄ (i)
l,1 (xu+I(l))− fl,1(φ ◦ τv ◦ rot(α)∣∣

Ch
)
∣∣∣ .

It suffices now to show that for all i ∈ {1, . . . , d} there exist grid points i(i)k,s (k =
0, . . . , l − 1, s = 1, . . . , 4l−k) of f̄ (i)

l,1 , such that∣∣∣f̄ (i)
l,1 (xu+I(l))− fl,1(φ ◦ τv ◦ rot(α)∣∣

Ch
)
∣∣∣ ≤ Ll · ελ (21)

24

for all u ∈ G, v ∈ Pu, i ∈ {1, . . . , d} and α ∈ Θi.
To show this let u ∈ G, v ∈ Pu, i ∈ {1, . . . , d} and α ∈ Θi be fixed for the remainder

of the proof. The idea is to construct the grid points i(i)k,s, which do not depend on u, v
and α, such that we are able to prove equation (21) by showing via induction on k that∣∣∣∣f̄ (i)

k,s(xuk,s+I(k))− fk,s(φ ◦ τvk,s ◦ rot(α)∣∣
Chk

)
∣∣∣∣ ≤ Lk · ελ (22)

for all k = 0, . . . , l and s = 1, . . . , 4l−k where we set ul,1 = u and vl,1 = v, and

uk−1,4·(s−1)+j = uk,s + i(i)k−1,4·(s−1)+j and vk−1,4·(s−1)+j = vk,s + rot(α)
(
h(j)
k−2

)
(23)

for k = 1, . . . , l, s = 1, . . . , 4l−k and j = 1, . . . , 4 with

h(1)
k−2 = (−hk−2,−hk−2),

h(3)
k−2 = (−hk−2, hk−2),

h(2)
k−2 = (hk−2,−hk−2),

h(4)
k−2 = (hk−2, hk−2).

The rest of the proof is organized in four steps. In the first step, we define the grid points
i(i)k,s and show that they are well-defined according to Definition 3 b). In the second step,
we show that uk,s is ‘close’ to vk,s (see Figure 9 for an example). In the third step,
using Assumption 2, we show that equation (22) holds for k = 0 and the fourth step
corresponds to the induction step for the proof of equation (22).

v5,1

v4,4

v4,2

v4,3

v4,1

u5,1
u4,2

u4,4

u4,1

u4,3

u5,1 + I(5)

u4,2 + I(4)

u3,j + I(3)

Figure 9: On the left hand side vk,s and uk,s are shown as used in the proof of Lemma
2, while on the right hand side one can see the corresponding grids, where
j = 4 · (2− 1) + 2 = 6. We choosed α = π/6, λ = 100 and h = 25/(

√
2 · λ).

Step 1 : First, we consider a subpart of width h rotated around the origin by the angle
αi, where αi is defined as the center of the interval Θi. Analogous to the definition of
vk,s, we divide the subpart into smaller and smaller subparts and choose the points z(i)

z,k

as the centers of these subparts. The idea is that z(i)
k,s is then ‘close’ to vk,s − v, as we

will see in the second step. We set z(i)
l,1 = (0, 0) and recursively define

z(i)
k−1,4·(s−1)+j = z(i)

k,s + rot(αi)
(
h(j)
k−2

)

25

for k = 1, . . . , l, s = 1, . . . , 4l−k and j = 1, . . . , 4. Since i(i)k,s are supposed to be grid
points we choose

z̄(i)
k,s ∈ arg min

z∈I(l)
‖z− z(i)

k,s‖∞,
(
k = 0, . . . , l, s = 1, . . . , 4l−k

)
(24)

and define

i(i)k−1,4·(s−1)+j = z̄(i)
k−1,4·(s−1)+j − z̄(i)

k,s

(
k = 1, . . . , l, s = 1, . . . , 4l−k, j = 1, . . . , 4

)
.

To show that the grid points i(i)k,s are well-defined according to Definition 3 b) we use
that h ≤ 2l/(

√
2 · λ) and get∥∥∥rot(β)

(
h(j)
k−2

)∥∥∥
∞
≤
√

2 · hk−2 =
√

2 · h
2l−(k−2) = 2k−2

λ
(25)

for k = 1, . . . , l, j = 1, . . . , 4 and an arbitrary angle β ∈ [0, 2π] and therefore we have

‖z(i)
k−1,4·(s−1)+j‖∞ ≤ ‖z

(i)
k,s‖∞ + ‖rot(αi)

(
h(j)
k−2

)
‖∞ ≤ ‖z(i)

k,s‖∞ + 2k−2

λ

for k = 1, . . . , l, s = 1, . . . , 4l−k and j = 1, . . . , 4. Since zl,1 = (0, 0) we then have

‖z(i)
k,s‖∞ ≤

l∑
j=k+1

2j−2

λ
= 1

2 · λ

l−1∑
j=0

2j −
k−1∑
j=0

2j
 = 2l − 2k

2 · λ

and due to (24) and the definition of I(l) we get

‖z(i)
k,s − z̄(i)

k,s‖∞ ≤
1

2 · λ (26)

for k = 0, . . . , l, s = 1, . . . , 4l−k. By using the triangle inequality, inequality (26) and
inequality (25) we obtain

‖i(i)k−1,4·(s−1)+j‖∞
= ‖z̄(i)

k,s − z̄(i)
k−1,4·(s−1)+j‖∞

≤ ‖z̄(i)
k,s − z(i)

k,s‖∞ + ‖z(i)
k,s − z(i)

k−1,4·(s−1)+j‖∞ + ‖z(i)
k−1,4·(s−1)+j − z̄(i)

k−1,4·(s−1)+j‖∞

≤ 1
2 · λ + ‖rot(αi)(h(j)

k−2)‖∞ + 1
2 · λ

≤ 2k−2 + 1
λ

for k = 1, . . . , l, s = 1, . . . , 4l−k and j = 1, . . . , 4, which together with the fact that i(i)k,s
is a vector of integer multiples of 1/λ implies

i(i)k,s ∈
{
−b2

k−1c+ 1
λ

, . . . , 0, . . . , b2
k−1c+ 1
λ

}2 (
k = 0, . . . , l − 1, s = 1, . . . , 4l−k

)
.

26

Step 2 : For k = 1, . . . , l, s = 1, . . . , 4l−k and j = 1, . . . , 4 we have

‖z(i)
k−1,4·(s−1)+j − (vk−1,4·(s−1)+j − v)‖∞
≤ ‖z(i)

k,s − (vk,s − v)‖∞ +
∥∥∥rot(αi) (h(j)

k−2

)
− rot(α)

(
h(j)
k−2

)∥∥∥
∞

= ‖z(i)
k,s − (vk,s − v)‖∞ +

∥∥∥∥∥
(

cos(αi)− cos(α) sin(α)− sin(αi)
sin(α)− sin(αi) cos(α)− cos(αi)

)
h(j)
k−2

∥∥∥∥∥
∞

≤ ‖z(i)
k,s − (vk,s − v)‖∞ + 2 · hk−2 ·max{| sin(α)− sin(αi)|, | cos(α)− cos(αi)|}

≤ ‖z(i)
k,s − (vk,s − v)‖∞ + hk−1 · |α− αi|

≤ ‖z(i)
k,s − (vk,s − v)‖∞ + 2k−1

√
2 · λ

·
√

2 · (c− 1)
2l ,

which together with z(i)
l,1 = vl,1 − v = 0 implies

‖z(i)
k,s − (vk,s − v)‖∞ ≤

c− 1
2l · λ ·

l−1∑
i=k

2i = (c− 1) · (2l − 2k)
λ · 2l <

c− 1
λ

(27)

for k = 0, . . . , l and s = 1, . . . , 4l−k. Furthermore, we have

uk,s = u + z̄(i)
k,s (28)

for k = 0, . . . , l, since z̄(i)
l,1 = (0, 0) and

uk−1,4·(s−1)+j = uk,s + i(i)k−1,4·(s−1)+j = uk,s + z̄(i)
k−1,4·(s−1)+j − z̄(i)

k,s

for k = 1, . . . , l, s = 1, . . . , 4l−k and j = 1, . . . , 4. Inequalities (26), (27) and (28) imply

‖uk,s − vk,s‖∞ = ‖u− v + z̄(i)
k,s − z(i)

k,s + z(i)
k,s − vk,s + v‖∞

≤ ‖u− v‖∞ + ‖z̄(i)
k,s − z(i)

k,s‖∞ +
∥∥∥z(i)

k,s − (vk,s − v)
∥∥∥
∞

≤ 1
2 · λ + 1

2 · λ + c− 1
λ

= c

λ

(29)

for all k = 0, . . . , l and s = 1, . . . , 4l−k.
Step 3 : To use Assumption 2, we first show that v0,s ∈ [h0/

√
2− 1/2, 1/2− h0/

√
2]2

for all s = 1, . . . , 4l. By using inequality (25) we get

‖vk−1,4·(s−1)+j − v‖∞ ≤ ‖vk,s − v‖∞ + ‖rot(α)
(
h(j)
k−2

)
‖∞ ≤ ‖vk,s − v‖∞ + 2k−2

λ

for k = 1, . . . , l, s = 1, . . . , 4l−k and j = 1, . . . , 4, which together with vl,1 = v implies

‖vk,s − v‖∞ ≤
l∑

j=k+1

2j−2

λ
= 1

2 · λ

l−1∑
j=0

2j −
k−1∑
j=0

2j
 = 2l − 2k

2 · λ (30)

27

for k = 0, . . . , l and s = 1, . . . , 4l−k. By using inequality (30), v ∈ [−1/2 + b, 1/2 − b]2
and h0 ≤ 1/(

√
2 · λ) we get

‖v0,s‖∞ ≤ ‖v‖∞ + ‖v0,s − v‖∞

≤1
2 − b+ 2l − 1

2 · λ
≤1

2 −
2l + 2 · l − 1

2 · λ + 2l − 1
2 · λ

= 1
2 −

l

λ

≤ 1
2 −

1/(
√

2 · λ)√
2

≤ 1
2 −

h0√
2

(31)

for s = 1, . . . , 4l. By using Assumption 2, (29) and (31) we obtain∣∣∣∣f̄ (i)
0,s(xu0,s+I(0))− f0,s(φ ◦ τv0,s ◦ rot(α)∣∣

Ch0
)
∣∣∣∣

=
∣∣∣∣g0,s(xu0,s)− f0,s(φ ◦ τv0,s ◦ rot(α)∣∣

Ch0
)
∣∣∣∣

=
∣∣∣∣f0,s(φ(u0,s) · 1Ch0

)− f0,s(φ ◦ τv0,s ◦ rot(α)∣∣
Ch0

)
∣∣∣∣

≤ ελ

for s = 1, . . . , 4l.
Step 4 : Now we assume that (22) holds for some k ∈ {0, . . . , l − 1} and all s ∈
{1, . . . , 4l−k}. Because of the Lipschitz assumption on the functions gk,s, definition (23),
the linearity of the function rot(α) and the induction hypothesis (22), we conclude that∣∣∣∣f̄ (i)

k+1,s(xuk+1,s+I(k+1))− fk+1,s(φ ◦ τvk+1,s ◦ rot(α)∣∣
Chk+1

)
∣∣∣∣

=
∣∣∣gk+1,s

(
f̄

(i)
k−1,4·(s−1)+1(xuk+1,s+i(i)

k,4·(s−1)+1+I(k)), f̄
(i)
k,4·(s−1)+2(xuk+1,s+i(i)

k,4·(s−1)+2+I(k)),

f̄
(i)
k,4·(s−1)+3(xuk+1,s+i(i)

k,4·(s−1)+3+I(k)), f̄
(i)
k,4·s(xuk+1,s+i(i)

k,4·s+I(k))
)

− gk+1,s
(
fk,4·(s−1)+1(φ ◦ τvk+1,s ◦ rot(α) ◦ τ(−hk−1,−hk−1)

∣∣
Chk

),

fk,4·(s−1)+2(φ ◦ τvk+1,s ◦ rot(α) ◦ τ(hk−1,−hk−1)
∣∣
Chk

),

fk,4·(s−1)+3(φ ◦ τvk+1,s ◦ rot(α) ◦ τ(−hk−1,hk−1)
∣∣
Chk

),

fk,4·s(φ ◦ τvk+1,s ◦ rot(α) ◦ τ(hk−1,hk−1)
∣∣
Chk

)
)∣∣∣

=
∣∣∣gk+1,s

(
f̄

(i)
k,4·(s−1)+1(xuk,4·(s−1)+1+I(k)), f̄ (i)

k,4·(s−1)+2(xuk,4·(s−1)+2+I(k)),

28

f̄
(i)
k,4·(s−1)+3(xuk,4·(s−1)+3+I(k)), f̄ (i)

k,4·s(xuk,4·s+I(k))
)

− gk+1,s
(
fk,4·(s−1)+1(φ ◦ τvk+1,s ◦ τrot(α)(h(1)

k−1) ◦ rot
(α)∣∣

Chk
),

fk,4·(s−1)+2(φ ◦ τvk+1,s ◦ τrot(α)(h(2)
k−1) ◦ rot

(α)∣∣
Chk

),

fk,4·(s−1)+3(φ ◦ τvk+1,s ◦ τrot(α)(h(3)
k−1) ◦ rot

(α)∣∣
Chk

),

fk,4·s(φ ◦ τvk+1,s ◦ τrot(α)(h(4)
k−1) ◦ rot

(α)∣∣
Chk

)
)∣∣∣

≤ L · max
j∈{1,...,4}

∣∣∣f̄ (i)
k,4·(s−1)+j(xuk,4·(s−1)+j+I(k))

− fk,4·(s−1)+j(φ ◦ τvk,4·(s−1)+j ◦ rot(α)∣∣
Chk

)
∣∣∣

≤ Lk+1 · ελ

for all s ∈ {1, . . . , 4l−(k+1)}. �

Lemma 3 Let λ, l, t ∈ N with 2l + 2 · l − 1 ≤ λ, and let

g
(i)
k,s : R4 → [0, 1], ḡ(i)

k,s : R4 → R+
(
i = 1, . . . , t, k = 1, . . . , l, s = 1, . . . , 4l−k

)
,

and
g

(i)
0,s : [0, 1]→ [0, 1], ḡ(i)

0,s : [0, 1]→ [0, 2]
(
i = 1, . . . , t, s = 1, . . . , 4l

)
be functions such that the restrictions {g(i)

k,s

∣∣
[0,2]4}i=1,...,t,k=1,...,l,s=1,...,4l−k are Lipschitz

continuous (with respect to the maximum metric) with Lipschitz constant C > 0 and∥∥∥ḡ(i)
k,s

∥∥∥
[0,2]4,∞

≤ 2
(
i = 1, . . . , t, k = 1, . . . , l, s = 1, . . . , 4l−k

)
.

Let η : [0, 1]Gλ → R be a function that satisfies a discretized hierarchical max-pooling
model of level l and order t with functions g(i)

k,s and η̄ : [0, 1]Gλ → R be a function that
satisfies a discretized hierarchical max-pooling model of level l and order t with functions
ḡ

(i)
k,s. Furthermore, we assume that the two discretized hierarchical max-pooling models
have the same grid points {i(i)k,s}. Then for any x ∈ [0, 1]Gλ it holds:

|η(x)− η̄(x)|
≤ (C + 1)l · max

i∈{1,...,t},j∈{1,...,4l},
k∈{1,...,l},s∈{1,...,4l−k}

{
‖g(i)

0,j − ḡ
(i)
0,j‖[0,1],∞, ‖g(i)

k,s − ḡ
(i)
k,s‖[0,2]4,∞

}
.

Proof. The result follows by applying the triangle inequality and further straightforward
standard techniques. For the sake of completeness a complete proof is given in the
supplement. �

29

Lemma 4 Let λ, l, t ∈ N with 2l + 2 · l − 1 ≤ λ. For Lnet, rnet ∈ N let

g
(i)
net,k,s ∈ G4(Lnet, rnet)

(
i = 1, . . . , t, k = 1, . . . , l, s = 1, . . . , 4l−k

)
and

g
(i)
net,0,s ∈ G1(Lnet, rnet)

(
i = 1, . . . , t, s = 1, . . . , 4l

)
.

Assume that the function η̄ : [0, 1]Gλ → R satisfies a discretized max-pooling model of
level l and order t with functions {ḡ(i)

k,s}, where we set

ḡ
(i)
k,s = σ ◦ g(i)

net,k,s

(
i = 1, . . . , t, k = 0, . . . , l, s = 1, . . . , 4l−k

)
.

Set B = 2l−1 + (l − 1), Lt = dlog2 te, rt = 3 · t, kr = 5 · 4l−1 + rnet for r = 1, . . . , L,

L = 4l+1 − 1
3 · (Lnet + 1),

and for k = 0, . . . , l set

Mr = 1{k>1} · 2k−1 + 3
(
r =

k−1∑
i=0

4l−i · (Lnet + 1) + 1, . . . ,
k∑
i=0

4l−i · (Lnet + 1)
)
,

where we define the empty sum as zero. Then there exists some fCNN ∈ FCNNθθθ with
θθθ = (t, L,k,M, B, Lt, rt) such that

η̄(x) = fCNN (x)

holds for all x ∈ [0, 1]Gλ.

Proof. The proof is similar to the proof of Lemma 5 from Kohler, Krzyżak and Walter
(2022) and can be found in the supplement. �
Proof of Lemma 1. Let η̄ be the discretized hierarchical max-pooling model of level
l and order t which is given by the functions {ḡ(i)

k,s} and grid points {i(i)k,s} from Lemma
2 (due to Assumption 1, the functions {ḡ(i)

0,s} have (p, C)-smooth extensions on R), such
that

|η(φ)− η̄(gλ(φ))| ≤ c5 · ελ. (32)

for all φ ∈ A and some constant c5 > 0. Furthermore, let g(i)
net,0,s ∈ G1(Ln, rnet) and

g
(i)
net,k,s ∈ G4(Ln, rnet) (k > 0) be the standard feedforward neural networks from Kohler
and Langer (2021) (cf., Lemma 7 from the supplement) which satisfy∥∥∥ḡ(i)

k,s − σ ◦ g
(i)
net,k,s

∥∥∥
[0,2]4,∞

≤
∥∥∥ḡ(i)
k,s − g

(i)
net,k,s

∥∥∥
[0,2]4,∞

≤ c6 · L
− 2·p

4
n ≤ c7 · n−

p
2·p+4

for i = 1, . . . , t, k = 1, . . . , l, s = 1, . . . , 4l−k and some constants c6, c7 > 0 and∥∥∥ḡ(i)
0,s − σ ◦ g

(i)
net,0,s

∥∥∥
[0,1],∞

≤
∥∥∥ḡ(i)

0,s − g
(i)
net,0,s

∥∥∥
[0,1],∞

≤ c8 · L−2·p
n ≤ c9 · n−

p
2·p+1 ,

30

for i = 1, . . . , t, s = 1, . . . , 4l and some constants c8, c9 > 0, where we choose c1 in the
definition of Ln sufficiently large such that the triangle inequality and the fact that the
functions ḡ(i)

k,s are [0, 1]-valued imply∥∥∥σ ◦ g(i)
net,k,s

∥∥∥
[0,2]4,∞

≤ ‖ḡ(i)
k,s‖[0,2]4,∞ +

∥∥∥ḡ(i)
k,s − σ ◦ g

(i)
net,k,s

∥∥∥
[0,2]4,∞

≤ 1 + c6 · L
− 2·p

4
n ≤ 2

for all k = 1, . . . , l and s = 1, . . . , 4l−k and∥∥∥σ ◦ g(i)
net,0,s

∥∥∥
[0,1],∞

≤
∥∥∥ḡ(i)

0,s

∥∥∥
[0,1],∞

+
∥∥∥ḡ(i)

0,s − σ ◦ g
(i)
net,0,s

∥∥∥
[0,1],∞

≤ 1 + c8 · L−2·p
n ≤ 2

for all s = 1, . . . , 4l. Next we define the convolutional neural network fCNN ∈ FCNN by
using Lemma 4 such that fCNN satisfies a discretized hierarchical max-pooling model
which is given by the functions {σ ◦ g(i)

net,k,s} and grid points {i(i)k,s}. By using (a+ b)2 ≤
2a2 + 2b2, inequality (32) and Lemma 3 we get

|fCNN (gλ(φ))− η(φ)|2

≤ 2 · |fCNN (gλ(φ))− η̄(gλ(φ))|2 + 2 · |η̄(gλ(φ))− η(φ)|2

≤ c10 ·
(

max
k∈{1,...,l},s∈{1,...,4l−k},j∈{1,...,4l},i∈{1,...,t}

{
‖σ ◦ g(i)

net,0,j − ḡ
(i)
0,j‖[0,2],∞,

‖σ ◦ g(i)
net,k,s − ḡ

(i)
k,s‖[0,2]4,∞

})2
+ 2 · c2

5 · ε2λ

≤ c11 ·
(
n
− 2·p

2·p+4 + ε2λ

)
for some constants c10, c11 > 0 which does not depend on λ and n. �

6.2 Proof of Theorem 1
We denote F := FCNNθθθ and choose c12 > 0 so large that c12 · logn ≥ 2 holds (cf.,
Lemma 10 from the supplement). Then z ≥ 1/2 holds if and only if Tc12·lognz ≥ 1/2,
and consequently we have

fn(x) =
{

1 , if Tc12·lognηn(x) ≥ 1
2

0 , elsewhere.

Because of Lemma 5 from the supplement we have

P{fn(gλ(Φ)) 6= Y } − min
f :[0,1]Gλ→[0,1]

P{f(gλ(Φ)) 6= Y }

≤ 2 ·
√

E
{∫
|Tc12·lognηn(x)− η(λ)(x)|2Pgλ(Φ)(dx)

}
and hence it suffices to show

E
{∫
|Tc12·lognηn(x)− η(λ)(x)|2Pgλ(Φ)(dx)

}
≤ c13 ·

(
log(λ) · (logn)4 · n−

2·p
2·p+4 + ε2λ

)

31

for some constant c13 > 0. By Lemma 6 from the supplement we have

E
{∫
|Tc12·lognηn(x)− η(λ)(x)|2Pgλ(Φ)(dx)

}

≤
c14 · (logn)2 · supxn1

(
log

(
N1
(

1
n·c12·log(n) , Tc12·log(n)F ,xn1

))
+ 1

)
n

+ 2 · inf
f∈F

∫
|f(x)− η(λ)(x)|2Pgλ(Φ)(dx)

for some constant c14 > 0. For the first term Lemma 10 from the supplement implies

c14 · (logn)2 · supxn1

(
log

(
N1
(

1
n·c12·log(n) , Tc12·log(n)F ,xn1

))
+ 1

)
n

≤ c15 · L2 · log(L) · log(λ) · (logn)3

n

≤ c16 · log(λ) · (logn)4 · n−
2·p

2·p+4 .

for some constants c15, c16 > 0. Next we derive a bound on the approximation error

inf
f∈F

∫
|f(x)− η(λ)(x)|2Pgλ(Φ)(dx).

By using the fact that the a posteriori probability η minimizes the L2 risk (w.r.t. the
random vector (Φ, Y)), PΦ(A) = 1 and Lemma 1, we get

inf
f∈F

∫
|f(x)− η(λ)(x)|2Pgλ(Φ)(dx) ≤

∫
|f̄(x)− η(λ)(x)|2Pgλ(Φ)(dx)

= E
{
|f̄(gλ(Φ))− Y |2

}
−E

{
|η(λ)(gλ(Φ))− Y |2

}
≤ E

{
|f̄(gλ(Φ))− Y |2

}
−E

{
|η(Φ)− Y |2

}
=
∫
A
|f̄(gλ(φ))− η(φ)|2PΦ(dφ)

≤ c17 ·
(
n
− 2·p

2·p+4 + ελ
)

for f̄ ∈ F chosen as in Lemma 1 and some constant c17 > 0. Summarizing the above
results, the proof is complete. �

7 Acknowledgment
The author would like to thank the AE and four anonymous referees for the helpful
comments and suggestions to improve an early version of this manuscript.

32

References
[1] Bauer, B., and Kohler, M. (2019). On deep learning as a remedy for the curse of

dimensionality in nonparametric regression. Annals of Statistics, 47, pp. 2261–2285.

[2] Bos, T., and Schmidt-Hieber, J. (2021). Convergence rates of deep ReLU networks
for multiclass classification. arXiv: 2108.00969.

[3] Cabrera-Vives, G., Reyes, I., Förster, F., Estévez, P. A., and Maureira, J. C. (2017).
Deep-HiTS: Rotation Invariant Convolutional Neural Network for Transient Detec-
tion. arXiv: 1701.00458.

[4] Cohen, T. S., and Welling, M. (2016). Group Equivariant Convolutional Networks.
International Conference on Machine Learning (ICML), 48, pp. 2990–2999.

[5] Cover, T. M. (1968). Rates of convergence of nearest neighbor procedures. Pro-
ceedings of the Hawaii International Conference on Systems Siences, pp. 413–415.
Honolulu, HI.

[6] Delchevalerie, V., Bibal, A., Frenay, B., and Mayer, A. (2021). Achieving Rota-
tional Invariance with Bessel-Convolutional Neural Networks. Advances in Neural
Information Processing Systems.

[7] Devroye, L. (1982). Necessary and sufficient conditions for the pointwise conver-
gence of nearest neighbor regression function estimates. Zeitschrift für Wahrschein-
lichkeitstheorie und verwandte Gebiete, 61, pp. 467–481.

[8] Devroye, L., Györfi, L., and Lugosi, G. (1996). A Probabilistic Theory of Pattern
Recognition. Springer, New York.

[9] Dieleman, S., De Fauw, J., and Kavukcuoglu, K. (2016). Exploiting Cyclic Sym-
metry in Convolutional Neural Networks. Proceedings of the 33rd International
Conference on International Conference on Machine Learning, 48, pp. 1889–1898.

[10] Dieleman, S., Willett, K. W., and Dambre, J. (2015). Rotation-invariant convolu-
tional neural networks for galaxy morphology prediction. Monthly Notices of the
Royal Astronomical Society, 450, pp. 1441–1459.

[11] Du, S. S., Lee, J. D., Li, H., Wang, L., and Zhai, X. (2018). Gradient Descent Finds
Global Minima of Deep Neural Networks. arXiv: 1811.03804.

[12] Gimel’farb, G., and Delmas, P. (2018). Image Processing And Analysis: A Primer.
World Scientific.

[13] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press,
London.

33

[14] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image
recognition. Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 770–778.

[15] Hu, T., Shang, Z., and Cheng, G. (2020). Sharp Rate of Convergence for Deep
Neural Network Classifiers under the Teacher-Student Setting. arXiv: 2001.06892.

[16] Imaizumi, M., and Fukamizu, K. (2019). Deep neural networks learn non-smooth
functions effectively. Proceedings of the 22nd International Conference on Artificial
Intelligence and Statistics. Naha, Okinawa, Japan.

[17] Kim, Y., Ohn, I., and Kim, D. (2021). Fast convergence rates of deep neural
networks for classification. Neural Networks, 138, pp. 179–197.

[18] Kohler, M., and Krzyżak, A. (2017). Nonparametric regression based on hierarchical
interaction models. IEEE Transactions on Information Theory, 63, pp. 1620–1630.

[19] Kohler, M., and Krzyżak, A. (2021). Over-parametrized deep neural networks min-
imizing the empirical risk do not generalize well. Bernoulli, 27, pp. 2564–2597.

[20] Kohler, M., Krzyzak, A., and Langer, S. (2019). Estimation of a function of low
local dimensionality by deep neural networks. arXiv: 1908.11140.

[21] Kohler, M., Krzyżak, A., and Walter, B. (2022). On the rate of convergence of
image classifiers based on convolutional neural networks. Annals of the Institute of
Statistical Mathematics, pp. 1–24.

[22] Kohler, M., and Langer, S. (2020). Statistical theory for image classification using
deep convolutional neural networks with cross-entropy loss. arXiv: 2011.13602.

[23] Kohler, M., and Langer, S. (2021). On the rate of convergence of fully connected
very deep neural network regression estimates. Annals of Statistics, 49, pp. 2231–
2249.

[24] Langer, S. (2021). Analysis of the rate of convergence of fully connected deep
neuralnetwork regression estimates with smooth activation function. Journal of
Multivariate Analysis, 182, p. 104695.

[25] Larochelle, H., Erhan, D., Courville, A., Bergstra, J., and Bengio, Y. (2007). An em-
pirical evaluation of deep architectures on problems with many factors of variation.
Proceedings of the 24th International Conference on Machine Learning (ICML).

[26] Lin, S., and Zhang, J. (2019). Generalization bounds for convolutional neural net-
works. arXiv: 1910.01487.

[27] Liu, H., Chen, M., Zhao, T., and Liao, W. (2021). Besov function approximation
and binary classification on low-dimensional manifolds using convolutional residual
networks. Proceedings of the 38th International Conference on Machine Learning
(PMLR), 139, pp. 6770–6780.

34

[28] Marcos, D., Volpi, M., and Tuia, D. (2016). Learning rotation invariant convolu-
tional filters for texture classification. International Conference on Pattern Recog-
nition (ICPR), pp. 2012–2017.

[29] Oono, K., and Suzuki, T. (2019). Approximation and Non-parametric Estimation
of ResNet-type Convolutional Neural Networks. In International Conference on
Machine Learning, pp. 4922–4931.

[30] Petersen, P., and Voigtlaender, F. (2020). Equivalence of approximation by convo-
lutional neural networks and fully-connected networks. Proceedings of the American
Mathematical Society, 148, pp. 1567–1581.

[31] Rawat, W., and Wang, Z. (2017). Deep Convolutional Neural Networks for Image
Classification: A Comprehensive Review. Neural Computation, 29, pp. 2352–2449.

[32] Schmidt-Hieber, J. (2020). Nonparametric regression using deep neural networks
with ReLU activation function. Annals of Statistics, 48, pp. 1875–1897.

[33] Suzuki, T., and Nitanda, A. (2019). Deep learning is adaptive to intrinsic dimen-
sionality of model smoothness in anisotropic Besov space. arXiv: 1910.12799.

[34] Veeling, B. S., Linmans, J., Winkens, J., Cohen, T., and Welling, M. (2018). Rota-
tion Equivariant CNNs for Digital Pathology. arXiv: 1806.03962.

[35] Walter, B. (2021). Analysis of convolutional neural network image classifiers in a
hierarchical max-pooling model with additional local pooling. arXiv: 2106.05233.

[36] Wu, F., Hu, P., and Kong, D. (2015). Flip-Rotate-Pooling Convolution and
Split Dropout on Convolution Neural Networks for Image Classification. arXiv:
1507.08754.

[37] Yarotsky, D. (2018). Universal approximations of invariant maps by neural net-
works. arXiv: 1804.10306.

[38] Zhou, D.-X. (2020). Universality of deep convolutional neural networks. Applied
and Computational Harmonic Analysis, 48, pp. 787–794.

35

	Introduction
	Image classification
	Main results
	Discussion of related results
	Notation
	Outline of the paper

	A rotationally symmetric hierarchical max-pooling model for the functional a posteriori probability
	Convolutional neural network image classifiers
	Main result
	Application to simulated and real data
	Proofs
	An approximation result
	Proof of Theorem 1

	Acknowledgment

