
On the rate of convergence of an
over-parametrized deep neural network regression
estimate with ReLU activation function learned by

gradient descent ∗

Michael Kohler1 and Adam Krzy»ak2,†
1 Fachbereich Mathematik, Technische Universität Darmstadt, Schlossgartenstr. 7,

64289 Darmstadt, Germany, email: kohler@mathematik.tu-darmstadt.de
2 Department of Computer Science and Software Engineering, Concordia University,

1455 De Maisonneuve Blvd. West, Montreal, Quebec, Canada H3G 1M8, email:

krzyzak@cs.concordia.ca

July 19, 2023

Abstract

Estimation of a regression function from independent and identically distributed random
variables is considered. The L2 error with integration with respect to the design measure
is used as an error criterion. Over-parametrized deep neural network estimates with
ReLU activation function are de�ned where all the weights are learned by the gradient
descent. It is shown that the expected L2 error of the estimates converges to zero with
rate

n
− p

2p+d

(up to some logarithmic factor) in case that the regression function is p-times continuously
di�erentiable. In case that the regression function satis�es the assumption of a p times
continuously di�erentiable interaction model, i.e., in case that it is equal to a �nite sum of
functions where each function in the sum is a p-times continuously di�erentiable function
applied to only d∗ of the d components of its input, we show that our estimate achieves
the above rate of convergence with d replaced by d∗.

AMS classi�cation: Primary 62G08; secondary 62G20.

Key words and phrases: neural networks, nonparametric regression, over-parametrization,
rate of convergence, ReLU activation function.

1 Introduction

1.1 Deep Learning

Deep neural networks are among the most successful approaches in multivariate sta-
tistical estimation applications and have been applied extremely successfully in many

∗Running title: Over-parametrized deep neural networks
†Corresponding author. Tel: +1-514-848-2424 ext. 3007, Fax:+1-514-848-2830

1

di�erent areas, e.g., in image classi�cation (cf., e.g., Krizhevsky, Sutskever and Hinton
(2012)), language recognition (cf., e.g., Kim (2014)) machine translation (cf., e.g., Wu
et al. (2016)) or mastering of games (cf., e.g., Silver et al. (2017)). Motivated by the
practical success of these networks there has been in the last 6 years an increasing inter-
est in studying the corresponding estimators theoretically. As pointed out in Kutyonik
(2020), the theoretical analysis of deep neural networks can be separated into three parts:
expressivity, optimization, and generalization. Here in expressivity it is studied which
functions can be approximated well by deep neural networks. In optimization it is inves-
tigated how a deep neural network can be �tted to observed data. And in generalization
it is analyzed how well deep neural networks adapted to one data set behave on new
independent data sets of the same kind.
The purpose of this paper is to extend the theoretical knowledge about deep neural

networks by studying simultaneously expressivity, optimization, and generalization for
over-parametrized deep neural networks estimates with ReLU activation function.

1.2 Nonparametric regression

To do this, we study deep neural networks in the context of nonparametric regression.
Here, (X,Y) is an Rd×R�valued random vector with EY 2 <∞, and m(x) = E{Y |X =
x} is the corresponding regression function m : Rd → R. Given a sample of (X,Y), i.e.,
a data set

Dn = {(X1, Y1), . . . , (Xn, Yn)} , (1)

where (X,Y), (X1, Y1), . . . , (Xn, Yn) are i.i.d., the goal is to construct an estimator

mn(·) = mn(·,Dn) : Rd → R

of the corresponding regression function m(x) = E{Y |X = x} such that the so�called
L2 error ∫

|mn(x)−m(x)|2PX(dx)

is �small� (cf., e.g., Györ� et al. (2002) for a systematic introduction to nonparametric
regression and a motivation for the L2 error).
We are interested to investigate for given estimates mn how quickly the expected L2

error

E

∫
|mn(x)−m(x)|2PX(dx) (2)

converges to zero. It is well-known, that without regularity assumptions on the smooth-
ness of m it is not possible to derive nontrivial asymptotic bounds on (2) (cf., Theorem
7.2 and Problem 7.2 in Devroye, Györ� and Lugosi (1996) and Section 3 in Devroye and
Wagner (1980)). In order to formulate such regularity assumptions we will use in this
paper the notion of (p, C)�smoothness, which we introduce next.

2

De�nition 1 Let p = q+ s for some q ∈ N0 and 0 < s ≤ 1. A function m : Rd → R is

called (p, C)-smooth, if for every α = (α1, . . . , αd) ∈ Nd0 with
∑d

j=1 αj = q the partial

derivative ∂qm
∂x
α1
1 ...∂x

αd
d

exists and satis�es∣∣∣∣ ∂qm

∂xα1
1 . . . ∂xαdd

(x)− ∂qm

∂xα1
1 . . . ∂xαdd

(z)

∣∣∣∣ ≤ C · ‖x− z‖s
for all x, z ∈ Rd, where ‖ · ‖ denotes the Euclidean norm.

1.3 Main results

In this paper we analyze deep neural networks with ReLU activation function learned by
gradient descent. Here we propose a special topology of the network where the output
of the network is de�ned as a linear combination of a huge number of fully connected
deep neural networks of constant widths and logarithmic depths. We introduce special
initialization of the weights, where the output weights are zero and all inner weights are
generated with various uniform distributions. Then we perform a suitable large number
of gradient descent steps with the stepsize equal to one divided by the number of steps.
We show that the expected L2 error of the truncated version of the resulting estimate
converges to zero with the rate of convergence

n
− p

2p+d

(up to some logarithmic factor) in case that the regression function is (p, C)-smooth for
some p, C > 0, where p might be arbitrary large. In case of an interaction model of order
d∗ (i.e., in case that the regression function is a sum of functions where each function
in the sum depends only on d∗ of the d components of x) we show that the above rate
of convergence holds with d replaced by d∗. It is well-known that the above rate of
convergence is not optimal and that there exists simple estimates which achieve a better
rate of convergence (cf., Stone (1982, 1994)), however we see our result as an important
step towards a general convergence theory for deep neural network estimates learned by
gradient descent.

1.4 Discussion of related results

Expressivity and generalization of deep neural networks are nowadays relatively well un-
derstood. There exist quite a few approximation results for neural networks (cf., e.g.,
Yarotsky (2018), Yarotsky and Zhevnerchute (2019), Lu et al. (2020), Langer (2021)
and the literature cited therein), and generalization of deep neural networks can either
be analyzed within the framework of the classical VC theory (using e.g. the result of
Bartlett et al. (2019) to bound the VC dimension of classes of neural networks) or in
case of over-parametrized deep neural networks (where the number of free parameters
adjusted to the observed data set is much larger than the sample size) using bounds on
the Rademacher complexity (cf., e.g., Liang, Rakhlin and Sridharan (2015), Golowich,

3

Rakhlin and Shamir (2019), Lin and Zhang (2019), Wang and Ma (2022) and the litera-
ture cited therein). By combining these results expressivity and generalization has been
controlled simultaneously in case of not over-parametrized deep neural networks. E.g., it
has been shown in the context of nonparametric regression, that least squares estimates
based on deep neural network achieve a dimension reduction in a high-dimensional setting
in case that the regression function is a composition of functions where each functions
depends only on a few input variables (cf., Kohler and Krzy»ak (2017), Bauer and Kohler
(2019), Schmidt-Hieber (2020) and Kohler and Langer (2021)). The mathematical reason
behind these results is that due to the network structure composition of neural networks
leads again to a neural network. This enables to generalize approximation results for
deep neural networks for function classes to results for compositions of those functions,
which together with proper bounds on the generalization properties of classes of neural
networks enables to analyze least squares regression estimates based on deep neural net-
works. Adaptation of deep neural network to especially weak smoothness assumptions
was shown in Imaizumi and Fukamizu (2018), Suzuki (2018) and Suzuki and Nitanda
(2019).
Less well understood is the optimization of deep neural networks. If we consider

optimization separately from expressivity and generalization, the main question is why
gradient descent (and its variants) lead to estimates with small empirical risk. As was
shown e.g. in Zou et al. (2018), Du et al. (2019), Allen-Zhu, Li and Song (2019)
and Kawaguchi and Huang (2019) application of gradient descent to over-parameterized
deep neural networks leads to neural networks that (globally) minimize the considered
empirical risk. However, as was shown in Kohler and Krzy»ak (2021), the corresponding
estimates do not behave well on new independent data. So the main question is why
gradient descent (and its variants like stochastic gradient descent) can be used to �t
a neural network to observed data in such a way that the resulting estimate achieves
good results on a new independent data. The challenge here is not only to analyze the
optimization but to consider it simultaneously with expressivity and generalization.
In case of shallow neural networks (i.e., neural networks with only one hidden layer)

this has been done successfully in Braun et al. (2023). Here it was possible to show
that the classical dimension free rate of convergence of Barron (1994) for estimation of a
regression function where its Fourier transform has a �nite moment can also be achieved
by shallow neural networks learned by the gradient descent. The main idea here is that
the gradient descent selects a subset of the neural network where the random initialization
of the inner weights have lead to values with good approximation properties, and that
it adjusts the outer weights for these neurons properly. A similar idea was also applied
in Gonon (2021). Kohler and Krzy»ak (2022) applied this idea in the context of over-
parametrized deep neural networks where a linear combination of a huge number of deep
neural networks of �xed size are computed in parallel. Here the gradient descent selects
again a subset of the neural networks computed in parallel and chooses a proper linear
combination of the networks. By using metric entropy bounds (cf., e.g., Birman and
Solomnjak (1967) and Li, Gu and Ding (2021)) it is possible to control the generalization
of the over-parametrized neural networks, and as a result a rate of convergence of order
close to n−1/(1+d) (or n1/(1+d∗) in case of interaction models, where it is assumed that

4

the regression function is a sum of functions applied to only d∗ of the d components of
the predictor variable) can be shown for Hölder-smooth regression function with Hölder
exponent p ∈ [1/2, 1]. In all those results adjusting the inner weights with gradient
descent is not important. In fact, Gonon (2021) does not do this at all, while Braun et
al. (2023) and Kohler and Krzy»ak (2022) use that the relevant inner weights do not move
too far away from their starting values during gradient descent. Similar ideas have also
been applied in Andoni et al. (2014) and Daniely (2017). This whole approach is related
to random feature networks (cf., e.g., Huang, Chen and Siew (2006) and Rahimi and
Recht (2008a, 2008b, 2009)), where the inner weights are chosen randomly and only the
outer weights are learned during gradient descent. Yehudai and Shamir (2022) present
a lower bound which implies that either the number of neurons or the absolute value of
the coe�cients must grow exponential in the dimension in order to learn a single ReLU
neuron with random feature networks. But since Braun et al. (2023) was able to prove
a useful rate of convergence result for networks similar to random feature networks, the
practical relevance of this lower bound is not clear.
A survey of various results on over-parametrized deep neural network estimates learned

by gradient descent can be found in Bartlett, Montanari and Rakhlin (2021). These
results usually analyze the estimates in some asymptotically equivalent models (like the
mean �eld approach in Mei, Montanari, and Nguyen (2018), Chizat and Bach (2018) or
Nguyen and Pham (2020) or the neural tangent approach in Hanin and Nica (2019)).
In contrast, in this paper we analyze directly the error of the estimate in a standard
regression model. Here the analysis of the gradient descent is related to Shamir and
Zhang (2012), and we derive a new result for Rademacher complexities (cf., Lemma 5
below) in order to control the generalization error of the estimate. One trick in this
context is to use a projection step in gradient descent to ensure that the sum of the
absolute values of the output weights remains properly bounded. Otherwise our proof
strategy is similar to the one introduced in Kohler and Krzy»ak (2022).

1.5 Notation

The sets of natural numbers, real numbers and nonnegative real numbers are denoted
by N, R and R+, respectively. For z ∈ R, we denote the smallest integer greater than
or equal to z by dze, and we set z+ = max{z, 0} and z− = max{−z, 0}. The Euclidean
norm of x ∈ Rd is denoted by ‖x‖. For a closed and convex set A ⊆ Rd we denote by
ProjAx that element ProjAx ∈ A with

‖x− ProjAx‖ = min
z∈A
‖x− z‖.

For f : Rd → R
‖f‖∞ = sup

x∈Rd
|f(x)|

is its supremum norm.
For j = (j(1), . . . , j(d)) ∈ Nd0 we write

‖j‖1 = j(1) + · · ·+ j(d)

5

and for f : Rd → R we set

∂jf =
∂‖j‖jf

(∂x(1))j
(1)
. . . (∂x(d))j

(d)
.

Let F be a set of functions f : Rd → R, let x1, . . . , xn ∈ Rd, set xn1 = (x1, . . . , xn) and
let p ≥ 1. A �nite collection f1, . . . , fN : Rd → R is called an Lp ε�packing in F on xn1 if
f1, . . . , fN ∈ F and

min
1≤i<j≤N

(
1

n

n∑
k=1

|fi(xk)− fj(xk)|p
)1/p

≥ ε

hold. The Lp ε�packing number of F on xn1 is the size N of the largest Lp ε�packing of
F on xn1 and is denoted byMp(ε,F , xn1).
For z ∈ R and β > 0 we de�ne Tβz = max{−β,min{β, z}}. If f : Rd → R is a function

then we set (Tβf)(x) = Tβ (f(x)).

1.6 Outline

The over-parametrized deep neural network estimates considered in this paper are intro-
duced in Section 2. The main results are presented in Section 3. Section 4 contains the
proofs.

2 De�nition of the estimate

2.1 Topology of the deep networks

Throughout the paper we let σ(x) = max{x, 0} be the ReLU activation function and we
de�ne the topology of our neural networks as follows: We let Kn, Ln, r ∈ N and βn ∈ R+

be parameters of our estimate and using these parameters we set

fw(x) =

Kn∑
j=1

w
(Ln)
1,1,j · Tβn(f

(Ln)
w,j,1(x)) (3)

for some w
(Ln)
1,1,1, . . . , w

(Ln)
1,1,Kn

∈ R, where f (Ln)
j,1 = f

(Ln)
w,j,1 are recursively de�ned by

f
(l)
k,i(x) = f

(l)
w,k,i(x) = σ

 r∑
j=1

w
(l−1)
k,i,j · f

(l−1)
k,j (x) + w

(l−1)
k,i,0

 (4)

for some w
(l−1)
k,i,0 , . . . , w

(l−1)
k,i,r ∈ R (l = 2, . . . , Ln) and

f
(1)
k,i (x) = f

(1)
w,k,i(x) = σ

 d∑
j=1

w
(0)
k,i,j · x

(j) + w
(0)
k,i,0

 (5)

6

for some w
(0)
k,i,0, . . . , w

(0)
k,i,d ∈ R.

Observe that we have

Tβn(z) = max{−βn,min{βn, z}} = max{0, βn −max{−βn,−z}} − βn
= max{0, 2βn −max{0,−z + βn}} − βn = σ(2βn − σ((−1) · z + βn))− βn,

hence z 7→ Tβn(z) is a neural network with two layers, one hidden neuron per layer and
ReLU activation function. This implies that (3) is a neural network which consists of Kn

fully connected neural networks of depth Ln+2 and width r in layers 1, . . . , Ln and width
1 in layers Ln and Ln+ 1 computed in parallel and which computes a linear combination
of the outputs of these Kn neural networks. The weights in the k-th such network are

denoted by (w
(l)
k,i,j)i,j,l, where w

(l)
k,i,j is the weight between neuron j in layer l and neuron

i in layer l + 1. Here the weights in layers Ln + 1 and layer Ln + 2 are �xed and the
weights in layers 0, . . . , Ln − 1 and the weights in the output layer are variable.

2.2 Initialization of the weights

We initialize the weights w(0) = ((w(0))
(l))
k,i,j)k,i,j,l as follows: We set

w
(Ln)
1,1,j = 0 (j = 1, . . . ,Kn)

and choose all other w
(l)
k,i,j 0 ≤ l ≤ L independently from some random distribution as

follows: For 1 ≤ l < Ln we choose

w
(l)
k,i,j ∼ U [−1, 1]

and we choose
w

(0)
k,i,j ∼ U [−n, n].

2.3 Gradient descent

After initialization of the weights we perform tn ∈ N gradient descent steps with a step
size λn > 0. Here we try to minimize the empirical L2 risk

Fn(w) =
1

n

n∑
i=1

|Yi − fw(Xi)|2. (6)

To do this we apply gradient descent together with a projection step which helps us to
control the complexity of our over-parametrized deep neural network estimate. More
precisely, we choose λn, γn, δn > 0 (the exact values of λn, γn and δn will be speci�ed in

Theorem 1 below), let A be the set of all weight vectors (w
(Ln)
1,1,j)j=1,...,Kn which satisfy

Kn∑
j=1

|w(Ln)
1,1,j | ≤ γn,

7

let B be the subsets of all weight vectors (w
(l)
k,i,j)k,i,j,l:l<Ln which satisfy

‖(w(l)
k,i,j)k,i,j,l:l<Ln − ((w(0))

(l)
k,i,j)k,i,j,l:l<Ln‖ ≤ δn,

and set (
(w(t+1))

(Ln)
1,1,k

)
k=1,...,Kn

= ProjA

(w(t))
(Ln)
1,1,k − λn ·

∂Fn(w(t))

∂w
(Ln)
1,1,k

k=1,...,Kn

and

((w(t+1))
(l)
k,i,j)k,i,j,l:l<Ln = ProjB

(w(t))
(l)
k,i,j − λn ·

∂Fn(w(t))

∂w
(l)
k,i,j

k,i,j,l:l<Ln

for l < L. Here

∂Fn(w(t))

∂w
(l)
k,i,j

=

2
n

∑n
ρ=1(fw(t)(Xρ)− Yρ) · Tβn(f

(Ln)

w(t),j,1
(Xρ)), if l = Ln,

k = i = 1

2
n

∑n
ρ=1(fw(t)(Xρ)− Yρ) · (w(t))

(Ln)
1,1,k ·

∂Tβn (f
(Ln)

w(t),k,1
(Xρ))

∂w
(l)
k,i,j

, if l < Ln.

The chain rule implies

∂Tβn(f
(Ln)

w(t),k,1
(Xρ))

∂w
(l)
k,i,j

= σ′
(

(−1) · σ((−1) · f (Ln)

w(t),k,1
(Xρ) + βn)

)
·

(−1) · σ′
(

(−1) · f (Ln)

w(t),k,1
(Xρ) + βn

)
· (−1) ·

∂f
(Ln)

w(t),k,1
(Xρ)

∂w
(l)
k,i,j

and

∂f
(Ln)

w(t),k,1
(Xρ)

∂w
(l)
k,i,j

=

r∑
sl+2=1

· · ·
r∑

sL−1=1

f
(l)

w(t),k,j
(x) · σ′

(
r∑
s=1

(w(t))
(l)
k,i,s · f

(l)

w(t),k,s
(Xρ) + (w(t))

(l)
k,i,0

)

·(w(t))
(l+1)
k,sl+2,i

· σ′
(

r∑
s=1

(w(t))
(l+1)
k,sl+2,s

· f (l+1)

w(t),k,s
(Xρ) + (w(t))

(l+1)
k,sl+2,0

)
· (w(t))

(l+2)
k,sl+3,sl+2

·σ′
(

r∑
s=1

(w(t))
(l+2)
k,sl+3,s

· f (l+2)

w(t),k,s
(Xρ) + (w(t))

(l+2)
k,sl+3,0

)
· · · (w(t))

(L−2)
k,sL−1,sL−2

·σ′
(

r∑
s=1

(w(t))
(L−2)
k,sL−1,s

· f (L−2)

w(t),k,t
(Xρ) + (w(t))

(L−2)
k,sL−1,0

)
· (w(t))

(L−1)
k,1,sL−1

8

·σ′
(

r∑
s=1

(w(t))
(L−1)
k,1,s · f

(L−1)

w(t),k,s
(Xρ) + (w(t))

(L−1)
k,1,0

)
,

where we have used the abbreviations

f
(0)

w(t),k,j
(x) =

{
x(j) if j ∈ {1, . . . , d}
1 if j = 0

and
f

(l)

w(t),k,0
(x) = 1 (l = 1, . . . , L− 1).

The ReLU activation function σ(x) = max{x, 0} is not di�erentiable at x = 0, so the
above gradient descent procedure is not well de�ned as soon as one of the arguments of
σ′ becomes 0. In the sequel we use a subgradient of the convex function σ at zero and
set

σ′(0) = 0.

Observe that this is relevant only for derivatives with respect to the inner weights of the
network, because in case of outer weights σ′(0) can not occur.

2.4 De�nition of the estimate

We de�ne our estimate as a truncated version of the neural network with weight vector
w(t̂) where t̂ ∈ {0, 1, . . . , tn} is the index for which the empirical L2 risk is minimal during
the training, i.e., we set

t̂ = arg min
t∈{0,1,...,tn}

1

n

n∑
i=1

|fw(t)(Xi)− Yi|2 (7)

and
mn(x) = Tβn(fw(t̂)(x)), (8)

where βn = c1 · log n.

3 Main results

Our �rst result is the following bound on the expected L2 error of our deep neural network
estimate de�ned in Section 2.

Theorem 1 Let p = q + s for some q ∈ N0 and s ∈ (0, 1], and let C > 0. Let n ∈ N, let
(X,Y), (X1, Yn), . . . , (Xn, Yn) be independent and identically distributed Rd ×R�valued
random variables such that supp(X) ⊆ [0, 1]d and

E
{
ec2·Y

2
}
<∞ (9)

hold and that the corresponding regression function m(x) = E{Y |X = x} is (p, C)-
smooth.

9

Let σ(x) = max{x, 0} be the ReLU activation function, choose Kn ∈ N such that

Kn

nc3·((logn)+1)
→∞ (n→∞) (10)

holds for c3 su�ciently large. Choose c4, c5 and c6 su�ciently large, set

δn = 1, γn = c4 · n
d

2·(2p+d) , Ln = c5 · log n, r = c6,

tn = K2
n · n2, and λn =

1

tn
.

and de�ne the estimate mn as in Section 2. Then we have for n su�ciently large

E

∫
|mn(x)−m(x)|2PX(dx) ≤ c8 · (log n)5 · n−

p
2p+d .

Remark 1. According to Stone (1982) the above rate of convergence is not optimal. We
see our result nevertheless as extremely useful because it introduces a new proof tech-
nique which enables to analyze the rate of convergence of over-parametrized deep neural
network estimates with ReLU activation function learned by gradient descent. We be-
lieve that it is necessary to improve the bound on the generalization error in Lemma 5
below in order to improve the above rate of convergence result.

Remark 2. It follows from the proof of Theorem 1 below, that the result also holds
if the gradient descent is used only for the outer weights of the network. In this sense
our result indicates that the random initialization of the inner weights together with the
over-parametrization is important, not the gradient descent.

The rate of convergence in the above theorem gets worse if the dimension of X gets
large. This is due to the well�known curse of dimensionality. In the sequel we show that
by adapting the parameter γn of our estimate, we can get a better rate of convergence
if the regression functions satis�es the assumption of an interaction model. Here it is
assumed that

m(x) =
∑

I⊆{1,...,d} : |I|=d∗
mI(xI),

where 1 ≤ d∗ < d, mI : Rd∗ → R (I ⊆ {1, . . . , d}, |I| = d∗) are (p, C)-smooth functions
and we have used the notation

xI = (x(j1), . . . , x(jd∗))

for I = {j1, . . . , jd∗}.

Theorem 2 Let p = q+ s for some q ∈ N0 and s ∈ (0, 1], and let C > 0. Let n ∈ N, let
(X,Y), (X1, Yn), . . . , (Xn, Yn) be independent and identically distributed Rd ×R�valued

10

random variables such that supp(X) ⊆ [0, 1]d and (9) hold and that the corresponding

regression function m(x) = E{Y |X = x} satis�es

m(x) =
∑

I⊆{1,...,d} : |I|=d∗
mI(xI)

for some (p, C)�smooth function mI : [0, 1]d
∗ → R. De�ne the estimate as in Theorem

1, except that this time the value of γn is given by

γn = c4 · n
d∗

2·(2p+d∗) .

Then we have for n su�ciently large

E

∫
|mn(x)−m(x)|2PX(dx) ≤ c8 · (log n)5 · n−

p
2p+d∗ .

Remark 3. The rate of convergence derived in Theorem 2 does not depend on d, hence
under the above assumption on the regression function our estimate is able to circumvent
the curse of dimensionality. That this is possible is well-known (cf., Stone (1994) and the
literature cited therein), in particular Stone (1994) shows that our rate of convergence
in Theorem 2 is not optimal. As in Theorem 1 we believe that this is not due to the
estimate but due to our proof. However, we would like to stress that our result is the
�rst result which shows that (over-parametrized) neural network estimates with ReLU
activation function learned by the gradient descent can achieve a dimension-free rate of
convergence in case of interaction models.

4 Proofs

4.1 Optimization error

Lemma 1 Let d1, d2 ∈ N, let Cn, Dn ≥ 0, let A ⊂ Rd1 and B ⊆ Rd2 be closed and

convex, and let F : Rd1 × Rd2 → R+ be a function such that

u 7→ F (u, v) is di�erentiable and convex for all v ∈ Rd1

and

‖(∇uF)(u, v)‖ ≤ Cn (11)

for all (u, v) ∈ A×B. Choose (u0, v0) ∈ A×B, let v1, . . . , vtn ∈ B and set

ut+1 = ProjA (ut − λ · (∇uF) (ut, vt)) ,

where

λ =
1

tn

Let u∗ ∈ A and assume

|F (u∗, vt)− F (u∗, v1)| ≤ Dn · ‖u∗‖ · ‖vt − v1‖ (12)

11

for all t = 1, . . . , tn. Then it holds:

min
t=0,...,tn

F (ut, vt) ≤ F (u∗, v0) +Dn · ‖u∗‖ · diam(B) +
‖u∗ − u0‖2

2
+

C2
n

2 · tn
.

Proof. In the �rst step of the proof we show

1

tn

tn−1∑
t=0

F (ut, vt) ≤
1

tn

tn−1∑
t=0

F (u∗, vt) +
‖u∗ − u0‖2

2
+

1

2 · t2n

tn−1∑
t=0

‖(∇uF)(ut, vt)‖2. (13)

By convexity of u 7→ F (u, vt) and because of u∗ ∈ A we have

F (ut, vt)− F (u∗, vt)

≤< (∇uF)(ut, vt), ut − u∗ >

=
1

2 · λ
· 2· < λ · (∇uF)(ut, vt), ut − u∗ >

=
1

2 · λ
·
(
−‖ut − u∗ − λ · (∇uF)(ut, vt)‖2 + ‖ut − u∗‖2 + ‖λ · (∇uF)(ut, vt)‖2

)
≤ 1

2 · λ
·
(
−‖ProjA(ut − λ · (∇uF)(ut, vt))− u∗‖2 + ‖ut − u∗‖2 + λ2 · ‖(∇uF)(ut, vt)‖2

)
=

1

2 · λ
·
(
‖ut − u∗‖2 − ‖ut+1 − u∗‖2 + λ2 · ‖(∇uF)(ut, vt)‖2

)
.

This implies

1

tn

tn−1∑
t=0

F (ut, vt)−
1

tn

tn−1∑
t=0

F (u∗, vt)

=
1

tn

tn−1∑
t=0

(F (ut, vt)− F (u∗, vt))

≤ 1

tn

tn−1∑
t=0

1

2 · λ
·
(
‖ut − u∗‖2 − ‖ut+1 − u∗‖2

)
+

1

tn

tn−1∑
t=0

λ

2
· ‖(∇uF)(ut, vt)‖2

=
1

2
·
tn−1∑
t=0

(
‖ut − u∗‖2 − ‖ut+1 − u∗‖2

)
+

1

2 · t2n

tn−1∑
t=0

‖(∇uF)(ut, vt)‖2

≤ ‖u0 − u∗‖2

2
+

1

2 · t2n

tn−1∑
t=0

‖(∇uF)(ut, vt)‖2.

In the second step of the proof we show the assertion.
Using the result of step 1 we get

min
t=0,...,tn

F (ut, vt)

≤ 1

tn

tn−1∑
t=0

F (ut, vt)

12

≤ 1

tn

tn−1∑
t=0

F (u∗, vt) +
‖u∗ − u0‖2

2
+

1

2 · t2n

tn−1∑
t=0

‖(∇uF)(ut, vt)‖2

≤ F (u∗, v0) +
1

tn

tn−1∑
t=0

|F (u∗, vt)− F (u∗, v0)|+ ‖u
∗ − u0‖2

2

+
1

2 · t2n

tn−1∑
t=0

‖(∇uF)(ut, vt)‖2.

By (12) we get

1

tn

tn−1∑
t=0

|F (u∗, vt)− F (u∗, v0)| ≤ 1

tn

tn−1∑
t=0

Dn · ‖u∗‖ · ‖vt − v0‖

≤ Dn · ‖u∗‖ · diam(B).

And by (11) we get

1

2 · t2n

tn−1∑
t=0

‖(∇uF)(ut, vt)‖2 ≤
1

2 · t2n

tn−1∑
t=0

C2
n =

C2
n

2 · tn
.

Summarizing the above results, the proof is complete. �

Lemma 2 Let σ : R→ R be arbitrary and de�ne Fn(w) by (6). Then we have

‖(∇
(w

(Ln)
1,1,k)k=1,...,Kn

Fn)(w)‖ ≤ 4 ·Kn · β2
n · Fn(w).

Proof. We have

‖(∇
(w

(Ln)
1,1,k)k=1,...,Kn

Fn)(w)‖2

=

Kn∑
k=1

∣∣∣∣∣∣ 2n
n∑
ρ=1

(fw(Xρ)− Yρ) · Tβn(f
(Ln)
w,k,1(Xρ))

∣∣∣∣∣∣
2

≤
Kn∑
k=1

4 · 1

n

n∑
ρ=1

|fw(Xρ)− Yρ|2 ·
1

n

n∑
ρ=1

(Tβn(f
(Ln)
w,k,1(Xρ)))

2

≤ 4 ·Kn · Fn(w) · β2

n.

�

Lemma 3 Let σ : R → R be arbitrary, let γn ≥ 1 and de�ne Fn(w) by (6). Assume

Y1, . . . , Yn ∈ [−βn, βn] and
Kn∑
k=1

|w(Ln)
1,1,k| ≤ γn. (14)

Then we have

Fn(w) ≤ (2 + 2 · γ2
n) · β2

n.

13

Proof. Using (14) we get

Fn(w) =
1

n

n∑
i=1

|Yi − fw(Xi)|2 ≤
1

n

n∑
i=1

(2 · Y 2
i + 2 · |γn · βn|2) ≤ (2 + 2 · γ2

n) · β2
n.

�

Lemma 4 Let σ : R→ R be the ReLU activation function, let A, γn ≥ 1, let δn ≥ 0 and

de�ne f
(Ln)
w,1,1(x) be (4) and (5). Assume

r∑
j=0

(w
(l)
1,i,j)+ ≤ 1 + δn and

r∑
j=0

(w
(l)
1,i,j)− ≤ 1 + δn (l ∈ {1, . . . , Ln − 1}), (15)

|w(0)
1,i,j | ≤ A (16)

and

‖(w(l)
1,i,j)i,j,l : l<Ln − (w̄

(l)
1,i,j)i,j,l : l<Ln‖∞ ≤ 1. (17)

Then we have for any w̄ and any x ∈ [0, 1]d:

|f (Ln)
w,1,1(x)− f (Ln)

w̄,1,1(x)|

≤ (4 · r)Ln · (d+ 1) ·A · (1 + δn)Ln−1 · ‖(w(l)
1,i,j)i,j,l : l<Ln − (w̄

(l)
1,i,j)i,j,l : l<Ln‖∞.

Proof. In the �rst step of the proof we show

0 ≤ f (l)
w,1,1(x) ≤ (d+ 1) ·A · (1 + δn)l−1

for all l = 1, . . . , Ln.
Using 0 ≤ σ(x)| ≤ |x| and (16) we get

0 ≤ f (1)
w,1,i(x) ≤

d∑
j=1

|w(0)
1,i,j | · |x

(j)|+ |w(0)
1,i,0| ≤ (d+ 1) ·A · (1 + δn)1−1.

Recursively we can conclude from (15)

0 ≤ f (l)
w,1,i(x) ≤

∣∣∣∣∣∣
r∑
j=0

(w
(l−1)
1,i,j)+ · f (l−1)

1,j (x)−
r∑
j=0

(w
(l−1)
1,i,j)− · f (l−1)

1,j (x)

∣∣∣∣∣∣
≤ (1 + δn) · (d+ 1) ·A · (1 + δn)l−2 = (d+ 1) ·A · (1 + δn)l−1

for l = 2, . . . , Ln, where we have set f
(l−1)
1,0 (x) = 1.

In the second step of the proof we show

|f (l)
w,1,k(x)− f (l)

w̄,1,k(x)|

≤ (4 · r)l · (d+ 1) ·A · (1 + δn)l−1 · ‖(w(l)
1,i,j)i,j,l : l<Ln − (w̄

(l)
1,i,j)i,j,l : l<Ln‖∞ (18)

14

for l = 1, . . . , Ln.
The ReLu activation function is Lipschitz continuous with Lipschitz constant 1. Con-

sequently we get for l = 1

|f (1)
w,1,i(x)− f (1)

w̄,1,i(x)| ≤
d∑
j=1

|w(0)
1,i,j − w̄

(0)
1,i,j | · |x

(j)|+ |w(0)
1,i,0 − w̄

(0)
1,i,0|

≤ (d+ 1) · ‖(w(l)
1,i,j)i,j,l : l<Ln − (w̄

(l)
1,i,j)i,j,l : l<Ln‖∞.

Assume now that (18) holds for some l ∈ {1, . . . , Ln − 1}. Then we can conclude from
the �rst step of the proof

|f (l+1)
w,1,i (x)− f (l+1)

w̄,1,i (x)|

=

∣∣∣∣∣∣σ
 r∑
j=1

w
(l)
1,i,j · f

(l)
w,1,j(x) + w

(l)
1,i,0

− σ
 r∑
j=1

w̄
(l)
1,i,j · f

(l)
w̄,1,j(x) + w̄

(l)
1,i,0

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
r∑
j=1

w
(l)
1,i,j · f

(l)
w,1,j(x) + w

(l)
1,i,0 −

r∑
j=1

w̄
(l)
1,i,j · f

(l)
w̄,1,j(x)− w̄(l)

1,i,0

∣∣∣∣∣∣
≤

r∑
j=1

|w(l)
1,i,j − w̄

(l)
1,i,j | · |f

(l)
w,1,j(x)|+ |w(l)

1,i,0 − w̄
(l)
1,i,0|

+
r∑
j=1

|w̄(l)
1,i,j | · |f

(l)
w,k,j(x)− f (l)

w̄,1,j(x)|

≤ (r · (d+ 1) ·A · (1 + δn)l−1 + 1) · ‖(w(l)
1,i,j)i,j,l : l<Ln − (w̄

(l)
1,i,j)i,j,l : l<Ln‖∞

+r ·
(

2 · (1 + δn) + ‖(w(l)
1,i,j)i,j,l : l<Ln − (w̄

(l)
1,i,j)i,j,l : l<Ln‖∞

)
· (4 · r)l

·(d+ 1) ·A · (1 + δn)l−1 · ‖(w(l)
1,i,j)i,j,l : l<Ln − (w̄

(l)
1,i,j)i,j,l : l<Ln‖∞

≤ (4 · r)l+1 · (d+ 1) ·A · (1 + δn)l · ‖(w(l)
1,i,j)i,j,l : l<Ln − (w̄

(l)
1,i,j)i,j,l : l<Ln‖∞.

�

4.2 Generalization error

Lemma 5 Let Ln,Kn ∈ N and γn > 0. Assume Ln ≤ nc9. Let σ(x) = max{x, 0} be the
ReLU activation function. Let F be the set of all functions fw de�ned by (3)�(5) where

the weight vector w satis�es
Kn∑
j=1

|w(Ln)
1,1,j | ≤ γn. (19)

15

Let (X,Y), (X1, Y1), . . . , (Xn, Yn) be independent and identically distributed [0, 1]d ×
[−βn, βn]-valued random vectors. Then we have

E

{
sup
f∈F

(
E{|(Tβnf)(X)− Y |2} − 1

n

n∑
i=1

|(Tβnf)(Xi)− Yi|2
)}

≤ c10 ·
γn · Ln ·

√
logLn · βn · log n√

n
.

Proof. In the �rst step of the proof we show

E

{
sup
f∈F

(
E{|(Tβnf)(X)− Y |2} − 1

n

n∑
i=1

|(Tβnf)(Xi)− Yi|2
)}

≤ 8 · βn ·E

{
sup
f∈F

1

n

n∑
i=1

εi · f(Xi)

}
, (20)

where ε1, . . . , εn are random variables satisfying P{εj = 1} = P{εj = −1} = 1/2
(j = 1, . . . , n) and X1, . . . , Xn, ε1, . . . , εn independent.
Choose random variables (X ′1, Y

′
1), . . . , (X ′n, Y

′
n) such that

(X1, Y1), . . . , (Xn, Yn), ε1, . . . , εn, (X
′
1, Y

′
1), . . . , (X ′n, Y

′
n)

are independent and such that

(X1, Y1), . . . , (Xn, Yn), (X ′1, Y
′

1), . . . , (X ′n, Y
′
n)

are identically distributed and set (X,Y)n1 = ((X1, Y1), . . . , (Xn, Yn)). We have

E

{
sup
f∈F

(
E{|(Tβnf)(X)− Y |2} − 1

n

n∑
i=1

|(Tβnf)(Xi)− Yi|2
)}

= E

{
sup
f∈F

(
E{ 1

n

n∑
i=1

|(Tβnf)(X ′i)− Y ′i |2|(X,Y)n1} −
1

n

n∑
i=1

|(Tβnf)(Xi)− Yi|2
)}

≤ E

{
E

{
sup
f∈F

(
1

n

n∑
i=1

|(Tβnf)(X ′i)− Y ′i |2 −
1

n

n∑
i=1

|(Tβnf)(Xi)− Yi|2
)
|(X,Y)n1

}}

= E

{
sup
f∈F

(
1

n

n∑
i=1

|(Tβnf)(X ′i)− Y ′i |2 −
1

n

n∑
i=1

|(Tβnf)(Xi)− Yi|2
)}

.

Since the joint distribution of (X1, Y1), . . . , (Xn, Yn), (X ′1, Y
′

1), . . . , (X ′n, Y
′
n) does not change

if we (randomly) interchange (Xi, Yi) and (X ′i, Y
′
i), the last term is equal to

E

{
sup
f∈F

(
1

n

n∑
i=1

εi ·
(
|(Tβnf)(X ′i)− Y ′i |2 − |(Tβnf)(Xi)− Yi|2

))}

16

≤ E

{
sup
f∈F

(
1

n

n∑
i=1

εi · |(Tβnf)(X ′i)− Y ′i |2
)}

+ E

{
sup
f∈F

(
1

n

n∑
i=1

(−εi) · |(Tβnf)(Xi)− Yi|2
)}

= 2 ·E

{
sup
f∈F

(
1

n

n∑
i=1

εi · |(Tβnf)(Xi)− Yi|2
)}

.

Next we use a contraction style argument. Because of the independence of the random
variables we can compute the expectation by �rst computing the expectation with respect
to ε1 and then computing the expectation with respect to all other random variables.
This yields that the last term above is equal to

2 ·E

{
1

2
· sup
f∈F

(
1

n

n∑
i=2

εi · |(Tβnf)(Xi)− Yi|2 +
1

n
· |(Tβnf)(X1)− Y1|2

)

+
1

2
· sup
g∈F

(
1

n

n∑
i=2

εi · |(Tβng)(Xi)− Yi|2
)
− 1

n
· |(Tβng)(X1)− Y1|2

}

= E

{
sup
f,g∈F

(
1

n

n∑
i=2

εi · |(Tβnf)(Xi)− Yi|2 +
1

n

n∑
i=2

εi · |(Tβng)(Xi)− Yi|2

+
1

n
· |(Tβnf)(X1)− Y1|2 −

1

n
· |(Tβng)(X1)− Y1|2

)}

≤ E

{
sup
f,g∈F

(
1

n

n∑
i=2

εi · |(Tβnf)(Xi)− Yi|2 +
1

n

n∑
i=2

εi · |(Tβng)(Xi)− Yi|2

+
4βn
n
· |(Tβnf)(X1)− (Tβng)(X1)|

)}

≤ E

{
sup
f,g∈F

(
1

n

n∑
i=2

εi · |(Tβnf)(Xi)− Yi|2 +
1

n

n∑
i=2

εi · |(Tβng)(Xi)− Yi|2

+
4βn
n
· |f(X1)− g(X1)|

)}
.

For �xed (X1, Y1), . . . , (Xn, Yn), ε2, . . . , εn the term

1

n

n∑
i=2

εi · |(Tβnf)(Xi)− Yi|2 +
1

n

n∑
i=2

εi · |(Tβng)(Xi)− Yi|2 +
4βn
n
· |f(X1)− g(X1)|

is symmetric in f and g. Therefore we can assume w.l.o.g. that f(X1) ≥ g(X1) holds
which implies that we have

sup
f,g∈F

(
1

n

n∑
i=2

εi · |(Tβnf)(Xi)− Yi|2 +
1

n

n∑
i=2

εi · |(Tβng)(Xi)− Yi|2

+
4βn
n
· |f(X1)− g(X1)|

)

17

= sup
f,g∈F

(
1

n

n∑
i=2

εi · |(Tβnf)(Xi)− Yi|2 +
1

n

n∑
i=2

εi · |(Tβng)(Xi)− Yi|2

+
4βn
n
· (f(X1)− g(X1))

)
.

In the same way we see that the term above is also equal to

sup
f,g∈F

(
1

n

n∑
i=2

εi · |(Tβnf)(Xi)−Yi|2 +
1

n

n∑
i=2

εi · |(Tβng)(Xi)−Yi|2−
4βn
n
·(f(X1)−g(X1))

)
,

and we get

E

{
sup
f,g∈F

(
1

n

n∑
i=2

εi · |(Tβnf)(Xi)− Yi|2 +
1

n

n∑
i=2

εi · |(Tβng)(Xi)− Yi|2

+
4βn
n
· |f(X1)− g(X1)|

)}

= E

{
1

2
· sup
f,g∈F

(
1

n

n∑
i=2

εi · |(Tβnf)(Xi)− Yi|2 +
1

n

n∑
i=2

εi · |(Tβng)(Xi)− Yi|2

+
4βn
n
· (f(X1)− g(X1))

)

+
1

2
· sup
f,g∈F

(
1

n

n∑
i=2

εi · |(Tβnf)(Xi)− Yi|2 +
1

n

n∑
i=2

εi · |(Tβng)(Xi)− Yi|2

−4βn
n
· (f(X1)− g(X1))

)}

= E

{
sup
f,g∈F

(
1

n

n∑
i=2

εi · |(Tβnf)(Xi)− Yi|2 +
1

n

n∑
i=2

εi · |(Tβng)(Xi)− Yi|2

+
4βn
n
· ε1 · (f(X1)− g(X1))

)}

≤ E

{
sup
f,g∈F

(
1

n

n∑
i=2

εi · |(Tβnf)(Xi)− Yi|2 +
4βn
n
· ε1 · f(X1)

)}

+ sup
f,g∈F

(
1

n

n∑
i=2

εi · |(Tβng)(Xi)− Yi|2 +
4βn
n
· (−ε1) · g(X1)

)}

= 2 ·E

{
sup
f∈F

(
1

n

n∑
i=2

εi · |(Tβnf)(Xi)− Yi|2 +
4βn
n
· ε1 · f(X1)

)}
,

where we have used that −ε1 has the same distribution as ε1.

18

Arguing in the same way for i = 2, . . . , n we get

2 ·E

{
sup
f∈F

(
1

n

n∑
i=1

εi · |(Tβnf)(Xi)− Yi|2
)}

≤ 2 ·E

{
sup
f∈F

(
1

n

n∑
i=2

εi · |(Tβnf)(Xi)− Yi|2 +
4βn
n
· ε1 · f(X1)

)}

≤ 2 ·E

{
sup
f∈F

(
1

n

n∑
i=3

εi · |(Tβnf)(Xi)− Yi|2 +
4βn
n
· (ε1 · f(X1) + ε2 · f(X2))

)}
≤ . . .

≤ 2 ·E

{
sup
f∈F

4βn
n
·
n∑
i=1

εi · f(Xi)

}
,

which �nishes the �rst step of the proof.

Let W be the set of all weight vectors w = (w
(l)
i,j,k)i,j,k,l which satisfy (19). In the

second step of the proof we show

E

{
sup
f∈F

1

n

n∑
i=1

εi · f(Xi)

}
≤ γn ·E

{
sup
w∈W

∣∣∣∣∣ 1n
n∑
i=1

εi · (Tβn(f
(Ln)
w,1,1(Xi))

∣∣∣∣∣
}
.

We have

E

{
sup
f∈F

1

n

n∑
i=1

εi · f(Xi)

}

= E

{
sup
w∈W

1

n

n∑
i=1

εi ·
Kn∑
j=1

w
(Ln)
1,1,j · (Tβnf

(Ln)
w,j,1(Xi)))

}

= E

{
sup
w∈W

Kn∑
j=1

w
(Ln)
1,1,j ·

1

n

n∑
i=1

εi · (Tβnf
(Ln)
w,j,1(Xi)))

}

≤ E

{
sup
w∈W

Kn∑
j=1

|w(Ln)
1,1,j | ·

∣∣∣∣∣ 1n
n∑
i=1

εi · (Tβnf
(Ln)
w,j,1(Xi)))

∣∣∣∣∣
}

≤ E

{
sup
w∈W

Kn∑
j=1

|w(Ln)
1,1,j | · sup

w∈W,k∈{1,...,Kn}

∣∣∣∣∣ 1n
n∑
i=1

εi · (Tβnf
(Ln)
w,k,1(Xi)))

∣∣∣∣∣
}

≤ γn ·E

{
sup

w∈W,k∈{1,...,Kn}

∣∣∣∣∣ 1n
n∑
i=1

εi · (Tβnf
(Ln)
w,k,1(Xi)))

∣∣∣∣∣
}

= γn ·E

{
sup
w∈W

∣∣∣∣∣ 1n
n∑
i=1

εi · (Tβnf
(Ln)
w,1,1(Xi)))

∣∣∣∣∣
}
,

where the last inequality followed from

{Tβnf
(Ln)
w,k,1 : w ∈ W, k ∈ {1, . . . ,Kn}} = {Tβnf

(Ln)
w,1,1 : w ∈ W}.

19

In the third step of the proof we show

E

{
sup
w∈W

∣∣∣∣∣ 1n
n∑
i=1

εi · (Tβn(f
(Ln)
w,1,1(Xi))

∣∣∣∣∣
}
≤ c10 ·

Ln ·
√

logLn · log n · βn√
n

.

For δn > 0 we have

E

{
sup
w∈W

∣∣∣∣∣ 1n
n∑
i=1

εi · (Tβn(f
(Ln)
w,1,1(Xi))

∣∣∣∣∣
}

=

∫ ∞
0

P

{
sup
w∈W

∣∣∣∣∣ 1n
n∑
i=1

εi · (Tβn(f
(Ln)
w,1,1(Xi))

∣∣∣∣∣ > t

}
dt

≤ δn +

∫ ∞
δn

P

{
sup
w∈W

∣∣∣∣∣ 1n
n∑
i=1

εi · (Tβn(f
(Ln)
w,1,1(Xi))

∣∣∣∣∣ > t

}
dt.

Using a standard covering argument from empirical process theory we see that for any
t ≥ δn we have

P

{
sup
w∈W

∣∣∣∣∣ 1n
n∑
i=1

εi · (Tβn(f
(Ln)
w,1,1(Xi))

∣∣∣∣∣ > t

}

≤ sup
xn1∈[0,1]d

M1

(
δn
2
,
{
Tβn(f

(Ln)
w,1,1) : w ∈ W

}
, xn1

)

· sup
w∈W

P

{∣∣∣∣∣ 1n
n∑
i=1

εi · (Tβn(f
(Ln)
w,1,1(Xi))

∣∣∣∣∣ > t

2

}
.

f
(Ln)
w,1,1 is a neural network with at most c11 · r2 · Ln many weights and depth Ln + 2.
Application of Theorem 6 in Bartlett et al. (2019) and Theorem 9.4 in Györ� et al.
(2002) yields

sup
xn1∈[0,1]d

M1

(
δn
2
,
{
Tβn(f

(Ln)
w,1,1) : w ∈ W

}
, xn1

)
≤ c12 ·

(
c13 · βn
δn

)c14·L2
n·r2·log(Ln)

.

By the inequality of Hoe�ding (cf., e.g., Lemma A.3 in Györ� et al. (2002)) and

|Tβn(f
(Ln)
w,1,1(x)| ≤ βn (x ∈ Rd)

it holds for any w ∈ W

P

{∣∣∣∣∣ 1n
n∑
i=1

εi · Tβn(f
(Ln)
w,1,1(Xi))

∣∣∣∣∣ > t

}
≤ 2 · exp

(
−2 · n · t2

4 · β2
n

)
.

Hence we get

E

{
sup
w∈W

∣∣∣∣∣ 1n
n∑
i=1

εi · (Tβn(f
(Ln)
w,1,1(Xi))

∣∣∣∣∣
}

20

≤ δn +

∫ ∞
δn

c12 ·
(
c13 · βn
δn

)c14·L2
n·r2·log(Ln)

· 2 · exp

(
−2 · n · t2

4 · β2
n

)
dt

≤ δn +

∫ ∞
δn

c12 ·
(
c13 · βn
δn

)c14·L2
n·r2·log(Ln)

· 2 · exp

(
−n · δn · t

2 · β2
n

)
dt

= δn + c12 ·
(
c13 · βn
δn

)c14·L2
n·r2·log(Ln)

· 4 · β2
n

n · δn
· exp

(
−n · δ

2
n

2 · β2
n

)
.

With

δn = Ln ·
√

logLn · r · log n ·
√

2 · β2
n

n

we get the assertion. �

4.3 Approximation error

For M ∈ N let P be a partition of [
− 1

2M
, 1 +

1

2M

]d
into K̄ = (M + 1)d cubes A1, . . . , AK̄ with side length 1/M . Denote the centers of these
cubes by a1, . . . , aK̃ and set

ωk(x) =
d∏
j=1

(
1−M ·

∣∣∣a(j)
k − x

(j)
∣∣∣)

+
(x ∈ Rd).

Then ωk is a linear tensor product spline which is one at ak and zero outside of[
a

(1)
k −

1

M
,a

(1)
k +

1

M

]
× · · · ×

[
a

(d)
k −

1

M
,a

(d)
k +

1

M

]
(so-called hat function), and it is easy to see that we have

K̄∑
k=1

ωk(x) = 1 (x ∈ [0, 1]d) (21)

(cf., e.g., Lemma 15.2 in Györ� et al. (2002)). Let p = q + s for some q ∈ N0 and
s ∈ (0, 1], let f : Rd → R be a (p, C)-smooth function, let x0 ∈ Rd and let

Tf,q,x0(x) =
∑

j∈Nd0,‖j‖1≤q

(∂jf)(x0) · (x− x0)j

j!

be the Taylor polynomial of total degree q around x0. Then we have for any x ∈ Rd

|f(x)− Tf,q,x0(x)| ≤ c15 · C · ‖x− x0‖p

21

(cf., e.g., Lemma 1 in Kohler (2014)), which implies∣∣∣∣∣∣f(x)−
K̄∑
k=1

ωk(x) · Tf,q,ak(x)

∣∣∣∣∣∣ ≤
K̄∑
k=1

ωk(x) · |f(x)− Tf,q,ak(x)|

≤ max
k=1,...,K̄,ωk(x)6=0

|f(x)− Tf,q,ak(x)|

≤ c16 · C ·
1

Mp
(x ∈ [0, 1]d). (22)

In this section we show that if we choose w
(l)
k,i,j for k = 1, . . . ,

(
d+q
d

)
· (M + 1)d suitably

and set w
(Ln)
1,1,k = 0 for k >

(
d+q
d

)
· (M + 1)d, then fw approximates

x 7→
K̄∑
k=1

ωk(x) · Tf,q,ak(x)

uniformly on Rd, from which we conclude the following result.

Lemma 6 Let M ∈ N with M > 1, let p = q + s for some q ∈ N0 and s ∈ (0, 1], let
C > 0 and let f : Rd → R be a (p, C)-smooth function. Set

L = dc17 · logMe (23)

and

r = 18 · (q + d)d+1. (24)

Set

K̃ =

(
d+ q

d

)
· (M + 1)d

and let Kn ≥ K̃. Then there exists a weight vector w with

|w(Ln)
1,1,k| ≤ const(f) (k = 1, . . . , K̃), (25)

w
(l)
k,i,0 = 0 and w

(l)
k,i,j ∈

{
0,

1

2
, 1

}
(k = 1, . . . , K̃, l = 1, . . . , L− 1), (26)

r∑
j=1

(w
(l)
k,i,j)+ ≤ 1 and

r∑
j=1

(w
(l)
k,i,j)− ≤ 1 (l ∈ {1, . . . , L− 1}), (27)

|w(0)
k,i,j | ≤M + 1 (k = 1, . . . , K̃) (28)

and

w
(l)
k,i,j = 0 for k > K̃, (29)

such that for M , n su�ciently large it holds

‖fw − f‖∞,[0,1]d ≤ c18 · C ·
1

Mp
.

22

Proof. Because of (22) it su�ces to show that for a weight vector w satisfying (25)-(29)
we have ∣∣∣∣∣∣

(M+1)d∑
k=1

ωk(x) · Tf,q,ak(x)− fw(x)

∣∣∣∣∣∣ ≤ c19 · C ·
1

Mp
(x ∈ [0, 1]d). (30)

To show this, we show in the sequel that for any k and j ∈ Nd0 with ‖j‖1 ≤ q it is possible
to choose w such that (25)-(28) and∣∣∣ωk(x) · (x− ak)j − f

(Ln)
w,1,1(x)

∣∣∣ ≤ c20 · C ·
1

Md+p
(x ∈ [0, 1]d) (31)

hold. This implies the assertion, because if this is the case we can choose w such that
(25)-(29) and∣∣∣∣∣∣

(M+1)d∑
k=1

ωk(x) · Tf,q,ak(x)−
Kn∑
k=1

w
(Ln)
1,1,k · f

(Ln)
w,1,k(x)

∣∣∣∣∣∣ ≤
K̃∑
k=1

c21 · C ·
1

Md+p

≤ c22 · C ·
1

Mp
.

Observe that (31) implies

|f (Ln)
w,1,k(x)| ≤ βn

for M , n su�ciently large and hence it holds

fw(x) =

Kn∑
k=1

w
(Ln)
1,1,k · f

(Ln)
w,1,k(x).

In order to show (31) we use in the following the neural network

f̂
mult,(q+d

d
)+d
∈ F(R · (d+ 1) · dlog2(p+ d)e, 18 · dlog2(p+ d)e)

from Lemma 8 in Kohler and Langer (2021) which satis�es∣∣∣∣∣∣∣f̂mult,(q+dd)+d
(z)−

(p+d
d

)+d∏
i=1

z(i)

∣∣∣∣∣∣∣ ≤ const(d, q) · 4−R (z ∈ [0, 1](
q+d
d

)+d).

By setting
R = const(d, q) · dlogMe

and by applying this network to an argument z where the components z(i) (i = 1, . . . , (q+dd))
are chosen either from the values

x(j) − a(j)
k = σ(x(j) − a(j)

k) + σ(−x(j) + a
(j)
k) (j = 1, . . . , d)

23

or are set equal to 1 = σ(1), and where

z((p+d
d

)+j) =
(

1−M ·
∣∣∣a(j)
k − x

(j)
∣∣∣)

+

= σ

(
M · (x(j) − a(j)

k −
1

M
)

)
− 2 · σ

(
M · (x(j) − a(j)

k)
)

+ σ

(
M · (x(j) − a(j)

k +
1

M
)

)
(j = 1, . . . , d) we get the assertion. Here we have used that the weights in the network
f̂
mult,(q+d

d
)+d

from Lemma 8 in Kohler and Langer (2021) can be chosen such that the

conditions on the weights in Lemma 6 are sati�ed. �

4.4 Proof of Theorem 1

Set
M = Mn = dc23 · n

1
2·(2p+d) e

and choose Ln = L and r as in Lemma 6. Set

K̃n =

(
d+ q

d

)
· (Mn + 1)d ≈ c24 · n

d
2·(2p+d) ,

Nn = nc25

and choose w
(l)
i,j,k (k ∈ {1, . . . , K̃n}) as in Lemma 6.

W.l.o.g. we assume throughout the proof that n is su�ciently large and that ‖m‖∞ ≤
βn and βn ≥ 1 hold. Let An be the event that �rstly the weight vector w(0) satis�es

|(w(0))
(l)
jv,s,k,i

−w
(l)
s,k,i| ≤

1

nc26
for all l ∈ {0, . . . , L− 1}, s ∈ {1, . . . , K̃n}, v ∈ {1, . . . , Nn}

for some pairwise distinct j1,1, . . . , jK̃n,Nn ∈ {1, . . . ,Kn} and such that secondly

max
i=1,...,n

|Yi| ≤ βn

holds.
De�ne the weight vectors (w∗)(t) by

((w∗)(t))
(l)
k,i,j = (w(t))

(l)
k,i,j for all l = 0, . . . , L− 1

and

((w∗)(t))
(Ln)
1,1,jk,v

=
w

(Ln)
1,1,k

Nn
for all k = 1, . . . , K̃n, v = 1, . . . , Nn

and
((w∗)(t))

(Ln)
1,1,k = 0 for k /∈ {jν,s : ν = 1, . . . , K̃n, s = 1, . . . , Nn}.

In the sequel we decompose the L2 error of mn in a sum of several terms. Set

mβn(x) = E{TβnY |X = x}.

24

We have ∫
|mn(x)−m(x)|2PX(dx)

=
(
E
{
|mn(X)− Y |2|Dn

}
−E{|m(X)− Y |2}

)
· 1An

+

∫
|mn(x)−m(x)|2PX(dx) · 1Acn

=
[
E
{
|mn(X)− Y |2|Dn

}
−E{|mβn(X)− TβnY |2}

]
· 1An

+
[
E
{
|mn(X)− TβnY |2|Dn

}
− 1

n

n∑
i=1

|mn(Xi)− TβnYi|2
]
· 1An

+
[1

n

n∑
i=1

|mn(Xi)− TβnYi|2 −
1

n

n∑
i=1

|mn(Xi)− Yi|2
]
· 1An

+
[1

n

n∑
i=1

|mn(Xi)− Yi|2 −E{|m(X)− Y |2}
]
· 1An

+

∫
|mn(x)−m(x)|2PX(dx) · 1Acn

=:
5∑
j=1

Tj,n.

In the reminder of the proof we bound

ETj,n

for j ∈ {1, . . . , 5}.
In the �rst step of the proof we show

ET1,n ≤ c27 ·
log n

n
.

This follows as in the proof of Lemma 1 in Bauer and Kohler (2019).
In the second step of the proof we observe

ET3,n ≤ c28 ·
log n

n
.

This holds trivially since we have on An

1

n

n∑
i=1

|mn(Xi)− TβnYi|2 =
1

n

n∑
i=1

|mn(Xi)− Yi|2.

In the third step of the proof we show

ET5,n ≤ c29 ·
(log n)2

n
.

25

The de�nition of mn implies
∫
|mn(x)−m(x)|2PX(dx) ≤ 4 · c2

1 · (log n)2, hence it su�ces
to show

P(Acn) ≤ c30

n
. (32)

To do this, we consider sequential choice of the weights of the Kn fully connected neural
networks. Probability that the (r + 1) + (Ln − 2) · r · (r + 1) + r · (d+ 1) many weights

in the �rst of these networks di�er in all components at most by 1/nc26 from w
(l)
1,i,j

(l = 0, . . . , L− 1) is for large n bounded below by(
1

nc31

)(r+1)+(Ln−2)·r·(r+1)+r·(d+1)

=
1

nc32·logn
.

Hence probability that none of the �rst nc32·logn+0.5 neural networks satis�es this condi-
tion is for large n bounded above by(

1− 1

nc32·logn

)nc32·logn+0.5

≤
(

exp

(
− 1

nc32·logn

))nc32·logn+0.5

= exp(−n0.5).

Since we have Kn ≥ nc32·logn+0.5 · K̃n ·Nn for n large we can successively use the same
construction for all of K̃n · Nn weights and we can conclude: Probability that there
exists k ∈ {1, . . . , K̃n} such that not at least Nn of the Kn weight vectors of the fully

connected neural network di�ers by at most 1/nc26 from (w
(l)
i,j,k)i,j,l is for large n bounded

from above by

K̃n ·Nn · exp(−n0.5) ≤ nc33 · exp(−n0.5) ≤ c34

n
.

This implies for large n

P(Acn) ≤ c34

n
+ P{ max

i=1,...,n
|Yi| > βn} ≤

c34

n
+ n ·P{|Y | > βn}

≤ c34

n
+ n · E{exp(c2 · Y 2)

exp(c2 · β2
n)
≤ c35

n
,

where the last inequality holds because of (9).
In the fourth step of the proof we show

ET2,n ≤ c36 ·
γn · Ln ·

√
logLn · β2

n · log n√
n

.

De�ne F as in Lemma 5. Then

ET2,n = E

[[
E
{
|mn(X)− TβnY |2|Dn

}
− 1

n

n∑
i=1

|mn(Xi)− TβnYi|2
]
· 1An

]

≤ E

[[(
E
{
|mn(X)− TβnY |2|Dn

}
− 1

n

n∑
i=1

|mn(Xi)− TβnYi|2
]
· 1An

)
+

]

26

≤
∫ ∞

0
P

{
E
{
|mn(X)− TβnY |2|Dn

}
− 1

n

n∑
i=1

|mn(Xi)− TβnYi|2 > t
∣∣∣Dn} dt

≤ E

{
sup
f∈F

(
E{|(Tβnf)(X)− Y |2} − 1

n

n∑
i=1

|(Tβnf)(Xi)− Yi|2
)}

,

from which we get the assertion by an application of Lemma 5.
In the �fth step of the proof we show

E{T4,n} ≤ c37 ·
1

M2p
n

.

On An we have |Yi| ≤ βn (i = 1, . . . , n). Because of |Tβny − z| ≤ |y − z| for |z| ≤ βn this
implies

E

{
1

n

n∑
i=1

|mn(Xi)− Yi|2 · 1An

}
≤ E

{
1

n

n∑
i=1

|fw(t̂)(Xi)− Yi|2 · 1An

}

≤ E

{
min

t=0,...,tn

1

n

n∑
i=1

|fw(t)(Xi)− Yi|2 · 1An

}
.

Furthermore by Lemma 4 we have on An

1

n

n∑
i=1

|f(w∗)(t)(Xi)− Yi|2 −
1

n

n∑
i=1

|f(w∗)(0)(Xi)− Yi|2

=
1

n

n∑
i=1

(
f(w∗)(t)(Xi)− Yi + f(w∗)(0)(Xi)− Yi

)
·
(
f(w∗)(t)(Xi)− f(w∗)(0)(Xi)

)
≤ (2 · βn + 2 · γn · βn) ·

Kn∑
k=1

|(w∗)(t)
1,1,k| · |Tβn(f

(w∗)
(t)
k,1

(Xi))− Tβn(f
(w∗)

(0)
k,1

(Xi))|

≤ (2 · βn + 2 · γn · βn) ·

√√√√Kn∑
k=1

|(w∗)(t)
1,1,k|2

·

√√√√Kn∑
k=1

|Tβn(f
(w∗)

(t)
k,1

(Xi))− Tβn(f
(w∗)

(0)
k,1

(Xi))|2 · 1{(w∗)(t)1,1,k 6=0}

≤ c38 · (log n) · (4 · r)Ln · (d+ 1) · (Mn + 1) ·
(

1 +
r + 1

nc20

)Ln
·

√√√√Kn∑
k=1

|(w∗)(t)
k,1,1|2

·‖(w(t))i,j,k,l : l<L − (w(0))i,j,k,l : l<L‖.

Together with Lemma 2 we can conclude that on An the assumptions of Lemma 1 are
satis�ed with

Cn = c39 · (log n)4 ·Kn and Dn = c40 · (log n) · (4r)Ln · n
1

4·(2p+d)

27

Application of Lemma 1 yields

E

{
1

n

n∑
i=1

|fw(t̂)(Xi)− Yi|2 · 1An

}

≤ E

{
1

n

n∑
i=1

|f(w∗)(0)(Xi)− Yi|2 +Dn ·
1√
Nn
· ‖(w(L)

k,1,1)k=1,...,K̃n
‖ · 1

+
1

2
· 1

Nn
· ‖(w(L)

k,1,1)k=1,...,K̃n
‖2 +

C2
n

2 · tn

}
.

Application of Lemma 6 yields

E{T4,n} = E{E{T4,n|w(0)}}

≤ E

∫
|f(w∗)(0)(x)−m(x)|2PX(dx) + c37 ·

log n

n
+ 4 · β2

n ·P(An)

≤ 2 ·E
∫
|f(w∗)(0)(x)− f

(w
(l)
i,j,k)i,j,k,l:k≤K̃n

(x)|2PX(dx) + c38 ·
1

M2p
n

≤ c39 ·
1

M2p
n

,

where the last inequality followed by another application of Lemma 4. �

4.5 Proof of Theorem 2

Set
M = Mn = dc40 · n

1
2·(2p+d∗) e

and choose Ln = L and r as in Lemma 6 with d replaced by d∗. Set

K̃n =

(
d

d∗

)
·
(
d∗ + q

d∗

)
· (Mn + 1)d

∗ ≈ c41 · n
d∗

2·(2p+d∗) ,

Nn = nc42

and choose w
(l)
i,j,k (k ∈ {1, . . . , K̃n}) by using Lemma 6 in order to approximate∑

I⊆{1,...,d} : |I|=d∗
mI(xI),

i.e., fw is a sum of (
d

d∗

)
many neural networks which approximate mI(xI) (I ⊆ {1, . . . , d} : |I| = d∗). De�ne An
as in the proof of Theorem 1 and use the same error decomposition as there. Then we
get as in the proof of Theorem 1

ET1,n ≤ c43 ·
log n

n
,

28

ET2,n ≤ c44 ·
γn · Ln ·

√
logLn · βn · log n√

n
,

ET3,n ≤ c45 ·
log n

n

and

ET5,n ≤ c46 ·
(log n)2

n
.

Arguing as in the proof of Theorem 1 we see

E{T4,n}

≤
∫
|f(w∗)(0)(x)−m(x)|2PX(dx) + c47 ·

log n

n
+ 4 · β2

n ·P(An).

Using that i.e., f(w∗)(0)(x) is a sum of (
d

d∗

)
many neural networks which approximate mI(xI) (I ⊆ {1, . . . , d} : |I| = d∗) according
to Lemma 6 we get

|f(w∗)(0)(x)−m(x)| ≤
∑

I⊆{1,...,d} : |I|=d∗
|f(w∗I)(0)(x)−m(xI)|| ≤

(
d

d∗

)
· c48 ·

1

Mp
n
.

The assertion follows by summarizing the above results. �

References

[1] Andoni, A., Panigraphy, R., Valiant, G., and Zhang, L. (2014). Learning polynomials
with neural networks. In International Conference on Machine Learning, pp. 1908�
1916.

[2] Allen-Zhu, Z., Li, Y., und Song, Z. (2019). A convergence theory for deep learning via
over-parameterization. Proceedings of the 36th International Conference on Machine

Learning (PMLR 2019), Long Beach, California, 97, pp. 242-252.

[3] Barron, A. R. (1994). Approximation and estimation bounds for arti�cial neural
networks. Machine Learning 14, pp. 115-133.

[4] Bartlett, P., Harvey, N., Liaw, C., and Mehrabian, A. (2019). Nearly-tight VC-
dimension bounds for piecewise linear neural networks. Journal of Machine Learning

Research 20, pp. 1-17.

[5] Bartlett, P. L., Montanari, A., and Rakhlin, A. (2021). Deep learning: a statistical
viewpoint. Preprint, arXiv: 2103.09177.

29

[6] Bauer, B., and Kohler, M. (2019). On deep learning as a remedy for the curse of
dimensionality in nonparametric regression. Annals of Statistics 4, pp. 2261�2285.

[7] Birman, M. S., and Solomjak, M. Z. (1967). Piece-wise polynomial approximations
of functions in the classes Wα

p . Mathematics of the USSR Sbornik 73, pp. 295-317.

[8] Braun, A., Kohler, M., Langer, S., and Walk, H. (2023). Convergence rates for shallow
neural networks learned by gradient descent. Accepted for publication in Bernoulli.
Preprint, arXiv: 2107.09550.

[9] Chizat, L. and Bach, F. (2018). On the global convergence of gradient descent for
over-parameterized models using optimal transport. Preprint, arXiv: 1805.09545.

[10] Daniely, A. (2017). SGD learns the conjugate kernel class of the network. In Advances
in Neural Information Processing Systems, pp. 2422�2430.

[11] Du, S., Lee, J., Li, H., Wang, L., und Zhai, X. (2019). Gradient descent �nds
global minima of deep neural networks. International Conference on Machine Learn-
ing, Preprint, arXiv: 1811.03804.

[12] Györ�, L., Kohler, M., Krzy»ak, A., and Walk, H. (2002). A Distribution�Free

Theory of Nonparametric Regression. Springer.

[13] Golowich, N., Rakhlin, A., and Shamir, O. (2019). Size-Independent sample com-
plexity of neural networks. Preprint, arXiv: 1712.06541.

[14] Gonon, L. (2021). Random feature networks learn Black-Scholes type PDEs without
curse of dimensionality. Preprint, arXiv: 2106.08900.

[15] Hanin, B. and Nica, M. (2019). Finite depth and width corrections to the neural
tangent kernel. Preprint, arXiv: 1909.05989.

[16] Huang, G. B., Chen, L., and Siew, C.-K. (2006). Universal approximation using in-
cremental constructive feedforward networks with random hidden nodes. IEEE Trans-

actions on Neural Networks 17, pp. 879-892.

[17] Imaizumi, M., and Fukamizu, K. (2018). Deep neural networks learn non-smooth
functions e�ectively. Proceedings of the 22nd International Conference on Arti�cial

Intelligence and Statistics (AISTATS 2019), Naha, Okinawa, Japan.

[18] Kawaguchi, K, and Huang, J. (2019). Gradient descent �nds global minima for
generalizable deep neural networks of practical sizes. 57th IEEE Annual Allerton

Conference on Communication, Control, and Computing, Allerton, IL, pp. 92-99.

[19] Kim, Y. (2014). Convolutional neural networks for sentence classi�cation. Preprint,
arXiv: 1408.5882.

[20] Kohler, M., and Krzy»ak, A. (2017). Nonparametric regression based on hierarchical
interaction models. IEEE Transaction on Information Theory 63, pp. 1620-1630.

30

[21] Kohler, M., and Krzy»ak, A. (2021). Over-parametrized deep neural networks mini-
mizing the empirical risk do not generalize well. Bernoulli 27, pp. 2564-2597. Preprint,
arXiv: 1912.03925.

[22] Kohler, M., and Krzy»ak, A. (2022). Analysis of the rate of convergence of an over-
parametrized deep neural network estimate learned by gradient descent. Preprint,
arXiv: 2210.01443.

[23] Kohler, M., and Langer, S. (2021). On the rate of convergence of fully connected
deep neural network regression estimates using ReLU activation functions. Annals of
Statistics 49, pp. 2231-2249. Preprint, arXiv: 1908.11133.

[24] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). ImageNet classi�cation with
deep convolutional neural networks. In F. Pereira et al. (Eds.), Advances In Neural

Information Processing Systems Red Hook, NY: Curran. 25, pp. 1097-1105.

[25] Kutyoniok, G. (2020). Discussion of �Nonparametric regression using deep neural
networks with ReLU activation function�. Annals of Statistics 48, pp. 1902�1905.

[26] Langer, S. (2021). Approximating smooth functions by deep neural networks with
sigmoid activation function. Journal of Multivariate Analysis 182, pp. 104696.

[27] Li, G., Gu, Y. and Ding, J. (2021). The Rate of Convergence of Variation-
Constrained Deep Neural Networks. Preprint, arXiv: 2106.12068

[28] Liang, T., Rakhlin, A., and Sridharan, K. (2015). Learning with square loss: local-
ization through o�set Rademacher complexity. Preprint, arXiv: 1502.06134.

[29] Lin, S., and Zhang, J. (2019). Generalization bounds for convolutional neural net-
works. Preprint, arXiv: 1910.01487.

[30] Lu, J., Shen, Z., Yang, H., and Zhang, S. (2020). Deep network approximation for
smooth functions. Preprint, arXiv: 2001.03040

[31] Mei, S., Montanari, A. and Nguyen, P.-M. (2018). A mean �eld view of the landscape
of two-layer neural networks. In Proceedings of the National Academy of Sciences,
115, pp. E7665-E7671.

[32] Nguyen, P.-M. and Pham, H. T. (2020). A Rigorous Framework for the Mean Field
Limit of Multilayer Neural Networks Preprint, arXiv: 2001.1144.

[33] Rahimi, A., and Recht, B. (2008a). Random features for large-scale kernel machines.
In Advances in Neural Information Procesing Systems, pp. 1177-1184.

[34] Rahimi, A., and Recht, B. (2008b). Uniform approximation of function with random
bases. In 2008 46th Annual Allerton Conference on Communication, Control, and

Computing, pp. 555-561, IEEE.

31

[35] Rahimi, A., and Recht, B. (2009). Weighted sums of random kitchen sinks: Replac-
ing minimization with randomization in learning. In D. Koller, D. Schuurman, Y.
Bengio, and L. Bottou, editors, Advances in Neural Information Processing Systems,
Curran Associates, Inc. 21, pp. 1313-1320.

[36] Schmidt-Hieber, J. (2020). Nonparametric regression using deep neural networks
with ReLU activation function (with discussion). Annals of Statistics 48, pp. 1875�
1897. Preprint, arXiv:1708.06633v2.

[37] Shamir, O., and Zhang, T. (2012). Stochastic gradient descent for non-smooth
optimization: convergence results and optimal averaging schemes. Preprint, arXiv:
1212.1824.

[38] Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A.,
Huber, T., et al. (2017). Mastering the game of go without human knowledge. Nature
550, pp. 354-359.

[39] Stone, C. J. (1982). Optimal global rates of convergence for nonparametric regres-
sion. Annals of Statistics, 10, pp. 1040-1053.

[40] Stone, C. J. (1994). The use of polynomial splines and their tensor products in
multivariate function estimation. Annals of Statistics, 25, pp. 118-184.

[41] Suzuki, T. (2018). Adaptivity of deep ReLU network for learning in Besov and mixed
smooth Besov spaces: optimal rate and curse of dimensionality. Preprint, arXiv:
1810.08033.

[42] Suzuki, T., and Nitanda, A. (2019). Deep learning is adaptive to intrinsic dimension-
ality of model smoothness in anisotropic Besov space. Preprint, arXiv: 1910.12799.

[43] Wang, M., and Ma, C. (2022). Generalization error bounds for deep neural network
trained by SGD. Preprint, arXiv: 2206.03299v1.

[44] Wu, Y., Schuster, M., Chen, Z., Le, Q., Norouzi, M., Macherey, W., Krikum, M.,
et al. (2016). Google's neural machine translation system: Bridging the gap between
human and machine translation. Preprint, arXiv: 1609.08144.

[45] Yarotsky, D. (2018). Optimal approximation of continuous functions by very deep
ReLU networks. Preprint, arXiv: 1802.03620

[46] Yarotsky, D., and Zhevnerchuk, A. (2019). The phase diagram of approximation
rates for deep neural networks. Preprint, arXiv: 1906.09477.

[47] Yehudai, G., and Shamir, O. (2022). On the power and limitations of random fea-
tures for understanding neural networks. Preprint, arXiv: 1904.00687

[48] Zou, D., Cao, Y., Zhou, D., und Gu, Q. (2018). Stochastic gradient descent optimizes
over-parameterized deep ReLU networks. Preprint, arXiv: 1811.08888.

32

