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Abstract
Recent results show that estimates defined by over-parametrized deep neural networks
learned by applying gradient descent to a regularized empirical L2 risk are universally
consistent and achieve good rates of convergence. In this paper, we show that the regu-
larization term is not necessary to obtain similar results. In the case of a suitably chosen
initialization of the network, a suitable number of gradient descent steps, and a suitable
step size we show that an estimate without a regularization term is universally consistent
for bounded predictor variables. Additionally, we show that if the regression function is
Hölder smooth with Hölder exponent 1/2 ≤ p ≤ 1, the L2 error converges to zero with
a convergence rate of approximately n−1/(1+d). Furthermore, in case of an interaction
model, where the regression function consists of a sum of Hölder smooth functions with
d∗ components, a rate of convergence is derived which does not depend on the input
dimension d.
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1. Introduction

1.1. Deep learning

In the last decade, deep learning, i.e. the application of deep neural networks to data, has
gained a lot of attraction in practical applications as well as in theoretical considerations
and achieves impressive results. For instance, in natural science AlphaFold can predict
protein structures (c.f. Billings et al. (2019)) or AlphaZero is able to outperform humans
in three popular board games (c.f. McGrath et al. (2022)). Furthermore, the chatbot
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ChatGPT is one of the most capable language models nowadays, consisting of 175 billion
parameters (c.f. Zong and Krishnamachari (2022)). Another example is the text-to-
image model DALL-E-2, which consists of 3.5 billion parameters (c.f. Hunt (2023)).
These observations suggest that a large number of parameters is very useful in practical
applications of deep learning.
From a theoretical point of view this great success cannot yet be fully explained. However,
there exist already some results concerning deep neural networks. For example, results
on the rate of convergence of least squares estimates based on deep neural networks have
been derived (cf., e.g., Bauer and Kohler (2019), Schmidt-Hieber (2020), Kohler and
Langer (2021)).

Nevertheless, the above results neglect two features which have turned out to be very
important for practical applications. First, in contrast to the results above, in practice
estimates are computed using gradient descent instead of least squares. The second
property they ignore is that practical applications often use over-parametrized neural
networks. A network is called over-parametrized if the number of its parameters is much
larger than the sample size.

In this paper we consider a suitable over-parametrized deep neural network estimate
computed by gradient descent and analyze its statistical performance in a nonparametric
regression setting.

1.2. Nonparametric regression

We analyze deep neural network estimates in the context of nonparametric regression.
To do this we consider a random Rd × R-valued vector (X,Y ) with EY 2 < ∞. Here
we are interested in the dependence of the so-called response variable Y on the value of
the observation vector X. We assume that it is possible to observe data of (X,Y ). This
dataset is given by

Dn = {(X1, Y1), . . . , (Xn, Yn)}

where (X,Y ), (X1, Y1), . . . , (Xn, Yn) are independent and identically distributed (i.i.d.).
Our aim is to construct an estimate mn(x) := mn(x,Dn) of the corresponding regression
function m : Rd → R with m(x) = E{Y |X = x} such that the L2 error∫

|mn(x)−m(x)|2PX(dx)

is small (cf. e.g. Györfi et al. (2002) for a detailed introduction to nonparametric
regression).

There exist different modes of convergence. An important property an estimate should
satisfy is to be universally consistent. Universal consistency means that the L2 error
converges to zero for all distributions of (X,Y ). But it does not provide any information
about a rate of convergence of the L2 error. As shown in Theorem 7.2 and Problem 7.2
in Devroye, Györfi and Lugosi (1996) a rate of convergence cannot be derived in general
since there always exists a distribution such that the L2 error converges to zero arbitrarily
slowly. Thus, in order to derive non-trivial results about the rate of convergence, we need
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to restrict the class of regression functions. To do this we use the following definition of
(p, C) smoothness.

Definition 1. Let p = q + s for some q ∈ N0 and 0 < s ≤ 1. A function m : Rd → R is
called (p, C)-smooth, if for every α = (α1, . . . , αd) ∈ Nd

0 with
∑d

j=1 αj = q the partial
derivative ∂qm

∂x
α1
1 ...∂x

αd
d

exists and satisfies∣∣∣∣ ∂qm

∂xα1
1 . . . ∂xαd

d

(x)− ∂qm

∂xα1
1 . . . ∂xαd

d

(z)

∣∣∣∣ ≤ C · ∥x− z∥s

for all x, z ∈ Rd, where ∥ · ∥ denotes the Euclidean norm. For p ≤ 1, the function m is
called Hölder-smoooth with exponent p and Hölder-constant C.

Stone (1982) showed that the optimal minimax rate of convergence in nonparametric
regression for (p, C)-smooth functions is given by n−2p/(2p+d).

1.3. Main results

The goal of this paper is to study over-parametrized deep neural networks trained by
gradient descent from a statistical point of view.

In this context we define an estimate which fits an over-parametrized deep neural
network via gradient descent to the data. The output of the network is defined as a
linear combination of a large number of fully connected deep neural networks. The main
feature of this work is that we do not need a regularization term in the empirical L2

risk. To derive the results for the empirical L2 risk without a regularization term, we
use a new approach to analyze the optimization error. Previous methods used that the
gradient of the empirical L2 risk is Lipschitz continuous (Braun et al. (2024)) or they
used the convexity of the empirical L2 risk (Yehudai and Shamir (2022)) to analyze the
optimization error. In our work, we combine these two techniques (cf. Lemma 1 below).

Firstly, we prove that for a bounded support of the input data the estimate is univer-
sally consistent. Secondly, we analyze the rate of convergence of the over-parametrized
deep neural network estimate. In Theorem 2 below, we show that if the regression func-
tion is (p, C)-smooth with p ∈ [1/2, 1], then the expected L2 error of the truncated
estimate tends to zero, with a rate of convergence close to

n− 1
1+d .

Furthermore, in case of an interaction model, i.e. if the regression function is a sum of
(p, C)-smooth functions where each function depends on at most d∗ of the d components
of X, the estimate achieves a rate of convergence which is close to

n− 1
1+d∗

and does not depend on the input dimension d.
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1.4. Discussion of related results

From a theoretical point of view, there have been many interesting results in the past
years. For instance, in the case of a suitably defined least squares estimate based on a
multilayer neural network, Kohler and Krzyżak (2017) were able to derive a rate of con-
vergence of n− 2p

2p+d∗ for (p, C)-smooth regression functions, which satisfy a model where
the functions consist of a composition of functions applied to at most d∗ components
of its inputs, with p ≤ 1. This rate does not depend on the input dimension d. Bauer
and Kohler (2019) were able to show the same assertion for p > 1, provided that the
activation function is sufficiently smooth. Under the additional condition of the so-called
sparsity of the networks, Schmidt-Hieber (2020) showed the same rate of convergence
for neural network estimates with ReLU activation function in case that the regression
function satisfies a kind of hierarchical composition model. The property of sparsity
is not necessary to obtain this rate of convergence for a regression function satisfying a
hierarchical composition model (Kohler and Langer (2021)). Suzuki (2018) and Suzuki
and Nitanda (2021) were able to show that this dimensional reduction can be achieved
even under weaker assumptions on the smoothness of the regression function. For this
purpose they considered deep learning with ReLU activation function for functions in
Besov spaces.

In classical machine learning theory, the goal was to avoid over-parametrized neural
networks. It was thought that these networks lead to an overfitting of the weights to the
data and therefore generalize poorly to new data. Therefore, it was desired to obtain a
bias-variance trade-off. The model should be complex enough to represent the structure
of the underlying data, but simple enough to avoid overfitting. However, in practical
applications, over-parametrized neural networks are often used very successfully and
achieve high accuracy on new test data. This phenomenon has been studied recently by
many different researchers (c.f., e.g. Belkin et al. (2019), Frei, Chatterji and Bartlett
(2022) and the literature cited therein).

Belkin et al. (2019) were able to reconcile classical theory with new findings in practical
applications and identified a pattern of performance dependence on unseen model capac-
ity data and the underlying mechanism of emergence. This dependence is represented by
the so-called double descent curve. This curve shows that if the model capacity is greater
than the interpolation threshold, the test risk will decrease again.

In recent years, much work has focused on the capacity of neural networks. They tried
to understand the ability of neural networks to adapt to the training data either on a finite
data set (Bubeck et al. (2020)) or with respect to neural networks trained by gradient
methods (Daniely (2019), Daniely (2020)) or in neural tangent training (Montanari and
Zhong (2020)). In addition Bartlett et al. (2020) and Belkin, Rakhlin and Tsybakov
(2019) have already shown that over-parametrized neural networks can achieve good
rates of convergence.

In practical applications the weights of neural network estimates are computed by
gradient descent. So from a theoretical point of view it is very interesting to derive the-
oretical results for such estimates. Nitanda and Suzuki (2021) showed that the averaged
stochastic gradient descent for over-parametrized neural networks with one hidden layer
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can achieve the optimal minimax rate of convergence in a neural tangent kernel setting
where the smoothness of the regression function is measured by the neural tangent ker-
nel. Furthermore, it was shown that the (stochastic) gradient descent can find a global
minimum of the empirical L2 risk for suitable over-parametrized deep neural networks
(Allen-Zhu, Li and Song (2019), Kawaguchi and Huang (2020), Arora et al. (2019), Du
et al. (2018)).

However, Kohler and Krzyżak (2021) were able to exhibit that over-parametrized deep
neural networks minimizing the empirical L2 risk do not generalize well on new data, in
the sense that the networks that minimize the empirical risk do not achieve the optimal
minimax rate of convergence.

Braun et al. (2024) showed that under the assumption that the Fourier transform of
the regression function decays fast enough, a suitably initialized estimate learned by
gradient descent achieves (up to a logarithmic factor) a rate of convergence of n− 1

2 which
does not depend on the input dimension d. This result is related to a classical result of
Barron (1994). He was able to derive a similar rate of convergence for a least squares
neural network estimate in case that the Fourier transform has a finite first moment,
which requires that the function becomes smoother with increasing dimension. Kohler
and Krzyżak (2022b) analyzed the same estimates in an over-parametrized setting and
were able to derive an improved rate of convergence of n− 2

3 for d = 1 using a suitably
regularized L2 risk.

The property of over-parametrization allows the gadient descent to find interpolating
solutions that implicitly impose a regularization. This over-parametrization leads to
benign overfitting (Bartlett, Montanari and Rakhlin (2021)).

Drews and Kohler (2022) showed the property of universal consistency for over-param-
etrized deep neural network estimates computed by minimizing the L2 risk with gradient
descent. For these estimates, that are computed minimizing a regularized L2 risk via
gradient descent, Kohler and Krzyżak (2022a) were able to derive a rate of convergence
close to n− 1

1+d for suitably smooth regression functions. For this, they considered three
key ingredients. Firstly, they used that with high probability a subset of the inner initial
weights has good properties. For a suitable choice of the outer weights this causes a
good approximation property. Secondly, for a suitably chosen number of gradient steps,
a suitably chosen step size and suitably chosen bounds for the initial weights, they were
able to use a metric entropy bound to control the generalizability of the estimate. Thirdly,
they analyzed the optimization of the empirical L2 risk by optimizing the outer weights
during the gradient descent and by using a regularization term.

Kohler and Krzyżak (2022a) were also able to show a dimension-independent rate of
convergence for interaction models close to n− 1

1+d∗ .
Our results are an extension of the results in Drews and Kohler (2022) and Kohler and

Krzyżak (2022a). We show that the regularization term is not necessary. The estimate is
universally consistent even by minimizing the empirical L2 risk without a regularization
term and achieves similar rates of convergence.
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1.5. Notation

Throughout this paper we will use the following notation: The sets of natural numbers,
real numbers and non-negative real numbers are denoted by N, R and R+, respectively.
For z ∈ R, we denote by ⌈z⌉ the smallest integer greater than or equal to z and by ⌊z⌋
the largest integer less than or equal to z. The Euclidean norm of x ∈ Rd is denoted by
∥x∥. For a function f : Rd → R, we refer to

∥f∥∞ = sup
x∈Rd

|f(x)|

as the supremum norm. Let F be a set of functions f : Rd → R, let x1, . . . , xn ∈ Rd, set
xn1 = (x1, . . . , xn) and let p ≥ 1. A finite collection f1, . . . , fN : Rd → R is called an Lp

ε–cover of F on xn1 if for any f ∈ F there exists i ∈ {1, . . . , N} such that(
1

n

n∑
k=1

|f(xk)− fi(xk)|p
)1/p

< ε.

The Lp ε–covering number of F on xn1 is the size N of the smallest Lp ε–cover of F on
xn1 . It is denoted by Np(ε,F , xn1 ).

If A is a subset of Rd and x ∈ Rd, then we set 1A(x) = 1 if x ∈ A and 1A(x) = 0
otherwise.

For z ∈ R and β > 0 we define Tβz = max{−β,min{β, z}}. If f : Rd → R is a function
and F is a set of such functions, then we set (Tβf)(x) = Tβ (f(x)) and

TβF = {Tβf : f ∈ F}.

1.6. Outline

In Section 2 we define the estimate. The main results concerning the universal consistency
and the rate of convergence of the deep neural network estimate learned by gradient
descent are presented in Section 3. The proofs of the main results are given in Section 4.

2. Definiton of the estimate

In order to define the estimate, let σ(x) = 1/(1 + e−x) be the logistic squasher. For the
neural network topology, we choose a linear combination of Kn fully connected neural
networks with L layers and r neurons per layer. The output of the network is defined by

fw(x) =

Kn∑
j=1

w
(L)
1,1,j · f

(L)
j,1 (x) (1)

for some w
(L)
1,1,1, . . . , w

(L)
1,1,Kn

∈ R, where f
(L)
j,1 is recursively defined by

f
(l)
k,i(x) = σ

 r∑
j=1

w
(l−1)
k,i,j · f (l−1)

k,j (x) + w
(l−1)
k,i,0

 (2)
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for some w
(l−1)
k,i,0 , . . . , w

(l−1)
k,i,r ∈ R (l = 2, . . . , L) and

f
(1)
k,i (x) = σ

 d∑
j=1

w
(0)
k,i,j · x

(j) + w
(0)
k,i,0

 (3)

for some w
(0)
k,i,0, . . . , w

(0)
k,i,d ∈ R.

We denote by f
(l)
k,i the output of neuron i in the l-th layer of the k-th fully connected

network. By w
(l−1)
k,i,j we denote the weight between neuron j in the (l − 1)-th layer and

neuron i in the l-th layer of the k-th fully connected network.
The number of weights of the neural network is given by

Wn = Kn · (1 + (r + 1) + (L− 2) · r · (r + 1) + r · (d+ 1)).

To obtain the estimate, we want to learn the weights using gradient descent. For this
we initialize the weights w(0) = ((w(0))

(l)
k,i,j)k,i,j,l by setting

(w(0))
(L)
1,1,k = 0 for k = 1, . . . ,Kn, (4)

and by choosing all components of w(0) such that they are independent. We choose the
weights (w(0))

(l)
k,i,j with l ∈ {1, . . . , L− 1} uniformly distributed on [−20d · (log n)2, 20d ·

(log n)2] and (w(0))
(0)
k,i,j uniformly distributed on [−8d · (log n)2 · nτ , 8d · (log n)2 · nτ ] for

some fixed τ > 0.
Set

λn =
1

tn

and compute
w(t+1) = w(t) − λn · (∇wFn)(w

(t))

for t = 0, . . . , tn − 1 where

Fn(w) =
1

n

n∑
i=1

|fw(Xi)− Yi|2

is the empirical L2 risk of the network fw on the training data. The number of gradient
descent steps tn will be chosen in Section 3 below.

The estimate is then defined by

mn(x) = Tβnfw(tn)(x),

where βn = c1 · log n.
Because of (4) we have

Fn(w
(0)) =

1

n

n∑
i=1

|Yi|2.
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3. Main results

3.1. Universal consistency

Our first result is the following theorem which presents the universal consistency for
bounded X of an estimate learned by gradient descent using the empirical L2 risk without
a regularization term.

Theorem 1. Let σ(x) = 1/(1 + e−x) be the logistic squasher, and let Kn, L, r ∈ N and
τ ∈ R+. Furthermore, assume that L ≥ 2, r ≥ 2d, τ = 1/(d+ 1),

Kn

nκ
→ 0 (n → ∞) (5)

for some κ > 0,
Kn

nr+2
→ ∞ (n → ∞), (6)

and βn = c1 · log n for some c1 > 0. Let the estimate mn be defined as in Section 2 with

tn = ⌈c2 · Ln⌉ (7)

for some c2 ≥ 1 and Ln > 0 which satisfies

Ln ≥ K3/2
n · (log n)6L+5.

Then we have
E

∫
|mn(x)−m(x)|2PX(dx) → 0 (n → ∞)

for every distribution of (X,Y ) where supp(X) is bounded and EY 2 < ∞.

Remark 1. The estimate is over-parametrized in the sense that the number of its pa-
rameters is much larger than the sample size. This is due to condition (6), which requires
that Kn is asymptotically larger than nr+2 ≥ n2d+2. Theorem 1 shows that using the em-
pirical L2 risk without a regularization term, a suitable large number of steps, and a step
size which is equal to the reciprocal of the number of steps provides a good generalization
of new independent data.

Remark 2. The proof uses that the inner weights are chosen with high probability such
that for properly chosen outer weights of the neural networks, the corresponding neural
network has a small empirical L2 risk. Hence, this neural network is based on represen-
tation guessing instead of representation learning.

3.2. Rate of convergence for (p, C)-smooth regression functions

Besides the result about the universal consistency of the estimate, it is interesting how
fast the expected L2 error converges to 0. Therefore, in the next theorem a rate of
convergence for (p, C)-smooth functions is derived.
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Theorem 2. Let n ∈ N and let (X,Y ), (X1, Y1), . . . , (Xn, Yn) be independent and iden-
tically distributed Rd × R valued random variables which satisfy supp(X) ⊆ [0, 1]d and

E
{
ec3·Y

2
}
< ∞ (8)

for some c3 > 0. Assume that the corresponding regression function m(x) = E{Y |X = x}
is (p, C)-smooth for some 1/2 ≤ p ≤ 1 and some C > 0.

Let σ(x) = 1/(1 + e−x) be the logistic squasher, let L, r ∈ N with L ≥ 2 and r ≥ 2d.
Set βn = c1 · log n for some c1 > 0,

Kn = n6d+r+2,

τ =
1

1 + d
.

Define the estimate mn as in Section 2 with

tn = ⌈c4 · Ln⌉ (9)

for some c4 ≥ 1 and Ln > 0 which satisfies

Ln ≥ K3/2
n · (log n)6L+2

and assume that

c1 · c3 ≥ 2. (10)

Then we have for any ϵ > 0

E

∫
|mn(x)−m(x)|2PX(dx) ≤ c5 · n− 1

1+d
+ϵ.

Remark 3. According to Stone (1982) the optimal minimax rate of convergence for
(p, C)-smooth functions is n

− 2p
2p+d . Thus, the rate of convergence derived from Theorem

2 is almost optimal for p = 1
2 . Unfortunately, if p > 1

2 , the rate of convergence derived
above is not almost optimal. We assume that this is not a property of the estimate, but
rather a consequence of our proof.

3.3. Rate of convergence in an interaction model

The aim of this subsection is to modify the estimate defined above in order to obtain a
rate of convergence that does not depend on d. For this we assume that the regression
function satisfies

m(x) =
∑

I⊆{1,...,d} : |I|=d∗

mI(xI),

with 1 ≤ d∗ < d. The functions mI : Rd∗ → R (I ⊆ {1, . . . , d}, |I| = d∗) are (p, C)-
smooth functions and we use the notation

xI = (x(j1), . . . , x(jd∗ ))
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for I = {j1, . . . , jd∗}.
The neural network is then given by

fw(x) =
∑

I⊆{1,...,d} : |I|=d∗

fwI (xI)

where fwI is defined by (1)–(3) with d replaced by d∗ and weight vector wI , where

w = (wI)I⊆{1,...,d},|I|=d∗ .

We initialize the weights w(0) = (((w
(0)
I )

(l))
k,i,j)k,i,j,l)I⊆{1,...,d},|I|=d∗ by setting

(w
(0)
I )

(L)
1,1,k = 0 (k = 1, . . . ,Kn, I ⊆ {1, . . . , d}, |I| = d∗)

and by choosing all weights (w
(0)
I )

(l)
k,i,j such that they are independent. We choose

the weights (w
(0)
I )

(l)
k,i,j with l ∈ {1, . . . , L − 1} uniformly distributed on the interval

[−20d∗ · (log n)2, 20d∗ · (log n)2] and we choose (w(0)
I )

(0)
k,i,j uniformly distributed on the in-

terval [−8d · (log n)2 · nτ , 8d · (log n)2 · nτ ] where τ = 1
1+d∗ (I ⊆ {1, . . . , d} with |I| = d∗).

Similar as above we define the estimate as follows: Set

λn =
1

tn

and compute
w(t+1) = w(t) − λn · (∇wFn)(w

(t))

for t = 0, . . . , tn − 1 where

Fn(w) =
1

n

n∑
i=1

|fw(Xi)− Yi|2

is the empirical L2 risk of the network fw on the training data. The number of gradient
descent steps tn will be chosen in Theorem 3 below.

The estimate is then defined by

mn(x) = Tβnfw(tn)(x)

where βn = c1 · log n.

Theorem 3. Let d ∈ N, d∗ ∈ {1, . . . , d}, 1/2 ≤ p ≤ 1. Furthermore, let C > 0, n ∈ N
and let (X,Y ), (X1, Y1), . . . , (Xn, Yn) be independent and identically distributed Rd × R
valued random variables such that supp(X) ⊆ [0, 1]d and

E{ec3·Y 2} < ∞
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holds for some c3 > 0. Assume that the corresponding regression function m(x) =
E{Y |X = x} satisfies

m(x) =
∑

I⊆{1,...,d}:|I|=d∗

mI(xI) (x ∈ [0, 1]d)

for some (p, C)-smooth functions mI : Rd∗ → R (I ⊆ {1, . . . , d}, |I| = d∗).
Let σ(x) = 1/(1 + e−x) be the logistic squasher. Let L, r ∈ N with L ≥ 2 and r ≥ 2d∗.

Set βn = c1 · log n,

Kn = n6d∗+r+2 and τ =
1

1 + d∗
.

Define the estimate mn as in Section 3.3 with

tn = ⌈c6 · Ln⌉

for some c6 ≥ 1 and Ln > 0 which satisfies

Ln ≥ K3/2
n · (log n)6L+2

and assume that

c1 · c3 ≥ 2. (11)

Then we have for any ϵ > 0

E

∫
|mn(x)−m(x)|2PX(dx) ≤ c7 · n− 1

1+d∗+ϵ.

Remark 4. The optimal minimax rate of convergence n
− 2p

2p+d derived by Stone (1982)
suffers from the curse of dimensionality. This means that if d is very large compared to
p, the rate of convergence becomes extremely slow. However, Stone (1994) has already
established that under appropriate assumptions it is possible to circumvent the curse of
dimensionality. In Theorem 3, we were able to show that under the above assumptions
on the regression function, the over-parametrized neural network estimate can also cir-
cumvent the curse of dimensionality.

4. Proofs

4.1. Auxiliary results for the proof of Theorem 1

In this section we will present auxiliary results that are necessary for the proof of Theorem
1. The first auxiliary result enables us to analyze the gradient descent.
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Lemma 1. Let d1, d2 ∈ N, let (u0, v0) ∈ Rd1 × Rd2, let F : Rd1 × Rd2 → R+ be a
continuously differentiable function and set

A =
{
(u, v) ∈ Rd1 × Rd2 : ∥(u, v)− (u0, v0)∥ ≤ 2 ·

√
F (u0, v0) + 1

}
.

Let u∗ ∈ Rd1 and assume that for some Dn, Ln > 0 it holds

u 7→ F (u, v) is convex for all v ∈ Rd2 ,

∥(∇(u,v)F )(u, v)∥ ≤ Ln (12)

for all (u, v) ∈ A,

∥(∇(u,v)F )(u1, v1)− (∇(u,v)F )(u2, v2)∥ ≤ Ln · ∥(u1, v1)− (u2, v2)∥ (13)

for all (u1, v1), (u2, v2) ∈ A and

|F (u∗, v)− F (u∗, v0)| ≤ Dn · ∥u∗∥ · ∥v − v0∥ (14)

for all v ∈ {ṽ : ∥ṽ − v0∥ ≤
√

2 · F (u0, v0)}.
Set

ut+1 = ut − λ · (∇uF ) (ut, vt),

vt+1 = vt − λ · (∇vF ) (ut, vt)

for t = 0, 1, . . . , tn − 1, where

tn ≥ Ln and λ =
1

tn
.

Then we have

F (utn , vtn) ≤ F (u∗, v0) +Dn · ∥u∗∥ ·
√

2 · F (u0, v0) +
∥u∗ − u0∥2

2
+

F (u0, v0)

tn
.

Furthermore, even if (14) does not hold, we have

∥ut − u0∥ ≤
√

2 · F (u0, v0) and ∥vt − v0∥ ≤
√

2 · F (u0, v0)

for all t = 0, 1, . . . , tn.

Proof. In the first step of the proof we show

1

tn

tn−1∑
t=0

F (ut, vt) ≤
1

tn

tn−1∑
t=0

F (u∗, vt)+
∥u∗ − u0∥2

2
+

1

2 · tn

tn−1∑
t=0

λ · ∥(∇uF )(ut, vt)∥2. (15)

By convexity of u 7→ F (u, vt) we have

F (ut, vt)− F (u∗, vt)

≤ ⟨(∇uF )(ut, vt), ut − u∗⟩

12



=
1

2 · λ
· 2 · ⟨λ · (∇uF )(ut, vt), ut − u∗⟩

≤ 1

2 · λ
·
(
−∥ut − u∗ − λ · (∇uF )(ut, vt)∥2 + ∥ut − u∗∥2 + ∥λ · (∇uF )(ut, vt)∥2

)
=

1

2 · λ
·
(
∥ut − u∗∥2 − ∥ut+1 − u∗∥2 + λ2 · ∥(∇uF )(ut, vt)∥2

)
.

This implies

1

tn

tn−1∑
t=0

F (ut, vt)−
1

tn

tn−1∑
t=0

F (u∗, vt)

=
1

tn

tn−1∑
t=0

(F (ut, vt)− F (u∗, vt))

≤ 1

tn

tn−1∑
t=0

1

2 · λ
·
(
∥ut − u∗∥2 − ∥ut+1 − u∗∥2

)
+

1

tn

tn−1∑
t=0

λ

2
· ∥(∇uF )(ut, vt)∥2

=
1

2
·
tn−1∑
t=0

(
∥ut − u∗∥2 − ∥ut+1 − u∗∥2

)
+

1

2 · tn

tn−1∑
t=0

λ · ∥(∇uF )(ut, vt)∥2

≤ ∥u0 − u∗∥2

2
+

1

2 · tn

tn−1∑
t=0

λ · ∥(∇uF )(ut, vt)∥2.

In the second step of the proof we show that

∥(∇(u,v)F )((ut, vt) + τ · ((ut+1, vt+1)− (ut, vt)))− (∇(u,v)F )(ut, vt)∥
≤ Ln · τ · ∥(ut+1, vt+1)− (ut, vt)∥ (16)

for all τ ∈ [0, 1] implies

F (ut+1, vt+1)− F (ut, vt) ≤ −1

2
· λ · ∥(∇uF )(ut, vt)∥2 −

1

2
· λ · ∥(∇vF )(ut, vt)∥2. (17)

The function

H : [0, 1] → R, H(τ) = F ((ut, vt) + τ · ((ut+1, vt+1)− (ut, vt)))

is continuously differentiable. By the fundamental theorem of calculus, assumption (16)
and λ ≤ 1/Ln we get

F (ut+1, vt+1)− F (ut, vt) = H(1)−H(0) =

∫ 1

0
H ′(τ)dτ

=

∫ 1

0
(∇(u,v)F )((ut, vt) + τ · ((ut+1, vt+1)− (ut, vt))) · ((ut+1, vt+1)− (ut, vt))dτ

=

∫ 1

0

(
(∇(u,v)F )((ut, vt) + τ · ((ut+1, vt+1)− (ut, vt)))− (∇(u,v)F )(ut, vt)

)

13



·((ut+1, vt+1)− (ut, vt))dτ

+

∫ 1

0
(∇(u,v)F )(ut, vt) · ((ut+1, vt+1)− (ut, vt))dτ

≤
∫ 1

0

∥∥(∇(u,v)F )((ut, vt) + τ · ((ut+1, vt+1)− (ut, vt)))− (∇(u,v)F )(ut, vt)
∥∥

·∥(ut+1, vt+1)− (ut, vt)∥dτ
+(∇(u,v)F )(ut, vt) · ((ut+1, vt+1)− (ut, vt))

≤
∫ 1

0
Ln · τ · ∥(ut+1, vt+1)− (ut, vt)∥2dτ

+(∇(u,v)F )(ut, vt) · ((ut+1, vt+1)− (ut, vt))

=
1

2
· Ln · ∥(ut+1, vt+1)− (ut, vt)∥2 + (∇(u,v)F )(ut, vt) · ((ut+1, vt+1)− (ut, vt))

=
1

2
· Ln ·

(
λ2 · ∥(∇uF )(ut, vt)∥2 + λ2 · ∥(∇vF )(ut, vt)∥2

)
− λ · ∥(∇uF )(ut, vt)∥2

−λ · ∥(∇vF )(ut, vt)∥2

= λ ·
(
1

2
· Ln · λ− 1

)
· ∥(∇uF )(ut, vt)∥2 + λ ·

(
1

2
· Ln · λ− 1

)
· ∥(∇vF )(ut, vt)∥2

≤ −1

2
· λ · ∥(∇uF )(ut, vt)∥2 −

1

2
· λ · ∥(∇vF )(ut, vt)∥2.

In the third step of the proof we show

F (u1, v1)− F (u0, v0) ≤ −1

2
· λ · ∥(∇uF )(u0, v0)∥2 −

1

2
· λ · ∥(∇vF )(u0, v0)∥2.

By (12) we know
∥(∇(u,v)F )(u0, v0)∥ ≤ Ln,

which implies for any τ ∈ [0, 1]

∥(u0, v0) + τ · ((u1, v1)− (u0, v0))− (u0, v0)∥ ≤ λ · Ln.

Consequently we can conclude from (13) that (16) holds for t = 0, from which we get
the assertion of step 3 by applying the result from step 2.

In the fourth step of the proof we show that by induction on t, that

F (ut+1, vt+1)− F (ut, vt) ≤ −1

2
· λ · ∥(∇uF )(ut, vt)∥2 −

1

2
· λ · ∥(∇vF )(ut, vt)∥2

holds for all t ∈ {0, 1, . . . , tn − 1}, and that

∥ut − u0∥ ≤
√

2 · F (u0, v0) and ∥vt − v0∥ ≤
√

2 · F (u0, v0)

hold for all t ∈ {0, 1, . . . , tn}.
For t = 0 the assertion follows from step 3. So assume now that the assertion holds

for some t ∈ {0, 1, . . . , tn − 1}. Then (12) implies

∥(∇(u,v)F )(ut, vt)∥ ≤ Ln,

14



which implies for any τ ∈ [0, 1]

∥(ut, vt) + τ · ((ut+1, vt+1)− (ut, vt))− (u0, v0)∥ ≤ ∥(ut, vt)− (u0, v0)∥+ λ · Ln

≤
√

∥ut − u0∥2 + ∥vt − v0∥2 + λ · Ln ≤ 2 ·
√

F (u0, v0) + λ · Ln.

Consequently we can conclude from (13) that (16) holds, from which we get by step 2

F (ut+1, vt+1)− F (ut, vt) ≤ −1

2
· λ · ∥(∇uF )(ut, vt)∥2 −

1

2
· λ · ∥(∇vF )(ut, vt)∥2.

Furthermore, we have

∥ut+1 − u0∥

≤
t∑

s=0

∥us+1 − us∥

≤

√√√√(t+ 1) ·
t∑

s=0

∥us+1 − us∥2

=

√√√√(t+ 1) ·
t∑

s=0

λ2 · ∥(∇uF )(us, vs)∥2

≤

√√√√2 · (t+ 1) · λ ·
t∑

s=0

(F (us, vs)− F (us+1, vs+1))

≤
√

2 · (t+ 1) · 1

tn
· F (u0, v0)

≤
√

2 · F (u0, v0)

and

∥vt+1 − v0∥

≤
t∑

s=0

∥vs+1 − vs∥

≤

√√√√(t+ 1) ·
t∑

s=0

∥vs+1 − vs∥2

=

√√√√(t+ 1) ·
t∑

s=0

λ2 · ∥(∇vF )(us, vs)∥2

≤

√√√√2 · (t+ 1) · λ ·
t∑

s=0

(F (us, vs)− F (us+1, vs+1))
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≤
√
2 · (t+ 1) · 1

tn
· F (u0, v0)

≤
√

2 · F (u0, v0).

In the fifth step of the proof we show the assertion. By the fourth step we know that
F is monotonically decreasing hence it holds

F (utn , vtn) ≤
1

tn

tn−1∑
t=0

F (ut, vt).

Then we can conclude from the first step of the proof

F (utn , vtn)

≤ 1

tn

tn−1∑
t=0

F (u∗, vt) +
∥u∗ − u0∥2

2
+

1

2 · tn

tn−1∑
t=0

λ · ∥(∇uF )(ut, vt)∥2

≤ F (u∗, v0) +
1

tn

tn−1∑
t=0

|F (u∗, vt)− F (u∗, v0)|

+
∥u∗ − u0∥2

2
+

1

2 · tn

tn−1∑
t=0

λ · ∥(∇uF )(ut, vt)∥2.

By (14) and the fourth step of the proof we get

1

tn

tn−1∑
t=0

|F (u∗, vt)− F (u∗, v0)| ≤
1

tn

tn−1∑
t=0

Dn · ∥u∗∥ · ∥vt − v0∥ ≤ Dn · ∥u∗∥ ·
√

2 · F (u0, v0).

And as in the fourth step of the proof we get

tn−1∑
t=0

λ · ∥(∇uF )(ut, vt)∥2 ≤ 2 ·
tn−1∑
t=0

(F (ut, vt)− F (ut+1, vt+1)) ≤ 2 · F (u0, v0).

Summarizing the above results, the proof is complete.

With the following two results we can show that the assumptions (12) and (13) in the
proof of Theorem 1 are satisfied.

Lemma 2. Let σ : R → R be bounded and differentiable, and assume that its derivative
is bounded. Let αn ≥ 1, tn ≥ Ln, γ∗n ≥ 1, Bn ≥ 1, r ≥ 2d,

|w(L)
1,1,k| ≤ γ∗n for k = 1, . . . ,Kn, (18)

|w(l)
k,i,j | ≤ Bn for l = 1, . . . , L− 1 (19)

and
∥w − v∥2∞ ≤ 8tn

Ln
·max{Fn(v), 1}. (20)

16



Then we have for X1, . . . , Xn ∈ [−αn, αn]
d

∥(∇wFn)(w)∥ ≤ c8 ·K3/2
n ·B2L

n · (γ∗n)2 · α2
n ·
√

tn
Ln

·max{Fn(v), 1}.

Proof. The proof follows from Lemma 2 in Drews and Kohler (2022). For sake of com-
pleteness the proof is given in the appendix.

Lemma 3. Let σ : R → R be bounded and differentiable, and assume that its derivative
is Lipschitz continuous and bounded. Let αn ≥ 1, tn ≥ Ln, γ∗n ≥ 1, Bn ≥ 1, r ≥ 2d and
assume

|max{(w1)
(L)
1,1,k, (w2)

(L)
1,1,k}| ≤ γ∗n for k = 1, . . . ,Kn, (21)

|max{(w1)
(l)
k,i,j , (w2)

(l)
k,i,j}| ≤ Bn for l = 1, . . . , L− 1 (22)

and
∥w2 − v∥2 ≤ 8 · tn

Ln
·max{Fn(v), 1}. (23)

Then we have for X1, . . . , Xn ∈ [−αn, αn]
d

∥(∇wFn)(w1)− (∇wFn)(w2)∥

≤ c9 ·max{
√

Fn(v), 1} · (γ∗n)2 ·B3L
n · α3

n ·K3/2
n ·

√
tn
Ln

· ∥w1 −w2∥.

Proof. The proof follows from Lemma 3 in Drews and Kohler (2022). For the sake of
completeness the complete proof is given in the appendix.

The next auxiliary result uses a metric entropy bound to control the complexity of a
set of over-parametrized deep neural networks.

Lemma 4. Let α ≥ 1, β > 0 and let A,B,C ≥ 1. Let σ : R → R be k-times differentiable
such that all derivatives up to order k are bounded on R. Let F be the set of all functions
fw defined by (1)–(3) where the weight vector w satisfies

Kn∑
j=1

|w(L)
1,1,j | ≤ C, (24)

|w(l)
k,i,j | ≤ B (k ∈ {1, . . . ,Kn}, i, j ∈ {1, . . . , r}, l ∈ {1, . . . , L− 1}) (25)

and
|w(0)

k,i,j | ≤ A (k ∈ {1, . . . ,Kn}, i ∈ {1, . . . , r}, j ∈ {1, . . . , d}). (26)

Then we have for any 1 ≤ p < ∞, 0 < ϵ < β and xn1 ∈ Rd

Np

(
ϵ, {Tβf · 1[−α,α]d : f ∈ F}, xn1

)
≤
(
c10 ·

βp

ϵp

)c11·αd·B(L−1)·d·Ad·(C
ϵ )

d/k
+c12

.
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Proof. See Lemma 4 in Drews and Kohler (2022).

The next lemma gives a bound on the error of the approximation of a Lipschitz con-
tinuous and bounded function by an over-parametrized deep neural network.

Lemma 5. Let σ be the logistic squasher, let 1 ≤ αn ≤ log n, let m : Rd → R be
Lipschitz continuous as well as bounded, let L, r, n ∈ N with L ≥ 2, r ≥ 2d, n ≥ 8d and
n ≥ exp(r+1) and let K,Nn ∈ N with 2 ≤ K ≤ αn− 1 and Nn · (K2+1)d ≤ Kn. Given
u1, v1, . . . , uNn(K2+1)d , vNn(K2+1)d ∈ [−K − 2

K ,K]d, choose w such that

w
(0)
k,j,j = 4d·K2 ·(log n)2 and w

(0)
k,j,0 = −4d·K2 ·(log n)2 ·u(j)k for j ∈ {1, . . . , d}, (27)

w
(0)
k,j+d,j = −4d ·K2 · (log n)2 and w

(0)
k,j+d,0 = 4d ·K2 · (log n)2 ·v(j)k for j ∈ {1, . . . , d},

(28)
w

(0)
k,s,t = 0 if s ≤ 2d, s ̸= t, s ̸= t+ d and t > 0, (29)

w
(1)
k,1,t = 8 · (log n)2 for t ∈ {1, . . . , 2d}, (30)

w
(1)
k,1,0 = −8 · (log n)2

(
2d− 1

n

)
, (31)

w
(1)
k,1,t = 0 for t > 2d, (32)

w
(l)
k,1,1 = 6 · (log n)2 for l ∈ {2, . . . , L}, (33)

w
(l)
k,1,0 = −3 · (log n)2 for l ∈ {2, . . . , L} (34)

and
w

(l)
k,1,t = 0 for t > 1 and l ∈ {2, . . . , L} (35)

for all k ∈ {1, . . . , Nn · (K2 + 1)d}.
Then there exists u1, v1, . . . , uNn(K2+1)d , vNn(K2+1)d ∈ [−K − 2

K ,K]d and

α1, . . . , αNn(K2+1)d ∈
[
−∥m∥∞

Nn
,
∥m∥∞
Nn

]
(36)

such that for all pairwise distinct j1, . . . , jNn(K2+1)d ∈ {1, . . . ,Kn}∫
|fw̄(x)−m(x)|2PX(dx)

≤ c13 ·

(
1

K
+

N2
n ·K4d

n2
+

(
K2d

n
+ 1

)2

·PX(Rd \ [−K,K]d)

)
(37)

holds for all weight vectors w̄ which satisfy

w̄
(L)
1,1,jk

= αk (k ∈ {1, . . . , Nn · (K2 + 1)d}), w̄
(L)
1,1,k = 0 (k /∈ {j1, . . . , jNn(K2+1)d}) (38)

18



and

|w(l)
s,k,i − w̄

(l)
js,k,i

| ≤ log n for all l ∈ {0, . . . , L− 1}, s ∈ {1, . . . , Nn · (K2 + 1)d}. (39)

Additionally we get

∥fw̄∥∞ ≤ c14 ·
(
3d +

(K2 + 1)d

n

)
(40)

where c14 depends on ∥m∥∞.

Proof. Subdivide the cube [−K− 2
K ,K]d in (K2+1)d equidistant cubes Ci of side length

2
K . For simplicity we number these cubes Ci by i ∈ {1, . . . , (K2 + 1)d}, such that Ci

corresponds to the cube
[u

(1)
i , v

(1)
i )× · · · × [u

(d)
i , v

(d)
i ).

Let CLip be the Lipschitz constant of m.
We apply Lemma 6 from Drews and Kohler (2022) with ai = −K − 2

K , bi = K and
K2 + 1 instead of K to m/Nn and δ = 1

K2 . This results in∣∣∣∣fw̄(x)− 1

Nn
·m(x)

∣∣∣∣ ≤ c15 ·
(
CLip

Nn
· 2

K
+ (K2 + 1)d · 1

n

)
for all x ∈ [−K − 2

K ,K]d which are not contained in

A :=
⋃

i∈{0,1,...,K2+1}

⋃
j∈{1,...,d}

{
x ∈ Rd :

∣∣∣∣x(j) − (−K − 2

K
+ i · 2

K

)∣∣∣∣ < δ

}
. (41)

We repeat the whole construction Nn many times. Thus we obtain an approximation fw̄
of

Nn · 1

Nn
·m(x)

which satisfies
|fw̄(x)−m(x)| ≤ c16 ·

(
1

K
+Nn · (K2 + 1)d · 1

n

)
(42)

for x /∈ A.
Next we shift the grid along the j-th component so that [−K,K]d is always covered.

This means we modify all u
(j)
i , v

(j)
i by the same additional summand which is chosen

from the set {
k · 2

K2
: k = 0, 1, . . . ,K − 1

}
for fixed j ∈ {1, . . . , d}. Thus we obtain K different versions of fw̄ that still satisfy (42)
for all x ∈ [−K,K]d up to corresponding versions of A.

Since we shift the grid of cubes we obtain for fixed j ∈ {1, . . . , d} K disjoint versions
of
⋃

i∈{0,1,...,K2+1}
{
x ∈ Rd :

∣∣x(j) − (−K − 2
K + i · 2

K

)∣∣ < δ
}
. The sum of PX -measures
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of these K disjoint sets is less than or equal to one. Therefore at least one of them must
have measure less than or equal to 1

K . Consequently we can shift ui and vi so that

PX (A) ≤
∑

j∈{1,...,d}

1

K
=

d

K

holds.
Now we have shown that there exists a shifted version of the grid such that the set A

has a measure less than or equal to d
K . By inequality (42) we get that |fw̄(x)−m(x)| ≤

c16 ·
(

1
K + Nn·K2d

n

)
holds for x ∈ [−K,K]d \A.

From the second assertion of Lemma 6 in Drews and Kohler (2022) we obtain

|fw̄(x)| ≤ ∥m∥∞ ·
(
3d + (K2 + 1)d · 1

n

)
for x ∈ Rd.

Summarizing the above results we get∫
|fw̄(x)−m(x)|2PX(dx)

=

∫
[−K,K]d\A

|fw̄(x)−m(x)|2PX(dx) +

∫
A
|fw̄(x)−m(x)|2PX(dx)

+

∫
Rd\[−K,K]d

|fw̄(x)−m(x)|2PX(dx)

≤ c216

(
1

K
+

Nn ·K2d

n

)2

+ c17

(
3d +

K2d

n

)2

· d

K

+c18

(
3d +

K2d

n

)2

·PX(Rd \ [−K,K]d),

which implies the assertion.

4.2. Proof of Theorem 1

Proof. Let ϵ > 0, K ∈ N arbitrary and Nn = ⌈c19 · (log n)18L⌉. Furthermore, let m̄ :
Rd → R be a Lipschitz continuous and bounded function such that∫

|m̄(x)−m(x)|2PX(dx) ≤ ϵ. (43)

We denote by An the event that firstly there exists pairwise disjoint j1, . . . , jNn(K2+1)d

such that the weight vector w(0) satisfies

|(w(0))
(l)
js,k,i

−w
(l)
s,k,i| ≤ log n for all l ∈ {0, . . . , L− 1}, s ∈ {1, . . . , Nn · (K2 + 1)d}
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for some weight vector w which satisfies the conditions (27)–(35) of Lemma 5 for m̄ and
that secondly the inequality

1

n

n∑
i=1

Y 2
i ≤ β3

n

holds.
In case that An holds αk is chosen as in Lemma 5 for m̄, otherwise we set α1 = ... =

αNn(K2+1)d = 0. Then we define the weight vectors w∗ for given w by

(w∗)
(l)
k,i,j = w

(l)
k,i,j for all l = 0, . . . , L− 1,

(w∗)
(L)
1,1,jk

= αk for all k = 1, . . . , Nn · (K2 + 1)d,

(w∗)
(L)
1,1,k = 0 for all k /∈ {j1, . . . , jNn(K2+1)d}

and (w∗)(0) by

((w∗)(0))
(l)
k,i,j = (w(0))

(l)
k,i,j for all l = 0, . . . , L− 1,

((w∗)(0))
(L)
1,1,jk

= αk for all k = 1, . . . , Nn · (K2 + 1)d,

((w∗)(0))
(L)
1,1,k = 0 for all k /∈ {j1, . . . , jNn(K2+1)d}.

In the first step of the proof we start by decomposing the L2 error of mn in a sum of
several terms. We have∫

|mn(x)−m(x)|2PX(dx)

= (E{|mn(X)− Y |2|Dn} −E{|m(X)− Y |2}) · 1An

+

∫
|mn(x)−m(x)|2PX(dx) · 1Ac

n

=
(
E{|mn(X)− Y |2|Dn} − (1 + ϵ) ·E{|mn(X)− TβnY |2|Dn}

)
· 1An

+

(
(1 + ϵ) ·E{|mn(X)− TβnY |2|Dn} − (1 + ϵ) · 1

n

n∑
i=1

|mn(Xi)− TβnYi|2
)

· 1An

+

(
(1 + ϵ) · 1

n

n∑
i=1

|mn(Xi)− TβnYi|2 − (1 + ϵ) · 1
n

n∑
i=1

|fw(tn)(Xi)− TβnYi|2
)

· 1An

+

(
(1 + ϵ) · 1

n

n∑
i=1

|fw(tn)(Xi)− TβnYi|2 − (1 + ϵ)2 · 1
n

n∑
i=1

|fw(tn)(Xi)− Yi|2)

)
· 1An

+

(
(1 + ϵ)2 · 1

n

n∑
i=1

|fw(tn)(Xi)− Yi|2 −E{|m(X)− Y |2}

)
· 1An

+

∫
|mn(x)−m(x)|2PX(dx) · 1Ac

n
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=

6∑
j=1

Tj,n.

In the second step of the proof we show

lim sup
n→∞

ETj,n ≤ 0 for j ∈ {1, 4}.

By using (a+ b)2 ≤ (1 + ϵ) · a2 + (1 + 1
ϵ ) · b

2 for a, b ∈ R we obtain

ET1,n ≤
(
1 +

1

ϵ

)
·E{|TβnY − Y |2}

and
ET4,n ≤ (1 + ϵ) ·

(
1 +

1

ϵ

)
·E{|TβnY − Y |2}.

Together with βn → ∞ (n → ∞) and EY 2 < ∞ this implies the assertion of the second
step.

In the third step of the proof we show

lim sup
n→∞

ET3,n ≤ 0.

If |y| ≤ βn then it holds
|Tβnz − y| ≤ |z − y|

for any z ∈ R. This implies

1

n

n∑
i=1

|mn(Xi)− TβnYi|2 =
1

n

n∑
i=1

|Tβnfw(tn)(Xi)− TβnYi|2

≤ 1

n

n∑
i=1

|fw(tn)(Xi)− TβnYi|2.

Thus the assertion of the third step holds.
In the fourth step of the proof we show that the assumptions (12) - (14) of Lemma 1

are satisfied which means that

∥(∇wF )(w)∥ ≤ Ln

for all w ∈ S :=
{
v : ∥v −w(0)∥ ≤ 2 ·

√
F (w(0)) + 1

}
,

∥(∇wF )(w)− (∇wF )(w̃)∥ ≤ Ln · ∥w − w̃∥

for all w, w̃ ∈ S and

|F (w∗)− F ((w∗)(0))|

≤ Dn · ∥((w∗)
(L)
1,1,k)k=1,...,Kn∥ · ∥(w

(l)
i,j,k)i,j,k,l:l<L − ((w(0))

(l)
i,j,k)i,j,k,l:l<L∥
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for all

(w
(l)
i,j,k)i,j,k,l:l<L ∈ S̃

:=

{
(w̃

(l)
i,j,k)i,j,k,l:l<L : ∥(w̃(l)

i,j,k)i,j,k,l:l<L − ((w(0))
(l)
i,j,k)i,j,k,l:l<L∥ ≤

√
2 · F (w(0))

}
hold, if An holds.

If An holds, then we have

Fn(w
(0)) =

1

n

n∑
i=1

Y 2
i ≤ β3

n.

Let w ∈ S. Then we can conclude that

∥(w(l)
i,j,k)i,j,k,l:1≤l<L∥∞ ≤ ∥w −w(0)∥+ ∥((w(0))

(l)
i,j,k)i,j,k,l:1≤l<L∥∞

≤ 2 ·
√

Fn(w(0)) + 1 + c20 · (log n)2

≤ c21 · (log n)2

and

∥(w(L)
1,1,k)k=1,...,Kn∥∞ ≤ ∥w −w(0)∥+ ∥((w(0))

(L)
1,1,k)k=1,...,Kn∥∞

≤ 2 ·
√
Fn(w(0)) + 1

≤ c22 · (log n)3/2.

Hence (18)-(23) are satisfied for Bn = c21 · (log n)2 and γ∗n = c22 · (log n)3/2. By Lemma
2 and Lemma 3 we get for αn = c23 that (12) and (13) are satisfied provided that
Ln ≥ K

3/2
n · (log n)6L+5.

It remains to show that (14) holds. Let w such that (w
(l)
i,j,k)i,j,k,l:l<L ∈ S̃. Then we

have

|Fn(w
∗)− Fn((w

∗)(0))|

=

∣∣∣∣∣ 1n
n∑

i=1

|fw∗(Xi)− Yi|2 −
1

n

n∑
i=1

|f(w∗)(0)(Xi)− Yi|2
∣∣∣∣∣

=
1

n

n∑
i=1

(
fw∗(Xi)− Yi + f(w∗)(0)(Xi)− Yi

)(
fw∗(Xi)− f(w∗)(0)(Xi)

)

≤

(
1

n

n∑
i=1

(
fw∗(Xi)− Yi + f(w∗)(0)(Xi)− Yi

)2)1/2

(
1

n

n∑
i=1

(
fw∗(Xi)− f(w∗)(0)(Xi)

)2)1/2
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≤

(
2

n

n∑
i=1

(
fw∗(Xi) + f(w∗)(0)(Xi)

)2
+

8

n

n∑
i=1

Y 2
i

)1/2

(
1

n

n∑
i=1

(
Kn∑
k=1

∣∣∣(w∗)
(L)
1,1,k

∣∣∣2 · Kn∑
k=1

∣∣∣f (L)
w∗,k,1(Xi)− f

(L)

(w∗)(0),k,1
(Xi)

∣∣∣2))1/2

.

For the first term we get(
2

n

n∑
i=1

(
fw∗(Xi) + f(w∗)(0)(Xi)

)2
+

8

n

n∑
i=1

Y 2
i

)1/2

=

(
2

n

n∑
i=1

(
f(w∗)(Xi)− f(w∗)(0)(Xi) + 2 · f(w∗)(0)(Xi)

)2
+

8

n

n∑
i=1

Y 2
i

)1/2

≤

(
2

n

n∑
i=1

2 ·
(
fw∗(Xi)− f(w∗)(0)(Xi)

)2
+

2

n

n∑
i=1

8 · f(w∗)(0)(Xi)
2 +

8

n

n∑
i=1

Y 2
i

)1/2

≤

(
4 · 1

n

n∑
i=1

(
Kn∑
k=1

∣∣∣(w∗)
(L)
1,1,k

∣∣∣2 · Kn∑
k=1

∣∣∣f (L)
w∗,k,1(Xi)− f

(L)

(w∗)(0),k,1
(Xi)

∣∣∣2)

+ 16 · 1
n

n∑
i=1

f(w∗)(0)(Xi)
2 +

8

n

n∑
i=1

Y 2
i

)1/2

≤

(
4 ·

Kn∑
k=1

∣∣∣(w∗)
(L)
1,1,k

∣∣∣2 · max
i=1,...,n

Kn∑
k=1

∣∣∣f (L)
w∗,k,1(Xi)− f

(L)

(w∗)(0),k,1
(Xi)

∣∣∣2
+ 16 · 1

n

n∑
i=1

f(w∗)(0)(Xi)
2 +

8

n

n∑
i=1

Y 2
i

)1/2

.

By Lemma 5 for m̄ we get |αk| ≤ c24
Nn

and

f(w∗)(0)(Xi) ≤ c25 ·
(
3d +

(K2 + 1)d

n

)
.

From the proof of Lemma 2 we know that

|f (L)
w∗,k,1(x)− f

(L)

(w∗)(0),k,1
(x)|

≤ c26 · (log n)2L · max
i,j,s:s<L

|(w∗)
(s)
k,i,j − ((w∗)(0))

(s)
k,i,j | (44)

holds. Therefore we obtain for (w
(l)
i,j,k)i,j,k,l:l<L ∈ S̃

max
i=1,...,n

Kn∑
k=1

∣∣∣f (L)
w∗,k,1(Xi)− f

(L)

(w∗)(0),k,1
(Xi)

∣∣∣2

24



≤ c27 · (log n)4L ·
Kn∑
k=1

max
i,j,s:s<L

|(w∗)
(s)
k,i,j − ((w∗)(0))

(s)
k,i,j |

2

≤ c27 · (log n)4L · ∥(w(l)
i,j,k)i,j,k,l;l<L − ((w(0))

(l)
i,j,k)i,j,k,l;l<L∥2

≤ c27 · (log n)4L+3.

From this together with the definition of w∗ we can conclude(
2

n

n∑
i=1

(
fw∗(Xi) + f(w∗)(0)(Xi)

)2
+

8

n

n∑
i=1

Y 2
i

)1/2

≤

(
4 ·

Kn∑
k=1

∣∣∣(w∗)
(L)
1,1,k

∣∣∣2 · c27 · (log n)4L+3 + 16 · 1
n

n∑
i=1

f(w∗)(0)(Xi)
2 +

8

n

n∑
i=1

Y 2
i

)1/2

≤

(
c28 ·

Nn · (K2 + 1)d

N2
n

· (log n)4L+3 +

(
c29 ·

(
3d +

(K2 + 1)d

n

))2

+ 8 · c31 · (log n)3
)1/2

≤ c30

(
(K2 + 1)d

Nn
· (log n)4L+3 +

(
(K2 + 1)d

n

)2

+ (log n)3

)1/2

.

Furthermore, due to (44) we have(
1

n

n∑
i=1

(
Kn∑
k=1

∣∣∣(w∗)
(L)
1,1,k

∣∣∣2 · Kn∑
k=1

∣∣∣f (L)
w∗,k,1(Xi)− f

(L)

(w∗)(0),k,1
(Xi)

∣∣∣2))1/2

≤

(
Kn∑
k=1

∣∣∣(w∗)
(L)
1,1,k

∣∣∣2 · Kn∑
k=1

max
i=1,...,n

∣∣∣f (L)
w∗,k,1(Xi)− f

(L)

(w∗)(0),k,1
(Xi)

∣∣∣2)1/2

≤ ∥((w∗)
(L)
1,1,k)k=1,...,Kn∥ · c31 · (log n)2L · ∥(w(l)

i,j,k)i,j,k,l:l<L − ((w(0))
(l)
i,j,k)i,j,k,l:l<L∥.

This yields

|Fn((w
∗)(t))− Fn((w

∗)(0))|

≤ c32

(
(K2 + 1)d/2

N
1/2
n

· (log n)4L+3/2 +
(K2 + 1)d · (log n)2L

n
+ (log n)2L+3/2

)
· ∥((w∗)

(L)
1,1,k)k=1,...,Kn∥ · ∥(w

(l)
i,j,k)i,j,k,l:l<L − ((w(0))

(l)
i,j,k)i,j,k,l:l<L∥.

Thus (14) is satisfied with

Dn = c32 · (log n)2L ·

(
(K2 + 1)d/2

N
1/2
n

· (log n)2L+3/2 +
(K2 + 1)d

n
+ (log n)3/2

)
.

For n large we get

Dn ≤ c33 · (log n)4L+2.
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In the fifth step of the proof we show

P(Ac
n) ≤

c34
(log n)3

.

To show this, we first bound the probability that the weight vector w(0) does not
satisfy the first condition of the event An. For this, we consider a sequential choice of
weights in the Kn fully connected neural networks. Each of these Kn fully connected
neural networks contains (r+1)+ (L− 2) · r · (r+1)+ r · (d+1) weights. Therefore, the
probability that all these weights never satisfy condition (39) for s = 1 is bounded from
below by (

log n

40d · (log n)2

)(r+1)+(L−2)·r·(r+1)

·
(

log n

16d · (log n)2 · nτ

)r·(d+1)

.

Consequently, the probability that this condition is never satisfied in the first
nr(d+1)τ+1 many fully connected neural networks for j1 is for large n bounded from above
by (

1−
(

1

40d · log n

)(r+1)+(L−2)·r·(r+1)

·
(

1

16d · log n · nτ

)r·(d+1)
)nr(d+1)τ+1

≤
(
1− n−r(d+1)τ−0,5

)nr(d+1)τ+1

.

Because of condition (6) we have Kn ≥ Nn · (K2 + 1)d · nr(d+1)τ+1 for large n. This
implies that for large n condition (39) is satisfied outside of an event of probability

Nn · (K2 + 1)d ·
(
1− n−r(d+1)τ−0.5

)nr(d+1)τ+1

≤ Nn · (K2 + 1)d ·
(
exp

(
−n−r(d+1)τ−0.5

))nr(d+1)τ+1

≤ Nn · (K2 + 1)d · exp
(
−n0.5

)
≤ nκ · exp

(
−n0.5

)
≤ c35

n
.

Then we obtain for large n by Markov’s inequality

P(Ac) ≤ c35
n

+P

{
1

n

n∑
i=1

Y 2
i > β3

n

}

≤ c35
n

+
E{ 1

n

∑n
i=1 Y

2
i }

β3
n

≤ c35
n

+
E{Y 2}
β3
n
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≤ c36
(log n)3

where the last inequality holds since EY 2 < ∞.
In the sixth step of the proof we show

lim sup
n→∞

ET2,n ≤ 0.

We have

1

1 + ϵ
·E {T2,n} ≤

∫ 4·β2
n

0
P

{(
E{|mn(X)− TβnY |2|Dn}

− 1

n

n∑
i=1

|mn(Xi)− TβnYi|2
)
· 1An > t

}
dt

≤ n
−1

4(d+2) +

∫ 4·β2
n

n
−1

4(d+2)

P

{(
E{|mn(X)− TβnY |2|Dn}

− 1

n

n∑
i=1

|mn(Xi)− TβnYi|2
)
· 1An > t

}
dt.

W.l.o.g. we can assume that An holds. Hence, by Lemma 1, it follows that

∥((w(tn))
(l)
i,j,k)i,j,k,l:l<L − ((w(0))

(l)
i,j,k)i,j,k,l:l<L∥ ≤ c37 · (log n)3/2

and

∥((w(tn))
(L)
1,1,k)k=1,...,Kn∥ ≤ c38 · (log n)3/2.

hold. Consequently, we obtain

∥((w(tn))
(l)
i,j,k)i,j,k,l:1≤l<L∥∞

≤ ∥((w(tn))
(l)
i,j,k)i,j,k,l:1≤l<L − ((w(0))

(l)
i,j,k)i,j,k,l:1≤l<L∥∞ + ∥((w(0))

(l)
i,j,k)i,j,k,l:1≤l<L∥∞

≤ c37 · (log n)3/2 + c39 · (log n)2

and

∥((w(tn))
(0)
i,j,k)i,j,k∥∞

≤ ∥((w(tn))
(0)
i,j,k)i,j,k − ((w(0))

(0)
i,j,k)i,j,k∥∞ + ∥((w(0))

(0)
i,j,k)i,j,k∥∞

≤ c38 · (log n)3/2 + c40 · (log n)2 · nτ .

This implies that mn is contained in the function space

{Tβnf : f ∈ F}
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where F is defined as in Lemma 4 with C = c41 ·Kn · (log n)3/2, B = c42 · (log n)2 and
A = c43 · (log n)2 · nτ . Thus, with Lemma 4 and standard bounds of empirical process
theory (cf., Theorem 9.1 in Györfi et al. (2002)), it follows

P

{
(E{|mn(X)− TβnY |2(X)|Dn} −

1

n

n∑
i=1

|mn(Xi)− TβnYi|2) · 1An > t

}

≤ 8 ·
(
c44 ·

βn
t/8

)c45·(logn)c46 ·nτ ·d·
(

c47·Kn·(logn)3/2

t/8

)d/k

+c48

· exp
(
− n · t2

128 · β4
n

)
.

Using (5) and τ = 1
d+1 we get for k > (κ + 1) · d · (d + 1) · (d + 2) and t > n

−1
4(d+2) that

the left hand side above is for n large enough less than or equal to

8 ·
(
c44 ·

βn
t/8

)c45·(logn)c46 ·nτ ·d·
(

c47·Kn·(logn)3/2

t/8

)d/k

+c48

· exp
(
− n · t2

256 · β4
n

)
· exp

(
− n · t2

256 · β4
n

)
≤ exp

(
c49 · (log n)c46 · nτ ·d+(κ+1)· d

k · log
(
c44 ·

βn
t/8

))
· exp

(
− n · t2

256 · β4
n

)
· exp

(
− n · t2

256 · β4
n

)
≤ exp

(
c50 ·

(
(log n)c51 · n

d
d+1

+(κ+1) d
k − n

2d+3
2(d+2)

(log n)4

))
· exp

(
− n · t2

256 · β4
n

)

≤ exp

(
c50 ·

(
(log n)c51 · n

d+1
d+2 − n

2d+3
2(d+2)

(log n)4

))
· exp

(
− n · t2

256 · β4
n

)

= exp

(
c50 · n

d+1
d+2 ·

(
(log n)c50 − n

1
2(d+2)

(log n)4

))
· exp

(
− n · t2

256 · β4
n

)
≤ c52 · exp

(
− n · t2

256 · β4
n

)
≤ c53 · exp

(
− n

2d+3
2(d+2)

256 · β4
n

)
holds. Therefore, we obtain

E {T2,n} ≤ (1 + ϵ) ·

(
n

−1
4(d+2) + 4β2

n · c54 · exp

(
− n

2d+3
2(d+2)

256 · β4
n

))
→ 0 (n → ∞).

In the seventh step of the proof we show

lim sup
n→∞

E{T6,n} ≤ 0.
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Due to the assertion of the fifth step together with the integrability of m we get

E{T6,n} ≤
(
2 ·
∫

|mn(x)|2 PX(dx) + 2 ·
∫

|m(x)|2 PX(dx)

)
·P(Ac

n)

≤ 2 · (β2
n + c55) ·

c36
(log n)3

.

This implies the assertion of the seventh step.
In the eighth step of the proof we bound

ET5,n.

If An holds, then as shown in step four, we can apply Lemma 1 with

Dn ≤ c35 · (log n)4L+2.

This together with the definition of w∗ and (w∗)(0) yields

1

n

n∑
i=1

|fw(tn)(Xi)− Yi|2 = Fn

(
w(tn)

)
≤ Fn

(
(w∗)(0)

)
+Dn · ∥((w∗)

(L)
1,1,k)k=1,...,Kn∥ ·

√
2 · Fn

(
w(0)

)
+
∥((w∗)

(L)
1,1,k)k=1,...,Kn − ((w(0))

(L)
1,1,k)k=1,...,Kn∥2

2
+

Fn

(
w(0)

)
tn

≤ Fn

(
(w∗)(0)

)
+ c56 · (log n)4L+2 · N

1/2
n · (K2 + 1)d/2

Nn
· (log n)3/2

+
Nn · (K2 + 1)d

2 ·N2
n

+
c31 · (log n)3

tn

≤ Fn

(
(w∗)(0)

)
+ c57 ·

(K2 + 1)d

Nn
1/2

· (log n)4L+4.

Thus we obtain

E {T5,n}

= (1 + ϵ)2 ·E
{(

Fn

(
w(tn)

)
−E{|m(X)− Y |2}

)
· 1An

}
+((1 + ϵ)2 − 1) ·E

{
E{|m(X)− Y |2} · 1An

}
≤ (1 + ϵ)2 ·

(
E
{
Fn

(
(w∗)(0)

)
· 1An + c57

(
(K2 + 1)d

Nn
1/2

· (log n)4L+4

)
· 1An

}
−E{|m(X)− Y |2} ·P(An)

)
+ ((1 + ϵ)2 − 1) ·E{|m(X)− Y |2}.

Let Ãn be the event where the weight vector w(0) satisfies

|(w(0))
(l)
js,k,i

−w
(l)
s,k,i| ≤ log n for all l ∈ {0, . . . , L− 1}, s ∈ {1, . . . , Nn · (K2 + 1)d}
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for some weight vector w which satisfies conditions (27)–(35) of Lemma 5 for m̄. Then
we get from the fifth step of the proof

P(Ãn)−P(An) ≤ P

{
1

n

n∑
i=1

Y 2
i > β3

n

}
≤ c58

(log n)3
.

This together with the fact that (X1, Y1), . . . , (Xn, Yn) are independent of Ãn yields

E{Fn((w
∗)(0)) · 1An} −E{|m(X)− Y |2} ·P(An)

≤ E
{ 1

n

n∑
i=1

|f((w∗)(0))(Xi)− Yi|2 · 1Ãn

}
−E{|m(X)− Y |2} ·P(Ãn)

+E{|m(X)− Y |2} · (P(Ãn)−P(An))

≤ E

{
E
{ 1

n

n∑
i=1

|f((w∗)(0))(Xi)− Yi|2 · 1Ãn

∣∣(w∗)(0)
}
−E{|m(X)− Y |2} · 1Ãn

}
+

c59
(log n)3

= E

{(
E
{ 1

n

n∑
i=1

|f((w∗)(0))(Xi)− Yi|2
∣∣(w∗)(0)

}
−E{|m(X)− Y |2}

)
· 1Ãn

}
+

c59
(log n)3

≤ E

{∫
|f((w∗)(0))(x)−m(x)|2PX(dx) · 1Ãn

}
+

c59
(log n)3

.

Because of the choice of m̄ and Lemma 5 we get for K such large that supp(X) ⊆ [−K,K]d

E
{∫

|f((w∗)(0))(x)−m(x)|2PX(dx) · 1Ãn

}
≤ 2 ·E

{∫
|f((w∗)(0))(x)− m̄(x)|2PX(dx) · 1Ãn

}
+ 2

∫
|m̄(x)−m(x)|2PX(dx)

≤ c60 ·

(
1

K
+

N2
n ·K4d

n2
+

(
K2d

n
+ 1

)2

·PX(Rd \ [−K,K]d)

)
+ 2ϵ

≤ c61 ·
(

1

K
+

N2
n ·K4d

n2

)
+ 2ϵ.

Due to the definition of Nn we obtain

(K2 + 1)d

Nn
1/2

· (log n)4L+4 → 0 (n → ∞).

Summarizing the above results yields

lim sup
n→∞

E {T5,n} ≤ c62 · (1 + ϵ)2 ·
(

1

K
+ 2ϵ

)
+ ((1 + ϵ)2 − 1) ·E{|m(X)− Y |2}.
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In the ninth step of the proof we finish the proof of Theorem 1. The results of steps
1,2,3,6,7 and 8 imply for K → ∞

lim sup
n→∞

E

∫
|mn(x)−m(x)|2PX(dx)

≤ c63 ·
(
(1 + ϵ)2 · 2ϵ+ ((1 + ϵ)2 − 1) ·E{|m(X)− Y |2}

)
.

With ϵ → 0 we get the assertion.

4.3. Auxiliary results for the proof of Theorem 2

The following theorem is crucial for proving Theorem 2 and Theorem 3. It is needed to
analyze the rate of convergence of the over-parametrized deep neural network estimate.

Theorem 4. Let n ∈ N with n ≥ 2, let (X,Y ), (X1, Y1), . . . , (Xn, Yn) be independent and
identically distributed Rd×R-valued random variables such that supp(X) is bounded, that

E
{
ec3·Y

2
}
< ∞ (45)

holds and that the corresponding regression function m(x) = E{Y |X = x} is bounded.
Let σ(x) = 1/(1+e−x) be the logistic squasher, let Kn, L, r, tn ∈ N, Mn ≥ 1 and λn, τ > 0.
Let K̃n ∈ {1, . . . ,Kn},

w
(l)
k,i,j ∈ [−20d · (log n)2, 20d · (log n)2] for l = 1, . . . , L, k = 1, . . . K̃n

and
w

(0)
k,i,j ∈ [−8d · (log n)2 · nτ , 8d · (log n)2 · nτ ] for k = 1, . . . , K̃n.

Assume that √√√√ K̃n∑
k=1

|w(L)
1,1,k|2 ≤ Mn, (46)

and that ∣∣∣∣ K̃n∑
k=1

w
(L)
1,1,k · f

(L)
w̄,k,1(x)

∣∣∣∣ ≤ βn (47)

holds for x ∈ supp(X) and for all w̄ which satisfy

|w̄(l)
i,j,k − w

(l)
i,j,k| ≤ log n for l = 0, . . . , L− 1.

Assume furthermore

Kn

nκ
→ 0 (n → ∞) (48)
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for some κ > 0,

Kn

K̃n · nr·(d+1)·τ+1
→ ∞ (n → ∞) (49)

Define the estimate mn as in Section 2 with

λn =
1

tn
and tn = ⌈c64 · Ln⌉ (50)

for some c64 ≥ 1 and for some Ln > 0 which satisfies

Ln ≥ K3/2
n · (log n)6L+2,

and assume

c1 · c3 ≥ 2. (51)

Then we have for any ϵ > 0

E

∫
|mn(x)−m(x)|2PX(dx) ≤ c65 ·

(
nτ ·d+ϵ

n
+M2

n · (log n)4L+3/2

+ sup
(w̄

(l)
i,j,k)i,j,k,l

|w̄(l)
i,j,k−w

(l)
i,j,k|≤logn (l=0,...,L−1)

∫
|
K̃n∑
k=1

w
(L)
1,1,k · f

(L)
w̄,k,1(x)−m(x)|2PX(dx)

)
.

Proof. Let An be the event that firstly the weight vector w(0) satisfies

|(w(0))
(l)
js,k,i

−w
(l)
s,k,i| ≤ log n for all l ∈ {0, . . . , L− 1}, s ∈ {1, . . . , K̃n}

for some pairwise distinct j1, ..., jK̃n
∈ {1, ...,Kn} and that secondly

max
i=1,...,n

|Yi| ≤
√

βn

holds. Then we define the weight vectors w∗ for given w̃ by

(w∗)
(l)
k,i,j = w̃

(l)
k,i,j for all l = 0, . . . , L− 1,

(w∗)
(L)
1,1,jk

= w̃
(L)
1,1,k for all k = 1, . . . , K̃n,

(w∗)
(L)
1,1,k = 0 for all k /∈ {j1, . . . , jK̃n

}

and (w∗)(0) by

((w∗)(0))
(l)
k,i,j = (w

(0)
k,i,j)

(l) for all l = 0, . . . , L− 1,

(w∗)(0))
(L)
1,1,jk

= (w
(0)
1,1,k)

(L) for all k = 1, . . . , K̃n,
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((w∗)(0))
(L)
1,1,k = 0 for all k /∈ {j1, . . . , jK̃n

}.

In the following we set
mβn(x) = E{TβnY |X = x}.

Furthermore, we assume w.l.o.g. that n is sufficiently large and that ∥m∥∞ ≤ βn holds.
In the first step of the proof we decompose the L2 error of mn in a sum of several

terms. We have∫
|mn(x)−m(x)|2PX(dx)

=
(
E
{
|mn(X)− Y |2|Dn

}
−E{|m(X)− Y |2}

)
· 1An

+

∫
|mn(x)−m(x)|2PX(dx) · 1Ac

n

=
[
E
{
|mn(X)− Y |2|Dn

}
−E{|m(X)− Y |2}

−
(
E
{
|mn(X)− TβnY |2|Dn

}
−E{|mβn(X)− TβnY |2}

) ]
· 1An

+
[
E
{
|mn(X)− TβnY |2|Dn

}
−E{|mβn(X)− TβnY |2}

−2 · 1
n

n∑
i=1

(
|mn(Xi)− TβnYi|2 − |mβn(Xi)− TβnYi|2

) ]
· 1An

+
[
2 · 1

n

n∑
i=1

|mn(Xi)− TβnYi|2 − 2 · 1
n

n∑
i=1

|mβn(Xi)− TβnYi|2

−

(
2 · 1

n

n∑
i=1

|mn(Xi)− Yi|2 − 2 · 1
n

n∑
i=1

|m(Xi)− Yi|2
)]

· 1An

+
[
2 · 1

n

n∑
i=1

|mn(Xi)− Yi|2 − 2 · 1
n

n∑
i=1

|m(Xi)− Yi|2
]
· 1An

+

∫
|mn(x)−m(x)|2PX(dx) · 1Ac

n

=:
5∑

j=1

Tj,n.

In the second step of the proof we show

ET1,n ≤ c66 ·
log n

n
and ET3,n ≤ c67 ·

log n

n
.

This follows as in the proof of Lemma 1 in Bauer and Kohler (2019).
In the third step of the proof we show

ET5,n ≤ c68 ·
(log n)2

n
.
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Due to the definition of mn and the assumption that ∥m∥∞ ≤ βn, it holds∫
|mn(x)−m(x)|2PX(dx) ≤ 4 · c12 · (log n)2.

Thus it suffices to show
P(Ac

n) ≤
c69
n

. (52)

To do this, we first bound the probability that the weights in the first of the Kn fully
connected neural networks differ by at most log n from (w(l)

1,i,j)i,j,l:l<L in all components.
For large n, this probability is bounded from below by(

log n

40d · (log n)2

)r·(r+1)·(L−2)

·
(

log n

16d · (log n)2 · nτ

)r·(d+1)

≥ n−r·(d+1)·τ−0.5.

Then the probability that none of the first nr·(d+1)·τ+1 neural networks satisfies this
condition is bounded above by

(1− n−r·(d+1)·τ−0.5)n
r·(d+1)·τ+1 ≤

(
exp

(
−n−r·(d+1)·τ−0.5

))nr·(d+1)·τ+1

= exp(−n0.5).

Assumption (49) implies Kn ≥ nr·(d+1)·τ+1 · K̃n for large n. Thus we can apply this
construction successively for all K̃n weights ((w(0))

(l)
k,i,j)i,j,l:l<L. The probability that

there exists k ∈ {1, . . . , K̃n} such that none of the Kn weight vectors of the fully connected
neural network differs from (w

(l)
k,i,j)i,j,l:l<L by at most log n is then for large n bounded

from above by

K̃n · exp(−n0.5) ≤ nκ · exp(−n0.5) ≤ c70
n

.

Hence, for large n it is

P(Ac
n) ≤ c70

n
+P{ max

i=1,...,n
|Yi| >

√
βn} ≤ c70

n
+ n ·P{|Y | >

√
βn}

≤ c70
n

+ n · E{exp(c3 · Y 2)}
exp(c3 · βn)

≤ c71
n

,

where the last inequality holds because of (45) and (51).
In the fourth step of the proof we show that the assumptions (12) - (14) of Lemma 1

are satisfied which means that

∥(∇wF )(w)∥ ≤ Ln

for all w ∈ S :=
{
v : ∥v −w(0)∥ ≤ 2 ·

√
F (w(0)) + 1

}
,

∥(∇wF )(w)− (∇wF )(w̄)∥ ≤ Ln · ∥w − w̄∥
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for all w, w̄ ∈ S and

|F (w∗)− F ((w∗)(0))|

≤ Dn · ∥((w∗)
(L)
1,1,k)k=1,...,Kn∥ · ∥(w

(l)
i,j,k)i,j,k,l:l<L − ((w(0))

(l)
i,j,k)i,j,k,l:l<L∥

for all

(w
(l)
i,j,k)i,j,k,l:l<L ∈ S̃

:=

{
(w̄

(l)
i,j,k)i,j,k,l:l<L : ∥(w̄(l)

i,j,k)i,j,k,l:l<L − ((w(0))
(l)
i,j,k)i,j,k,l:l<L∥ ≤

√
2 · F (w(0))

}
hold, if An holds.

If An holds, then we have

Fn(w
(0)) =

1

n

n∑
i=1

Y 2
i ≤ βn.

Let w ∈ S. Then we have

∥(w(l)
i,j,k)i,j,k,l:1≤l<L∥∞ ≤ ∥w −w(0)∥+ ∥((w(0))

(l)
i,j,k)i,j,k,l:1≤l<L∥∞

≤ 2 ·
√

Fn(w(0)) + 1 + c72 · (log n)2

≤ c73 · (log n)2

and

∥(w(L)
1,1,k)k=1,...,Kn∥∞ ≤ ∥w −w(0)∥+ ∥((w(0))

(L)
1,1,k)k=1,...,Kn∥∞

≤ 2 ·
√
Fn(w(0)) + 1

≤ c74 · (log n)1/2.

Hence (18)-(23) are satisfied for Bn = c73 · (log n)2 and γ∗n = c74 · (log n)1/2. By Lemma 2
and Lemma 3 we get that (12) and (13) are satisfied provided that Ln ≥ K

3/2
n ·(log n)6L+2.

Furthermore, let w̃ such that (w̃
(l)
i,j,k)i,j,k,l:l<L ∈ S̃. Then we obtain as in the proof of

Theorem 1

|Fn(w
∗)− Fn((w

∗)(0))|

≤

(
2

n

n∑
i=1

(
fw∗(Xi) + f(w∗)(0)(Xi)

)2
+

8

n

n∑
i=1

Y 2
i

)1/2

(
1

n

n∑
i=1

(
Kn∑
k=1

|(w∗)1,1,k|2 ·
Kn∑
k=1

∣∣∣f (L)
w∗,k,1(Xi)− f

(L)

(w∗)(0),k,1
(Xi)

∣∣∣2))1/2

.
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With(
1

n

n∑
i=1

(
Kn∑
k=1

|(w∗)1,1,k|2 ·
Kn∑
k=1

∣∣∣f (L)
w∗,k,1(Xi)− f

(L)

(w∗)(0),k,1
(Xi)

∣∣∣2))1/2

≤ ∥((w∗)
(L)
1,1,k)k=1,...,Kn∥ · c75 · (log n)2L · ∥(w̃(l)

i,j,k)i,j,k,l:l<L − ((w̃(0))
(l)
i,j,k)i,j,k,l:l<L∥

and since (w̃
(l)
i,j,k)i,j,k,l:l<L ∈ S̃ we get(

2

n

n∑
i=1

(
fw∗(Xi) + f(w∗)(0)(Xi)

)2
+

8

n

n∑
i=1

Y 2
i

)1/2

≤

(
4 ·

Kn∑
k=1

∣∣∣(w∗)
(L)
1,1,k

∣∣∣2 · max
i=1,...,n

Kn∑
k=1

∣∣∣f (L)
w∗,k,1(Xi)− f

(L)

(w∗)(0),k,1
(Xi)

∣∣∣2
+ 16 · 1

n

n∑
i=1

f(w∗)(0)(Xi)
2 +

8

n

n∑
i=1

Y 2
i

)1/2

≤

(
4 ·

Kn∑
k=1

∣∣∣(w∗)
(L)
1,1,k

∣∣∣2 · c76 · (log n)4L · ∥((w∗)
(l)
i,j,k)i,j,k,l:l<L − (((w∗)(0))

(l)
i,j,k)i,j,k,l:l<L∥2

+ 16 ·
n∑

i=1

f(w∗)(0)(Xi)
2 +

8

n

n∑
i=1

Y 2
i

)1/2

≤

(
c77 ·M2

n · (log n)4L+1 + 16 · β2
n + 8 · βn

)1/2

≤ c78 ·Mn · (log n)2L+1.

Summarizing these steps yields

|Fn(w
∗)− Fn((w

∗)(0))|

≤ c79 · (log n)4L+1 ·Mn · ∥((w∗)
(L)
1,1,k)k=1,...,Kn∥ · ∥(w̃

(l)
i,j,k)i,j,k,l:l<L − ((w̃(0))

(l)
i,j,k)i,j,k,l:l<L∥

Thus (14) is satisfied with

Dn = c79 ·Mn · (log n)4L+1.

Let ϵ > 0 be arbitrary. In the fifth step of the proof we show

ET2,n ≤ c80 ·
nτ ·d+ϵ

n
.

Let Wn be the set of all weight vectors (w
(l)
i,j,k)i,j,k,l which satisfy

|w(L)
1,1,k| ≤ c81 · (log n)2 (k = 1, . . . ,Kn),
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|w(l)
i,j,k| ≤ (20d+ 1) · (log n)2 (l = 1, . . . , L− 1)

and
|w(0)

i,j,k| ≤ (8d+ 1) · (log n)2 · nτ .

From Lemma 1 we know for n large that

∥((w(tn))
(L)
1,1,k)k=1,...,Kn − ((w(0))

(L)
1,1,k)k=1,...,Kn∥ ≤

√
2Fn(w(0)) ≤ (log n)2

and

∥((w(tn))
(l)
i,j,k)i,j,k,l:l<L − ((w(0))

(l)
i,j,k)i,j,k,l:l<L∥ ≤

√
2Fn(w(0)) ≤ (log n)2.

This and the initial choice of w(0) imply that we have on An for n large

w(t) ∈ Wn (t = 0, . . . , tn).

Thus, for any u > 0 we get

P{T2,n > u}

≤ P

{
∃f ∈ Fn : E

(∣∣∣∣f(X)

βn
−

TβnY

βn

∣∣∣∣2
)

−E

(∣∣∣∣mβn(X)

βn
−

TβnY

βn

∣∣∣∣2
)

− 1

n

n∑
i=1

(∣∣∣∣f(Xi)

βn
−

TβnYi
βn

∣∣∣∣2 − ∣∣∣∣mβn(Xi)

βn
−

TβnYi
βn

∣∣∣∣2
)}

>
1

2
·

(
u

β2
n

+E

(∣∣∣∣f(X)

βn
−

TβnY

βn

∣∣∣∣2
)

−E

(∣∣∣∣mβn(X)

βn
−

TβnY

βn

∣∣∣∣2
))

,

where
Fn = {Tβnfw : w ∈ Wn} .

Application of Lemma 4 yields for xn1 ∈ supp(X) and α = c82

N1

(
δ,

{
1

βn
· f : f ∈ Fn

}
, xn1

)
≤ N1 (δ · βn,Fn, x

n
1 )

≤
(
c83 · βn
δ · βn

)c84·(logn)2d·nτ ·d·(logn)2·(L−1)·d·
(

Kn·(logn)2

δ·βn

)d/k

+c85

.

For δ > 1/n and k large enough, we obtain

N1

(
δ,

{
1

βn
· f : f ∈ Fn

}
, xn1

)
≤ c86 · nc87·nτ ·d+ϵ/2

.

This together with Theorem 11.4 in Györfi et al. (2002) leads for u ≥ 1/n to

P{T2,n > u} ≤ 14 · c86 · nc87·nτ ·d+ϵ/2 · exp
(
− n

5136 · β2
n

· u
)
.
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For ϵn ≥ 1/n we can conclude

E{T2,n} ≤ ϵn +

∫ ∞

ϵn

P{T2,n > u} du

≤ ϵn + 14 · c86 · nc87·nτ ·d+ϵ/2 · exp
(
− n

5136 · β2
n

· ϵn
)
· 5136 · β

2
n

n
.

Setting

ϵn =
5136 · β2

n

n
· c87 · nτ ·d+ϵ/2 · log n

yields the assertion of the fifth step of the proof.
In the sixth step of the proof we show

E{T4,n}

≤ c88 ·

(
sup

(w̄
(l)
i,j,k

)i,j,k,l:

|w̄(l)
i,j,k

−w
(l)
i,j,k

|≤logn (l=0,...,L−1)

∫
|
K̃n∑
k=1

w
(L)
1,1,k · f

(L)
w̄,k,1(x)−m(x)|2PX(dx)

+c89 ·
log n

n
+ c90 ·

nτ ·d+ϵ

n
+ c91 ·M2

n · (log n)4L+3/2.

Since
|Tβnz − y| ≤ |z − y| for |y| ≤ βn

we obtain

T4,n/2

=
[ 1
n

n∑
i=1

|mn(Xi)− Yi|2 −
1

n

n∑
i=1

|m(Xi)− Yi|2
]
· 1An

≤
[ 1
n

n∑
i=1

|fw(tn)(Xi)− Yi|2 −
1

n

n∑
i=1

|m(Xi)− Yi|2
]
· 1An

=
[
Fn(w

(tn))− 1

n

n∑
i=1

|m(Xi)− Yi|2
]
· 1An .

The application of Lemma 1 implies

E{T4,n/2}

≤ E

{[
Fn

(
(w∗)(0)

)
+Dn · ∥(((w∗)

(L)
1,1,k)k=1,...,Kn∥ ·

√
2 · Fn

(
w(0)

)
+
∥((w∗)

(L)
1,1,k)k=1,...,Kn − (((w∗)(0))

(L)
1,1,k)k=1,...,Kn∥2

2
+

Fn

(
w(0)

)
tn

− 1

n

n∑
i=1

|m(Xi)− Yi|2
]
· 1An

}
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≤ 2 ·

(
sup

(w̄
(l)
i,j,k

)i,j,k,l:

|w̄(l)
i,j,k

−w
(l)
i,j,k

|≤logn (l=0,...,L−1)

∫
|
K̃n∑
k=1

w
(L)
1,1,k · f

(L)
w̄,k,1(x)−m(x)|2PX(dx)

)

+E

{(
Fn

(
(w∗)(0)

)
+Dn · ∥(((w∗)

(L)
1,1,k)k=1,...,Kn∥ ·

√
2 · Fn

(
w(0)

)
+
∥((w∗)

(L)
1,1,k)k=1,...,Kn − (((w∗)(0))

(L)
1,1,k)k=1,...,Kn∥2

2
+

Fn

(
w(0)

)
tn

− 1

n

n∑
i=1

|m(Xi)− Yi|2

−2 ·

(
E{|

Kn∑
k=1

(w∗)
(L)
1,1,k · f

(L)
(w∗),j,1(X)− Y |2|Dn,w

(0)} −E{|m(X)− Y |2}

))
1An

}
.

Due to step 4 we have

Dn = c79 ·Mn · (log n)4L+1.

Using the same arguments as in step 2 and 5 of the proof we obtain

E

{(
Fn((w

∗)(0))− 1

n

n∑
i=1

|m(Xi)− Yi|2

+c92 ·Mn · (log n)4L+1 · ∥(((w∗)
(L)
1,1,k)k=1,...,Kn∥ ·

√
2 · Fn

(
w(0)

)
+
∥((w∗)

(L)
1,1,k)k=1,...,Kn − (((w∗)(0))

(L)
1,1,k)k=1,...,Kn∥2

2
+

Fn

(
w(0)

)
tn

−2 ·

(
E{|

Kn∑
k=1

(w∗)
(L)
1,1,k · f

(L)
(w∗),j,1(X)− Y |2|Dn,w

(0)} −E{|m(X)− Y |2}

))
1An

}

≤ c93 ·
log n

n
+ c93 ·M2

n · (log n)4L+3/2 +
M2

n

2
+

c1 · log n
tn

+ c94 ·
nτ ·d+ϵ

n
.

This implies

E{T4,n/2}

≤ 2 ·

(
sup

(w̄
(l)
i,j,k

)i,j,k,l:

|w̄(l)
i,j,k

−w
(l)
i,j,k

|≤logn (l=0,...,L−1)

∫
|
K̃n∑
k=1

w
(L)
1,1,k · f

(L)
w̄,k,1(x)−m(x)|2PX(dx)

)

+c91 ·
log n

n
+ c92 ·

nτ ·d+ϵ

n
+ c95 ·M2

n · (log n)4L+3/2.

Summarizing the above results we get the assertion.
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To prove Theorem 2, we use the following lemma, which provides another bound on
the approximation error. Furthermore, it ensures that the outer weights are sufficiently
small.

Lemma 6. Let 1/2 ≤ p ≤ 1, C > 0, let f : Rd → R be a (p, C)–smooth function and let
X be a Rd-valued random variable with supp(X) ⊆ [0, 1]d. Let l ∈ N, 0 < δ < 1/2 with

c96 · δ ≤ 1

2l
≤ c97 · δ (53)

and let L, r, s ∈ N with L ≥ 2 and r ≥ 2d. Furthermore, let

K̃n ≥
(
l · (2l + 1)2d + 1

)3
.

Then there exist

w
(l)
k,i,j ∈ [−20d · (log n)2, 20d · (log n)2] for l = 1, . . . , L, k = 1, . . . K̃n

and

w
(0)
k,i,j ∈

[
−8 · d · (log n)2

δ
,
8 · d · (log n)2

δ

]
for k = 1, . . . , K̃n

such that for all w̄ satisfying |w̄(l)
i,j,k − w

(l)
i,j,k| ≤ log n (l = 0, . . . , L − 1) we have for n

sufficiently large

∫
|
K̃n∑
k=1

w
(L)
1,1,k · f

(L)
w̄,k,1(x)− f(x)|2PX(dx)

≤ c98 ·
(
l2 · δ + δ2p +

l · (2l + 1)2d

ns

)
, (54)

|
K̃n∑
k=1

w
(L)
1,1,k · f

(L)
w̄,k,1(x)| ≤ c99 ·

(
1 +

(2l + 1)2d

ns

)
(x ∈ [0, 1]d) (55)

and
K̃n∑
k=1

|w(L)
1,1,k|

2 ≤ c100
22·d·l

. (56)

Proof. The proof follows from the proof of Lemma 7 in Kohler and Krzyżak (2022a).

4.4. Proof of Theorem 2

Let l = ⌊ 1
1+d log2 n⌋. Then condition (53) holds for δ = n−1/(1+d). Set

K̃n = (l · (2l + 1)2d + 1)3 ≈ c101 · (log n)3 · n
6d
1+d , Nn = nc102
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and define the weight vector w as in Lemma 6. Then we obtain by Lemma 6 that
assumption (46) is satisfied for Mn = c103

nd/(d+1) . Assumption (47) follows directly from
(55) of Lemma 6 for s sufficiently large.

By Theorem 4, τ = 1
1+d and Lemma 6 where s is sufficiently large we get for large n

E

∫
|mn(x)−m(x)|2PX(dx) ≤ c104 ·

(
n

1
1+d

·d+ϵ

n
+ c105 ·

(log n)4L+3/2

n
2d
d+1

+ sup
(w̄

(l)
i,j,k

)i,j,k,l:

|w̄(l)
i,j,k

−w
(l)
i,j,k

|≤logn (l=0,...,L−1)

∫
|
K̃n∑
k=1

w
(L)
1,1,k · f

(L)
w̄,k,1(x)−m(x)|2PX(dx)

)

≤ c106 ·

(
n

1
1+d

·d+ϵ

n
+

(log n)4L+3/2

n
2d
1+d

+
(log n)2

n
1

1+d

+
1

n
2p
1+d

+
log n · n

2d
1+d

ns

)
≤ c107 · n− 1

1+d
+ϵ

for s sufficiently large. □

4.5. Auxiliary results for the proof of Theorem 3

In order to prove Theorem 3, we use the following lemma, which controls the complexity
of a set of over-parametrized deep neural networks for interaction models.

Lemma 7. Let α ≥ 1, β > 0 and let A,B,C ≥ 1. Let σ : R → R be k-times differentiable
such that all derivatives up to order k are bounded on R. Let F be the set of all functions

fw(x) =
∑

I⊆{1,...,d} : |I|=d∗

fwI (xI)

where fwI is defined by (1)–(3) with d replaced by d∗ and weight vector wI ,

w = (wI)I⊆{1,...,d} : |I|=d∗ ,

and where for any I ⊆ {1, . . . , d} with |I| = d∗ the weight vector wI satisfies

Kn∑
j=1

|(wI)
(L)
1,1,j | ≤ C, (57)

|(wI)
(l)
k,i,j | ≤ B (k ∈ {1, . . . ,Kn}, i, j ∈ {1, . . . , r}, l ∈ {1, . . . , L− 1}) (58)

and
|(wI)

(0)
k,i,j | ≤ A (k ∈ {1, . . . ,Kn}, i ∈ {1, . . . , r}, j ∈ {1, . . . , d}). (59)

Then we have for any 1 ≤ p < ∞, 0 < ϵ < β and xn1 ∈ [−α, α]d

Np (ϵ, {Tβf : f ∈ F}, xn1 )
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≤
(
c108 ·

βp

ϵp

)c109·αd∗ ·Ad∗ ·B(L−1)·d∗(C
ϵ )

d∗/k
+c110

.

Proof. See Lemma 8 in Kohler and Krzyżak (2022a).

4.6. Proof of Theorem 3

Let l = ⌊ 1
1+d∗ log2 n⌋ and Nn = nc111 . Furthermore, let

K̃n =

(
d

d∗

)
(l · (2l + 1)2d

∗
+ 1)3 ≈ c112 · (log n)3 · n

6d∗
1+d∗ .

Then (53) holds for δ = n−1/(1+d∗). Define the weight vector w such that the components
are chosen according to Lemma 6 so that they approximate mI .

Assumption (46) and (47) of Theorem 4 are satisfied for w since

∑
I⊆{1,...,d} : |I|=d∗

K̃n∑
k=1

|(wI)
(L)
1,1,k|

2 ≤ c113 · n− 2d∗
d∗+1

and

∑
I⊆{1,...,d} : |I|=d∗

∣∣∣∣∣∣
K̃n∑
k=1

(wI)
(L)
1,1,k · f

(L)
(w̄I)k,1

(x)

∣∣∣∣∣∣ ≤ c114 ·

(
1 +

n2d∗/(1+d∗)

ns

)

hold.
Then we obtain by application of Lemma 7 the assertion of Theorem 4 for interaction

models. Therefore the proof of Theorem 3 follows similarly to the proof of Theorem
2. By applying the assertions of Theorem 4 and Lemma 6 we get for τ = 1

1+d∗ and s
sufficiently large

E

∫
|mn(x)−m(x)|2PX(dx) ≤ c115 ·

(
n

1
1+d∗ ·d

∗+ϵ

n
+ c113 · n− 2d∗

1+d∗ · (log n)4L+3/2

+ sup
(w̄

(l)
i,j,k

)i,j,k,l:

|w̄(l)
i,j,k

−w
(l)
i,j,k

|≤logn (l=0,...,L−1)

∫
|
K̃n∑
k=1

w
(L)
1,1,k · f

(L)
w̄,k,1(x)−m(x)|2PX(dx)

)

≤ c116 ·

(
n

1
1+d∗ ·d

∗+ϵ

n
+

(log n)4L+3/2

n
2d∗
1+d∗

+
(log n)2

n
1

1+d∗
+

1

n
2p

1+d∗
+

log n · n
2d∗
1+d∗

ns

)
≤ c117 · n− 1

1+d∗+ϵ.

□
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A. Proof of Lemma 2

Proof. We have

∥∇wFn(w)∥2 =
∑
k,i,j,l

(
2

n

n∑
s=1

(Ys − fw(Xs)) ·
∂fw

∂w
(l)
k,i,j

(Xs)

)2

≤ 4 ·
∑
k,i,j,l

1

n

n∑
s=1

(Ys − fw(Xs))
2 ·

 ∂fw

∂w
(l)
k,i,j

(Xs)

2

≤ c118 ·Kn · L · r2 · d · max
k,i,j,l,s

 ∂fw

∂w
(l)
k,i,j

(Xs)

2

· 1
n

n∑
s=1

(Ys − fw(Xs))
2.
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The partial derivative of f is given by

∂fw

∂w
(l)
k,i,j

(x) =

r∑
sl+2=1

· · ·
r∑

sL−1=1

f
(l)
k,j(x) · σ

′

(
r∑

t=1

w
(l)
k,i,t · f

(l)
k,t(x) + w

(l)
k,i,0

)

· w(l+1)
k,sl+2,i

· σ′

(
r∑

t=1

w
(l+1)
k,sl+2,t

· f (l+1)
k,t (x) + w

(l+1)
k,sl+2,0

)
· w(l+2)

k,sl+3,sl+2

· σ′

(
r∑

t=1

w
(l+2)
k,sl+3,t

· f (l+2)
k,t (x) + w

(l+2)
k,sl+3,0

)
· · ·w(L−2)

k,sL−1,sL−2

· σ′

(
r∑

t=1

w
(L−2)
k,sL−1,t

· f (L−2)
k,t (x) + w

(L−2)
k,sL−1,0

)
· w(L−1)

k,1,sL−1

· σ′

(
r∑

t=1

w
(L−1)
k,1,t · f (L−1)

k,t (x) + w
(L−1)
k,1,0

)
· w(L)

1,1,k, (60)

where we have used the abbreviations

f
(0)
k,j (x) =

{
x(j) if j ∈ {1, . . . , d}
1 if j = 0

and
f
(l)
k,0(x) = 1 (l = 1, . . . , L− 1).

Together with (18) and (19) we obtain

max
k,i,j,l,s

 ∂fw

∂w
(l)
k,i,j

(Xs)

2

≤ c119 · r2L ·max{∥σ′∥2L∞ , 1} ·B2L
n · (γ∗n)2 · α2

n.

In the next step of the proof we want to show, that

|fw(x)−fv(x)| ≤ 2 ·Kn ·max{∥σ′∥L∞, 1}·γ∗n ·(2r+1)L ·BL
n ·αn ·∥w−v∥∞ ·max{∥σ∥∞, 1}.

Let f̄
(l)
k,i be defined by

f̄
(l)
k,i(x) = σ

 r∑
j=1

v
(l−1)
k,i,j · f̄ (l−1)

k,j (x) + v
(l−1)
k,i,0


for l = 2, . . . , L and

f̄
(1)
k,i (x) = σ

 d∑
j=1

v
(0)
k,i,j · x

(j) + v
(0)
k,i,0

 .

First, we show by induction that

|f (l)
i,j (x)− f̄

(l)
i,j (x)| ≤ max{∥σ′∥l∞, 1} · (2r + 1)l ·Bl

n · αn
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· max
i,j,s:s<L

|w(s)
k,i,j − v

(s)
k,i,j | ·max{∥σ∥∞, 1} (61)

holds for l = 1, . . . , L and x ∈ [−αn, αn]
d.

The function σ is differentiable and its derivative is bounded, hence σ is Lipschitz
continuous with Lipschitz constant ∥σ′∥∞. This implies

|f (1)
i,j (x)− f̄

(1)
i,j (x)| ≤ ∥σ′∥∞ ·

 d∑
j=1

|w(0)
k,i,j − v

(0)
k,i,j | · |x

(j)|+ |w(0)
k,i,0 − v

(0)
k,i,0|


≤ ∥σ′∥∞ · (2r + 1) · αn · max

i,j,s:s<L
|w(s)

k,i,j − v
(s)
k,i,j |.

Assume (61) holds for some l − 1 with l = 2, . . . , L− 1. Then we have∣∣∣f (l)
i,j (x)− f̄

(l)
i,j (x)

∣∣∣
≤ ∥σ′∥∞ ·

(
r∑

j=1

∣∣∣w(l−1)
k,i,j

∣∣∣ · ∣∣∣f (l−1)
k,j (x)− f̄

(l−1)
k,j (x)

∣∣∣
+

r∑
j=1

∣∣∣w(l−1)
k,i,j − v

(l−1)
k,i,j

∣∣∣ · ∣∣∣f̄ (l−1)
k,j (x)

∣∣∣+ ∣∣∣w(l)
k,i,0 − v

(l−1)
k,i,0

∣∣∣)

≤ ∥σ′∥∞ ·

(
r ·Bn · max

j=1,...,r

∣∣∣f (l−1)
k,j (x)− f̄

(l−1)
k,j (x)

∣∣∣
+ (r + 1) · max

i,j,s:s<L

∣∣∣w(s)
k,i,j − v

(s)
k,i,j

∣∣∣ ·max{∥σ∥∞, 1}

)
≤ max{∥σ′∥l∞, 1} · (2r + 1)l ·Bl

n · αn · max
i,j,s:s<L

∣∣∣w(s)
k,i,j − v

(s)
k,i,j

∣∣∣ ·max{∥σ∥∞, 1}.

This implies

|fw(x)− fv(x)|

=

∣∣∣∣∣∣
Kn∑
j=1

w
(L)
1,1,j · f

(L)
j,1 (x)−

Kn∑
j=1

v
(L)
1,1,j · f̄

(L)
j,1 (x)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
Kn∑
j=1

w
(L)
1,1,j

(
f
(L)
j,1 (x)− f̄

(L)
j,1 (x)

)∣∣∣∣∣∣+
∣∣∣∣∣∣
Kn∑
j=1

(
w

(L)
1,1,j − v

(L)
1,1,j

)
· f̄ (L)

j,1 (x)

∣∣∣∣∣∣
≤ Kn ·max

j

∣∣∣w(L)
1,1,j

∣∣∣ ·max
j

∣∣∣f (L)
j,1 (x)− f̄

(L)
j,1 (x)

∣∣∣
+Kn ·max

j

∣∣∣w(L)
1,1,j − v

(L)
1,1,j

∣∣∣ ·max{∥σ∥∞, 1}

≤ 2 ·Kn · γ∗n ·max{∥σ′∥L∞, 1} · (2r + 1)L ·BL
n · αn · ∥w − v∥∞ ·max{∥σ∥∞, 1}.
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Together with assumption (20) we can conclude

1

n

n∑
s=1

(Ys − fw(Xs))
2

≤ 2 · Fn(v) +
2

n

n∑
s=1

(fv(Xs)− fw(Xs))
2

≤ 2 · Fn(v) + 8 ·K2
n · (γ∗n)2 ·max{∥σ′∥2L∞ , 1} · (2r + 1)2L ·B2L

n · α2
n

·max{∥σ∥∞, 1}2 · 8tn
Ln

·max{Fn(v), 1}.

By summarizing the above results we obtain the assertion.

B. Proof of Lemma 3

Proof. We have

∥∇wFn(w1)−∇wFn(w2)∥2

=
∑
k,i,j,l

(
2

n

n∑
s=1

(Ys − fw1(Xs)) ·
∂fw1

∂w
(l)
k,i,j

(Xs)

−

(
2

n

n∑
s=1

(Ys − fw2(Xs)) ·
∂fw2

∂w
(l)
k,i,j

(Xs)

))2

≤ 8 ·
∑
k,i,j,l

 1

n

n∑
s=1

(fw2(Xs)− fw1(Xs)) ·
∂fw1

∂w
(l)
k,i,j

(Xs)

2

+8 ·
∑
k,i,j,l

 1

n

n∑
s=1

(Ys − fw2(Xs)) ·

 ∂fw1

∂w
(l)
k,i,j

(Xs)−
∂fw2

∂w
(l)
k,i,j

(Xs)

2

≤ 8 ·
∑
k,i,j,l

max
s=1,...,n

 ∂fw1

∂w
(l)
k,i,j

(Xs)

2

· 1
n

n∑
s=1

(fw2(Xs)− fw1(Xs))
2

+8 · 1
n

n∑
s=1

(Ys − fw2(Xs))
2 ·
∑
k,i,j,l

max
s=1,...,n

 ∂fw1

∂w
(l)
k,i,j

(Xs)−
∂fw2

∂w
(l)
k,i,j

(Xs)

2

.

From the proof of Lemma 2 we can conclude

∑
k,i,j,l

max
s=1,...,n

 ∂fw1

∂w
(l)
k,i,j

(Xs)

2

≤ c120 ·Kn · L · r2 · d · r2L ·max{∥σ′∥2L∞ , 1} ·B2L
n · (γ∗n)2 · α2

n,
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1

n

n∑
s=1

(fw2(Xs)− fw1(Xs))
2

≤ 4 ·K2
n · (γ∗n)2 ·max{∥σ′∥2L∞ , 1} · (2r + 1)2L ·B2L

n · α2
n ·max{∥σ∥∞, 1}2∥w1 −w2∥2,

and

1

n

n∑
s=1

(Ys − fw2(Xs))
2

≤ 2 · Fn(v) + 8 ·K2
n · (γ∗n)2 ·max{∥σ′∥2L∞ , 1} · (2r + 1)2L ·B2L

n · α2
n ·max{∥σ∥∞, 1}2

8tn
Ln

·max{Fn(v), 1}.

So it remains to bound

∑
k,i,j,l

max
s=1,...,n

 ∂fw1

∂w
(l)
k,i,j

(Xs)−
∂fw2

∂w
(l)
k,i,j

(Xs)

2

.

By (60) we know that
∂fw

∂w
(l)
k,i,j

(x)

for fixed x ∈ [−αn, αn]
d is a sum of at most rL−2 products where each product contains

at most 2L + 1 factors. Each of these products contains at most L factors, that are
bounded in absolute value by Bn except the last one, which is bounded in absolute value
by γ∗n. Considered as a function in w, these products are Lipschitz continuous with a
Lipschitz constant bounded by 1.

According to the proof of Lemma 2 we know that f
(l)
k,j(x), which is either bounded by

∥σ∥∞ or αn, is Lipschitz continuous with a Lipschitz constant bounded by max{∥σ′∥l∞, 1}·
max{∥σ∥∞, 1} · (2r + 1)l · Bl

n · αn. The remaining at most L factors are bounded
by max{∥σ′∥∞, 1} with a Lipschitz constant bounded by c121 · (2r + 1)L · BL

n · αn ·
max{∥σ∥∞, 1}.

The assertion follows from the following result: If g1, . . . , gs : R → R are Lipschitz
continuous functions with Lipschitz constants CLip,g1 , . . . , CLip,gs , then

s∏
l=1

gl and
s∑

l=1

gl

are Lipschitz continuous functions with Lipschitz constant bounded by

s∑
l=1

CLip,gl ·
∏

k∈{1,...,s}\{l}

∥gk∥∞ ≤ s ·max
l

CLip,gl ·
∏

k∈{1,...,s}\{l}

∥gk∥∞

and by
s∑

l=1

Clip,gl ≤ s ·max
L

CLip,gl
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respectively.
This together with the fact that σ and σ′ are bounded yields

∑
k,i,j,l

max
s=1,...,n

 ∂fw1

∂w
(l)
k,i,j

(Xs)−
∂fw2

∂w
(l)
k,i,j

(Xs)

2

≤ c122 ·Kn ·B4L
n · α4

n · (γ∗n)2 · ∥w1 −w2∥2.

Summarizing the above results we get the assertion of Lemma 3.
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