
Supplementary material to “Analysis of
convolutional neural network image classifiers in

a rotationally symmetric model”
The supplement contains additional material concerning the simulation studies from
Section 5, results from the literature used in the proof of Lemma 1 and Theorem 1, the
proofs of Lemma 3 and Lemma 4, as well as a bound on the covering number.

A. Additional material for Section 5
A.1. Creating the synthetic image data sets
In order to generate a random image with an appropriate label, we use the Python
package Shapely to theoretically define a continuous image as follows: Firstly, the gray
scale value of the background of the image area C1 is set to 1 and for each of the three
squares it is randomly (independently) determined whether a quarter is removed or not.
The probability that a quarter is removed from a square is given by p = 1−0.51/3, which
implies that the class Y of an image is discrete and uniformly distributed on {0, 1}. Sec-
ondly, the area, rotation, and gray scale value of each geometric object are determined.
The area is determined for each object (independently) by a uniform distribution on
the interval [0.02, 0.08] for complete squares and on the interval [0.02, 0.06] for squares
missing a quarter (the second interval is smaller to avoid too large side lengths of these
objects). The angle by which an object is rotated is determined (independently) by a
uniform distribution on the interval [0, 2π]. The gray scale values of the three objects
are determined by randomly permuting the list (0, 1/3, 2/3) of three gray scale values.
Finally, the positions of the objects are determined one after the other as follows: We
choose the position of the first object according to a uniform distribution on the re-
stricted image area so that the object is completely within the image area. We repeat
the positioning of the second object in the same way until the second object covers only
a maximum of five percent of the area of the first object. For the placement of the third
object, we use the same method until the third object covers only a maximum of five
percent of the area of the first and second object, respectively. We then use the Python
package Pillow to discretize the continuous image on Gλ.

A.2. Rotation by nearest neighbor interpolation

In this section, we define the rotation function f (α)
rot , which is used in Section 5 for the

network architecture F4. We use a nearest neighbor interpolation here to implement
rotation by arbitrary angles for two reasons: Firstly, a nearest neighbor interpolation
can be easily implemented using the Keras backend library as a layer of a CNN, so the
corresponding classifier can be trained using the Adam optimizer. Secondly, our theory
could be easily extended to such an estimator, since the nearest neighbor interpolation
can be traced back to a self-mapping of Gλ (cf., equation (34) below), which swaps

1

the image positions accordingly, and thus we can obtain a necessary bound for covering
number without much effort.
Since we may rotate parts out of the image area by rotating the input image by

arbitrary angles, we first introduce a zero padding function fz : [0, 1]Gλ → [0, 1]Gλ+2·z

that symmetrically adds z ∈ N0 rows and columns of zeros on all four sides of the image.
The output of the function fz is given by

(
fz(x)

)(
i−1/2
λ+2·z−

1
2 ,
j−1/2
λ+2·z−

1
2

) =

x(i−z−1/2
λ

− 1
2 ,
j−z−1/2

λ
− 1

2

) , if z + 1 ≤ i, j ≤ z + λ

0 , elsewhere
(32)

for i, j ∈ {1, . . . , λ+ 2 · z}. We choose

zλ =
⌈√

2 · λ− λ
2

⌉
(33)

to ensure that a rotated version of the image entirely contains the original image. To
rotate the images by a nearest neighbor interpolation, we define the function g(α) : Gλ′ →
Gλ′ that rotates the image positions with a resolution λ′ ∈ N by an angle α ∈ [0, 2π).
The output of the function is given by

g(α)(v) = arg min
u∈Gλ′

‖u− rot(α)(v)‖2
(
v ∈ Gλ′

)
, (34)

where we choose the smallest index in case of ties (we use a bijection which maps Gλ′
to {1, . . . , λ′2} to obtain a corresponding order on the indices). The rotation function
f

(α)
rot : [0, 1]Gλ → [0, 1]Gλ+2·zλ which rotates an image by the angle α ∈ [0, 2π) is then
defined by (

f
(α)
rot (x)

)
u = (fzλ(x))g(α)(u)

(
x ∈ [0, 1]Gλ

)
for u ∈ Gλ+2·zλ .

B. Auxiliary results
In the following section, we present some results from the literature which we have
used in the proof of Lemma 1 and Theorem 1. Our first auxiliary result relates the
misclassification error of our plug-in estimate to the L2 error of the corresponding least
squares estimates.

Lemma 5 Define (gλ(Φ), Y), (gλ(Φ1), Y1), . . . , (gλ(Φn), Yn), and Dn, η, f∗ and fn as
in Section 1.1. Then

P{fn(gλ(Φ)) 6= Y } −P{f∗(gλ(Φ)) 6= Y } ≤ 2 ·
∫
|ηn(x)− η(x)|Pgλ(Φ)(dx)

≤ 2 ·
√∫
|ηn(x)− η(x)|2Pgλ(Φ)(dx)

holds.

2

Proof. See Theorem 1.1 in Györfi et al. (2002). �
Our next result bounds the error of the least squares estimate via empirical process

theory.

Lemma 6 Let (X,Y), (X1, Y1), . . . , (Xn, Yn) be independent and identically distributed
Rd × R-valued random variables. Assume that the distribution of (X,Y) satisfies

E{exp(c19 · Y 2)} <∞

for some constant c19 > 0 and that the regression function m(·) = E{Y |X = ·} is
bounded in absolute value. Let m̃n be the least squares estimate

m̃n(·) = arg min
f∈Fn

1
n

n∑
i=1
|Yi − f(Xi)|2

based on some function space Fn consisting of functions f : Rd → R and set mn =
Tc20·log(n)m̃n for some constant c20 > 0. Then mn satisfies

E
∫
|mn(x)−m(x)|2PX(dx)

≤
c21 · (log(n))2 · supxn1∈(Rd)n

(
log

(
N1
(

1
n·c20·log(n) , Tc4 log(n)Fn, xn1

))
+ 1

)
n

+ 2 · inf
f∈Fn

∫
|f(x)−m(x)|2PX(dx)

for n > 1 and some constant c21 > 0, which does not depend on n or the parameters of
the estimate.

Proof. This result follows in a straightforward way from the proof of Theorem 1 in
Bagirov, Clausen and Kohler (2009). A complete proof can be found in the supplement
of Bauer and Kohler (2019). �
The next result is an approximation result for (p, C)–smooth functions by very deep

feedforward neural networks.

Lemma 7 Let d ∈ N, let f : Rd → R be (p, C)–smooth for some p = q + s, q ∈ N0 and
s ∈ (0, 1], and C > 0. Let M ∈ N with M ≥ 2 sufficiently large, where

M2p ≥ c22 ·

max


2, sup

x∈[−2,2]d
(l1,...,ld)∈Nd
l1+···+ld≤q

∣∣∣∣∣ ∂l1+···+ldf

∂l1x(1) . . . ∂ldx(d) (x)
∣∣∣∣∣



4(q+1)

must hold for some sufficiently large constant c22 ≥ 1. Let σ : R → R be the ReLU
activation function

σ(x) = max{x, 0}

and let L, r ∈ N such that

3

(i)

L ≥5Md +
⌈
log4

(
M2p+4·d·(q+1) · e4(̇q+1)·(Md−1)

)⌉
· dlog2(max{d, q}+ 2)e+ dlog4(M2p)e

(ii)

r ≥ 132 · 2d · dede ·
(
d+ q

d

)
·max{q + 1, d2}

hold. Then there exists a feedforward neural network

fnet ∈ Gd(L,k)

with k = (k1, . . . , kL) and k1 = · · · = kL = r such that

sup
x∈[−2,2]d

|f(x)− fnet(x)|

≤ c23 ·

max


2, sup

x∈[−2,2]d
(l1,...,ld)∈Nd
l1+···+ld≤q

∣∣∣∣∣ ∂l1+···+ldf

∂l1x(1) . . . ∂ldx(d) (x)
∣∣∣∣∣



4(q+1)

·M−2p.

Proof. See Theorem 2 b) in Kohler and Langer (2021). �

C. Proof of Lemma 3 and Lemma 4
Proof of Lemma 3. Because of inequality (18) it suffices to show that

max
i∈{1,...,t}

max
u∈Gλ : u+I(l)⊆Gλ

∣∣∣f (i)
l,1 (x(i,j)+I(l))− f̄ (i)

l,1 (xu+I(l))
∣∣∣

≤ (C + 1)l · max
i∈{1,...,t},j∈{1,...,4l},
k∈{1,...,l},s∈{1,...,4l−k}

{
‖g(i)

0,j − ḡ
(i)
0,j‖[0,1],∞, ‖g

(i)
k,s − ḡ

(i)
k,s‖[0,2]4,∞

}
.

This in turn follows from∣∣∣f (i)
k,s(x)− f̄ (i)

k,s(x)
∣∣∣

≤ (C + 1)k · max
m∈{1,...,k},s∈{1,...,4l−m},j∈{1,...,4l}

{
‖g(i)

0,j − ḡ
(i)
0,j‖[0,1],∞, ‖g(i)

m,s − ḡ(i)
m,s‖[0,2]4,∞

}
(35)

for all x ∈ [0, 1]I(k) , i ∈ {1, . . . , t} ,k ∈ {0, . . . , l} and s ∈ {1, . . . , 4l−k}, which we show
by induction on k.

4

For k = 0, s ∈ {1, . . . , 4l} and i ∈ {1, . . . , t} we have∣∣∣f (i)
0,s(x)− f̄ (i)

0,s(x)
∣∣∣ =

∣∣∣g(i)
0,s(x)− ḡ(i)

0,s(x)
∣∣∣ ≤ ∥∥∥g(i)

0,s − ḡ
(i)
0,s

∥∥∥
[0,1],∞

for all x ∈ [0, 1]. Assume that equation (35) holds for some k ∈ {0, . . . , l − 1}. Because
of the definition of f̄ (i)

k,s we have
0 ≤ f̄ (i)

k,s(x) ≤ 2

for all x ∈ [0, 1]I(k) , i ∈ {1, . . . , t}, k ∈ {0, . . . , l − 1} and s ∈ {1, . . . , 4l−k}. Then, the
triangle inequality and the Lipschitz assumption on g(i)

k+1,s
∣∣
[0,2]2 imply∣∣∣f (i)

k+1,s(x)− f̄ (i)
k+1,s(x)

∣∣∣
≤
∣∣∣g(i)
k+1,s

(
f

(i)
k,4·(s−1)+1(xi(i)

k,4·(s−1)+1+I(k)), f
(i)
k,4·(s−1)+2(xi(i)

k,4·(s−1)+2+I(k)),

f
(i)
k,4·(s−1)+3(xi(i)

k,4·(s−1)+3+I(k)), f
(i)
k,4·s(xi(i)

k,4·s+I(k))
)

− g(i)
k+1,s

(
f̄

(i)
k,4·(s−1)+1(xi(i)

k,4·(s−1)+1+I(k)), f̄
(i)
k,4·(s−1)+2(xi(i)

k,4·(s−1)+2+I(k)),

f̄
(i)
k,4·(s−1)+3(xi(i)

k,4·(s−1)+3+I(k)), f̄
(i)
k,4·s(xi(i)

k,4·s+I(k))
)∣∣∣

+
∣∣∣g(i)
k+1,s

(
f̄

(i)
k,4·(s−1)+1(xi(i)

k,4·(s−1)+1+I(k)), f̄
(i)
k,4·(s−1)+2(xi(i)

k,4·(s−1)+2+I(k)),

f̄
(i)
k,4·(s−1)+3(xi(i)

k,4·(s−1)+3+I(k)), f̄
(i)
k,4·s(xi(i)

k,4·s+I(k))
)

− ḡ(i)
k+1,s

(
f̄

(i)
k,4·(s−1)+1(xi(i)

k,4·(s−1)+1+I(k)), f̄
(i)
k,4·(s−1)+2(xi(i)

k,4·(s−1)+2+I(k)),

f̄
(i)
k,4·(s−1)+3(xi(i)

k,4·(s−1)+3+I(k)), f̄
(i)
k,4·s(xi(i)

k,4·s+I(k))
)∣∣∣

≤ C · max
j∈{1,...,4}

∣∣∣∣f (i)
k,4·(s−1)+m(xi(i)

k,4·(s−1)+j+I
(k))− f̄

(i)
k,4·(s−1)+j(xi(i)

k,4·(s−1)+m+I(k))
∣∣∣∣

+ ‖g(i)
k+1,s − ḡ

(i)
k+1,s‖[0,2]4,∞

≤ C · (C + 1)k · max
m∈{1,...,k},s∈{1,...,4l−m},j∈{1,...,4l}

{
‖g(i)

0,j − ḡ
(i)
0,j‖[0,1],∞, ‖g(i)

m,s − ḡ(i)
m,s‖[0,2]4,∞

}
+ ‖g(i)

k+1,s − ḡ
(i)
k+1,s‖[0,2]4,∞

≤ (C + 1)k+1 · max
m∈{1,...,k+1},s∈{1,...,4l−m},j∈{1,...,4l}

{
‖g(i)

0,j − ḡ
(i)
0,j‖[0,1],∞, ‖g(i)

m,s − ḡ(i)
m,s‖[0,2]4,∞

}
for all x ∈ [0, 1]I(k+1) , i ∈ {1, . . . , t} and s ∈ {1, . . . , 4l−(k+1)}. �
In order to prove Lemma 4, we will use the following two auxiliary results.

Lemma 8 Let t ∈ N, set Lnet = dlog2 te, set rnet = 3 · t and let Gt(Lnet, rnet) be defined
as in (10). Then there exist gnet ∈ Gt(Lnet, rnet) such that

gnet(x) = max{x1, . . . , xt}

5

for all x = (x1, . . . , xt) ∈ Rt.

Proof. W.l.o.g. assume that t > 1. In the proof we will use the network gmax : R2 → R
defined by

gmax(x1, x2) = σ(x2 − x1) + σ(x1)− σ(−x1) (x1, x2 ∈ R)

which satisfies

gmax(x1, x2) = max{x2 − x1, 0}+ max{x1, 0} −max{−x1, 0}︸ ︷︷ ︸
=x1

= max{x1, x2}

for all x1, x2 ∈ R. For t ∈ N \ {1} we set

r(t) = 3 · 2dlog2(t)e−1 and L(t) = dlog2 te

and show the assertion by showing the more powerful assertion that for all t ∈ N \ {1}
there exists

gnet ∈ Gt(Lnet, r(t))
r(t)<rnet
⊂ Gt(Lnet, rnet)

such that
gnet(x) = max{x1, . . . , xt}

for all x ∈ Rt. We show this by induction on t.
For t = 2 the assertion follows by using the network gmax. Now let t > 2 and assume

the assertion holds for all natural numbers less than t and greater than one. Then there
exist g ∈ Gdt/2e(L(dt/2e), r(dt/2e)) such that

g(x) = max{x1, . . . , xdt/2e}

for all x ∈ Rdt/2e. We then define gnet ∈ Gt(L(dt/2e) + 1, 2 · r(dt/2e)) by

gnet(x) = gmax(g(x1, . . . , xdt/2e), g(xbt/2c+1, . . . , xt)) = max{x1, . . . , xt}.

It is now sufficient to show that

L(t) = L(dt/2e) + 1 and r(t) = 2 · r(dt/2e)).

Since 2k < t ≤ 2k+1 for some k ∈ N we have

dlog2(2 · dt/2e)e ≥ dlog2(t)e = k + 1 =
⌈
log2

(
2 · 2k

)⌉
≥ dlog2(2 · dt/2e)e

which implies
dlog2(2 · dt/2e)e = dlog2(t)e. (36)

By using equation (36) we get

L(dt/2e) + 1 = dlog2dt/2ee+ 1 = dlog2(2 · dt/2e)e = dlog2 te = L(t)

6

and

2 · r(dt/2e)) = 2 · 3 · 2dlog2(dt/2e)e−1

= 3 · 2dlog2(dt/2e)e+1−1

= 3 · 2dlog2(2·dt/2e)e−1

= 3 · 2dlog2(t)e−1

= r(t).

�
The next lemma allows us to compute the standard feedforward neural networks
σ ◦ g(i)

net,k,s from Lemma 4 within a convolutional neural network. Since the input di-
mension of the standard feedforward neural networks is d = 1 for k = 0 and d = 4 for
k ∈ {1, . . . , l} we consider the general case d ∈ N. Lemma 9 is a modified version of
Lemma 3 in Kohler, Krzyżak and Walter (2022) and Lemma 2 in Walter (2021). The
idea of filter factorizations for 2-D CNNs using enough channels described in Lemma
9 appeared also in He, Li and Xu (2020). The realization of fully connected ReLU
networks by 1-D CNNs can be found in Zhou (2020).

Lemma 9 Let d ∈ N and gnet ∈ Gd(Lnet, rnet) for some Lnet, rnet ∈ N. Let σ(x) =
max{x, 0} be the ReLU activation function. We assume that there is given a convolu-
tional neural network fCNN ∈ FCNNL,k,M,B with L = r0 +Lnet + 1 convolutional layers and
kr = t + rnet channels in the convolutional layer r (r = 1, . . . , r0 + Lnet + 1) for t ∈ N
and r0 ∈ N0, and filter sizes M1, . . . ,Mr0+Lnet+1 ∈ N with Mr0+1 = 1{k>0} · 2k + 3 for
some k ∈ N0. Let

(i1, j1), . . . , (id, jd) ∈ {−b2k−1 + 1c, . . . , 0, . . . , b2k−1 + 1c}2,

s0 ∈ {1, . . . , t} and s1, . . . , sd ∈ {1, . . . , kr0}. The convolutional neural network fCNN is
given by its weight matrix

w =
(
w

(r)
i′,j′,s,s′

)
1≤i′,j′≤Mr,s∈{1,...,kr−1},s′∈{1,...,kr}r∈{1,...,r0+Lnet+1}

, (37)

and its bias weights

wbias =
(
w

(r)
s′

)
s′∈{1,...,kr},r∈{1,...,r0+Lnet+1}

. (38)

Then we are able to modify the weights (37) and (38)

w
(r)
t1,t2,s,s′

, w
(r)
s′ (s ∈ {1, . . . , t+ rnet}) (39)

in layers r ∈ {r0 + 1, . . . , r0 +Lnet + 1} and in channels s′ ∈ {s0, t+ 1, . . . , t+ rnet} such
that

o
(r0+Lnet+1)
(i′,j′),s0

= σ
(
gnet

(
o

(r0)
(i′+i1,j′+j1),s1

, o
(r0)
(i′+i2,j′+j2),s2

, . . . , o
(r0)
(i′+id,j′+jd),sd

))
(40)

for all (i′, j′) ∈ {1, . . . , λ}2, where we set o(r0)
(i′,j′),s = 0 for (i′, j′) /∈ {1, . . . , λ}2.

7

Proof. We assume that the standard feedforward neural network gnet is given by

gnet(x) =
rnet∑
i=1

w
(Lnet)
1,i g

(Lnet)
i (x) + w

(Lnet)
1,0 ,

where g(Lnet)
i is recursively defined by

g
(r)
i (x) = σ

rnet∑
j=1

w
(r−1)
i,j g

(r−1)
j (x) + w

(r−1)
i,0


for i ∈ {1, . . . , rnet}, r ∈ {2, . . . , Lnet}, and

g
(1)
i (x) = σ

 d∑
j=1

w
(0)
i,j x

(j) + w
(0)
i,0

 (i ∈ {1, . . . , rnet}).

W.l.o.g. we can assume that (sn, in, jn) 6= (sm, im, jm) for distinct n,m ∈ {1, . . . , d}
(otherwise one can show the assertion for a accordingly defined g′net ∈ Gd′(Lnet, rnet)
with d′ < d). Since Mr0+1 = 2 · b2k−1c+ 3 and dMr0+1/2e = b2k−1c+ 2 we have

o
(r0+1)
(i′,j′),t+i

= σ


kr0∑
s=1

∑
t1,t2∈{1,...,Mr0+1}

i′+t1−dMr0+1/2e∈{1,...,λ}
j′+t2−dMr0+1/2e∈{1,...,λ}

w
(r0+1)
t1,t2,s,t+i · o

(r0)
(i′+t1−dMr0+1/2e,j′+t2−dMr0+1/2e),s + w

(r0+1)
t+i



= σ


kr0∑
s=1

∑
t1,t2∈{−b2k−1+1c,...,b2k−1+1c}

(i′+t1,j′+t2)∈{1,...,λ}2

w
(r0+1)
b2k−1c+2+t1,b2k−1c+2+t2,s,t+i · o

(r0)
(i′+t1,j′+t2),s + w

(r0+1)
t+i


(41)

for all i ∈ {1, . . . , rnet} and (i′, j′) ∈ {1, . . . , λ}2. We aim to choose the weights in (41)
such that

o
(r0+1)
(i′,j′),t+i = σ

(
d∑

n=1
w

(0)
i,n · o

(r0)
(i′+in,j′+jn),sn + w

(0)
i,0

)

= g
(1)
i

(
o

(r0)
(i′+i1,j′+j1),s1

, o
(r0)
(i′+i2,j′+j2),s2

, . . . , o
(r0)
(i′+id,j′+jd),sd

)
for all i ∈ {1, . . . , rnet} and (i′, j′) ∈ {1, . . . , λ}2. Therefore we choose the only non-zero
weights by

w
(r0+1)
b2k−1c+2+in,b2k−1c+2+jn,sn,t+i = w

(0)
i,n and w

(r0+1)
t+i = w

(0)
i,0

8

for n ∈ {1, . . . , d} and i ∈ {1, . . . , rnet} and obtain

o
(r0+1)
(i′,j′),t+i = σ

(
d∑

n=1
w

(0)
i,n · o

(r0)
(i′+in,j′+jn),sn + w

(0)
i,0

)

= g
(1)
i

(
o

(r0)
(i′+i1,j′+j1),s1

, o
(r0)
(i′+i2,j′+j2),s2

, . . . , o
(r0)
(i′+id,j′+jd),sd

) (42)

for all i ∈ {1, . . . , rnet} and (i′, j′) ∈ {1, . . . , λ}2. For the following layers we have

o
(r0+r)
(i′,j′),t+i = σ

(kr0+r−1∑
s=1

∑
t1,t2∈{1,...,Mr0+r}

i′+t1−dMr0+r/2e∈{1,...,λ}
j′+t2−dMr0+r/2e∈{1,...,λ}

w
(r0+r)
t1,t2,s,t+i · o

(r0+r−1)
(i′+t1−dMr0+r/2e,j′+t2−dMr0+r/2e),s + w

(r0+r)
t+i

)

= σ

(kr0+r−1∑
s=1

∑
t1,t2∈{1−dMr0+r/2e,...,Mr0+r−dMr0+r/2e}

(i′+t1,j′+t2)∈{1,...,λ}2

w
(r0+r)
dMr0+r/2e+t1,dMr0+r/2e+t2,s,t+i · o

(r0+r−1)
(i′+t1,j′+t2),s + w

(r0+r)
t+i

)

for r ∈ {2, . . . , Lnet}, i ∈ {1, . . . , rnet} and (i′, j′) ∈ {1, . . . , λ}2. Here we aim to choose
the weights such that

o
(r0+r)
(i′,j′),t+i = σ

(
rnet∑
j=1

w
(r−1)
i,j · o(r0+r−1)

(i′,j′),t+j + w
(r−1)
i,0

)
(43)

for all r ∈ {2, . . . , Lnet}, i ∈ {1, . . . , rnet} and (i′, j′) ∈ {1, . . . , λ}2. Therefore we choose
the only nonzero weights by

w
(r0+r)
dMr0+r/2e,dMr0+r/2e,t+j,t+i = w

(r−1)
i,j and w

(r0+r)
t+i = w

(r−1)
i,0

for r ∈ {2, . . . , Lnet}, i ∈ {1, . . . , rnet} and j ∈ {1, . . . , rnet} which implies equation (43).
In layer r = r0 + Lnet + 1 we have

o
(r0+Lnet+1)
(i′,j′),s0

= σ

(kr−1∑
s=1

∑
t1,t2∈{1−dMr0+Lnet+1/2e,...,Mr0+Lnet+1−dMr0+Lnet+1/2e}

(i′+t1,j′+t2)∈{1,...,λ}2

w
(r0+Lnet+1)
dMr0+Lnet+1/2e+t1,dMr0+Lnet+1/2e+t2,s,s0

· o(r0+Lnet)
(i′+t1,j′+t2),s + w(r0+Lnet+1)

s0

)

9

for (i′, j′) ∈ {1, . . . , λ}2 and want to choose the weights such that

o
(r0+Lnet+1)
(i′,j′),s0

= σ

(
rnet∑
i=1

w
(Lnet)
1,i · o(r0+Lnet)

(i′,j′),t+i + w
(Lnet)
1,0

)
(44)

for all (i′, j′) ∈ {1, . . . , λ}2. For this purpose we choose the only nonzero weights by

w
(r0+Lnet+1)
dMr0+Lnet+1/2e,dMr0+Lnet+1/2e,t+i,s0

= w
(Lnet)
1,i and w(r0+Lnet+1)

s0 = w
(Lnet)
1,0

for i ∈ {1, . . . , rnet} which implies equation (44). Combining equations (42), (43) and
(44) then yields the assertion. �
Proof of Lemma 4. In the proof we use that for x ≥ 0 we have

σ(x) = max{x, 0} = x

which enables us to propagate a nonnegative value computed in a layer of a convolutional
neural network in channel s′ at position (i′, j′) to the next convolutional layer by

o
(r)
(i′,j′),s′′ = σ

(
o

(r−1)
(i′,j′),s′

)
= o

(r−1)
(i′,j′),s′ (45)

with corresponding weights in the r−th layer in channel s′′ which are choosen accordingly
from the set {0, 1}.

Firstly, let gmax ∈ Gt(Lt, rt) be the neural netork from Lemma 8 such that

η̄(x) = max
u∈Gλ : u+I(l)⊆Gλ

max
i∈{1,...,t}

f̄
(i)
l,1 (xu+I(l))

= max
i∈{1,...,t}

max
u∈Gλ : u+I(l)⊆Gλ

f̄
(i)
l,1 (xu+I(l))

= gmax

(
max

u∈Gλ : u+I(l)⊆Gλ
f̄

(1)
l,1 (xu+I(l)), . . . , max

u∈Gλ : u+I(l)⊆Gλ
f̄

(t)
l,1 (xu+I(l))

)

for all x ∈ [0, 1]Gλ . Because of the definition of the function class FCNNθθθ , it is thus
sufficient to show that for all i ∈ {1, . . . , t} there exists fi ∈ FCNNL,k,M,B such that

fi(x) = max
u∈Gλ : u+I(l)⊆Gλ

f̄
(i)
l,1 (xu+I(l)) (46)

for all x ∈ [0, 1]Gλ . Therefore, in the remaining of the proof let i ∈ {1, . . . , t} be fixed.
The idea is to successively compute the outputs of the functions

f̄
(i)
0,1, . . . , f̄

(i)
0,4l , . . . , f̄

(i)
k,1, . . . , f̄

(i)
k,4l−k , . . . , f̄

(i)
l−1,1, . . . , f̄

(i)
l−1,4, f̄

(i)
l,1

of the discretized hierarchical model f̄ (i)
l,1 by computing the functions {ḡ(i)

k,s} by repeatedly
applying Lemma 9, where for k = 0 we apply Lemma 9 with d = 1 and for k = 1, . . . , l
we use d = 4. We store the outputs of the functions f̄ (i)

k,s(xu+I(k)) by the above idea of
equation (45) in corresponding channels, so that we can use the outputs severals times.

10

For the computation of the maximum in equation (46) we will finally use the global
max-pooling layers of our CNN architecture (cf., equation (7)).
A convolutional neural network fi ∈ FCNNL,k,M,B is of the form

fi(x) = max
{

kL∑
s′′=1

ws′′ · o
(L)
(i′,j′),s′′ : (i′, j′) ∈ {1 +B, . . . , λ−B}2

}
,

with the weight vector

w =
(
w

(r)
i′,j′,s′,s′′

)
1≤i′,j′≤Mr,s′∈{1,...,kr−1},s′′∈{1,...,kr},r∈{1,...,L}

,

bias weights
wbias =

(
w

(r)
s′′

)
s′′∈{1,...,kr},r∈{1,...,L}

,

and the output weights
wout =

(
ws
)
s∈{1,...,kL}

.

In the first step we show how to choose the weight vector w and the bias weights wbias

such that
o

(L)
(i′,j′),1 = f̄

(i)
l,1 (x(i′−1/2

λ
− 1

2 ,
j′−1/2
λ
− 1

2

)
+I(l)) (47)

for all (i′, j′) ∈ {2l−1 + l, . . . , λ− 2l−1 − (l − 1)}2. For k = 0, . . . , l we set

r(k) =
k∑

m=0
4l−m · (Lnet + 1)

and show equation (47) by showing via induction on k that

o
(r(k))
(i′,j′),s = f̄

(i)
k,s

(
x(i′−1/2

λ
− 1

2 ,
j′−1/2
λ
− 1

2

)
+I(k)

)
(48)

for all (i′, j′) ∈ {d2k−1e+k, . . . , λ−d2k−1e−(k−1)}2, k ∈ {0, . . . , l} and s ∈ {1, . . . , 4l−k}.
We start with k = 0 and show that

o
(r(0))
(i′,j′),s = σ

(
g

(i)
net,0,s

(
x i′−1/2

λ
− 1

2 ,
j′−1/2
λ
− 1

2

))
= σ

(
g

(i)
net,0,s

(
o

(0)
(i′,j′),1

))
for all (i′, j′) ∈ {1, . . . , λ}2 and s ∈ {1, . . . , 4l}. The idea is to successively use Lemma 9
for the computation for each network{

σ
(
g

(i)
net,0,s

(
o

(0)
(i′,j′),1

))}
(i′,j′)∈{1,...,λ}2

(49)

for s ∈ {1, . . . , 4l} and store the computed values in the corresponding channels

1, . . . , 4l

11

using equation (45). Before we apply Lemma 9, we choose the weights in channel

4l + 1

as in equation (45) such that
o

(r)
(i′,j′),4l+1 = o

(0)
(i′,j′),1

for all r ∈ {1, . . . , r(0)} and (i′, j′) ∈ {1, . . . , λ}2. Next, let us specify how to use Lemma
9. We first note that

M1, . . . ,Mr(0) = 3.
Now, by using Lemma 9 with parameters d = 1,

s1 =
{

1 , if s = 1
4l + 1 , elsewhere

s0 = s, and r0 = (s− 1) · (Lnet + 1) we can calculate the values (49) in layers

r0 + 1, . . . , r0 + Lnet + 1

by choosing corresponding weights in channels

s, 5 · 4l−1 + 1, . . . , 5 · 4l−1 + rnet

such that we have

o
(s·(Lnet+1))
(i′,j′),s = σ

(
g

(i)
net,0,s

(
o

(0)
(i′,j′),1

))
for all (i′, j′) ∈ {1, . . . , λ}2 and s ∈ {1, . . . , 4l}. Once a value has been computed in layer
s · (Lnet + 1) for s ∈ {1, . . . , 4l}, it will be propagated to the next layer using equation
(45) such that we have

o
(r(0))
(i′,j′),s = σ

(
g

(i)
net,0,s

(
o

(0)
(i′,j′),1

))
for all (i′, j′) ∈ {1, . . . , λ}2 and s ∈ {1, . . . , 4l}, which imply that equation (48) holds for
k = 0.

Now assume that property (48) is true for some k ∈ {0, . . . , l − 1} and show that
property (48) holds for k + 1 by choosing the corresponding weights in layers

r(k) + 1, . . . , r(k + 1)

such that

o
(r(k+1))
(i′,j′),s = σ

(
g

(i)
net,k+1,s

(
f̄

(i)
k,4·(s−1)+1

(
x(i′−1/2

λ
− 1

2 ,
j′−1/2
λ
− 1

2

)
+ik,4·(s−1)+1+I(k)

)
,

f̄
(i)
k,4·(s−1)+2

(
x(i′−1/2

λ
− 1

2 ,
j′−1/2
λ
− 1

2

)
+ik,4·(s−1)+2+I(k)

)
,

f̄
(i)
k,4·(s−1)+3

(
x(i′−1/2

λ
− 1

2 ,
j′−1/2
λ
− 1

2

)
+ik,4·(s−1)+3+I(k)

)
,

f̄
(i)
k,4·s

(
x(i′−1/2

λ
− 1

2 ,
j′−1/2
λ
− 1

2

)
+ik,4·s+I(k)

)))
(50)

12

for all x ∈ [0, 1]Gλ , (i′, j′) ∈ {2k + k + 2, . . . , λ− 2k − k − 1}2 and s ∈ {1, . . . , 4l−(k+1)}.
Since

ik,s ∈
{
−b2

k−1c+ 1
λ

, . . . , 0, . . . , b2
k−1c+ 1
λ

}2

for all s ∈ {1, . . . , 4l−k} we have

(i′, j′) + λ · ik,s ∈ {d2k−1e+ k, . . . , λ− d2k−1e − (k − 1)}2

for all (i′, j′) ∈ {2k + k + 1, . . . , λ − 2k − k}2 and s ∈ {1, . . . , 4l−k}. Because of the
induction hypothesis equation (50) then is equivalent to

o
(r(k+1))
(i′,j′),s = σ

(
g

(i)
net,k+1,s

(
o

(r(k))
(i′,j′)+λ·ik,4·(s−1)+1,s

, o
(r(k))
(i′,j′)+λ·ik,4·(s−1)+2,s

,

o
(r(k))
(i′,j′)+λ·ik,4·(s−1)+3,s

, o
(r(k))
(i′,j′)+λ·ik,4·s,s

))
.

Analogous to the induction base case, the idea is to successively use Lemma 9 for the
computation of each network

σ
(
g

(i)
net,k+1,s

(
o

(r(k))
(i′,j′)+λ·ik,4·(s−1)+1,s

, o
(r(k))
(i′,j′)+λ·ik,4·(s−1)+2,s

,

o
(r(k))
(i′,j′)+λ·ik,4·(s−1)+3,s

, o
(r(k))
(i′,j′)+λ·ik,4·s,s

)) (51)

for s ∈ {1, . . . , 4l−(k+1)} and store the computed values in the corresponding channels

1, . . . , 4l−(k+1)

using equation (45). Before we apply Lemma 9, we choose the weights in channels

4l−(k+1) + 1, . . . , 4l−(k+1) + 4l−k

such that
o

(r)
(i′,j′),4l−(k+1)+s = o

(r(k))
(i′,j′),s

for all r ∈ {r(k) + 1, . . . , r(k + 1)}, (i′, j′) ∈ {1, . . . , λ}2 and s = 1, . . . , 4l−k by another
application of equation (45). Next, let us specify how to use Lemma 9. We first note
that

Mr(k)+1, . . . ,Mr(k+1) = 2 · b2k−1c+ 3.

Now, by using Lemma 9 for s ∈ {1, . . . , 4l−(k+1)} with parameters d = 4,

sm =
{

4 · (s− 1) +m , if s = 1
4l−(k+1) + 4 · (s− 1) +m , elsewhere

for m = 1, . . . , 4, s̃ = s, and r0 = r(k) + (s− 1) · (Lnet + 1) we can calculate the values
(51) in layers

r0 + 1, . . . , r0 + Lnet + 1

13

by choosing corresponding weights in channels

s, 5 · 4l−1 + 1, . . . , 5 · 4l−1 + rnet

such that we have

o
(r(k)+s·(Lnet+1))
(i′,j′),s = σ

(
g

(i)
net,k+1,s

(
o

(r(k))
(i′,j′)+λ·ik,4·(s−1)+1,s

, o
(r(k))
(i′,j′)+λ·ik,4·(s−1)+2,s

,

o
(r(k))
(i′,j′)+λ·ik,4·(s−1)+3,s

, o
(r(k))
(i′,j′)+λ·ik,4·s,s

))
for all (i′, j′) ∈ {2k + k+ 2, . . . , λ− 2k − k− 1}2 and s ∈ {1, . . . , 4l−(k+1)}. Once a value
has been saved in layer r(k)+s ·(Lnet+1) for s ∈ {1, . . . , 4l−(k+1)}, it will be propagated
to the next layer using equation (45) such that we have

o
(r(k+1))
(i′,j′),s = σ

(
g

(i)
net,k+1,s

(
o

(r(k))
(i′,j′)+λ·ik,4·(s−1)+1,s

, o
(r(k))
(i′,j′)+λ·ik,4·(s−1)+2,s

,

o
(r(k))
(i′,j′)+λ·ik,4·(s−1)+3,s

, o
(r(k))
(i′,j′)+λ·ik,4·s,s

))
for all (i′, j′) ∈ {2k+k+2, . . . , λ−2k−k−1}2 and s ∈ {1, . . . , 4l−(k+1)}, which concludes
the first step.
In the second step we choose the output weights wout such that (46) holds. Here we

simply choose w1 = 1 and ws = 0 for s ∈ {2, . . . , kL} and together with equation (47)
we obtain

fi(x) = max
{

kL∑
s′′=1

ws′′ · o
(L)
(i′,j′),s′′ : (i′, j′) ∈ {2l−1 + l, . . . , λ− 2l−1 − (l − 1)}2

}

= max
{
o

(L)
(i′,j′),1 : (i′, j′) ∈ {2l−1 + l, . . . , λ− 2l−1 − (l − 1)}2

}

= max
{
f̄

(i)
l,1 (x(i′−1/2

λ
− 1

2 ,
j′−1/2
λ
− 1

2

)
+I(l)) : (i′, j′) ∈ {2l−1 + l, . . . , λ− 2l−1 − (l − 1)}2

}

= max
u∈Gλ : u+I(l)⊆Gλ

f̄
(i)
l,1 (xu+I(l)),

where we used that(
i′ − 1/2

λ
− 1

2 ,
j′ − 1/2

λ
− 1

2

)
+ I(l)

=
{
i′ − 2l−1 − l + 1/2

λ
− 1

2 , . . . ,
i′ + 2l−1 + (l − 1) + 1/2

λ
− 1

2

}

×
{
j′ − 2l−1 − l + 1/2

λ
− 1

2 , . . . ,
j′ + 2l−1 + (l − 1) + 1/2

λ
− 1

2

}
.

�

14

D. A bound on the covering number
In this Section, we present the following upper bound for the covering number of our
convolutional neural network architecture FCNNθθθ defined as in Section 3.

Lemma 10 Let n, λ ∈ N\{1} and let σ(x) = max{x, 0} be the ReLU activation function,
define

F := FCNNθθθ

with θθθ = (t, L,k,M, B, Lnet, rnet) as in Section 3, and set

kmax = max {k1, . . . , kL, t, rnet} , Mmax = max{M1, . . . ,ML}.

Assume c24 · logn ≥ 2. Then we have for any ε ∈ (0, 1):

sup
xn1∈(RGλ)n

log (N1 (ε, Tc24·lognF ,xn1))

≤ c25 · L2 · log(L · λ) · log
(
c24 · logn

ε

)
for some constant c25 > 0 which depends only on Lnet, kmax and Mmax.

The proof of Lemma 10 is analogous to the proof of Lemma 4 in Kohler, Krzyżak
and Walter (2022). For the sake of completeness, we have adapted the proof below to
the slight differences in network architecture (in Kohler, Krzyżak and Walter (2022)
asymmetric zero padding is used in the convolutional layers and the output bound in (7)
is applied one-sided). With the aim of proving Lemma 10, we first have to study the VC
dimension of our function class FCNNθθθ . For a class of subsets of Rd, the VC dimension
is defined as follows:

Definition 4 Let A be a class of subsets of Rd with A 6= ∅ and m ∈ N.

1. For x1, ...,xm ∈ Rd we define

s(A, {x1, ...,xm}) := | {A ∩ {x1, ...,xm} : A ∈ A} |.

2. Then the mth shatter coefficient S(A,m) of A is defined by

S(A,m) := max
{x1,...,xm}⊂Rd

s(A, {x1, ...,xm}).

3. The VC dimension (Vapnik-Chervonenkis-Dimension) VA of A is defined as

VA := sup{m ∈ N : S(A,m) = 2m}.

For a class of real-valued functions, we define the VC dimension as follows:

Definition 5 Let H denote a class of functions from Rd to {0, 1} and let F be a class
of real-valued functions.

15

1. For any non-negative integer m, we define the growth function of H as

ΠH(m) := max
x1,...,xm∈Rd

|{(h(x1), . . . , h(xm)) : h ∈ H}|.

2. The VC dimension (Vapnik-Chervonenkis-Dimension) of H we define as

VCdim(H) := sup{m ∈ N : ΠH(m) = 2m}.

3. For f ∈ F we denote sgn(f) := 1{f≥0} and sgn(F) := {sgn(f) : f ∈ F}. Then the
VC dimension of F is defined as

VCdim(F) := VCdim(sgn(F)).

A connection between both definitions is given by the following lemma.

Lemma 11 Suppose F is a class of real-valued functions on Rd. Furthermore, we define

F+ := {{(x, y) ∈ Rd × R : f(x) ≥ y} : f ∈ F}

and define the class H of real-valued functions on Rd × R by

H := {h((x, y)) = f(x)− y : f ∈ F}.

Then, it holds that
VF+ = VCdim(H).

Proof. See Lemma 8 in Kohler, Krzyżak and Walter (2022). �
In order to bound the VC dimension of our function class, we need the following auxiliary
result about the number of possible sign vectors attained by polynomials of bounded
degree.

Lemma 12 Suppose W ≤ m and let f1, ..., fm be polynomials of degree at most D in
W variables. Define

K := |{(sgn(f1(a)), . . . , sgn(fm(a))) : a ∈ RW }|.

Then we have
K ≤ 2 ·

(2 · e ·m ·D
W

)W
.

Proof. See Theorem 8.3 in Anthony and Bartlett (1999). �
To get an upper bound for the VC dimension of our function class FCNNθθθ defined as in
Section 3 we will use a modification of Theorem 6 in Bartlett et al. (2019).

16

Lemma 13 Let σ(x) = max{x, 0} be the ReLU activation function, define

F := FCNNθθθ

with θθθ = (t, L,k,M, B, Lnet, rnet) as in Section 3, and set

kmax = max {k1, . . . , kL, t, rnet} , Mmax = max{M1, . . . ,ML}.

Assume λ > 1. Then, we have

VF+ ≤ c26 · L2 · log2(L · λ)

for some constant c26 > 0 which depends only on Lnet, kmax and Mmax.

Proof. We want to use Lemma 11 to bound VF+ by VCdim(H), where H is the class
of real-valued functions on [0, 1]Gλ × R defined by

H := {h((x, y)) = f(x)− y : f ∈ F}.

Let h ∈ H. Then h depends on t convolutional neural networks

f1, . . . , ft ∈ FCNN (L,k,M, B)

and one standard feedforward neural network gnet ∈ Gt(Lnet, rnet) such that

h((x, y)) = gnet ◦ (f1, . . . , ft)(x)− y

Each one of the convolutional neural networks f1, . . . , ft depends on a weight matrix

w(b) =
(
w

(b,r)
i,j,s1,s2

)
1≤i,j≤Mr,s1∈{1,...,kr−1},s2∈{1,...,kr},r∈{1,...,L}

,

the weights
w(b)
bias =

(
w(b,r)
s2

)
s2∈{1,...,kr},r∈{1,...,L}

for the bias in each channel and each convolutional layer, the output weights

w(b)
out = (w(b)

s)s∈{1,...,kL}

for b ∈ {1, . . . , t}. The standard feedforward neural network gnet depends on the inner
weigths

w
(r−1)
i,j

for r ∈ {2, . . . , Lnet}, j ∈ {0, . . . , rnet} and i ∈ {1, . . . , rnet} and

w
(0)
i,j

for j ∈ {0, . . . , t}, i ∈ {1, . . . , rnet} and the outer weights

w
(Lnet)
i

17

for i ∈ {0, . . . , kLnet}.
We set

(k0, . . . , kL+Lnet+1) = (1, k1, . . . , kL, t, rnet, . . . , rnet)

and count the number of weights used up to layer r ∈ {1, . . . , L} in the convolutional
part by

Wr := t ·
(

r∑
s=1

M2
s · ks · ks−1 +

r∑
s=1

ks

)
,

for r ∈ {1, . . . , L} (where we set W0 := 0) and

WL+1 := WL + t · kL.

We continue in the part of the standard feedforward neural network by counting the
weights used up to layer r ∈ {1, . . . , Lnet} by

WL+1+r = WL+r + (kL+r + 1) · kL+r+1

and denote the total number of weights by

W = WL+Lnet+2

= WL+Lnet+1 + kL+Lnet+1 + 1

≤ L · t ·
(
M2
max · k2

max + kmax
)

+ t · kmax

+ Lnet · ((kmax + 1) · kmax) + kmax + 1

≤ L · t ·
(
M2
max · (kmax + 1) · kmax

)
+ Lnet · ((kmax + 1) · kmax)
+ 2 · t · (kmax + 1)
≤ (L+ Lnet + 2) · t ·M2

max · (kmax + 1) · kmax
≤ 2 · (L+ Lnet + 2) · t ·M2

max · k2
max.

(52)

We define I(0) = ∅ and for r ∈ {1, . . . , L+ Lnet + 2} we define the index sets

I(r) = {1, . . . ,Wr}.

Furthermore, we define a sequence of vectors containing the weights used up to layer
r ∈ {1, . . . , L} in the convolutional part by

aI(r) :=
(
aI(r−1) , w

(1,r)
1,1,1,1, . . . , w

(1,r)
Mr,Mr,kr−1,kr

, w
(1,r)
1 , . . . , w

(1,r)
kr

,

. . . , w
(t,r)
1,1,1,1, . . . , w

(t,r)
Mr,Mr,kr−1,kr

, w
(t,r)
1 , . . . , w

(t,r)
kr

)
∈ RWr

(where a∅ denotes the empty vector),

aI(L+1) := (aI(L) , w
(1)
1 , . . . , w

(1)
kL
, . . . , w

(t)
1 , . . . , w

(t)
kL

) ∈ RWL+1 ,

18

and by continuing with the part of the standard feedforward neural network we get for
r ∈ {1, . . . , Lnet}

aI(r+L+1) :=
(
aI(r+L) , w

(r−1)
1,0 , . . . , w

(r−1)
kr+L+1,kr+L

)
∈ RWr+L+1

and
a :=

(
aI(L+Lnet+1) , w

(Lnet)
0 , . . . , w

(Lnet)
Lnet

)
∈ RW .

With this notation we can write

H = {(x, y) 7→ h((x, y),a) : a ∈ RW }

and for b ∈ {1, . . . , t}

FCNN (L,k,M, B) = {x 7→ fb(x,a) : a ∈ RW },

where the convolutional networks f1, . . . , ft ∈ FCNN (L,k,M, B), as described above,
each depends only on WL+1/t variables of a. To get an upper bound for the VC-
dimension of H, we will bound the growth function Πsgn(H)(m). In the following we
consider first the case where

m ≥W (53)

since this will allow us several uses of Lemma 12. To bound the growth function
Πsgn(H)(m), we fix the input values

(x1, y1), . . . , (xm, ym) ∈ [0, 1]Gλ × R

and consider h ∈ H as a function of the weight vector a ∈ RW of h

a 7→ h((xk, yk),a) = g ◦ (f1, . . . , ft)(xk,a)− yk = hk(a)

for any k ∈ {1, . . . ,m}. Then, an upper bound for

K := |{(sgn(h1(a)), . . . , sgn(hm(a))) : a ∈ RW }|

implies an upper bound for the growth function Πsgn(H)(m). For any partition

S = {S1, . . . , SM}

of RW it holds that

K ≤
M∑
i=1
|{(sgn(h1(a)), . . . , sgn(hm(a)) : a ∈ Si}|. (54)

We will construct a partition S of RW such that within each region S ∈ S , the functions
hk(·) are all fixed polynomials of bounded degree for k ∈ {1, . . . ,m}, so that each
summand of equation (54) can be bounded via Lemma 12. We do this in two steps.

19

In the first step we construct a partition S(1) of RW such that within each S ∈ S(1)

the t convolutional neural networks f1,k (a) , . . . , ft,k (a) are all fixed polynomials with
dergee of at most L+ 1 for all k ∈ {1, . . . ,m}, where we denote

fb,k (a) = fb (xk,a)

for b ∈ {1, . . . , t}. For b ∈ {1, . . . , t} we have

fb,k (a) = max
{

kL∑
s=1

w(b)
s · o

(L)
(i,j),b,s,xk(aI(L)) : (i, j) ∈ {1 +B, . . . , λ−B}2

}
,

where o(L)
(i,j),b,s2,x(aI(L)) is recursively defined by

o
(r)
(i,j),b,s2,x(aI(r))

= σ


kr−1∑
s1=1

∑
t1,t2∈{1,...,Mr}

i+t1−dMr/2e∈{1,...,λ}
j+t2−dMr/2e∈{1,...,λ}

w
(b,r)
t1,t2,s1,s2 · o

(r−1)
(i+t1−dMr/2e,j+t2−dMr/2e),b,s1,x(aI(r−1)) + w(b,r)

s2


for (i, j) ∈ {1, . . . , λ}2 and r ∈ {1, . . . , L}, and by

o
(0)
(i,j),b,1,x(aI(0)) = x(i−1/2

λ
− 1

2 ,
j−1/2
λ
− 1

2

) for (i, j) ∈ {1, . . . , λ}2.

Firstly, we construct a partition SL = {S1, . . . , SM} of RW such that within each S ∈ SL

o
(L)
(i,j),b,s,xk(aI(L))

is a fixed polynomial for all k ∈ {1, . . . ,m}, s ∈ {1, . . . , kL}, b ∈ {1, . . . , t} and (i, j) ∈ D
with degree of at most L in the WL variables aI(L) of a ∈ S. We construct the partition
SL iteratively layer by layer, by creating a sequence S0, . . . ,SL, where each Sr is a
partition of RW with the following properties:

1. We have |S0| = 1 and, for each r ∈ {1, . . . , L},

|Sr|
|Sr−1|

≤ 2
(

2 · e · t · kr · λ2 ·m · r
Wr

)Wr

, (55)

2. For each r ∈ {0, . . . , L}, and each element S ∈ Sr, each (i, j) ∈ {1, . . . , λ}2, each
s ∈ {1, . . . , kr}, each k ∈ {1, . . . ,m}, and each b ∈ {1, . . . , t} when a varies in S,

o
(r)
(i,j),b,s,xk(aI(r))

is a fixed polynomial function in the Wr variables aI(r) of a, of total degree no
more than r.

20

We define S0 := {RW }. Since

o
(0)
(i,j),b,s,xk(aI(0)) = (xk)(i−1/2

λ
− 1

2 ,
j−1/2
λ
− 1

2

)
is a constant polynomial, property 2 above is satisfied for r = 0. Now suppose that
S0, . . . ,Sr−1 have been defined, and we want to define Sr. For S ∈ Sr−1 let

p(i,j),b,s1,xk,S(aI(r−1))

denote the function o(r−1)
(i,j),b,s1,xk(aI(r−1)), when a ∈ S. By induction hypothesis

p(i,j),b,s1,xk,S(aI(r−1))

is a polynomial with total degree no more than r − 1, and depends on the Wr−1
variables aI(r−1) of a for any b ∈ {1, . . . , t}, k ∈ {1, . . . ,m}, (i, j) ∈ {1, . . . , λ}2 and
s1 ∈ {1, . . . , kr−1}. Hence for any b ∈ {1, . . . , t} k ∈ {1, . . . ,m}, (i, j) ∈ {1, . . . , λ}2 and
s2 ∈ {1, . . . , kr}

kr−1∑
s1=1

∑
t1,t2∈{1,...,Mr}

i+t1−dMr/2e∈{1,...,λ}
j+t2−dMr/2e∈{1,...,λ}

w
(b,r)
t1,t2,s1,s2 · p(i+t1−dMr/2e,j+t2−dMr/2e),b,s1,xk,S(aI(r−1)) + w(b,r)

s2

is a polynomial in the Wr variables aI(r) of a with total degree no more than r. Because
of condition (53) we have t · kr ·m · λ2 ≥ Wr. Hence, by Lemma 12, the collection of
polynomials

kr−1∑
s1=1

∑
t1,t2∈{1,...,Mr}

i+t1−dMr/2e∈{1,...,λ}
j+t2−dMr/2e∈{1,...,λ}

w
(b,r)
t1,t2,s1,s2 · p(i+t1−dMr/2e,j+t2−dMr/2e),b,s1,xk,S(aI(r−1)) + w(b,r)

s2 :

b ∈ {1, . . . , t}, k ∈ {1, . . . ,m}, (i, j) ∈ {1, . . . , λ}2, s2 ∈ {1, . . . , kr}


(56)

attains at most

Π := 2
(

2 · e · t · kr ·m · λ2 · r
Wr

)Wr

distinct sign patterns when a ∈ S. Therefore, we can partition S ⊂ RW into Π sub-
regions, such that all the polynomials don’t change their signs within each subregion.
Doing this for all regions S ∈ Sr−1 we get our required partition Sr by assembling all of
these subregions. In particular, property 1 (inequality (55)) is then satisfied.

21

Fix some S′ ∈ Sr. Notice that, when a varies in S′, all the polynomials in (56) don’t
change their signs, hence

o
(r)
(i,j),b,s2,xk(aI(r))

= σ


kr−1∑
s1=1

∑
t1,t2∈{1,...,Mr}

i+t1−dMr/2e∈{1,...,λ}
j+t2−dMr/2e∈{1,...,λ}

w
(b,r)
t1,t2,s1,s2 · o

(r−1)
(i+t1−dMr/2e,j+t2−dMr/2e),b,s1,x(aI(r−1)) + w(b,r)

s2


= max

{ kr−1∑
s1=1

∑
t1,t2∈{1,...,Mr}

i+t1−dMr/2e∈{1,...,λ}
j+t2−dMr/2e∈{1,...,λ}

w
(b,r)
t1,t2,s1,s2 · o

(r−1)
(i+t1−dMr/2e,j+t2−dMr/2e),b,s1,x(aI(r−1))

+ w(b,r)
s2 , 0

}

is either a polynomial of degree no more than r in theWr variables aI(r) of a or a constant
polynomial with value 0 for all (i, j) ∈ {1, . . . , λ}2, b ∈ {1, . . . , t}, s2 ∈ {1, . . . , kr} and
k ∈ {1, . . . ,m}. Hence, property 2 is also satisfied and we are able to construct our
desired partition SL. Because of inequality (55) of property 1 it holds that

|SL| ≤
L∏
r=1

2
(

2 · e · t · kr · λ2 ·m · r
Wr

)Wr

.

For any (i, j) ∈ {1, . . . , λ}2, b ∈ {1, . . . , t} and k ∈ {1, . . . ,m}, we define

f(i,j),b,xk(aI(L+1)) :=
kL∑
s2=1

w(b)
s2 · o

(L)
(i,j),b,s2,xk(aI(L)).

For any fixed S ∈ SL, let p(i,j),b,S,xk(aI(L+1)) denote the function f(i,j),b,xk(aI(L+1)), when
a ∈ S. By construction of SL this is a polynomial of degree no more than L+ 1 in the
WL+1 variables aI(L+1) of a. Because of condition (53) we have t ·λ4 ·m ≥WL+1. Hence,
by Lemma 12, the collection of polynomials{

p(i1,j1),b,S,xk(aI(L+1))− p(i2,j2),b,S,xk(aI(L+1)) :

(i1, j1), (i2, j2) ∈ {1, . . . , λ}2, (i1, j1) 6= (i2, j2), b ∈ {1, . . . , t}, k ∈ {1, . . . ,m}
}

attains at most

∆ := 2
(

2 · e · t · λ4 ·m · (L+ 1)
WL+1

)WL+1

distinct sign patterns when a ∈ S. Therefore, we can partition S ⊂ RW into ∆ sub-
regions, such that all the polynomials don’t change their signs within each subregion.

22

Doing this for all regions S ∈ SL we get our required partition S(1) by assembling all of
these subregions. For the size of our partition S(1) we get

|S(1)| ≤
L∏
r=1

2 ·
(

2 · t · e · kr · λ2 ·m · r
Wr

)Wr

· 2 ·
(

2 · e · t · λ4 ·m · (L+ 1)
WL+1

)WL+1

.

Fix some S′ ∈ S(1). Notice that, when a varies in S′, all the polynomials{
p(i1,j1),b,S,xk(aI(L+1))− p(i2,j2),b,S,xk(aI(L+1)) :

(i1, j1), (i2, j2) ∈ {1, . . . , λ}2, (i1, j1) 6= (i2, j2), b ∈ {1, . . . , t}, k ∈ {1, . . . ,m}
}

don’t change their signs. Hence, there is a permutation π(b,k) of the set

{1 +B, . . . , λ−B}2

for any b ∈ {1, . . . , t} and k ∈ {1, . . . ,m} such that

fπ(b,k)((1+B,1+B)),b,xk(aI(L+1)) ≥ · · · ≥ fπ(b,k)((λ−B,λ−B)),b,xk(aI(L+1))

for a ∈ S′ and any k ∈ {1, . . . ,m} and b ∈ {1, . . . , t}. Therefore, it holds that

fb,k(a) = max
{
f(1+B,1+B),b,xk (aI(L+1)) , . . . , f(λ−B,λ−B),b,xk (aI(L+1))

}
= fπ(b,k)((1+B,1+B)),b,xk(aI(L+1)),

for a ∈ S′. Since fπ(b,k)((1+B,1+B)),b,xk(aI(L+1)) is a polynomial within S′, also fb,k(a) is a
polynomial within S′ with degree no more than L+ 1 and in the WL+1 variables aI(L+1)

of a ∈ RW .
In the second step we construct the partition S starting from partition S(1) such that

within each region S ∈ S the functions hk(·) are all fixed polynomials of degree of at
most L+ Lnet + 2 for k ∈ {1, . . . ,m}. We have

hk(a) =
kL+Lnet+1∑

i=1
w

(Lnet)
i · g(Lnet)

i,k (aI(L+Lnet+1)) + w
(Lnet)
0 − yk

where the g(Lnet)
i,k are recursively defined by

g
(r)
i,k (aI(L+r+1)) = σ

kL+r∑
j=1

w
(r−1)
i,j g

(r−1)
j,k (aI(L+r))


for r ∈ {1, . . . , Lnet} and

g
(0)
i,k (aI(L+1)) = fi,k(a)

for i ∈ {1, . . . , kL+1} (kL+1 = t). As above we construct the partition S iteratively layer
by layer, by creating a sequence S0, . . . ,SLnet , where each Sr is a partition of RW with
the following porperties:

23

1. We set S0 = S(1) and, for each r ∈ {1, . . . , Lnet},

|Sr|
|Sr−1|

≤ 2
(2 · e · kL+r+1 ·m · (L+ r + 1)

WL+r+1

)WL+r+1

, (57)

2. For each r ∈ {0, . . . , Lnet}, and each element S ∈ Sr, each i ∈ {1, . . . , kL+r+1},
and each k ∈ {1, . . . ,m} when a varies in S,

g
(r)
i,k (aI(L+r+1))

is a fixed polynomial function in theWL+r+1 variables aI(L+r+1) of a, of total degree
no more than L+ r + 1.

As we have already shown in step 1, property 2 above is satisfied for r = 0. Now
suppose that S0, . . . ,Sr−1 have been defined, and we want to define Sr. For S ∈ Sr−1
and j ∈ {1, . . . , kL+r} let pj,k,S(aI(L+r)) denote the function g(r−1)

j,k (aI(L+r)), when a ∈ S.
By induction hypothesis pj,k,S(aI(L+r)) is a polynomial with total degree no more than
L + r, and depends on the WL+r variables aI(L+r) of a. Hence for any k ∈ {1, . . . ,m}
and i ∈ {1, . . . , kL+r+1}

kL+r∑
j=1

w
(r−1)
(i,j) · pj,k,S(aI(L+r)) + w

(r−1)
i,0

is a polynomial in the WL+r+1 variables aI(L+r+1) variables of a with total degree no
more than L+ r + 1. Because of condition (53) we have kL+r+1 ·m ≥ WL+r+1. Hence,
by Lemma 12, the collection of polynomials

kL+r∑
j=1

w
(r−1)
(i,j) · pj,k,S(aI(L+r)) + w

(r−1)
i,0 : k ∈ {1, . . . ,m}, i ∈ {1, . . . , kL+r+1}


attains at most

Π := 2
(2 · e · kL+r+1 ·m · (L+ r + 1)

WL+r+1

)WL+r+1

distinct sign patterns when a ∈ S. Therefore, we can partition S ⊂ RW into Π sub-
regions, such that all the polynomials don’t change their signs within each subregion.
Doing this for all regions S ∈ Sr−1 we get our required partition Sr by assembling all of
these subregions. In particular property 1 is then satisfied. In order to see that condition
2 is also satisfied, we can proceed analogously to step 1. Hence, when a varies in S ∈ S
the function

hk(a) =
kL+Lnet+1∑

i=1
w

(L)
i · g(Lnet)

i,k (aI(L+Lnet+1)) + w
(L)
0 − yk

24

is a polynomial of degree no more than L + Lnet + 2 in the W variables of a ∈ RW for
any k ∈ {1, . . . ,m}. For the size of our partition S we get

|S| ≤
L∏
r=1

2 ·
(

2 · e · t · kr · λ2 ·m · r
Wr

)Wr

· 2 ·
(

2 · e · λ4 ·m · (L+ 1)
WL+1

)WL+1

·
Lnet∏
r=1

2 ·
(2 · e · kL+r+1 ·m · (L+ r + 1)

WL+r+1

)WL+r+1

≤
L+Lnet+1∏

r=1
2 ·
(

2 · e · t · kr · λ4 ·m · r
Wr

)Wr

By condition (53) and another application of Lemma 12 it holds for any S′ ∈ S that

|{(sgn(h1(a)), . . . , sgn(hm(a))) : a ∈ S′}|

≤ 2 ·
(2 · e ·m · (L+ Lnet + 2)

W

)W
.

Now we are able to bound K via equation (54) and because K is an upper bound for
the growth function we set kL+Lnet+2 = 1 and get

Πsgn(H)(m) ≤
L+Lnet+2∏

r=1
2 ·
(

2 · e · t · kr · λ4 · r ·m
Wr

)Wr

≤2L+Lnet+2 ·
(∑L+Lnet+2

r=1 2 · e · t · kr · λ4 · r ·m∑L+Lnet+2
r=1 Wr

)∑L+Lnet+2
r=1 Wr

= 2L+Lnet+2 ·
(

R ·m∑L+Lnet+2
r=1 Wr

)∑L+Lnet+2
r=1 Wr

, (58)

with R := 2 · e · t · λ4 ·
∑L+Lnet+2
r=1 kr · r. In the second row we used the weighted AM-

GM inequality (see, e.g., Cvetkovski (2012), pp. 74-75). Without loss of generality,
we can assume that VCdim(H) ≥

∑L+Lnet+2
r=1 Wr because in the case VCdim(H) <∑L+Lnet+2

r=1 Wr we have

VCdim(H) < (L+ Lnet + 2) ·W
(52)
≤ 2 · (L+ Lnet + 2)2 · t ·M2

max · k2
max

≤ c26 · L2

for some constant c26 > 0 which only depends on Lnet,Mmax and kmax and get the asser-
tion by Lemma 11. Hence we get by the definition of the VC–dimension and inequality
(58) (which only holds for m ≥W)

2VCdim(H) = Πsgn(H)(VCdim(H)) ≤ 2L+Lnet+2 ·
(
R ·VCdim(H)∑L+Lnet+2
r=1 Wr

)∑L+Lnet+2
r=1 Wr

.

25

Since

R ≥ 2 · e · t · λ4 ·
1+1+2∑
r=1

r ≥ 2 · e · t · λ4 · 10 ≥ 16

Lemma 14 below (with parameters R, m = VCdim(H), w =
∑L+Lnet+2
r=1 Wr and L′ =

L+ Lnet + 2) implies that

VCdim(H) ≤ (L+ Lnet + 2) +
(
L+Lnet+2∑

r=1
Wr

)
· log2(2 ·R · log2(R))

≤ (L+ Lnet + 2) + (L+ Lnet + 2) ·W
· log2(2 · (2 · e · t · λ4 · (L+ Lnet + 2) · kmax)2)

≤ 2 · (L+ Lnet + 2) ·W · log2

(
(2 · e · t · (L+ Lnet + 2) · kmax · λ)8

)
(52)
≤ 32 · t · (L+ Lnet + 2)2 · k2

max ·M2
max

· log2 (2 · e · t · (L+ Lnet + 2) · kmax · λ)
≤ c26 · L2 · log2(L · λ),

for some constant c26 > 0 which only depends on Lnet, kmax and Mmax. In the third row
we used equation (52) for the total number of weights W . Now we make use of Lemma
11 and finally get

VF+ ≤ c26 · L2 · log2(L · λ).

�

Lemma 14 Suppose that 2m ≤ 2L′ · (m ·R/w)w for some R ≥ 16 and m ≥ w ≥ L′ ≥ 0.
Then,

m ≤ L′ + w · log2(2 ·R · log2(R)).

Proof. See Lemma 16 in Bartlett et al. (2019). �

Proof of Lemma 10. Using Lemma 13 and

VTc4·lognF+ ≤ VF+ ,

we can conclude from this together with Lemma 9.2 and Theorem 9.4 in Györfi et al.
(2002)

N1 (ε, Tc24·lognF ,xn1)

≤ 3 ·
(4e · c24 · logn

ε
· log 6e · c24 · logn

ε

)VTc24·lognF+

≤ 3 ·
(6e · c24 · logn

ε

)2·c25·L2·log(L·λ2)
.

This completes the proof of Lemma 10.

26

E. Proof of inequality (12)
The aim of this section is to prove equation (12) of Example 1 (see Section 4). For this
we first define the bilinear interpolation φx : C1 → [0, 1] for some x ∈ [0, 1]Hλmax :

Let x ∈ [0, 1]Hλmax be fixed. For v := (v1, v2) ∈ C1 let

(a(v)
1 , b

(v)
1), (a(v)

2 , b
(v)
1), (a(v)

1 , b
(v)
2), (a(v)

2 , b
(v)
2) ∈ Hλmax (59)

be grid points such that v ∈ [a(v)
1 , b

(v)
1]× [a(v)

2 , b
(v)
2] and define the coefficients

k
(v)
0 , k

(v)
1 , k

(v)
2 , k

(v)
3 ∈ R

by


k

(v)
0
k

(v)
1
k

(v)
2
k

(v)
3

 = (λmax− 1)2 ·


a

(v)
2 · b(v)

2 −a(v)
2 · b(v)

1 −a(v)
1 · b(v)

2 a
(v)
1 · b(v)

1
−b(v)

2 b
(v)
1 b

(v)
2 −b(v)

1
−a(v)

2 a
(v)
2 a

(v)
1 −a(v)

1
1 −1 −1 1



x(a(v)

1 ,b
(v)
1)

x(a(v)
1 ,b

(v)
2)

x(a(v)
2 ,b

(v)
1)

x(a(v)
2 ,b

(v)
2)

 ,

where we note that

max
{
|k(v)

1 |, |k
(v)
2 |, |k

(v)
3 |
}
≤ 2 · (λmax − 1)2. (60)

The bilinear interpolation φx is then defined as

φx(v) = k
(v)
0 + k

(v)
1 · v1 + k

(v)
2 · v2 + k

(v)
3 · v1 · v2 (v ∈ C1)

(see Figure 10 for an illustration of a bilinear interpolation and see, e.g., Kirkland (2010)
for a derivation of the above formula). Next, we show that

sup
z,v∈C1 : ‖v−z‖∞≤δ

|φx(v)− φx(z)| ≤ 16 · λ2
max · δ (61)

holds for arbitrary 0 ≤ δ ≤ 1
λmax−1 . For v, z ∈ C1 with ‖v − z‖∞ ≤ δ we can choose

the grid points (59) for the computation of φx(v) and φx(z) such that there exists some
u ∈ C1 satisfying

u ∈ ([a(v)
1 , b

(v)
1]× [a(v)

2 , b
(v)
2]) ∩ ([a(z)

1 , b
(z)
1]× [a(z)

2 , b
(z)
2])

and
max{‖v− u‖∞, ‖z− u‖∞} ≤ δ.

To compute φx(u) we can therefore use the same grid points (59) as for the computation
of φx(v), such that together with inequality (60) we get

|φx(v)− φx(u)| = |k(v)
1 · (v1 − u1) + k

(v)
2 · (v2 − u2) + k

(v)
3 · (v1 · v2 − u1 · u2)|

27

Figure 10: Illustration of a bilinear interpolation for λmax = 5.

≤ |k(v)
1 | · |v1 − u1|+ |k(v)

2 | · |v2 − u2|+ |k(v)
3 | · |v1 · v2 − u1 · u2|

≤ 4 · (λmax − 1)2 · δ + |k(v)
3 | · (|v1| · |v2 − u2|+ |u2| · |v1 − u1|)

≤ 8 · (λmax − 1)2 · δ,

and analogously

|φx(u)− φx(z)| ≤ 8 · (λmax − 1)2 · δ,

which implies

|φx(v)− φx(z)| ≤ |φx(v)− φx(u)|+ |φx(u)− φx(z)| ≤ 16 · λ2
max · δ.

Using inequality (61), and under the assumptions of Assumption 2 and Example 1, we
then obtain

sup
z∈C1 : ‖v−z‖∞≤ c

λ

∣∣∣∣∣f0,s
(
φ ◦ τv ◦ rot(α)∣∣

Ch0

)
− f0,s

(
φ(z) · 1

∣∣
Ch0

)∣∣∣∣∣
≤ sup

z∈C1 : ‖v−z‖∞≤ c
λ

1
h2

0

∫
Ch0

∣∣∣∣φ ◦ τv ◦ rot(α)∣∣
Ch0

(y)− φ(z) · 1
∣∣
Ch0

(y)
∣∣∣∣ dy

≤ sup
z∈C1 : ‖v−z‖∞≤ c

λ

max
y∈Ch0

∣∣∣∣φ ◦ τv ◦ rot(α)∣∣
Ch0

(y)− φ(z) · 1
∣∣
Ch0

(y)
∣∣∣∣

≤ sup
y,z∈C1 : ‖y−z‖∞≤2· c

λ

|φ(y)− φ(z)|

≤ 32 · c · λ2
max

λ
.

28

References
[1] Anthony, M., and Bartlett, P. L. (1999). Neural Network Learning: Theoretical

Foundations. Cambridge University Press, Cambridge.

[2] Bagirov, A. M., Clausen, C., and Kohler, M. (2009). Estimation of a Regression
Function by Maxima of Minima of Linear Functions. IEEE Transactions on Infor-
mation Theory, 55, pp. 833–845.

[3] Bartlett, P. L., Harvey, N., Liaw, C., and Mehrabian, A. (2019). Nearly-tight VC-
dimension and Pseudodimension Bounds for Piecewise Linear Neural Networks.
Journal of Machine Learning Research, 20, pp. 1–17.

[4] Cvetkovski, Z. (2012). Inequalities: Theorems, Techniques and Selected Problems.
Springer, Berlin, Heidelberg.

[5] Györfi, L., Kohler, M., Krzyzak, A., and Walk, H. (2002). A Distribution-Free
Theory of Nonparametric Regression. Springer, New York.

[6] He, J. C., Li, L., and Xu, J. C. (2020). Approximation properties of deep ReLU
CNNs. arXiv: 109.00190.

[7] Kirkland, E. J. (2010). Advanced Computing in Electron Microscopy. Springer New
York, NY, 2. edition.

[8] Kohler, M., Krzyżak, A., and Walter, B. (2022). On the rate of convergence of
image classifiers based on convolutional neural networks. Annals of the Institute of
Statistical Mathematics, pp. 1–24.

[9] Kohler, M., and Langer, S. (2021). On the rate of convergence of fully connected
very deep neural network regression estimates. Annals of Statistics, 49, pp. 2231–
2249.

[10] Walter, B. (2021). Analysis of convolutional neural network image classifiers in a
hierarchical max-pooling model with additional local pooling. arXiv: 2106.05233.

[11] Zhou, D.-X. (2020). Theory of deep convolutional neural networks: Downsampling.
Neural Networks, 124, pp. 319–327.

29

	Additional material for Section 5
	Creating the synthetic image data sets
	Rotation by nearest neighbor interpolation

	Auxiliary results
	Proof of Lemma 3 and Lemma 4
	A bound on the covering number
	Proof of inequality (12)

