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Abstract
Classification from independent and identically distributed random variables is consid-
ered. Classifiers based on over-parametrized transformer encoders are defined where all
the weights are learned by gradient descent. Under suitable conditions on the a pos-
teriori probability an upper bound on the rate of convergence of the difference of the
misclassification probability of the estimate and the optimal misclassification probability
is derived.
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1 Introduction

1.1 Scope of this article

One of the most recent and fascinating breakthroughs in artificial intelligence is Chat-
GPT, a chatbot which can simulate human conversation. ChatGPT is an instance of
GPT4, which is a language model based on generative predictive transformers. So if one
wants to study from a theoretical point of view, how powerful such artificial intelligence
can be, one approach is to consider transformer networks and to study which problems
one can solve with these networks theoretically. Here it is not only important what kind
of models these network can approximate, or how they can generalize their knowledge
learned by choosing the best possible approximation to a concrete data set, but also how
well optimization of such transformer network based on concrete data set works. In this
article we consider all these three different aspects simultaneously and show a theoretical
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upper bound on the missclassification probability of a transformer network fitted to the
observed data. For simplicity we focus in this context on transformer encoder networks
which can be applied to define an estimate in the context of a classification problem
involving natural language.

1.2 Pattern recognition

We study these estimates in the context of pattern recognition. Given (X,Y ), (X1, Y1),
. . . , (Xn, Yn) independent and identically distributed random variables with values in
Rd·l × {−1, 1}, and given the data set

Dn = {(X1, Y1), . . . , (Xn, Yn)}

the goal is to construct a classifier

ηn(·) = ηn(·,Dn) : Rd·l → {−1, 1}

such that its misclassification probability

P{ηn(X) 6= Y |Dn}

is as small as possible. Here the predictor variable X describes the encoding of a sequence
of length l consisting of words or tokens, and each word or token is encoded by a value
in Rd. The goal is to predict the label Y corresponding to the sentence described by X.

Let
m(x) = P{Y = 1|X = x} (x ∈ Rd·l) (1)

be the a posteriori probability of class 1. Then

η∗(x) =

{
1, if m(x) ≥ 1

2

−1, elsewhere

is the Bayes classifier, i.e., the classifier satisfying

P{η∗(X) 6= Y } = min
η:Rd·l→{−1,1}

P{η(X) 6= Y }

(cf., e.g., Theorem 2.1 in Devroye, Györfi and Lugosi (1996)).
In this paper we derive upper bounds on

E {P{ηn(X) 6= Y |Dn} −P{η∗(X) 6= Y }}
= P{ηn(X) 6= Y } − min

η:Rd·l→{−1,1}
P{η(X) 6= Y }. (2)

It is well-known that in order to derive nontrivial rate of convergence results on the
difference between the misclassification probability of any estimate and the minimal
possible value it is necessary to restrict the class of distributions (cf., e.g., Section 3.1 in
Györfi et al. (2002)). In this context we will assume that the a posteriori probability is
smooth in the following sense:
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Definition 1 Let p = q + s for some q ∈ N0 and 0 < s ≤ 1. A function m : Rd·l → R is
called (p, C)-smooth, if for every α = (α1, . . . , αd·l) ∈ Nd·l0 with

∑d·l
j=1 αj = q the partial

derivative ∂qm/(∂xα1
1 . . . ∂xαd·ld·l ) exists and satisfies∣∣∣∣ ∂qm

∂xα1
1 . . . ∂xαd·ld·l

(x)− ∂qm

∂xα1
1 . . . ∂xαd·ld·l

(z)

∣∣∣∣ ≤ C‖x− z‖s

for all x, z ∈ Rd·l, where ‖ · ‖ denotes the Euclidean norm.

In order to show good rates of convergence even for high-dimensional predictors we
use a hierarchical composition model as in Schmidt-Hieber (2020), where the a posteriori
probability is represented by a composition of several functions and where each of these
functions depends only on a few variables. We use the following definition of Kohler and
Langer (2021) to formalize this assumption.

Definition 2 Let d, l ∈ N, m : Rd·l → R and let P be a subset of (0,∞)× N.
a) We say that m satisfies a hierarchical composition model of level 0 with order and
smoothness constraint P, if there exists K ∈ {1, . . . , d · l} such that

m(x) = x(K) for all x = (x(1), . . . , x(d·l))> ∈ Rd·l.

b) Let κ ∈ N0. We say that m satisfies a hierarchical composition model of level
κ + 1 with order and smoothness constraint P, if there exist (p,K) ∈ P, C > 0,
g : RK → R and f1, . . . , fK : Rd·l → R, such that g is (p, C)–smooth, f1, . . . , fK satisfy a
hierarchical composition model of level κ with order and smoothness constraint P and

m(x) = g(f1(x), . . . , fK(x)) for all x ∈ Rd·l.

Let H(κ,P) be the set of all functions m : Rd·l → R which satisfy a hierarchical compo-
sition model of level κ with order and smoothness constraint P.
A motivation of hierarchical models from an applied point of view can be found in

Kohler and Langer (2020a).

1.3 Learning of a transformer encoder

We apply gradient descent to an over-parametrized model of a transformer encoder in
order to learn its parameter. More precisely, let Θ be the set of parameters of the
transformer networks {fϑ : ϑ ∈ Θ} (which we will introduce in detail in Section 2
below), and consider a linear combination

f(x) = f(wk)k=1,...,K ,(ϑk)k=1,...,K
(x) =

K∑
k=1

wk · fϑk(x)

of transformer networks fϑk . Here (wk)k=1,...,K are weights satisfying

wk ≥ 0 and
K∑
k=1

wk = 1, (3)
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ϑk are the weights of the transformer networks fϑk (k = 1, . . . ,Kn), and by choosing
K very large our model becomes over-parametrized in the sense that the number of its
parameters is much larger than the sample size. We will use

ηn(X) = sgn(f(X))

as our prediction of Y , and in order to achieve a small missclassification probability our
aim will be to choose the parameters (wk)k=1,...,K and (ϑk)k=1,...,K of f such that its
logistic loss

E {log (1 + exp(−Y · f(X))}

is small. To do this, we will randomly initialize its parameter in a proper way and then
perform tn gradient descent steps in view of minimization of the empirical logistic loss

1

n

n∑
i=1

log (1 + exp(−Yi · f(Xi)) ,

where proper projection steps will ensure that (3) is satisfied and that the parameters ϑk
will not move away too far from their random starting values (see Section 2 for details).

1.4 Main results

We show, that in case that the a posteriori probability satisfies a hierarchical composition
model with smoothness and order constraint P, the corresponding estimate ηn satisfies

P{ηn(X) 6= Y } − min
η:Rd·l→{−1,1}

P{η(X) 6= Y } ≤ c1 · (log n)3 · max
(p,K)∈P

n
−min

{
p

2·(2p+K)
, 1
6

}
.

And if, in addition,

P

{
max

{
P{Y = 1|X}

1−P{Y = 1|X}
,
1−P{Y = 1|X}

P{Y = 1|X}

}
> n1/3

}
≥ 1− 1

n1/3
(n ∈ N)

holds (which implies that with high probability P{Y = 1|X} is either close to one or
close to zero) then we show that the estimates achieve the improved rate of convergence

P{ηn(X) 6= Y } − min
η:Rd·l→{−1,1}

P{η(X) 6= Y } ≤ c2 · (log n)3 · max
(p,K)∈P

n
−min

{
p

2p+K
, 1
3

}
.

In order to prove these results we derive a general result which gives an upper bound on
the expected logistic loss of an over-parametrized linear combination of deep networks
learned by minimizing an empirical logistic loss via gradient descent. In the proof of
this result we show that the projection of the outer weights enables us to bound the
generalization error of our over-parametrized linear combination of deep networks by the
Rademacher complexity of a class of single deep networks. And in the application of this
general result, we derive new approximation properties of Transformer networks with
slightly disturbed weight matrices.
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1.5 Discussion of related results

Transformers have been introduced by Vaswani et al. (2017). In applications they are
usually combined with unsupervised pre-training and the same pre-trained transformer
encoder is then fine-tuned to a variety of natural language processing tasks, see Devlin
et al. (2019).
Approximation and generalization of Transformer encoder networks has been studied

in Gurevych et al. (2022). There estimates are defined as plug-in classifiers of the least
squares estimates based on transformer networks, and similar rate of convergence results
as in the current paper are shown. The main difference between our result in this paper
and the result in Gurevych et al. (2022) is that we define our estimates using gradient
descent, and consequently we have to take the optimization error into account too, which
forces us to derive technically much more complex approximation results for transformer
networks.
Much more is known about the deep neural network estimates. There exist quite a

few approximation results for neural networks (cf., e.g., Yarotsky (2018), Yarotsky and
Zhevnerchute (2019), Lu et al. (2020), Langer (2021) and the literature cited therein),
and generalization of deep neural networks can either be analyzed within the framework
of the classical VC theory (using e.g. the result of Bartlett et al. (2019) to bound the
VC dimension of classes of neural networks) or in case of over-parametrized deep neural
networks (where the number of free parameters adjusted to the observed data set is much
larger than the sample size) by using bounds on the Rademacher complexity (cf., e.g.,
Liang, Rakhlin and Sridharan (2015), Golowich, Rakhlin and Shamir (2019), Lin and
Zhang (2019), Wang and Ma (2022) and the literature cited therein).
Combining such results leads to a rich theory showing that owing to the network struc-

ture the least squares neural network estimates can achieve suitable dimension reduction
in hierarchical composition models for the function to be estimated. For a simple model
this was first shown by Kohler and Krzyżak (2017) for Hölder smooth function and later
extended to arbitrary smooth functions by Bauer and Kohler (2019). For a more com-
plex hierarchical composition model and the ReLU activation function this was shown
in Schmidt-Hieber (2020) under the assumption that the networks satisfy some sparsity
constraint. Kohler and Langer (2021) showed that this also possible for fully connected
neural networks, i.e., without imposing a sparsity constraint on the network. Adapta-
tion of deep neural network to especially weak smoothness assumptions was shown in
Imaizumi and Fukamizu (2018), Suzuki (2018) and Suzuki and Nitanda (2019).
Less well understood is the optimization of deep neural networks. As was shown, e.g.,

in Zou et al. (2018), Du et al. (2019), Allen-Zhu, Li and Song (2019) and Kawaguchi
and Huang (2019) application of gradient descent to over-parameterized deep neural net-
works leads to neural network which (globally) minimizes the empirical risk considered.
However, as was shown in Kohler and Krzyżak (2021), the corresponding estimates do
not behave well on new independent data. So the main question is why gradient descent
(and its variants like stochastic gradient descent) can be used to fit a neural network to
observed data in such a way that the resulting estimate achieves good results on new
independent data. The challenge here is not only to analyze optimization but to consider
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it simultaneously with approximation and generalization.
In case of shallow neural networks (i.e., neural networks with only one hidden layer)

this has been done successfully in Braun et al. (2023). Here it was possible to show
that the classical dimension free rate of convergence of Barron (1994) for estimation of a
regression function where its Fourier transform has a finite moment can also be achieved
by shallow neural networks learned by gradient descent. The main idea here is that the
gradient descent selects a subset of the neural network where random initialization of the
inner weights leads to values with good approximation properties, and that it adjusts the
outer weights for these neurons properly. A similar idea was also applied in Gonon (2021).
Kohler and Krzyżak (2022) applied this idea in the context of over-parametrized deep
neural networks where a linear combination of a huge number of deep neural networks
of fixed size are computed in parallel. Here the gradient descent selects again a subset of
the neural networks computed in parallel and chooses a proper linear combination of the
networks. By using metric entropy bounds (cf., e.g., Birman and Solomnjak (1967) and
Li, Gu and Ding (2021)) it is possible to control generalization of the over-parametrized
neural networks, and as a result the rate of convergence of order close to n−1/(1+d) (or
n1/(1+d∗) in case of interaction models, where it is assumed that the regression function
is a sum of functions applied to only d∗ of the d components of the predictor variable)
can be shown for Hölder-smooth regression function with Hölder exponent p ∈ [1/2, 1].
Universal consistency of such estimates for bounded X was shown in Drews and Kohler
(2022).
In all those results adjusting the inner weights with gradient descent is not important.

In fact, Gonon (2021) does not do this at all, while Braun et al. (2023) and Kohler
and Krzyżak (2022) use that the relevant inner weights do not move too far away from
their starting values during gradient descent. Similar ideas have also been applied in
Andoni et al. (2014) and Daniely (2017). This whole approach is related to random
feature networks (cf., e.g., Huang, Chen and Siew (2006) and Rahimi and Recht (2008a,
2008b, 2009)), where the inner weights are chosen randomly and only the outer weights
are learned during gradient descent. Yehudai and Shamir (2022) present a lower bound
which implies that either the number of neurons or the absolute value of the coefficients
must grow exponential in the dimension in order to learn a single ReLU neuron with
random feature networks. But since Braun et al. (2023) was able to prove a useful
rate of convergence result for networks similar to random feature networks, the practical
relevance of this lower bound is not clear.
The estimates in Kohler and Krzyżak (2022) use a L2 regularization on the outer

weights during gradient descent. As was shown in Drews and Kohler (2023), it is possible
to achieve similar results without L2 regularization.
Often gradient descent in neural networks is studied in the neural tangent kernel set-

ting proposed by Jacot, Gabriel and Hongler (2020), where instead of a neural network
estimate a kernel estimate is studied and its error is used to bound the error of the
neural network estimate. For further results in this context see Hanin and Nica (2019)
and the literature cited therein. Nitanda and Suzuki (2021) were able to analyze the
global error of an over-parametrized shallow neural network learned by gradient descent
based on this approach. However, due to the use of the neural tangent kernel, also the
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smoothness assumption of the function to be estimated has to be defined with the aid of
a norm involving the kernel, which does not lead to the classical smoothness conditions
of our paper. Another approach where the estimate is studied in some asymptotically
equivalent model is the mean field approach, cf., Mei, Montanari, and Nguyen (2018),
Chizat and Bach (2018) or Nguyen and Pham (2020). A survey of various results on over-
parametrized deep neural network estimates learned by gradient descent can be found in
Bartlett, Montanari and Rakhlin (2021).

1.6 Notation

The sets of natural numbers, natural numbers including zero, real numbers and non-
negative real numbers are denoted by N, N0, R and R+, respectively. We set R̄ =
R ∪ {−∞,∞}. For z ∈ R, we denote the smallest integer greater than or equal to z by
dze, and we set z+ = max{z, 0} and z− = max{−z, 0}. The Euclidean norm of x ∈ Rd is
denoted by ‖x‖ and for x, z ∈ Rd its scalar product is denoted by < x, z >. For a closed
and convex set A ⊆ Rd we denote by ProjAx that element ProjAx ∈ A such that

‖x− ProjAx‖ = min
z∈A
‖x− z‖.

For f : Rd → R
‖f‖∞ = sup

x∈Rd
|f(x)|

is its supremum norm, and for A ⊆ Rd we set

‖f‖∞,A = sup
x∈A
|f(x)|.

For a vector x = (x(1), . . . , x(d))T we denote by

‖x‖∞ = max
i=1,...,n

|x(i)|

its supremum norm, and if A = (ai,j)i=1,...,I,j=1,...,J we set

‖A‖∞ = max
i=1,...,I,j=1,...,J

|ai,j |.

For j = (j(1), . . . , j(d)) ∈ Nd0 we write

‖j‖1 = j(1) + · · ·+ j(d)

and for f : Rd → R we set

∂jf =
∂‖j‖1f

(∂x(1))j
(1)
. . . (∂x(d))j

(d)
.

For q ∈ N0 and f : Rd → R we set

‖f‖Cq(Rd) = max
{
‖∂jf‖∞ : j ∈ Nd0, ‖j‖1 ≤ q

}
.
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Let F be a set of functions f : Rd → R, let x1, . . . , xn ∈ Rd, set xn1 = (x1, . . . , xn) and
let p ≥ 1. A finite collection f1, . . . , fN : Rd → R is called an Lp ε–packing in F on xn1 if
f1, . . . , fN ∈ F and

min
1≤i<j≤N

(
1

n

n∑
k=1

|fi(xk)− fj(xk)|p
)1/p

≥ ε

holds. The Lp ε–packing number of F on xn1 is the size N of the largest Lp ε–packing of
F on xn1 and is denoted byMp(ε,F , xn1 ).

For z ∈ R and β > 0 we define Tβz = max{−β,min{β, z}}. If f : Rd → R is a function
then we set (Tβf)(x) = Tβ (f(x)). For z ∈ R̄ we denote by

sgn(z) =


1 if z > 0,

0 if z = 0,

−1 if z < 0

its sign. For i, j ∈ N0 we set

δi,j =

{
1 if i = j,

0 if i 6= j.

1.7 Outline

The over-parametrized transformer classifiers considered in this paper are introduced in
Section 2. The main result is presented in Section 3. In Section 4 we present a general
result concerning the expected logistic loss of an over-parametrized estimate defined by
a linear combination of deep networks. The proof of our main result is given in Section
5.

2 Definition of the estimate

2.1 Topology of the Transformer networks

Let Kn ∈ N be the number of transformer networks which we compute in parallel. The
over-parametrized transformer networks which we use for our classifier are of the form

f(wk)k=1,...,Kn ,(Wk)k=1,...,Kn ,(Vk)k=1,...,Kn
(x) =

Kn∑
k=1

wk · Tβn(fWk,Vk
(x)), (4)

where the outer weights (wk)k=1,...,Kn will be chosen such that

wk ≥ 0 (k = 1, . . . ,Kn) and
Kn∑
k=1

wk ≤ 1 (5)

hold and where Wk and Vk are the weights used in the k-th Transformer network
Tβn(fWk,Vk

) and βn = c3 · log n. This Transformer network is defined as follows:
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x =

(
x

(1)
1 x

(1)
2 x

(1)
3 x

(1)
4

x
(2)
1 x

(2)
2 x

(2)
3 x

(2)
4

)
7→ zk,0 =



x
(1)
1 x

(1)
2 x

(1)
3 x

(1)
4

x
(2)
1 x

(2)
2 x

(2)
3 x

(2)
4

1 1 1 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
...

...
...

...
0 0 0 0


∈ R20×4

Figure 1: Illustration of the transformation of the input in case d = 2, l = 4, I = 10 and
h = 2.

For input
x = (x1, . . . , xl) ∈ Rl·d

it computes in a first step a new representation

zk,0 = (zk,0,1, . . . , zk,0,l) ∈ Rdmodel×l

for some dmodel ∈ N (which will be done in the same way for all k ∈ {1, . . . ,Kn}). Here
zk,0,j is a new representation of xj ∈ Rd of dimension

dmodel = h · I (6)

(where h, I ∈ N with I ≥ d + l + 4) which includes the original data, coding of the
position and additional auxiliary values used for later computation of function values.
More precisely, we set for s ∈ {1, . . . , h · I}

z
(s)
k,0,j =


x

(s)
j if s ∈ {1, . . . , d}

1 if s = d+ 1

δs−d−1,j if s ∈ {d+ 2, . . . , d+ 1 + l}
0 if s ∈ {d+ l + 2, d+ l + 3, . . . , h · I}

For d = 2, l = 4, I = 10 and h = 2 the transformation of the input is illustrated in
Figure 1.
After that we compute successive representations

zk,r = (zk,r,1, . . . , zk,r,l) ∈ Rdmodel×l (7)

of the input for r = 1, . . . , N , and apply a feedforward neural network to zk,N . Here zk,r
is the representation of the input in the k-th transformer network in level r. It depends
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on l parts which correspond to x1, . . . , xl. And N is the number of pairs of attention
and pointwise feedforward layers of our transformer encoder.
Given zk,r−1 for some r ∈ {1, . . . , N} we compute zk,r by applying first a multi-head

attention and afterwards a pointwise feedforward neural network with one hidden layer.
Both times we will use an additional residual connection.
The computation of the multi-head attention depends on matrices

Wquery,k,r,s,Wkey,k,r,s ∈ Rdkey×dmodel and Wvalue,k,r,s ∈ Rdv×dmodel (s = 1, . . . , h),
(8)

where h ∈ N is the number of attentions which we compute in parallel, where dkey ∈ N is
the dimension of the queries and the keys, and where dv = dmodel/h = I is the dimension
of the values. Here each of the h attention heads will be used to compute a new part of
length dv = I of the representation zk,r,i of xi for i = 1, . . . , l. We use the above matrices
to compute for each component zk,r−1,i of zk,r−1 (i.e., for each representation of xi at
level r − 1 (i = 1, . . . , l)) corresponding queries

qk,r−1,s,i = Wquery,k,r,s · zk,r−1,i, (9)

keys
kk,r−1,s,i = Wkey,k,r,s · zk,r−1,i (10)

and values
vk,r−1,s,i = Wvalue,k,r,s · zk,r−1,i (11)

(s ∈ {1, . . . , h}, i ∈ {1, . . . , l}). Then the so-called attention between the component i of
zk,r−1 and the component j of zk,r−1 (i.e., between the representations of xi and xj at
level r − 1) is defined as the scalar product

< qk,r−1,s,i, kk,r−1,s,j > (12)

of the corresponding query and key, and the index ĵk,r−1,s,i for which the maximal value
occurs, i.e.,

ĵk,r−1,s,i = arg max
j∈{1,...,l}

< qk,r−1,s,i, kk,r−1,s,j >, (13)

is determined. The value corresponding to this index is multiplied with the maximal
attention in (12) in order to define

ȳk,r,s,i = vk,r−1,s,ĵk,r−1,s,i
· max
j∈{1,...,l}

< qk,r−1,s,i, kk,r−1,s,j >

= vk,r−1,s,ĵr−1,s,i
· < qk,r−1,s,i, kk,r−1,s,ĵk,r−1,s,i

> (14)

(s ∈ {1, . . . , h}, i ∈ {1, . . . , l}). Using a residual connection we compute the output of
the multi-head attention by

yk,r = zk,r−1 + (ȳk,r,1, . . . , ȳk,r,l) (15)

where
ȳk,r,i = (ȳk,r,1,i, . . . , ȳk,r,h,i) ∈ Rdv ·h = Rdmodel (i ∈ {1, . . . , l}).

10



Here yk,r ∈ Rdmodel×l has the same dimension as zk,r−1.
The output of the pointwise feedforward neural network depends on parameters

Wk,r,1 ∈ Rdff×dmodel , bk,r,1 ∈ Rdff ,Wk,r,2 ∈ Rdmodel×dff , bk,r,2 ∈ Rdmodel , (16)

which describe the weights in a feedforward neural network with one hidden layer and
dff ∈ N hidden neurons. This feedforward neural network is applied to each component of
(15) (which is analogous to a convolutionary neural network), i.e., to each representation
of x1, . . . , xl computed up to this point on level r, and computes

zk,r,s = yk,r,s +Wk,r,2 · σ (Wk,r,1 · yk,r,s + bk,r,1) + bk,r,2 (s ∈ {1, . . . , l}), (17)

where we use again a residual connection. Here

σ(x) = max{x, 0}

is the ReLU activation function, which is applied to a vector by applying it to each
component of the vector separately. After computing zk,r,s (s ∈ {1, . . . , l}) we define zk,r
by (7).
Given the output zk,N of the sequence of N multi-head attention and pointwise feed-

forward layers, we apply a (shallow) feedforward neural network with one hidden layer
and Jn neurons to z(d+l+2)

k,N,1 , i.e., we set

fVk
(z

(d+l+2)
k,N,1 ) = fnet,Jn,Vk

(z
(d+l+2)
k,N,1 ),

where for z ∈ R we define

fnet,Jn,Vk
(z) =

Jn∑
j=1

v
(1)
k,j · σ

(
v

(0)
k,j,1 · z + v

(0)
k,j,0

)
.

Here σ(x) = max{x, 0} is again the ReLU activation function, and

Vk =
(

(v
(1)
k,j )j=1,...,Jn , (v

(0)
k,j,1)j=1,...,Jn , (v

(0)
k,j,0)j=1,...,Jn

)
is the matrix of the weights of this feedforward neural network.
Because of

Tβn(z) = max{−βn,min{βn, z}} = max{0, βn −max{−βn,−z}} − βn
= max{0, 2βn −max{0,−z + βn}} − βn = σ(2βn − σ((−1) · z + βn))− βn,

z 7→ Tβn(z) is a neural network with two layers, one hidden neuron per layer and ReLU
activation function. This implies that Tβn(fVk

(z)) is a feedforward neural network with
3 hidden layers, Jn neurons in layer 1 and one hidden neuron in layers 2 and 3, resp.
The output of our k-th transformer network is then

Tβn(fWk,Vk
(x)) = Tβn(fVk

(z
(d+l+2)
k,N,1 )),

where z(d+l+2)
k,N,1 is one component of the output zk,N of the N pairs of attention layers

and pointwise feedforward layers.
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2.2 Initialization of the weights

We initialize the weights w(0) = (w
(0)
k ,W

(0)
k ,V

(0)
k )k=1,...,Kn as follows: We set

w
(0)
k = 0 (k = 1, . . . ,Kn)

and choose the components of all other weight matrices independently from uniform
distributions on the interval

[−c4 · nc5 , c4 · nc5 ] ,

where c4, c5 > 0 are suitably large constants. After that we make a pruning step which
depends on a parameter τ ∈ N chosen in Theorem 1 below: We choose for each k ∈
{1, . . . ,Kn} and for each attention head in each matrix in each row τ ∈ N of its weights
randomly by independent uniform distributions and set all weights not chosen to zero.
Similarly, we choose for each k ∈ {1, . . . ,Kn} and for each matrix Wk,r,1 in each row and
for each matrix Wk,r,2 in each column τ of its weights randomly by uniform distributions
and set all weights not chosen to zero. Furthermore we set all entries in Wquery,k,r,1 and
Wkey,k,r,1, all entries in the first d + l + 1 columns of Wk,r,2, and all entries in the last
two rows of Wquery,k,r,s and Wkey,k,r,s in columns greater than d+ l + 1 to zero.

2.3 Learning of the weights of the transformer network

The aim in choosing the weights w = (wk,Wk,Vk)k=1,...,Kn of our transformer network
is the minimization of the empirical logistic loss. Let

ϕ(z) = log(1 + exp(−z))

be the logistic loss (or cross entropy loss). Then the empirical logistic loss of fw =
f(wk)k=1,...,Kn ,(Wk)k=1,...,Kn ,(Vk)k=1,...,Kn

is defined by

Fn(w) =
1

n

n∑
i=1

ϕ(Yi · fw(Xi)). (18)

We use gradient descent together with a projection step in order to minimize (18).
Let A be the set of all (wk)k=1,...,Kn which satisfy (5) and let B be the set of all
(Wk,Vk)k=1,...,Kn which have nonzero components only in components which have not
been set to zero in the pruning step of the initialization of the weights and which satisfy

‖(Wk,Vk)k=1,...,Kn − (W
(0)
k ,V

(0)
k )k=1,...,Kn‖ ≤ c6, (19)

where c6 > 0 is a constant which will be chosen sufficiently small in Theorem 1 below. Let
λn > 0 be the stepsize of the gradient descent and let w(0) = (w

(0)
k ,W

(0)
k ,V

(0)
k )k=1,...,Kn

be defined as in Subsection 2.2. Then we define w(t) = (w
(t)
k ,W

(t)
k ,V

(t)
k )k=1,...,Kn recur-

sively by setting

(
w

(t+1)
k

)
k=1,...,Kn

= ProjA

(w(t)
k − λn ·

∂Fn(w(t))

∂wk

)
k=1,...,Kn
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and

(W
(t+1)
k ,V

(t+1)
k )k=1,...,Kn

= ProjB

((
(W

(t)
k ,V

(t)
k )− λn · ∇(Wk,Vk)(Fn(w(t)))

)
k=1,...,Kn

)
(t = 0, . . . , tn − 1), where tn ∈ N is the number of gradient descent steps which will be
chosen in Theorem 1 below.

2.4 Definition of the estimate

We define our estimate as the plug-in classifier corresponding to the over-parametrized
Transformer network network with weight vector w(t̂) where t̂ ∈ {0, 1, . . . , tn} is the index
for which the empirical logistic loss is minimal during the training, i.e., we set

t̂ = arg min
t∈{0,1,...,tn}

Fn(w(t)), (20)

fn(x) = fw(t̂)(x) (21)

and
ηn(x) = sgn(fn(x)). (22)

3 Main result

Our main result is the following bound on the difference of the misclassification proba-
bility of our estimate and the minimal misclassification probability.

Theorem 1 Let A ≥ 1. Let (X,Y ), (X1, Y1), . . . , (Xn, Yn) be independent and identi-
cally distributed [−A,A]d·l × {−1, 1}–valued random variables, and let
m(x) = P{Y = 1|X = x} be the corresponding a posteriori probability. Let P be a
finite subset of [1,∞)× N and assume that m satisfies a hierarchical composition model
with some finite level and smoothness and order constraint P and that all functions
g : RK → R in this hierarchical composition model are Lipschitz continuous and satisfy

‖g‖Cq(RK) ≤ c7 <∞,

where p = q + s with s ∈ (0, 1] and q ∈ N0 (here (p,K) ∈ P is the smoothness and order
corresponding to g in the hierarchical composition model). Let Kn ∈ N be such that

Kn

e(logn)3·
√
n
→∞ (n→∞). (23)

Set βn = c3 · log n,

h =

⌈
max

(p,K)∈P
n

K
2p+K

⌉
, dff = 2 · h+ 2, I = dlog ne, Jn = dc8 · n1/3e, tn = n ·Kn

13



and
λn =

1

tn
,

choose τ ∈ {l + 1, l + 2, , . . . , l + d + 1} and choose N ∈ N sufficiently large, c6 > 0
sufficiently small, c4, c5 > 0 sufficiently large, dkey ≥ 4, and define the estimate ηn as in
Section 2.
a) We have for n sufficiently large

P{ηn(X) 6= Y } − min
η:Rd·l→{−1,1}

P{η(X) 6= Y } ≤ c9 · (log n)3 · max
(p,K)∈P

n
−min

{
p

2·(2p+K)
, 1
6

}
.

b) If, in addition,

P

{
max

{
P{Y = 1|X}

1−P{Y = 1|X}
,
1−P{Y = 1|X}

P{Y = 1|X}

}
> n1/3

}
≥ 1− 1

n1/3
(n ∈ N) (24)

holds, then we have for n sufficiently large

P{ηn(X) 6= Y } − min
η:Rd·l→{−1,1}

P{η(X) 6= Y } ≤ c10 · (log n)3 · max
(p,K)∈P

n
−min

{
p

(2p+K)
, 1
3

}
.

Remark 1 The upper bound in parts a) and b) of Theorem 1 do not depend on the
dimension d · l of X, hence the Transformer encoder estimate is able to circumvent
the curse of dimensionality in case that the a posteriori probability satisfies a suitable
hierarchical composition model.

Remark 2 In the definition of the estimate we use twice a projection step in the defini-
tion of the gradient descent. Here the projection on the outer weights (wk)k=1,...,Kn is our
main tool which enables us to show that the over-parametrization of the estimate does not
hurt the generalization. The second projection is used to ensure that the change of the
inner weights during gradient descent does not hurt the approximation properties of the
estimate. For neural networks with smooth activation function it is possible to show that
such a projection step is automatically satisfied during gradient descent steps for suitable
chosen stepsizes and number of gradient descent steps, cf. Lemma 1 in Drews and Kohler
(2023).

Remark 3 The proof of Theorem 1 implies that the result also holds for an estimate
where gradient descent is only applied to the outer weights (wk)k=1,...,Kn and for all other
weights their initial randomly chosen values are not changed. Consequently, our estimate
is based on representation guessing and not representation learning.

Remark 4 By assumption (23) the number of parameters of our estimate grows ex-
ponential in the sample size, so as in many modern applications of deep learning our
estimate uses a massive overfitting.
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4 A general result

Let W ∈ N and let Θ ⊆ RW be a closed and convex set of parameter values (weights)
for a deep network of a given topology. In the sequel we assume that our aim is to learn
the parameter ϑ ∈ Θ (vector of weights) for a deep network

fϑ : Rd·l → R

from the data Dn such that
sgn(fϑ(x))

is a good classifier. We do this by considering linear combinations

f(w,ϑ)(x) =

Kn∑
k=1

wk · Tβn(fϑk(x)) (25)

of truncated versions of estimates fϑk(x) (k = 1, . . . ,Kn), where w = (wk)k=1,...,Kn

satisfies

wk ≥ 0 (k = 1, . . . ,Kn) and
Kn∑
k=1

wk ≤ 1 (26)

and ϑ = (ϑ1, . . . , ϑKn) ∈ ΘKn . Observe that by choosing w1 = 1 and wk = 0 for k > 1
we get

f(w,ϑ)(x) = Tβn(fϑ1(x))

and in this way we can construct an estimate which satisfies

sgn(f(w,ϑ)(x)) = sgn(fϑ1(x))

for any ϑ1 ∈ Θ. And by choosing Kn very large our estimate will be over-parametrized in
the sense that the number of parameters of the estimate is much larger than the sample
size.
Let

ϕ(z) = log(1 + exp(−z))

be the logistic loss (or cross entropy loss) and let m(x) = P{Y = 1|X = x}. Then

fϕ∗(x) =


∞ if m(x) = 1,

log m(x)
1−m(x) if 0 < m(x) < 1,

−∞ if m(x) = 0

minimizes the expected logistic loss, i.e.,

E{ϕ(Y · fϕ∗(X))}
= E {m(X) · log(1 + exp(−fϕ∗(X))) + (1−m(X)) · log(1 + exp(fϕ∗(X)))}
= min

f :Rd·l→R̄
E{ϕ(Y · f(X))}
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holds. Because of

sgn(fϕ∗(x)) =

{
1 if m(x) > 1

2 ,

−1 if m(x) < 1
2 ,

this implies
P{sgn(fϕ∗(X)) 6= Y } = min

f :Rd·l→{−1,1}
P{f(X) 6= Y },

i.e., we can compute the optimal predictor of Y given X by minimizing the expected
logistic loss.
Our aim in choosing (w, ϑ) is the minimization of the empirical logistic loss

Fn((w, ϑ)) =
1

n

n∑
i=1

ϕ(Yi · f(w,ϑ)(Xi)).

In order to achieve this, we start with a random initialization of (w, ϑ): We choose

ϑ
(0)
1 , . . . , ϑ

(0)
Kn

(27)

randomly from some set Θ0 ⊆ Θ such that the random variables in (27) are independent
and also independent from (X,Y ), (X1, Y1), . . . , (Xn, Yn), and we set

w
(0)
k = 0 (k = 1, . . . ,Kn).

Then we perform tn ∈ N gradient descent steps starting with

ϑ(0) = (ϑ
(0)
1 , . . . , ϑ

(0)
Kn

) and w(0) = (w
(0)
1 , . . . , w

(0)
Kn

).

To do this, we choose a stepsize λn > 0 and set

w(t+1) = ProjA

(
w(t) − λn · ∇wFn((w(t), ϑ(t)))

)
,

ϑ(t+1) = ProjB

(
ϑ(t) − λn · ∇ϑFn((w(t), ϑ(t)))

)

for t = 1, . . . , tn. Here A is the set of all w which satisfy (26), and

B =
{
ϑ ∈ ΘKn : ‖ϑ− ϑ(0)‖ ≤ c6

}
,

where c6 > 0 is a constant, and ProjA and ProjB is the L2 projection on the closed and
convex sets A and B. (Here closeness and convexity of B is implied by the closeness and
convexity of Θ.) Our estimate is then defined by

t̂ = arg min
t∈{0,1,...,tn}

Fn((w(t), ϑ(t))) (28)

and
fn(x) = f(w(t̂),ϑ(t̂))(x). (29)

16



Theorem 2 Let (X,Y ), (X1, Y1), . . . , (Xn, Yn) be independent and identically dis-
tributed random variables with values in Rd·l × {−1, 1}. Let tn, Nn, In ∈ N, set

λn =
1

tn
, Kn = Nn · In,

choose c6 > 0, and define the estimate fn as above.
Let Θ∗ ⊂ Θ0 and set

Θ̄ =

{
ϑ ∈ Θ : inf

ϑ̃∈Θ0
‖ϑ− ϑ̃‖ ≤ c6

}
.

Let Cn, Dn ≥ 0 and assume

‖fϑ − fϑ∗‖∞,supp(X) ≤ Cn · ‖ϑ− ϑ∗‖ (30)

for all ϑ∗ ∈ Θ∗ and all ϑ ∈ {ϑ̄ ∈ Θ : ‖ϑ̄− ϑ∗‖ ≤ c6},

εn = P
{
ϑ

(0)
1 ∈ Θ∗

}
> 0, (31)

Nn · (1− εn)In ≤ 1

n
(32)

and
‖∇wFn((w, ϑ))‖ ≤ Dn for all w ∈ A, ϑ ∈ Θ̄. (33)

Then we have

E {ϕ(Y · fn(X))} − min
f :Rd·l→R̄

E {ϕ(Y · f(X))}

≤ c11 ·

(
log n

n
+ E

{
sup
ϑ∈Θ̄

∣∣∣∣∣ 1n
n∑
i=1

εi · Tβn(fϑ(Xi))

∣∣∣∣∣
}

+
Cn + 1√
Nn

+
D2
n

tn

+ sup
ϑ∈Θ∗

E {ϕ(Y · fϑ(X))} − min
f :Rd·l→R̄

E {ϕ(Y · f(X))}

)
,

where ε1, . . . , εn are independent and uniformly distributed on {−1, 1} (so-called Rademacher
random variables) and independent from X1, . . . , Xn.

Remark 5 In Theorem 2 the Rademacher complexity

E

{
sup
ϑ∈Θ̄

∣∣∣∣∣ 1n
n∑
i=1

εi · Tβn(fϑ(Xi))

∣∣∣∣∣
}

is used to control the generalization error of the estimate,

sup
ϑ∈Θ∗

E {ϕ(Y · fϑ(X))} − min
f :Rd·l→R̄

E {ϕ(Y · f(X))} ,
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which describes the worst error occuring in the set Θ∗ of ”good” parameter values, is used
to measure the approximation error, and

Cn + 1√
Nn

+
D2
n

tn

is used to bound the error occuring due to gradient descent.

Proof of Theorem 2. LetEn be the event that there exist pairwise distinct j1, . . . , jNn ∈
{1, . . . ,Kn} such that

ϑ
(0)
ji
∈ Θ∗

holds for all i = 1, . . . , Nn. If En holds set

w∗ji =
1

Nn
(i = 1, . . . , Nn) and w∗k = 0 (k ∈ {1, . . . ,Kn} \ {j1, . . . , jNn})

and w∗ = (w∗k)k=1,...,Kn , otherwise set w∗ = 0.
We will use the following error decomposition:

E {ϕ(Y · fn(X))} − min
f :Rd·l→R̄

E {ϕ(Y · f(X))}

= E
{
ϕ(Y · fn(X)) · 1Ecn

}
+E

{(
E
{
ϕ(Y · fn(X))

∣∣ϑ(0),Dn
}
− 1

n

n∑
i=1

ϕ(Yi · fn(Xi))

)
· 1En

}

+E

{
1

n

n∑
i=1

ϕ(Yi · fn(Xi)) · 1En

}
− min
f :Rd·l→R̄

E {ϕ(Y · f(X))}

=: T1,n + T2,n + T3,n.

In the first step of the proof we show

P{Ecn} ≤
1

n
. (34)

To do this we consider a sequential choice of the initial weights ϑ(0)
1 , . . . , ϑ(0)

Kn
. By

definition of εn we know that the probability that none of ϑ(0)
1 , . . . , ϑ(0)

In
is contained in

Θ∗ is given by
(1− εn)In .

This implies that the probability that there exists l ∈ {1, . . . , Nn} such that none of
ϑ

(0)
(l−1)∗In+1, . . . , ϑ

(0)
l·In is contained in Θ∗ is upper bounded by

Nn · (1− εn)In .

Using (32) we can conclude

P{Ecn} ≤ Nn · (1− εn)In ≤ 1

n
.
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In the second step of the proof we show

T1,n ≤ c12 ·
(log n)

n
.

To do this, we observe that for |z| ≤ βn we have

ϕ(z) = log(1+exp(−z)) ≤ (log 4)·I{z>−1}+log(2·exp(−z))·I{z≤−1} ≤ 3+|z| ≤ c13 ·log n,

from which we can conclude by the first step of the proof

T1,n ≤ c13 · (log n) ·P{Ecn} ≤ c13 ·
(log n)

n
.

Let F be the set of all f(w,ϑ) where w ∈ A and ϑ ∈ Θ̄Kn . In the third step of the proof
we show

T2,n ≤ E

{
E

{
sup
f∈F

(
E{ϕ(f(X) · Y )} − 1

n

n∑
i=1

ϕ(f(Xi) · Yi)

)}
· 1En

}
.

This follows from

T2,n = E

{
E

{(
E
{
ϕ(Y · fn(X))

∣∣ϑ(0),Dn
}
− 1

n

n∑
i=1

ϕ(Yi · fn(Xi))

)∣∣ϑ(0)

}
· 1En

}

≤ E

{
E

{
sup
f∈F

(
E{ϕ(f(X) · Y )} − 1

n

n∑
i=1

ϕ(f(Xi) · Yi)

)∣∣∣∣ϑ(0)

}
· 1En

}

= E

{
E

{
sup
f∈F

(
E{ϕ(f(X) · Y )} − 1

n

n∑
i=1

ϕ(f(Xi) · Yi)

)}
· 1En

}
.

Here the first inequality followed from w(t) ∈ A and ϑ(t) ∈ Θ̄Kn (t ∈ {0, 1, . . . , tn}).
In the fourth step of the proof we show

E

{
sup
f∈F

(
E{ϕ(f(X) · Y )} − 1

n

n∑
i=1

ϕ(f(Xi) · Yi)

)}

≤ 2 ·E

{
sup
f∈F

1

n

n∑
i=1

εi · f(Xi)

}
. (35)

Choose random variables (X ′1, Y
′

1), . . . , (X ′n, Y
′
n) such that

(X1, Y1), . . . , (Xn, Yn), ε1, . . . , εn, (X
′
1, Y

′
1), . . . , (X ′n, Y

′
n)

are independent and such that

(X1, Y1), . . . , (Xn, Yn), (X ′1, Y
′

1), . . . , (X ′n, Y
′
n)
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are identically distributed and set (X,Y )n1 = ((X1, Y1), . . . , (Xn, Yn)). We have

E

{
sup
f∈F

(
E{ϕ(f(X) · Y )} − 1

n

n∑
i=1

ϕ(f(Xi) · Yi)

)}

= E

{
sup
f∈F

(
E{ 1

n

n∑
i=1

ϕ(f(X ′i) · Y ′i )|(X,Y )n1} −
1

n

n∑
i=1

ϕ(f(Xi) · Yi)

)}

≤ E

{
E

{
sup
f∈F

(
1

n

n∑
i=1

ϕ(f(X ′i) · Y ′i )− 1

n

n∑
i=1

ϕ(f(Xi) · Yi)

)
|(X,Y )n1

}}

= E

{
sup
f∈F

(
1

n

n∑
i=1

ϕ(f(X ′i) · Y ′i )− 1

n

n∑
i=1

ϕ(f(Xi) · Yi)

)}
.

Since the joint distribution of (X1, Y1), . . . , (Xn, Yn), (X ′1, Y
′

1), . . . , (X ′n, Y
′
n) does not change

if we (randomly) interchange (Xi, Yi) and (X ′i, Y
′
i ), the last term is equal to

E

{
sup
f∈F

(
1

n

n∑
i=1

εi ·
(
ϕ(f(X ′i) · Y ′i )− ϕ(f(Xi) · Yi)

))}

≤ E

{
sup
f∈F

(
1

n

n∑
i=1

εi · ϕ(f(X ′i) · Y ′i )

)}
+ E

{
sup
f∈F

(
1

n

n∑
i=1

(−εi) · ϕ(f(Xi) · Yi)

)}

= 2 ·E

{
sup
f∈F

(
1

n

n∑
i=1

εi · ϕ(f(Xi) · Yi)

)}
.

Next we use a contraction-style argument. Because of the independence of the random
variables we can compute the expectation by first computing the expectation with respect
to ε1 and then computing the expectation with respect to all other random variables.
Consequently, the last term above is equal to

2 ·E

{
1

2
· sup
f∈F

(
1

n

n∑
i=2

εi · ϕ(f(Xi) · Yi) +
1

n
· ϕ(f(X1) · Y1)

)

+
1

2
· sup
g∈F

(
1

n

n∑
i=2

εi · ϕ(g(Xi) · Yi)−
1

n
· ϕ(g(X1) · Y1)

)}

= E

{
sup
f,g∈F

(
1

n

n∑
i=2

εi · ϕ(f(Xi) · Yi) +
1

n

n∑
i=2

εi · ϕ(g(Xi) · Yi)

+
1

n
· ϕ(f(X1) · Y1)− 1

n
· ϕ(g(X1) · Y1)

)}
.

Because of
ϕ′(z) =

1

1 + exp(−z)
· exp(−z) · (−1) ∈ [−1, 0],
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ϕ is Lipschitz continuous with Lipschitz constant 1 which implies

1

n
· ϕ(f(X1) · Y1)− 1

n
· ϕ(g(X1) · Y1) ≤ 1

n
· |f(X1) · Y1 − g(X1) · Y1|

≤ 1

n
· |f(X1)− g(X1)|.

Hence the last expectation above is upper bounded by

E

{
sup
f,g∈F

(
1

n

n∑
i=2

εi · ϕ(f(Xi) · Yi) +
1

n

n∑
i=2

εi · ϕ(g(Xi) · Yi) +
1

n
· |f(X1)− g(X1)|

)}
.

For fixed (X1, Y1), . . . , (Xn, Yn), ε2, . . . , εn the term

1

n

n∑
i=2

εi · ϕ(f(Xi) · Yi) +
1

n

n∑
i=2

εi · ϕ(g(Xi) · Yi) +
1

n
· |f(X1)− g(X1)|

is symmetric in f and g. Therefore we can assume w.l.o.g. that f(X1) ≥ g(X1) holds
which implies that we have

sup
f,g∈F

(
1

n

n∑
i=2

εi · ϕ(f(Xi) · Yi) +
1

n

n∑
i=2

εi · ϕ(g(Xi) · Yi) +
1

n
· |f(X1)− g(X1)|

)

= sup
f,g∈F

(
1

n

n∑
i=2

εi · ϕ(f(Xi) · Yi) +
1

n

n∑
i=2

εi · ϕ(g(Xi) · Yi) +
1

n
· (f(X1)− g(X1))

)
.

In the same way we see that the term above is also equal to

sup
f,g∈F

(
1

n

n∑
i=2

εi · ϕ(f(Xi) · Yi) +
1

n

n∑
i=2

εi · ϕ(g(Xi) · Yi)−
1

n
· (f(X1)− g(X1))

)
,

and we get

E

{
sup
f,g∈F

(
1

n

n∑
i=2

εi · ϕ(f(Xi) · Yi) +
1

n

n∑
i=2

εi · ϕ(g(Xi) · Yi)

+
1

n
· |f(X1)− g(X1)|

)}

= E

{
1

2
· sup
f,g∈F

(
1

n

n∑
i=2

εi · ϕ(f(Xi) · Yi) +
1

n

n∑
i=2

εi · ϕ(g(Xi) · Yi)

+
1

n
· (f(X1)− g(X1))

)

+
1

2
· sup
f,g∈F

(
1

n

n∑
i=2

εi · ϕ(f(Xi) · Yi) +
1

n

n∑
i=2

εi · ϕ(g(Xi) · Yi)
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− 1

n
· (f(X1)− g(X1))

)}

= E

{
sup
f,g∈F

(
1

n

n∑
i=2

εi · ϕ(f(Xi) · Yi) +
1

n

n∑
i=2

εi · ϕ(g(Xi) · Yi)

+
1

n
· ε1 · (f(X1)− g(X1))

)}

≤ E

{
sup
f,g∈F

(
1

n

n∑
i=2

εi · ϕ(f(Xi) · Yi) +
1

n
· ε1 · f(X1)

)}

+ sup
f,g∈F

(
1

n

n∑
i=2

εi · ϕ(g(Xi) · Yi) +
1

n
· (−ε1) · g(X1)

)}

= 2 ·E

{
sup
f∈F

(
1

n

n∑
i=2

εi · ϕ(f(Xi) · Yi) +
1

n
· ε1 · f(X1)

)}
,

where we have used that −ε1 has the same distribution as ε1.
Arguing in the same way for i = 2, . . . , n we get

2 ·E

{
sup
f∈F

(
1

n

n∑
i=1

εi · ϕ(f(Xi) · Yi)

)}

≤ 2 ·E

{
sup
f∈F

(
1

n

n∑
i=2

εi · ϕ(f(Xi) · Yi) +
1

n
· ε1 · f(X1)

)}

≤ 2 ·E

{
sup
f∈F

(
1

n

n∑
i=3

εi · ϕ(f(Xi) · Yi) +
1

n
· (ε1 · f(X1) + ε2 · f(X2))

)}
≤ . . .

≤ 2 ·E

{
sup
f∈F

1

n
·
n∑
i=1

εi · f(Xi)

}
,

which finishes the fourth step of the proof.
In the fifth step of the proof we show

E

{
sup
f∈F

1

n

n∑
i=1

εi · f(Xi)

}
· 1En ≤ E

{
sup
ϑ∈Θ̄

∣∣∣∣∣ 1n
n∑
i=1

εi · (Tβn(fϑ(Xi))

∣∣∣∣∣
}
.

Let W be the set of all weight vectors w = ((wk)k=1,...,Kn , (ϑk)k=1,...,Kn) which satisfy
ϑ = (ϑk)k=1,...,Kn ∈ Θ̄Kn and (26). Because of f = 0 is contained in F it implies

sup
f∈F

1

n

n∑
i=1

εi · f(Xi) ≥ 0
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from which we can conclude

E

{
sup
f∈F

1

n

n∑
i=1

εi · f(Xi)

}
· 1En

≤ E

{
sup

w∈W

1

n

n∑
i=1

εi ·
Kn∑
j=1

wj · (Tβnfϑj (Xi)))

}

= E

{
sup

w∈W

Kn∑
j=1

wj ·
1

n

n∑
i=1

εi · (Tβnfϑj (Xi)))

}

≤ E

{
sup

w∈W

Kn∑
j=1

|wj | ·

∣∣∣∣∣ 1n
n∑
i=1

εi · (Tβnfϑj (Xi)))

∣∣∣∣∣
}

≤ E

{
sup

w∈W

Kn∑
j=1

|wj | · sup
ϑ∈Θ̄Kn ,k∈{1,...,Kn}

∣∣∣∣∣ 1n
n∑
i=1

εi · (Tβnfϑk(Xi)))

∣∣∣∣∣
}

≤ 1 ·E

{
sup

ϑ∈Θ̄Kn ,k∈{1,...,Kn}

∣∣∣∣∣ 1n
n∑
i=1

εi · (Tβnfϑk(Xi)))

∣∣∣∣∣
}

= E

{
sup

ϑ∈Θ̄Kn

∣∣∣∣∣ 1n
n∑
i=1

εi · (Tβnfϑ1(Xi)))

∣∣∣∣∣
}

= E

{
sup
ϑ∈Θ̄

∣∣∣∣∣ 1n
n∑
i=1

εi · (Tβn(fϑ(Xi))

∣∣∣∣∣
}
,

where the last inequality followed from

{Tβnfϑk : ϑ ∈ Θ̄Kn , k ∈ {1, . . . ,Kn}} = {Tβnfϑ1 : ϑ ∈ Θ̄}.

In the sixth step of the proof we show

T3,n ≤ c14 ·

(
Cn + 1√
Nn

+
D2
n

tn
+ sup
ϑ∈Θ∗

E {ϕ(Y · fϑ(X))}

− min
f :Rd·l→R̄

E {ϕ(Y · f(X))}

)
.

Application of standard techniques concerning the analysis of gradient descent in case of
convex function (cf., Lemma 1) yields

1

n

n∑
i=1

ϕ(Yi · fn(Xi)) · 1En

= min
t=0,...,tn

Fn((w(t), ϑ(t))) · 1En

≤ Fn((w∗, ϑ(0))) · 1En +
1

tn
·
tn∑
t=1

|Fn((w∗, ϑ(t)))− Fn((w∗, ϑ(0)))| · 1En
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+
‖w∗‖2

2
+

D2
n

2 · tn
.

By the definition of w∗ we know

‖w∗‖2

2
≤ 1

2 ·Nn
.

The logistic loss is convex (since ϕ′′(z) ≥ 0 for all z ∈ R) from which we can conclude

E
{
Fn((w∗, ϑ(0))) · 1En

}
= E

{
E
{
Fn((w∗, ϑ(0)))

∣∣ϑ(0)
}
· 1En

}
= E

{
E

{
1

n

n∑
i=1

ϕ(
1

Nn

Nn∑
k=1

Yi · fϑ(0)jk
(Xi))

∣∣ϑ(0)

}
· 1En

}

≤ E

{
1

Nn

Nn∑
k=1

E

{
1

n

n∑
i=1

ϕ(Yi · fϑ(0)jk
(Xi))

∣∣ϑ(0)

}
· 1En

}
≤ sup

ϑ∈Θ∗
E {ϕ(Y · fϑ(X)} .

Finally we conclude from the fact that ϕ is Lipschitz continuous with Lipschitz constant
1, the Cauchy-Schwarz inequality and assumption (30) that we have

1

tn
·
tn∑
t=1

|Fn((w∗, ϑ(t)))− Fn((w∗, ϑ(0)))| · 1En

=
1

tn
·
tn∑
t=1

∣∣∣∣∣ 1n
n∑
i=1

(
ϕ(Yi · f(w∗,ϑ(t))(Xi))− ϕ(Yi · f(w∗,ϑ(0))(Xi))

)∣∣∣∣∣ · 1En
≤ max

t=1,...,tn
max
i=1,...,n

|f(w∗,ϑ(t))(Xi)− f(w∗,ϑ(0))(Xi)| · 1En

≤ max
t=1,...,tn

max
i=1,...,n

√√√√Kn∑
k=1

|w∗k|2 ·

√√√√Nn∑
i=1

|f
ϑ
(t)
ji

(Xi)− fϑ(0)ji
(Xi)|2 · 1En

≤ 1√
Nn
·

√√√√Nn∑
i=1

C2
n · ‖ϑ

(t)
ji
− ϑ(0)

ji
‖2 =

1√
Nn
· Cn ·

√√√√Nn∑
i=1

‖ϑ(t)
ji
− ϑ(0)

ji
‖2

≤ 1√
Nn
· Cn · ‖ϑ(t) − ϑ(0)‖ ≤ c6 ·

Cn√
Nn

.

Here (30) is applicable because the definition of the estimate implies

‖ϑ(t)
ji
− ϑ(0)

ji
‖ ≤

√√√√Nn∑
s=1

‖ϑ(t)
js
− ϑ(0)

js
‖2 ≤

√
‖ϑ(t) − ϑ(0)‖2 ≤ c6.

Gathering the above results completes the proof. �
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5 Proof of Theorem 1

In the sequel we show

E
{
ϕ(Y · sgn(f̂n(X)))

}
−E

{
ϕ(Y · f∗ϕ(X))

}
≤ c85 · (log n)6 · max

(p,K)∈P
n
−min

{
p

(2p+K)
, 1
3

}
. (36)

This implies the assertion, because by Lemma 2 a) we conclude from (36)

P {Y 6= sgn(fn(X))|} −P {Y 6= η∗(X)}

≤ E

{
1√
2
· (E {ϕ(Y · fn(X))|Dn} −E {ϕ(Y · fϕ∗(X))})1/2

}
≤ 1√

2
·
√

E {ϕ(Y · fn(X))} −E {ϕ(Y · fϕ∗(X))}

≤ c86 · (log n)3 · max
(p,K)∈P

n
−min

{
p

2·(2p+K)
, 1
6

}

And from Lemma 2 b), (24) and Lemma 2 c) we conclude from (36)

P {Y 6= sgn(fn(X))|} −P {Y 6= η∗(X)}

≤ 2 · (E {ϕ(Y · fn(X))} −E {ϕ(Y · fϕ∗(X))}) + 4 · c87 · log n

n1/3

≤ c88 · (log n)3 · max
(p,K)∈P

n
−min

{
p

2p+K
, 1
3

}
.

Here we have used the fact that

max

{
P{Y = 1|X}

1−P{Y = 1|X}
,
1−P{Y = 1|X}

P{Y = 1|X}

}
> n1/3

is equivalent to

|fϕ∗(X)| =
∣∣∣∣log

P{Y = 1|X}
1−P{Y = 1|X}

∣∣∣∣ > 1

3
· log n.

So it suffices to prove (36), which we do in the sequel by applying Theorem 2.
In the first step of the proof we define Θ, Θ0 and Θ∗.
Let Θ = Θ0 be the set of all pairs (W,V) of weight matrices of the transformer

networks f(Wk,Vk) introduced in Subsection 2.1. In the supplement we will introduce
Transformer networks with good approximation properties, and we use here these Trans-
former networks for the definition of Θ∗: Let Θ∗ be the set of all weight matrices (W,V)
where W is from the weight matrices introduced in Theorem 3 in supremum norm not
further away than

ε =
1

c89 · nc90
,
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and where V is from the weight matrix introduced in Lemma 12 in supremum norm not
further away than

ε̄ =
1

c91 · nc92
.

In the second step of the proof we show that

Cn = c93 · nc94

satisfies (30). We will show this in the Supplement in Lemma 13, which is applicable
provided we choose c6 ≤ 1/(2 · c62).
In the third step of the proof we show that εn defined by (31) satisfies

εn ≥
1

e(logn)2·
√
n
.

The event {θ(0)
1 ∈ Θ∗} occurs if the pruning step selects the right subset of size

Ln ≤ c95 ·
√
n out of all subsets of size Ln of the possible set of parameters, which has

size less equal than c96 ·n, and if the uniform distributions (on intervals of length 2·c4 ·nc5)
choose each of these Ln parameters correctly from an interval of size 1/(c97 · nc98). This
implies for large n

P{θ(0)
1 ∈ Θ∗} ≥ 1

(c95 · n)c96·
√
n
·
(

1

2 · c4 · nc5 · c97 · nc98

)√n
≥ 1

e(logn)2·
√
n
.

In the fourth step of the proof we show that

Nn = nc99 , In = d(log n)2 · e(logn)2·
√
ne

satisfies (32) for n large.
This follows from

Nn · (1− εn)In ≤ nc99 ·
(

1− 1

e(logn)2·
√
n

)d(logn)2·e(logn)2·
√
ne

≤ 1

n

for n large.
In the fifth step of the proof we show that

Dn =
√
Kn · βn

satisfies (33).
We will show this in Lemma 3 in the Supplement.
In the sixth step of the proof we show

E

{∣∣∣∣∣sup
ϑ∈Θ̄

1

n

n∑
i=1

εi · Tβn(fϑ(Xi))

∣∣∣∣∣
}
≤ c100 · (log n)3 ·

(
max

(p,K)∈P
n
− p

2p+K + n−
1
3

)
.
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To see this, we use standard techniques from empirical process theory which are sum-
marized in Lemma 4 in the Supplement. From this we conclude

E

{∣∣∣∣∣sup
ϑ∈Θ̄

1

n

n∑
i=1

εi · Tβn(fϑ(Xi))

∣∣∣∣∣
}

≤ c101 ·
√

max{h · I, dff , Jn} · (log n)2

√
n

≤ c102 ·
(
√

log n ·max(p,K)∈P n
K/(2·(2·p+K)) + n

1
6 ) · (log n)2

√
n

≤ c103 · (log n)3 ·
(

max
(p,K)∈P

n
− p

2p+K + n−
1
3

)
.

In the seventh of the proof we show

sup
ϑ∈Θ∗

E {ϕ(Y · fϑ(X))} − min
f :Rd→R̄

E {ϕ(Y · f(X))} ≤ c104 ·
log n

n1/3
+ c105 ·max

j,i
h−p

(i)
j /K

(i)
j .

We have

sup
ϑ∈Θ∗

E {ϕ(Y · fϑ(X))} − min
f :Rd→R̄

E {ϕ(Y · f(X))}

= sup
ϑ∈Θ∗

E {ϕ(Y · fϑ(X))− ϕ(Y · fϕ∗(X))}

= sup
ϑ∈Θ∗

E

{
1{Y=1} · (ϕ(fϑ(X))− ϕ(fϕ∗(X)))

+1{Y=−1} · (ϕ(−fϑ(X))− ϕ(−fϕ∗(X)))

}

= sup
ϑ∈Θ∗

E

{
m(X) · (ϕ(fϑ(X))− ϕ(fϕ∗(X)))

+(1−m(X)) · (ϕ(−fϑ(X))− ϕ(−fϕ∗(X)))

}

≤ sup
ϑ∈Θ∗

sup
x∈Rd·l

(
|m(x)| · |ϕ(fϑ(x))− ϕ(fϕ∗(x))|

+|1−m(x)| · |ϕ(−fϑ(x))− ϕ(−fϕ∗(x))|

)
.

Application of the approximation results for Transformer networks derived in the Sup-
plement, i.e., application of Lemma 12 and Theorem 3 (which is applicable because of
the pruning step in the gradient descent introduced in Section 2, which implies in par-
ticular that some components of zk,r do not change during the computation) yields the
assertion.
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In the eighth step of the proof we complete the proof by showing (36).
Thanks to the results of the steps 1 through 5 we know that the assumptions of

Theorem 2 are satisfied. Application of Theorem 2 yields

E {ϕ(Y · sgn(fn(X)))} −E {ϕ(Y · fϕ∗(X))}

≤ c106 ·

(
log n

n
+ E

{∣∣∣∣∣sup
ϑ∈Θ̄

1

n

n∑
i=1

εi · Tβn(fϑ(Xi))

∣∣∣∣∣
}

+
Cn + 1√
Nn

+
D2
n

tn

+ sup
ϑ∈Θ∗

E {ϕ(Y · fϑ(X))} − min
f :Rd·l→R̄

E {ϕ(Y · f(X))}

)
.

Plugging in the results of steps 6 and 7 and the values of Cn, Nn and Dn derived in steps
2, 4 and 5 yields the assertion. �
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SUPPLEMENTARY MATERIAL

.1 A result for gradient descent

Lemma 1 Let d1, d2 ∈ N, let Dn ≥ 0, let A ⊂ Rd1 and B ⊆ Rd2 be closed and convex,
and let F : Rd1 × Rd2 → R+ be a function such that

u 7→ F (u, v) is differentiable and convex for all v ∈ Rd2

and
‖(∇uF )(u, v)‖ ≤ Dn (37)

for all (u, v) ∈ A×B. Choose (u0, v0) ∈ A×B, let v1, . . . , vtn ∈ B and set

ut+1 = ProjA (ut − λ · (∇uF ) (ut, vt)) (t = 0, . . . , tn − 1),

where
λ =

1

tn
.

Let u∗ ∈ A. Then it holds:

min
t=0,...,tn

F (ut, vt) ≤ F (u∗, v0) +
1

tn

tn∑
t=1

|F (u∗, vt)− F (u∗, v0)|+ ‖u
∗ − u0‖2

2
+

D2
n

2 · tn
.

Proof. The result follows from the proof of Lemma 1 in Kohler and Krzyżak (2023).
For the sake of completeness we give nevertheless a complete proof here.
In the first step of the proof we show

1

tn

tn−1∑
t=0

F (ut, vt) ≤
1

tn

tn−1∑
t=0

F (u∗, vt) +
‖u∗ − u0‖2

2
+

1

2 · t2n

tn−1∑
t=0

‖(∇uF )(ut, vt)‖2. (38)

By convexity of u 7→ F (u, vt) and because of u∗ ∈ A we have

F (ut, vt)− F (u∗, vt)

≤< (∇uF )(ut, vt), ut − u∗ >

=
1

2 · λ
· 2· < λ · (∇uF )(ut, vt), ut − u∗ >

=
1

2 · λ
·
(
−‖ut − u∗ − λ · (∇uF )(ut, vt)‖2 + ‖ut − u∗‖2 + ‖λ · (∇uF )(ut, vt)‖2

)
≤ 1

2 · λ
·
(
−‖ProjA(ut − λ · (∇uF )(ut, vt))− u∗‖2 + ‖ut − u∗‖2 + λ2 · ‖(∇uF )(ut, vt)‖2

)
=

1

2 · λ
·
(
‖ut − u∗‖2 − ‖ut+1 − u∗‖2 + λ2 · ‖(∇uF )(ut, vt)‖2

)
.

This implies

1

tn

tn−1∑
t=0

F (ut, vt)−
1

tn

tn−1∑
t=0

F (u∗, vt)
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=
1

tn

tn−1∑
t=0

(F (ut, vt)− F (u∗, vt))

≤ 1

tn

tn−1∑
t=0

1

2 · λ
·
(
‖ut − u∗‖2 − ‖ut+1 − u∗‖2

)
+

1

tn

tn−1∑
t=0

λ

2
· ‖(∇uF )(ut, vt)‖2

=
1

2
·
tn−1∑
t=0

(
‖ut − u∗‖2 − ‖ut+1 − u∗‖2

)
+

1

2 · t2n

tn−1∑
t=0

‖(∇uF )(ut, vt)‖2

≤ ‖u0 − u∗‖2

2
+

1

2 · t2n

tn−1∑
t=0

‖(∇uF )(ut, vt)‖2.

In the second step of the proof we show the assertion.
Using the result of step 1 we get

min
t=0,...,tn

F (ut, vt)

≤ 1

tn

tn−1∑
t=0

F (ut, vt)

≤ 1

tn

tn−1∑
t=0

F (u∗, vt) +
‖u∗ − u0‖2

2
+

1

2 · t2n

tn−1∑
t=0

‖(∇uF )(ut, vt)‖2

≤ F (u∗, v0) +
1

tn

tn−1∑
t=0

|F (u∗, vt)− F (u∗, v0)|+ ‖u
∗ − u0‖2

2

+
1

2 · t2n

tn−1∑
t=0

‖(∇uF )(ut, vt)‖2.

By (37) we get

1

2 · t2n

tn−1∑
t=0

‖(∇uF )(ut, vt)‖2 ≤
1

2 · t2n

tn−1∑
t=0

D2
n =

D2
n

2 · tn
.

Summarizing the above results, the proof is complete.
�

.2 An auxiliary result

Lemma 2 Let ϕ be the logistic loss. Let (X,Y ), (X1, Y1), . . . , (Xn, Yn) and η∗, Dn, fn
and ηn as in Sections 1 and 2, and set

fϕ∗ = arg min
f :Rd·l→R̄

E {ϕ(Y · f(X))} .

a) Then

P {Y 6= ηn(X)|Dn} −P {Y 6= η∗(X)}
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≤ 1√
2
· (E {ϕ(Y · fn(X))|Dn} −E {ϕ(Y · fϕ∗(X))})1/2

holds.
b) Then

P {Y 6= ηn(X)|Dn} −P {Y 6= η∗(X)}
≤ 2 · (E {ϕ(Y · fn(X))|Dn} −E {ϕ(Y · fϕ∗(X))}) + 4 ·E {ϕ(Y · fϕ∗(X))} .

holds.
c) Assume that

P
{
|fϕ∗(X)| > F̃n

}
≥ 1− e−F̃n

for a given sequence {F̃n}n∈N with F̃n →∞. Then

E {ϕ(Y · fϕ∗(X))} ≤ c15 · F̃n · e−F̃n

holds.

Proof. a) This result follows from Theorem 2.1 in Zhang (2004), where we choose s = 2
and c = 2−1/2.
b) This result follows from Lemma 1 b) in Kohler and Langer (2020b).
c) This result follows from Lemma 3 in Kim, Ohn and Kim (2019). �

.3 A bound on the gradient

In the proof of Theorem 1 we will apply Theorem 2. For this we need the following bound
on the gradient (with respect to the outer weights) of Fn.

Lemma 3 Let Fn be defined by (18). Then we have

‖∇(wk)k=1,...,Kn
Fn(w)‖ ≤

√
Kn · βn.

Proof. For k ∈ {1, . . . ,Kn} we have

∂Fn(w)

∂wk
=

1

n

n∑
i=1

ϕ′(Yi · fw(Xi)) · Yi · Tβn(fWk,Vk
(Xi)).

Because of |ϕ′(z)| ≤ 1 we can conclude∣∣∣∣∂Fn(w)

∂wk

∣∣∣∣ ≤ βn
and

‖∇(wk)k=1,...,Kn
Fn(w)‖2 =

Kn∑
k=1

∣∣∣∣∂Fn(w)

∂wk

∣∣∣∣2 ≤ Kn · β2
n.

�
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.4 Generalization error

Lemma 4 Let dmodel = h · I and let F be the set of all functions

(x1, . . . , xl) 7→ z
(d+l+2)
1,N,1 ,

where z1,N,1 is defined in Section 2 depending on

(Wquery,1,r,s,Wkey,1,r,s,Wvalue,1,r,s)r∈{1,...,N},s∈{1,...,h} (39)

and on
(W1,r,1, b1,r,1,W1,r,2, b1,r,2)r∈{1,...,N} (40)

and where the total number of nonzero components in each row in all the matrices in (39)
is bounded by τ ∈ N and where all matrices W1,r,1 and W1,r,2 in (40) have the property
that in each row in W1,r,1 and in each column in W1,r,2 there are at most τ nonzero
entries. Let G be the set of all (shallow) feedforward neural networks g : R→ R with one
hidden layer and Jn hidden neurons and ReLU activation function. Assume

max{N, dkey, dv, l} ≤ c16 and max{Jn, h, I, dff} ≤ c17 · nc17 .

Let A ≥ 1, let X1, . . . , Xn be independent and identically distributed [−A,A]d·l-valued
random vectors and let ε1, . . . , εn be independent Rademacher random variables, which
are independent from X1, . . . , Xn. Then we have

E

{∣∣∣∣∣ sup
f∈G◦F

1

n

n∑
i=1

εi · Tβn(f(Xi))

∣∣∣∣∣
}
≤ c18 ·

√
max{h · I, dff , Jn} · (log n)2

√
n

.

In order to prove Lemma 4 we need the following bound on the covering number.

Lemma 5 Define F and G as in Lemma 4. Let β ≥ 0 and let TβG ◦ F be the set of all
functions g ◦ f truncated on height β and −β where g ∈ G and f ∈ F . Then we have for
any 0 < ε < β/2

sup
zn1 ∈(Rd·l)n

logM1(ε, TβG ◦ F , zn1 )

≤ c19 · τ ·max{h · I, dff , Jn} ·N3 · log(max{Jn, N, h, dff , I, dkey, dv, l, 2}) log

(
β

ε

)
.

In order to prove Lemma 5 we will first show the following bound on the VC-dimension
of subsets of F , where the nonzero components appear only at fixed positions.

Lemma 6 Let F be the set of all functions

(x1, . . . , xl) 7→ z
(d+l+2)
1,N,1 ,

where z1,N,1 is defined in Section 2 depending on (39) and (40) and where in all matrics
in (39) there are in each row at most τ fixed components where the entries are allowed
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to be nonzero, and where all matrices W1,r,1 and W1,r,2 in (40) have the property that
in each row in W1,r,1 and in each column in W1,r,2 there are at most τ fixed components
(depending on r) where the entries are allowed to be nonzero. Let G be defined as in
Lemma 4. Then we have

V(G◦F)+ ≤ c20 · τ ·max{h · I, dff , Jn} ·N3 · log(max{Jn, N, h, dff , dkey, dv, l, 2}).

The proof of Lemma 6 is a modification of the proof of Lemma 9 in Gurevych, Kohler
and Sarin (2022), which in turn is based on the proof of Theorem 6 in Bartlett et al.
(1999). In the proof of Lemma 6 we will need the following two auxiliary results.

Lemma 7 Suppose W ≤ m and let f1, ..., fm be polynomials of degree at most D in W
variables. Define

K := |{(sgn(f1(a)), . . . , sgn(fm(a))) : a ∈ RW }|.

Then we have

K ≤ 2 ·
(

2 · e ·m ·D
W

)W
.

Proof. See Theorem 8.3 in Anthony and Bartlett (1999). �

Lemma 8 Suppose that 2m ≤ 2L · (m · R/w)w for some R ≥ 16 and m ≥ w ≥ L ≥ 0.
Then,

m ≤ L+ w · log2(2 ·R · log2(R)).

Proof. See Lemma 16 in Bartlett et al. (2019). �
Proof of Lemma 6. Let H be the set of all functions h defined by

h : Rd·l × R→ R, h(x, y) = g(x)− y

for some g ∈ G ◦ F . Let (x1, y1), . . . (xm, ym) ∈ Rd·l × R be such that

|{(sgn(h(x1, y1)), . . . , sgn(h(xm, ym))) : h ∈ H}| = 2m. (41)

It suffices to show

m ≤ c20 · τ ·max{h · I, dff , Jn} ·N3 · log(max{Jn, N, h, dff , dkey, dv, l, 2}). (42)

To show this we partition G ◦ F in subsets such that for each subset all

g ◦ f(xi) (i = 1, . . . ,m)

are polynomials of some fixed degree and use Lemma 7 in order to derive an upper bound
on the left-hand side of (41). This upper bound will depend polynomially on m which
will enable us to conclude (42) by an application of Lemma 8.
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Let

θ̄ =

(
(Wquery,r,s,Wkey,r,s,Wvalue,r,s)r∈{1,...,N},s∈{1,...,h},

(Wr,1, br,1,Wr,2, br,2)r∈{1,...,N}, (v
(1)
r )r∈{1,...,Jn}, (v

(0)
r,s )r∈{1,...,Jn},s∈{0,1}

)

be the parameters which determine a function in G ◦ F . By assumption, each function
in G ◦ F can be also described by such a parameter vector. Here only

L̄n = N · h · (2 · dkey + dv) · τ +N · (dff · (τ + 1) + h · I · (τ + 1)) + 3 · Jn

components of the matrices and vectors occuring in the parameter vector are allowed
to be nonzero and the positions where these nonzero parameters can occur are fixed.
Denote the vector in RL̄n which contains all values of these possible nonzero parameters
by θ. Then we can write

G ◦ F = {g(·, θ) : Rd·l → R : θ ∈ RL̄n}.

In the sequel we construct a partition PN+1 of RL̄n such that for all S ∈ PN+1 we have
that

g(x1, θ), . . . , g(xm, θ)

(considered as functions of θ) are polynomials of degree at most 8N + 2 for θ ∈ S.
In order to construct this partition we construct first recursively partitions P0, . . . ,
PN of RL̄n such that for each r ∈ {1, . . . , N} and all S ∈ Pr all components in

zr = zr(x) (x ∈ {x1, . . . , xm})

(considered as a function of θ) are polynomials of degree at most 8r in θ for θ ∈ S.
Since all components of z0 are constant as functions of θ this holds for r = 0 if we set
P0 = {RL̄n}.

Let r ∈ {1, . . . , N} and assume that for all S ∈ Pr−1 all components in

zr−1(x) (x ∈ {x1, . . . , xm})

(considered as a function of θ) are polynomials of degree at most 8r−1 in θ for θ ∈ S.
Then all components in

qr−1,s,i(x), kr−1,s,i(x) and vr−1,s,i(x) (x ∈ {x1, . . . , xm})

are on each set S ∈ Pr−1 polynomials of degree at most 8r−1 + 1. Consequently, for each
S ∈ Pr−1 each value

< qr−1,s,i(x), kr−1,s,j(x) > (x ∈ {x1, . . . , xm})
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is (considered as a function of θ) a polynomial of degree at most 2 · 8r−1 + 2 for θ ∈ S.
Application of Lemma 7 yields that

< qr−1,s,i(x), kr−1,s,j1(x) > − < qr−1,s,i(x), kr−1,s,j2(x) >

(s ∈ {1, . . . , h}, i, j1, j2 ∈ {1, . . . , l}, x ∈ {x1, . . . , xm}) has at most

∆ = 2 ·
(

2 · e · h · l3 ·m · (2 · 8r−1 + 2)

L̄n

)L̄n
different sign patterns. If we partition each set in Pr−1 according to these sign patterns
in ∆ subsets, then on each set in the new partition all components in

vr−1,s,ĵr−1,s,i
(x)· < qr−1,s,i(x), kr−1,s,ĵr−1,s,i

(x) > (x ∈ {x1, . . . , xm})

are polynomials of degree at most 3 · 8r−1 + 3 (since on each such set

< qr−1,s,i(x), kr−1,s,ĵr−1,s,i
(x) >

is equal to one of the < qr−1,s,i(x), kr−1,s,j(x) >). On each set within this partition every
component of the Rdff -valued vectors

Wr,1 · yr,s(x) + br,1 (s = 1, . . . , h, x ∈ {x1, . . . , xm})

is (considered as a function of θ) a polynomial of degree at most 3 · 8r−1 + 4.
By another application of Lemma 7 we can refine each set in this partition into

2 ·
(

2 · e · h · dff ·m · (3 · 8r−1 + 4)

L̄n

)L̄n
sets such that all components in

Wr,1 · yr,s(x) + br,1 (x ∈ {x1, . . . , xm}) (43)

have the same sign patterns within the refined partition. We call this refined partition
Pr. Since on each set of Pr the sign of all components in (43) does not change we can
conclude that all components in

σ(Wr,1 · yr,s(x) + br,1) (x ∈ {x1, . . . , xm}) (44)

are either equal to zero or they are equal to a polynomial of degree at most 3 · 8r−1 + 4.
Consequently we have that on each set in Pr all components of

zr(x) (x ∈ {x1, . . . , xm})

are equal to a polynomial of degree at most 3 · 8r−1 + 5 ≤ 8r.
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The partition PN satisfies

|PN | =
N∏
r=1

|Pr|
|Pr−1|

≤
N∏
r=1

2 ·
(

2 · e · h · l3 ·m · 8r

L̄n

)L̄n
· 2 ·

(
2 · e · h · dff ·m · 8r

L̄n

)L̄n
.

Next we construct a partition PN+1 of RL̄n such that for all S ∈ PN+1

g(z
(d+l+2)
N,1 (x)) =

Jn∑
j=1

v
(1)
j · σ

(
v

(0)
j,1 · z

(d+l+2)
N,1 (x) + v

(0)
j,0

)
(x ∈ {x1, . . . , xm})

(considered as a function of θ) is a polynomial of degree at most 8N + 2 for ϑ ∈ S.
For all S ∈ PN all components in(

v
(0)
j,1 · z

(d+l+2)
N,1 (x) + v

(0)
j,0

)
j=1,...,Jn

(x ∈ {x1, . . . , xm})

(considered as a function of θ) are polynomials of degree at most 8N + 1. Application of
Lemma 7 implies

v
(0)
j,1 · z

(d+l+2)
N,1 (x) + v

(0)
j,0 (j ∈ {1, . . . , Jn}, x ∈ {x1, . . . , xm})

has at most

∆ = 2 ·
(

2 · e · Jn ·m · (8N + 1)

L̄n

)L̄n
different sign patterns. If we partition in each set in PN according to these sign patterns
in ∆ subsets, then on each set in the new partition PN+1 all components in

σ
(
v

(0)
j,1 · z

(d+l+2)
N,1 (x) + v

(0)
j,0

)
(j ∈ {1, . . . , Jn}, x ∈ {x1, . . . , xm})

are polynomials of degree at most 8N +1 (since after the application of σ(z) = max{z, 0}
the component is either equal to zero on the set or equal to the argument of σ). Conse-
quently on each set in PN+1

g(x, θ) =

Jn∑
j=1

v
(1)
j (x) · σ

(
v

(0)
j,1 · (z

(d+l+2)
N,1 + v

(0)
j,0

)
(x ∈ {x1, . . . , xm})

(considered as a function of θ) is a polynomial of degree 8N + 2.
The partition PN+1 satisfies

|PN+1| =
|PN+1|
|PN |

· |PN |

≤ 2 ·
(

2 · e · Jn ·m · (8N + 1)

L̄n

)L̄n
·

(
N∏
r=1

2 ·
(

2 · e · h · l3 ·m · 8r

L̄n

)L̄n
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·2 ·
(

2 · e · h · dff ·m · 8r

L̄n

)L̄n )

and has the property that for all S ∈ PN+1 and for all (x, y) ∈ {(x1, y1), . . . , (xm, ym)}

g(x) = g(x, θ) and h(x, y) = g(x, θ)− y

(considered as a function of θ) are polynomials of degree at most 8N + 2 in θ for θ ∈ S.
Using

|{(sgn(h(x1, y1)), . . . , sgn(h(xm, ym))) : h ∈ H}|
≤

∑
S∈PN+1

|{(sgn(g(x1, θ)− y1), . . . , sgn(g(xm, θ)− ym)) : θ ∈ S}|

we can apply one more time Lemma 7 to conclude

2m

= |{(sgn(h(x1, y1)), . . . , sgn(h(xm, ym))) : h ∈ H}|

≤ |PN+1| · 2 ·
(

2 · e ·m · (8N + 2)

L̄n

)L̄n
≤ 2 ·

(
2 · e ·m · (8N + 2)

L̄n

)L̄n
·

(
N∏
r=1

2 ·
(

2 · e · h · l3 ·m · 8r

L̄n

)L̄n
·2 ·
(

2 · e · h · dff ·m · 8r

L̄n

)L̄n )
· 2 ·

(
2 · e · Jn ·m · (8N + 1)

L̄n

)L̄n
≤ 22·N+2 ·(
m · 2e · (2N + 2) ·max{Jn, h} · (max{l, dff})3 · (8N + 2)

(2N + 2) · L̄n

)(2N+2)·L̄n
.

Assume m ≥ (2N + 2) · (N ·h · (2 ·dkey +dv) · τ +N · (dff · (τ + 1) +h · I · (τ + 1)) + 3 ·Jn).
Application of Lemma 8 with L = 2·N+2, R = 2e·(2N+2)·max{Jn, h}·(max{l, dff})3 ·
(8N + 2) and w = (2N + 2) · L̄n yields

m ≤ (2 ·N + 2) + (2N + 2) · L̄n · log2(2 ·R · log2(R))

≤ c21 · τ ·max{h · I, dff , Jn} ·N3 · log(max{Jn, N, h, dff , l, 2}),

which implies (42). �
Proof of Lemma 5. The functions in the function set TβG ◦ F depend on at most

dc22 · (N · h2 + Jn) · I ·max{dk, dff , dv}e

many parameters, and of these parameters at most

L̄n = N · h · (2 · dkey + dv) · τ +N · (dff · (τ + 1) + h · I · (τ + 1)) + 3 · Jn
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are allowed to be nonzero. We have(
dc22 · (N · h2 + Jn) · I ·max{dkey, dff , dv}e

L̄n

)
≤
(
dc22 · (N · h2 + Jn) · I ·max{dkey, dff , dv}e

)L̄n
many possibilities to choose these positions. If we fix these positions, we get one function
space G ◦ F for which we can bound its VC dimension by Lemma 6. Using Lemma 6,
V(TβG◦F)+ ≤ V(G◦F)+ , and Theorem 9.4 in Györfi et al. (2002) we get

M1 (ε, TβG ◦ F ,xn1 ) ≤ 3 ·
(

4e · β
ε
· log

6e · β
ε

)V(TβG◦F)+

≤ 3 ·
(

6e · β
ε

)2·c20·τ ·max{h·I,dff ,Jn}·N3·log(max{Jn,N,h,dff ,dkey ,dv ,l,2})
.

From this we conclude

sup
zn1 ∈(Rd·l)n)

logM1(ε, TβG ◦ F , zn1 )

≤ L̄n · log
(
dc22 · (N · h2 + Jn) · I ·max{dkey, dff , dv}e

)
+2 · c20 · τ ·max{h · I, dff , Jn} ·N3 · log(max{Jn, N, h, dff , dkey, dv, l, 2}) · log

(
β

ε

)
≤ c23 · τ ·max{h · I, dff , Jn} ·N3 · log(max{Jn, N, h, I, dff , dkey, dv, 2}) · log

(
β

ε

)
.

�
Proof of Lemma 4. For δn > 0 we have

E

{
sup
f∈G◦F

∣∣∣∣∣ 1n
n∑
i=1

εi · (Tβn(f(Xi))

∣∣∣∣∣
}

=

∫ ∞
0

P

{
sup
f∈G◦F

∣∣∣∣∣ 1n
n∑
i=1

εi · (Tβn(f(Xi))

∣∣∣∣∣ > t

}
dt

≤ δn +

∫ ∞
δn

P

{
sup
f∈G◦F

∣∣∣∣∣ 1n
n∑
i=1

εi · (Tβn(f(Xi))

∣∣∣∣∣ > t

}
dt.

Using a standard covering argument from empirical process theory we see that for any
βn ≥ t ≥ δn we have

P

{
sup
f∈G◦F

∣∣∣∣∣ 1n
n∑
i=1

εi · (Tβn(f(Xi))

∣∣∣∣∣ > t

}

≤ sup
xn1∈(Rd·l)n

M1

(
δn
2
, {Tβnf : f ∈ G ◦ F} , xn1

)
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· sup
f∈G◦F

P

{∣∣∣∣∣ 1n
n∑
i=1

εi · (Tβn(f(Xi))

∣∣∣∣∣ > t

2

}
.

By Lemma 5 we know

sup
xn1∈(Rd·l)n

M1

(
δn
2
, {Tβnf : f ∈ G ◦ F} , xn1

)
≤ c24 ·

(
c25 · βn
δn

)c26·max{h·I·dff ,Jn}·log(n)

.

By the inequality of Hoeffding (cf., e.g., Lemma A.3 in Györfi et al. (2002)) and

|Tβn(f(x))| ≤ βn (x ∈ Rd)

we have for any f ∈ G ◦ F

P

{∣∣∣∣∣ 1n
n∑
i=1

εi · Tβn(f(Xi))

∣∣∣∣∣ > t

}
≤ 2 · exp

(
−2 · n · t2

4 · β2
n

)
.

Hence we get

E

{
sup
f∈G◦F

∣∣∣∣∣ 1n
n∑
i=1

εi · (Tβn(f(Xi))

∣∣∣∣∣
}

≤ δn +

∫ βn

δn

c24 ·
(
c25 · βn
δn

)c26·max{h·I·dff ,Jn}·log(n)

· 2 · exp

(
−2 · n · t2

4 · β2
n

)
dt

≤ δn +

∫ βn

δn

c24 ·
(
c25 · βn
δn

)c26·max{h·I·dff ,Jn}·log(n)

· 2 · exp

(
−n · δn · t

2 · β2
n

)
dt

≤ δn + c24 ·
(
c25 · βn
δn

)c26·max{h·I·dff ,Jn}·log(n) 4 · β2
n

n · δn
· exp

(
−n · δ

2
n

2 · β2
n

)
.

With

δn =
√

max{h · I · dff , Jn} · log n ·
√

2 · β2
n

n

we get the assertion. �

.5 Approximation error

Lemma 9 Let τ ∈ {l + 1, l + 2, . . . , l + d + 1}. Let l, h, I ∈ N and set dmodel = h · I.
Let dkey ≥ 3. Set dv = dmodel/h = I. Let s0 ∈ {1, . . . , h}, s1, s2 ∈ {1, . . . , dmodel},
j ∈ {1, . . . , l}, k ∈ {1, . . . , l} \ {j}, s3 ∈ {(s0 − 1) · dv + 1, . . . , s0 · dv}, β ∈ R, δ ≥ 0 and

B ≥ 168·dkey ·τ2 ·l·(|β|+1)·‖z0‖2∞ ·max{δ2, 1}, 0 ≤ ε ≤ min

{
1,

1

36 · τ · ‖z0‖2∞

}
. (45)

Then there exist
Wquery,0,s0 , Wkey,0,s0 and Wvalue,0,s0
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such that in each row of the above matrices at most τ of its entries are not equal to zero,
such that in the last two rows of Wquery,0,s0 and Wkey,0,s0 all entries in any column
greater than d+1+ l are zero, such that all entries are bounded in absolute value by 2 ·B,
and such that we have for all z0,r, z̃0,r ∈ Rdmodel satisfying

z
(s)
0,r = z̃

(s)
0,r =


x

(s)
r if s ∈ {1, . . . , d},

1 if s = d+ 1,

δs−d−1,r if s ∈ {d+ 2, . . . , d+ 1 + l}
(46)

(r ∈ {1, . . . , l}) and
‖z̃0,r − z0,r‖∞ ≤ δ,

(r ∈ {1, . . . , l}) and all

W̃query,0,s, W̃key,0,s and W̃value,0,s

(s ∈ {1, . . . , h}) which satisfy

‖W̃query,0,s0 −Wquery,0,s0‖∞ ≤ ε,

‖W̃key,0,s0 −Wkey,0,s0‖∞ ≤ ε,

‖W̃value,0,s0 −Wvalue,0,s0‖∞ ≤ ε,

and where in the last two rows of W̃query,0,s0 and W̃key,0,s0 all entries in any column
greater than d+l+1 are zero and where in W̃query,0,s0−Wquery,0,s0, W̃key,0,s0−Wkey,0,s0

and W̃value,0,s0−Wvalue,0,s0 in each row at most τ entries are nonzero, that the following
holds:
If we set for s ∈ {1, . . . , h}, i ∈ {1, . . . , l}

q0,s,i = W̃query,0,s · z̃0,i, k0,s,i = W̃key,0,s · z̃0,i and v0,s,i = W̃value,0,s · z̃0,i,

ĵs,i = arg max
j∈{1,...,l}

< q0,s,i, k0,s,j >,

ȳ0,s,i = v0,s,ĵs,i
· < q0,s,i, k0,s,ĵs,i

>,

ȳ0,i = (ȳ0,1,i, . . . , ȳ0,h,i)

and
ỹ0,i = z̃0,i + ȳ0,i

then we have:
ĵs0,1 = j, ĵs0,r = k if r > 1, (47)

|ỹ(s3)
0,1 − (z

(s3)
0,1 + z

(s1)
0,1 · (z

(s2)
0,j + β))|

≤ 136 · dkey · τ3 · l · (|β|+ 1) · ‖z0‖3∞ ·B ·max{δ3, 1} · ε
+25 · τ · (|β|+ 1) · ‖z0‖∞ ·max{δ, 1} · δ (48)
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and

|ỹ(s)
0,r | ≤ 136 · dkey · τ3 · l · (|β|+ 1) · ‖z0‖3∞ ·B ·max{δ3, 1} · ε

+25 · τ · (|β|+ 1) · ‖z0‖∞ ·max{δ, 1} · δ (49)

whenever r > 1 or s ∈ {(s0 − 1) · dv + 1, . . . , s0 · dv} \ {s3}.

Proof of Lemma 9. W.l.o.g. we assume dkey = 3.
In the first step of the proof we define Wquery,0,s0 , Wkey,0,s0 and Wvalue,0,s0 and present

some of their properties.
Set

Wquery,0,s0 =

 0 . . . 0 0 0 0 0 . . . 0 0 . . . 0 1 0 . . . 0
0 . . . 0 −B 0 0 0 . . . 0 0 . . . 0 0 0 . . . 0
0 . . . 0 0 0 1 1 . . . 1 0 . . . 0 0 0 . . . 0


where all columns are zero except columns number d+ 1, d+ 3, d+ 4, . . . , d+ 1 + l and
s1,

Wkey,0,s0 = 0 . . . 0 β 0 . . . 0 0 0 . . . 0 0 0 . . . 0 0 . . . 0 1 0 . . . 0
0 . . . 0 0 1 . . . 1 1 1 . . . 1 0 1 . . . 1 0 . . . 0 0 0 . . . 0
0 . . . 0 0 0 . . . 0 2 ·B 0 . . . 0 0 0 . . . 0 0 . . . 0 0 0 . . . 0


where in the first row only the entries in columns d+ 1 and s2 are nonzero, where in the
second row only the entries in columns d + 2, d + 3, . . . , d + 1 + j − 1, d + 1 + j + 1,
d + 1 + j + 2, . . . , d + 1 + l are nonzero, and where in the third row only the entry in
column d+ 1 + k is nonzero, and

Wvalue,0,s0 =



0 . . . 0 0 0 . . . 0
... . . .

...
...

... . . .
...

0 . . . 0 0 0 . . . 0
0 . . . 0 1 0 . . . 0
0 . . . 0 0 0 . . . 0
... . . .

...
...

... . . .
...

0 . . . 0 0 0 . . . 0


where all rows and all columns are zero except column number d+ 1 + j and row number
s3 − (s0 − 1) · dv.
Then we have

Wquery,0,s0 · z0,r1 =

 z
(s1)
0,r1
−B∑l
i=2 δr1,i

 , Wkey,0,s0 · z0,r2 =

 β + z
(s3)
0,r2∑

i∈{1,...,l}\{j} δr2,i
δr2,k · 2 ·B


and

Wvalue,0,s0 · z0,r2 = δr2,j · es3−(s0−1)·dv
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where er denotes the r-th unit vector in Rdv . Hence

< Wquery,0,s0z0,r1 ,Wkey,0,s0z0,r2 >

= z
(s1)
0,r1
· (β + z

(s3)
0,r2

)−B ·
∑

i∈{1,...,l}\{j}

δr2,i +
l∑

i=2

δr1,i · δr2,k · 2 ·B,

which implies

< Wquery,0,s0z0,1,Wkey,0,s0z0,j > = z
(s1)
0,1 · (β + z

(s2)
0,j ), (50)

for r2 6= j

< Wquery,0,s0z0,1,Wkey,0,s0z0,r2 > = z
(s1)
0,1 · (β + z

(s2)
0,r2

)−B,

for r1 > 1

< Wquery,0,s0z0,r1 ,Wkey,0,s0z0,k > = z
(s1)
0,r1
· (β + z

(s2)
0,k ) +B,

and for r1 > 1, r2 ∈ {1, . . . , l} \ {k}

< Wquery,0,s0z0,r1 ,Wkey,0,s0z0,r2 > = z
(s1)
0,r1
· (β + z

(s2)
0,r2

)−B · (1− δr2,j).

Because of
B > 4 ·max

r1,r2
|z(s1)

0,r1
· (β + z

(s2)
0,r2

)|

we conclude

< Wquery,0,s0z0,1,Wkey,0,s0z0,j >

>
B

2
+ max

r2 6=j
< Wquery,0,s0z0,1,Wkey,0,s0z0,r2 > (51)

and for r1 > 1

< Wquery,0,s0z0,r1 ,Wkey,0,s0z0,k >

>
B

2
+ max

r2 6=k
< Wquery,0,s0z0,r1 ,Wkey,0,s0z0,r2 > . (52)

Furthermore we have
Wvalue,0,s0z0,r = δr,j · es3−(s0−1)·dv . (53)

In the second step of the proof we bound the difference between

< W̃query,0,s0 z̃0,r1 , W̃key,0,s0 z̃0,r2 > and < Wquery,0,s0z0,r1 ,Wkey,0,s0z0,r2 > .

We have

| < W̃query,0,s0 z̃0,r1 , W̃key,0,s0 z̃0,r2 > − < Wquery,0,s0z0,r1 ,Wkey,0,s0z0,r2 > |
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= | < (W̃query,0,s0 −Wquery,0,s0)z̃0,r1 +Wquery,0,s0(z̃0,r1 − z0,r1) +Wquery,0,s0z0,r1 ,

(W̃key,0,s0 −Wkey,0,s0)z̃0,r2 +Wkey,0,s0(z̃0,r2 − z0,r2) +Wkey,0,s0z0,r2 >

− < Wquery,0,s0z0,r1 ,Wkey,0,s0z0,r2 > |
≤ | < (W̃query,0,s0 −Wquery,0,s0)z̃0,r1), (W̃key,0,s0 −Wkey,0,s0)z̃0,r2 > |

+| < (W̃query,0,s0 −Wquery,0,s0)z̃0,r1),Wkey,0,s0(z̃0,r2 − z0,r2) > |
+| < (W̃query,0,s0 −Wquery,0,s0)z̃0,r1 ,Wkey,0,s0z0,r2 > |
+| < Wquery,0,s0(z̃0,r1 − z0,r1), (W̃key,0,s0 −Wkey,0,s0)z̃0,r2 > |
+| < Wquery,0,s0(z̃0,r1 − z0,r1),Wkey,0,s0(z̃0,r2 − z0,r2) > |
+| < Wquery,0,s0(z̃0,r1 − z0,r1),Wkey,0,s0z0,r2 > |
+| < Wquery,0,s0z0,r1 , (W̃key,0,s0 −Wkey,0,s0)z̃0,r2 > |
+| < Wquery,0,s0z0,r1 ,Wkey,0,s0(z̃0,r2 − z0,r2) > |

=:
8∑
i=1

Ti.

We have
T1 ≤ dkey · τ2 · (‖z0‖∞ + δ)2 · ε2,

T2 ≤ τ · (‖z0‖∞ + δ) · ε · δ

(where we have used the fact that z̃0,r2 − z0,r2 is zero in components less than d+ l + 2
and consequently only the first component of Wkey,0,s0(z̃0,r2 − z0,r2) is nonzero),

T3 ≤ τ · (‖z0‖∞ + δ) · ε · (|β|+ 1) · ‖z0‖∞ + τ · ‖z0‖∞ · ε · l · ‖z0‖∞ + τ · ‖z0‖∞ · ε · 2 ·B

(that is the consequence of the fact that the last two components of (W̃query,0,s0 −
Wquery,0,s0)z̃0,r1 depend on z0,r1 and not on z̃0,r1 , which follows from the assumption
that in the last two rows of W̃query,0,s0 and W̃key,0,s0 all entries in columns greater than
d+ l + 1 are zero),

T4 ≤ δ · τ · (‖z0‖∞ + δ) · ε

(where we have used the fact that only the first component of Wquery,0,s0(z̃0,r1 − z0,r1) is
nonzero)

T5 ≤ δ · δ,

T6 ≤ δ · (|β|+ 1) · ‖z0‖∞,

T7 ≤ ‖z0‖∞ · τ · ε · (‖z0‖∞ + δ) + (B + l) · ‖z0‖∞ · τ · ε · ‖z0‖∞
(where we have used the fact that the last two components of (W̃key,0,s0 −Wkey,0,s0)z̃0,r2

depend on z0,r2 and not on z̃0,r2 , which follows as above from the assumption that in the
last two rows of W̃query,0,s0 and W̃key,0,s0 all entries in columns greater than d+ l+ 1 are
zero), and

T8 ≤ ‖z0‖∞ · (|β|+ 1) · δ
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(where we have used the fact that z̃0,r2 − z0,r2 is zero in components greater d+ l+ 1 and
consequently only the first component of Wkey,0,s0(z̃0,r2 − z0,r2) is nonzero). This proves

| < W̃query,0,s0 z̃0,r1 , W̃key,0,s0 z̃0,r2 > − < Wquery,0,s0z0,r1 ,Wkey,0,s0z0,r2 > |
≤ 14 · dkey · τ2 · l · (|β|+ 1) · ‖z0‖2∞ ·max{δ2, 1} · ε

+3 · (|β|+ 1) · ‖z0‖∞ ·max{δ, 1} · δ
+3 ·B · ε · τ · ‖z0‖2∞. (54)

Since we have

ε ≤ min

{
1,

1

36 · τ · ‖z0‖2∞

}
, B > 36 · (|β|+ 1) · ‖z0‖2∞ ·max{δ, 1} · ε

and
B > 168 · dkey · τ2 · l · (|β|+ 1) · ‖z0‖2 ·max{δ2, 1} · ε

the right-hand side of (54) is less than B/4.
In the third step of the proof we show (47).
To do this, we conclude from step 2 that we have

< W̃query,0,s0 z̃0,r1 , W̃key,0,s0 z̃0,r2 > − max
r3 6=r2

< W̃query,0,s0 z̃0,r1 , W̃key,0,s0 z̃0,r3 >

> < Wquery,0,s0z0,r1 ,Wkey,0,s0z0,r2 > − max
r3 6=r2

< Wquery,0,s0z0,r1 ,Wkey,0,s0z0,r3 > −
B

2
.

The assertion follows from (51) and (52).
In the fourth step of the proof we show the assertion. Because of (47), (50) and (53) it

suffices to show∥∥∥∥∥W̃value,0,s0 z̃0,r2 · < W̃query,0,s0 z̃0,r1 , W̃key,0,s0 z̃0,r2 >

−Wvalue,0,s0z0,r2 < Wquery,0,s0z0,r1 ,Wkey,0,s0z0,r2 >

∥∥∥∥∥
∞

≤ 144 · dkey · τ3 · l · (|β|+ 1) · ‖z0‖3∞ ·B ·max{δ3, 1} · ε
+24 · τ · (|β|+ 1) · ‖z0‖∞ ·max{δ, 1} · δ.

We have∥∥∥∥∥W̃value,0,s0 z̃0,r2 · < W̃query,0,s0 z̃0,r1 , W̃key,0,s0 z̃0,r2 >

−Wvalue,0,s0z0,r2 < Wquery,0,s0z0,r1 ,Wkey,0,s0z0,r2 >

∥∥∥∥∥
∞

≤

∥∥∥∥∥W̃value,0,s0 z̃0,r2 ·
(
< W̃query,0,s0 z̃0,r1 , W̃key,0,s0 z̃0,r2 >
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− < Wquery,0,s0z0,r1 ,Wkey,0,s0z0,r2 >
)∥∥∥∥∥
∞

+

∥∥∥∥∥(W̃value,0,s0 z̃0,r2 −Wvalue,0,s0z0,r2)· < Wquery,0,s0z0,r1 ,Wkey,0,s0z0,r2 >

∥∥∥∥∥
∞

≤ ‖W̃value,0,s0 z̃0,r2‖∞
·| < W̃query,0,s0 z̃0,r1 , W̃key,0,s0 z̃0,r2 > − < Wquery,0,s0z0,r1 ,Wkey,0,s0z0,r2 > |

+‖W̃value,0,s0 z̃0,r2 −Wvalue,0,s0z0,r2‖∞ · | < Wquery,0,s0z0,r1 ,Wkey,0,s0z0,r2 > |
≤ (τ + 1) · (1 + ε) · (‖z‖∞ + δ) · (14 · dkey · τ2 · l · (|β|+ 1) · ‖z0‖2∞ ·max{δ2, 1} · ε

+3 · (|β|+ 1) · ‖z0‖∞ ·max{δ, 1} · δ + 3 ·B · ε · τ · ‖z0‖2∞)

+‖W̃value,0,s0 z̃0,r2 −Wvalue,0,s0z0,r2‖∞ · (‖z0‖∞ · (|β|+ ‖z0‖∞) + 2 ·B).

With

‖W̃value,0,s0 z̃0,r2 −Wvalue,0,s0z0,r2‖∞
≤ ‖(W̃value,0,s0 −Wvalue,0,s0)z̃0,r2‖∞ + ‖Wvalue,0,s0(z̃0,r2 − z0,r2)‖∞
≤ τ · ε · (‖z0‖∞ + δ) + 0

(where we have used that z̃0,r2 − z0,r2 is zero in components less than d + l + 2) we get
the assertion. �

Lemma 10 Let ε ∈ [0, 1), let δ ≥ 0 and let α ∈ R. Let dff , dmodel ∈ N and assume
dff ≥ 4. Let j1, j2 ∈ {1, . . . , dmodel} with j1 6= j2. Then there exist

Wr,1 ∈ Rdff×dmodel , br,1 ∈ Rdff ,Wr,2 ∈ Rdmodel×dff , br,2 ∈ Rdmodel ,

where in Wr,1 in each row and in Wr,2 in each column at most 2 components are not
equal to zero and where all entries are bounded in absolute value by max{|α|, 1}, such
that for all W̃r,1 ∈ Rdff×dmodel, b̃r,1 ∈ Rdff , W̃r,2 ∈ Rdmodel×dff , b̃r,2 ∈ Rdmodel with

‖Wr,1 − W̃r,1‖∞ < ε, ‖br,1 − b̃r,1‖∞ < ε, ‖Wr,2 − W̃r,2‖∞ < ε, ‖br,2 − b̃r,2‖∞ < ε,

and all yr,i, ỹr,i ∈ Rdmodel (i ∈ {1, . . . , l}) with

‖yr,i − ỹr,i‖∞ < δ (i ∈ {1, . . . , l})

and
z̃r,s = ỹr,s + W̃r,2 · σ

(
W̃r,1 · ỹr,s + b̃r,1

)
+ b̃r,2 (s ∈ {1, . . . , l})

we have:∣∣∣z̃(j1)
r,s − α ·max{y(j2)

r,s , 0}
∣∣∣ ≤ 5 · dff ·max{|α|, 1} · (‖yr,s‖∞ + 1) · dmodel · (δ + ε),

|z̃(j2)
r,s | ≤ 5 · dff ·max{|α|, 1} · (‖yr,s‖∞ + 1) · dmodel · (δ + ε)
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and
|z̃(j)
r,s − y(j)

r,s | ≤ 5 · dff ·max{|α|, 1} · (‖yr,s‖∞ + 1) · dmodel · (δ + ε)

whenever j ∈ {1, . . . , dmodel} \ {j1, j2}.
Furthermore, the assertion of the lemma holds also if we replace α · max{y(j2)

r,s , 0} by
α · y(j2)

r,s .

Proof. Set

zr,s = yr,s +Wr,2 · σ (Wr,1 · yr,s + br,1) + br,2 (s ∈ {1, . . . , l}).

In the first step of the proof we show that we can choose

Wr,1 ∈ Rdff×dmodel , br,1 ∈ Rdff ,Wr,2 ∈ Rdmodel×dff , br,2 ∈ Rdmodel ,

such that at most 9 components are not equal to zero and such that

z(j1)
r,s = α ·max{y(j2)

r,s , 0}, z(j2)
r,s = 0 and z(j)

r,s = y(j)
r,s

hold whenever j ∈ {1, . . . , dmodel} \ {j1, j2}.
W.l.o.g. we assume dff = 4 and j1 < j2. We choose br,1 = 0, br,2 = 0,

Wr,1 =


0 . . . 0 1 0 . . . 0 0 0 . . . 0
0 . . . 0 −1 0 . . . 0 0 0 . . . 0
0 . . . 0 0 0 . . . 0 1 0 . . . 0
0 . . . 0 0 0 . . . 0 −1 0 . . . 0

 ,

where all columns except columns number j1 and j2 are zero, and

Wr,2 =



0 0 0 0
...

...
0 0 0 0
−1 1 α 0
0 0 0 0
...

...
0 0 0 0
0 0 −1 1
0 0 0 0
...

...
0 0 0 0



,

where all rows except row number j1 and j2 are zero. Then we have

W2,r · σ (W1,r · yr,s + b1,r) + b2,r
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=



0
...
0

α · σ(y
(j2)
r,s )− (σ(y

(j1)
r,s )− σ(−y(j1

r,s ))
0
...
0

−(σ(y
(j2)
r,s )− σ(−y(j2)

r,s ))
0
...
0



.

Because of
σ(u)− σ(−u) = u

for u ∈ R this implies the assertion of the first step.
In the second step of the proof we show

|z̃(j)
r,s − z(j)

r,s | ≤ 5 · dff ·max{|α|, 1} · (‖yr,s‖∞ + 1) · dmodel · (δ + ε).

We have

‖W̃r,1 · ỹr,s + b̃r,1 − (Wr,1 · yr,s + br,1)‖∞
≤ ‖(W̃r,1 −Wr,1) · ỹr,s‖∞ + ‖Wr,1 · (ỹr,s − yr,s)‖∞ + ε

≤ dmodel · ε · (‖yr,s‖∞ + δ) + δ + ε

≤ δ + dmodel · ε · (‖yr,s‖∞ + 1 + δ),

which implies

‖σ(W̃r,1 · ỹr,s + b̃r,1)− σ(Wr,1 · yr,s + br,1)‖∞
≤ δ + dmodel · ε · (‖yr,s‖∞ + 1 + δ)

and

‖σ(W̃r,1 · ỹr,s + b̃r,1)‖∞
≤ δ + dmodel · ε · (‖yr,s‖∞ + 1 + δ) + ‖σ(Wr,1 · yr,s + br,1)‖∞
≤ δ + dmodel · ε · (‖yr,s‖∞ + 1 + δ) + ‖yr,s‖∞.

From this we conclude

|z̃(j)
r,s − z(j)

r,s |

≤
∥∥∥∥ỹr,s + W̃r,2 · σ

(
W̃r,1 · ỹr,s + b̃r,1

)
+ b̃r,2
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− (yr,s +Wr,2 · σ (Wr,1 · yr,s + br,1) + br,2)

∥∥∥∥
∞

≤ δ +
∥∥∥W̃r,2 · σ

(
W̃r,1 · ỹr,s + b̃r,1

)
−Wr,2 · σ (Wr,1 · yr,s + br,1)

∥∥∥
∞

+ ε

≤ δ +
∥∥∥(W̃r,2 −Wr,2) · σ

(
W̃r,1 · ỹr,s + b̃r,1

)∥∥∥
∞

+
∥∥∥Wr,2 ·

(
σ
(
W̃r,1 · ỹr,s + b̃r,1

)
− σ (Wr,1 · yr,s + br,1)

)∥∥∥
∞

+ ε

≤ δ + dff ·
∥∥∥W̃r,2 −Wr,2

∥∥∥
∞
·
∥∥∥σ (W̃r,1 · ỹr,s + b̃r,1

)∥∥∥
∞

+dff · ‖Wr,2‖∞ ·
∥∥∥σ (W̃r,1 · ỹr,s + b̃r,1

)
− σ (Wr,1 · yr,s + br,1)

∥∥∥
∞

+ ε

≤ δ + dff · ε · (δ + dmodel · ε · (‖yr,s‖∞ + 1 + δ) + ‖yr,s‖∞)

+dff ·max{|α|, 1} · (δ + dmodel · ε · (‖yr,s‖∞ + 1 + δ)) + ε

≤ 5 · dff ·max{|α|, 1} · (‖yr,s‖∞ + 1) · dmodel · (δ + ε).

By slightly changing the matrix Wr,2 we conclude that the assertion also holds upon
replacing α ·max{y(j2)

r,s , 0} by α · y(j2)
r,s . �

Lemma 11 Let I ≥ d + l + 4, let τ ∈ {l + 1, l + 2, . . . , l + d + 1}. Let c ≥ A ≥ 1, let
K ∈ N, let uk ∈ [−A,A] (k = 1, . . . ,K − 1), set

Bj(x) = xj for j = 0, 1, . . . ,M

and set
Bj(x) = (x− uj−M )M+ for j = M + 1,M + 2, . . . ,M +K − 1.

Let i ∈ {d + l + 4, . . . , I}. Let h ∈ N with 1 ≤ h ≤ n and for s ∈ {2, . . . , h} let
js,1, . . . , js,d ∈ {0, 1, . . . ,M + K − 1} and αs ∈ R. Let dkey ≥ 3 and set dff = 2 · h + 2.
Then there exists a transformer encoder consisting of M · (d · l) + 1 pairs of layers, where
the first layer is a multi-head attention layer with h attention units and the second layer
is a pointwise feedforward neural network, and where all matrices in the attention heads
have in each row at most τ nonzero entries, and where all matrices Wr,1 and Wr,2 in
the pointwise feedforward neural networks have the property that in each row in Wr,1

and in each column in Wr,2 at most τ of the entries are nonzero and where all matrices
and vectors depend only on (uk)k and αs (s ∈ {1, . . . , k}) and all entries are bounded in
absolute value by

c27 · n12M·(d·l) · (dmodel)12M·(d·l) · c2·12M·(d·l) ,

and where the matrices W̃query,0,s, W̃key,0,s and W̃value,0,s satisfy the assumptions of
Lemma 9, which has the following property: Any transformer network which has the
same structure as the above Transformer network and whose weights are in supremum
norm no further than ε away from the weights of the above network for some

0 ≤ ε ≤ min

{
1,

1

36 · τ · (2 ·A)M ·d·l

}
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has the property that if it gets as input z̃0 which satisfies (46) and

‖z̃0 − z0‖∞ ≤ c · ε

for some z0 ∈ [−A,A]l·dmodel defined as in Subsection 2.1 (which encodes in particular
x = (xT1 , . . . , x

T
l ) ∈ Rd·l) it produces as output z̃M ·d+1, which satisfies for n sufficiently

large

|z̃(i)
M ·d,1−

h∑
s=2

αs

d·l∏
k=1

Bjs,k(x(k))| ≤ c28 ·n6M·(d·l)+1 · (dmodel)6M·(d·l)+1 ·c8M·(d·l)+2+2·(M ·d·l+1) · ε

and

|z̃(l)
M ·d,j − z

(l)
M ·d,j | ≤ c28 · n6M·(d·l)+1 · (dmodel)6M·(d·l)+1 · c8M·(d·l)+2·(M ·d·l+1) · ε

whenever j > 1 or

l ∈ {1, . . . , dmodel} \ {i, I + d+ l + 2, I + d+ l + 3, 2 · I + d+ l + 2,

2 · I + d+ l + 3, . . . , (h− 1) · I + d+ l + 2, (h− 1) · I + d+ l + 3}.

Proof. In the first step of the proof we show that the h − 1 products of the B-splines
in the sum above can be computed in the first M · (d · l) pairs of attention heads and
pointwise feedforward network.
The basic idea is as follows. Each attention head of the network works only on one

of the parts 2, . . . , h of length I of the input. It uses the fact that each Bj(x) can be
written as

Bj(x) =
M∏
k=1

Bj,k(x)

where Bj,k(x) is one of the functions

x 7→ 1, x 7→ x and x 7→ (x− ur)+.

Using Lemma 9 (with a suitable value for B, which will be chosen in the third step of the
proof) and Lemma 10 we can combine an attention layer and a pointwise feedforward layer
such that the following holds: They get as input an approximation z̃0,j of z0,j where z0,j is
given as in Lemma 9 and where the component (s−1)·I+d+l+2 of z0,j is zero, and they
modify the components (s−1)·I+d+l+2 and (s−1)·I+d+l+3 of z0,j . More precisely, they
combine the attention head of Lemma 9 and the pointwise feedforward neural network of
Lemma 10 such that they produce an output ỹj where ỹ

((s−1)·I+d+l+3)
1 is an approximation

of the product of an approximation of either z(d+1)
0,1 = 1 or z((s−1)·I+d+l+3)

0,1 and one of the
functions

x(k) 7→ 1, x(k) 7→ x(k) and x(k) 7→ (x(k) − ur)+ (r ∈ {1, . . . ,K − 1})
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and where ỹ(r)
j is approximately equal to z(r)

0,j otherwise (r ∈ {(s− 1) · I + 1, . . . , s · I} \
{(s − 1) · I + d + l + 2, (s − 1) · I + d + l + 3}). Using this M · (d · l) times we get an
approximation of

αs

d·l∏
k=1

Bjs,k(x(k)) (55)

in z((s−1)·I+(d+l+3))
M ·d,1 for s = 2, . . . , h.

In the second step of the proof we show how one pair of attention head and pointwise
feedforward neural network can be used to compute the sum of the values in (55). To do
this, we chooseWvalue,M ·(d·l)+1 = 0 (which results in yM ·(d·l)+1 = zM ·(d·l) and ỹM ·(d·l)+1 ≈
z̃M ·(d·l)) and choose W1,M ·(d·l)+1, b1,M ·(d·l)+1, W2,M ·(d·l)+1, b2,M ·(d·l)+1, such that

W2,M ·(d·l)+1 · σ
(
W1,M ·(d·l)+1 · yM ·(d·l)+1 + b1,M ·(d·l)+1

)
+ b2,M ·(d·l)+1

=



0
...
0

−(σ(y
(i)
M ·d+1,1)− σ(−y(i)

M ·d+1,1)) + σ(
∑h

s=2 y
(s−1)·I+(d+l+3)
M ·d+1,1 )− σ(−

∑h
s=2 y

(s−1)·I+(d+l+3)
M ·d+1,1 )

0
...
0


holds, where the nonzero entry is in row number i.
In the third step of the proof we analyze the error occurring in the above approximation.

Here we describe in particular how the values of B in the application of Lemma 9 need
to be chosen. In the applications of Lemma 9 we will have

‖z0‖∞ ≤ (2 ·A)M ·d·l and |β| ≤ A.

In the first layer we set
B = B1 = c29 · c2·M ·d·l+3,

which implies

168 · dkey · τ2 · l · (|β|+ 1) · ‖z0‖2∞ ·max{(c · ε)2, 1} ≤ c30 ·A2·M ·d·l+1 ·max{(c · ε)2, 1}
≤ c30 · c2·M ·d·l+3 ·max{ε2, 1} ≤ B1.

From this we can conclude by Lemma 9 that the output of the first attention head has
an error not exceeding

136 · dkey · τ3 · l · (|β|+ 1) · ‖z0‖3∞ ·B1 ·max{(c · ε)3, 1} · ε
+25 · (|β|+ 1) · ‖z0‖∞ ·max{c · ε, 1} · (c · ε)
≤ c31 · c5·M ·d·l+7 · ε.
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Application of Lemma 10 (where the input is bounded in absolute value by c32 ·AM ·d·l ≤
c32 ·cM ·d·l) yields that after the pointwise feedforward neural network the error is maximal

δ1 = c33 · n · dmodel · c6·M ·d·l+7 · ε.

In the second level we set

B = B2 = c34 · n2 · d2
model · c14·M ·d·l+14

which implies

168 · dkey · τ2 · l · (|β|+ 1) · ‖z0‖2∞ ·max{δ2
1 , 1}

≤ c35 · c2·M ·d·l max{(n · dmodel · c6·M ·d·l+7 · ε)2, 1}
≤ c35 · n2 · d2

model · c14·M ·d·l+14 ·max{ε2, 1} ≤ B2.

From this we can conclude by Lemma 9 that the output of the second attention head
has error not exceeding

136 · dkey · τ3 · l · (|β|+ 1) · ‖z0‖3∞ ·B2 ·max{(c33 · n · dmodel · c14·M ·d·l+14 · ε)3, 1} · ε
+25 · (|β|+ 1) · ‖z0‖∞ ·max{c33 · n · dmodel · c14·M ·d·l+14 · ε, 1} · (c33 · n · dmodel
·c14·M ·d·l+14 · ε)
≤ c36 · n5 · (dmodel)5 · c59·M ·d·l+57 · ε.

Application of Lemma 10 (where the input is bounded in absolute value by c37 · cM ·d·l)
yields that after the second pointwise feedforward neural network the error is bounded
above by

c38 ·n · cM ·d·l ·dmodel ·n5 ·dmodel · c59·M ·d·l+57 · ε ≤ c38 ·n61 · (dmodel)61 · c82·(M ·d·l+1) · ε =: δ2.

Arguing recursively with value

Br = c39,r · n2·6r−1 · (dmodel)2·6r−1 · c4·8r·(M ·d·l+1)

on level r ∈ {1, . . . ,M · (d · l)} we see that after level r the error of the output is at most

δr = c40,r · n6r · (dmodel)6r · c8r+1·(M ·d·l+1) · ε.

The last pair of attention head and pointwise feedforward neural network in level M ·
(d · l) + 1, where the entries in all matrices are bounded by a constant and all entries in
all matrices in the attention head are all close to zero, increases this error at most by a
factor

‖zM ·(d·l)‖∞ · c41 · h · dmodel
(cf., Step 2 in the proof of Lemma 10), which implies that the error of the output of our
transformer network is bounded by

c42 · n6M·d·l+1 · (dmodel)6M·d·l+1 · c8M·d·l+2·(M ·d·l+1) · ε.
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�
Next we show how we can approximate a function which satisfies a hierarchical com-

position model by a Transformer encoder. In order to formulate this result, we introduce
some additional notation. In order to compute a function h(κ)

1 ∈ H(κ,P) one has to com-
pute different hierarchical composition models of some level i (i ∈ {1, . . . , κ − 1}). Let
Ñi denote the number of hierarchical composition models of level i, needed to compute
h

(κ)
1 . Let

h
(i)
j : Rd·l → R (56)

be the j–th hierarchical composition model of some level i (j ∈ {1, . . . , Ñi}, i ∈ {1, . . . , κ}),
that applies a (p

(i)
j , C)–smooth function g(i)

j : RK
(i)
j → R with p(i)

j = q
(i)
j + s

(i)
j , q(i)

j ∈ N0

and s
(i)
j ∈ (0, 1], where (p

(i)
j ,K

(i)
j ) ∈ P (and K

(1)
j = d · l (j = 1, . . . , Ñ1)). With this

notation we can describe the computation of h(κ)
1 (x) recursively as follows:

h
(i)
j (x) = g

(i)
j

(
h

(i−1)∑j−1
t=1 K

(i)
t +1

(x), . . . , h
(i−1)∑j
t=1K

(i)
t

(x)

)
(57)

holds for j ∈ {1, . . . , Ñi} and i ∈ {2, . . . , κ}, and

h
(1)
j (x) = g

(1)
j

(
x
π(

∑j−1
t=1 K

(1)
t +1)

, . . . , x
π(

∑j
t=1K

(1)
t )

)
(58)

holds for j ∈ {1, . . . , Ñ1} for some function π : {1, . . . , Ñ1} → {1, . . . , d}. Here the
recursion

Ñl = 1 and Ñi =

Ñi+1∑
j=1

K
(i+1)
j (i ∈ {1, . . . , κ− 1}) (59)

holds.

Theorem 3 Let τ ∈ {l+1, l+2, . . . , l+d+1}. Let A ≥ 1, let m : Rd·l → R be contained
in the class H(κ,P) for some κ ∈ N and P ⊆ [1,∞) × N. Let Ñi be defined as in
(59). Each m consists of different functions h(i)

j (j ∈ {1, . . . , Ñi}, i ∈ {1, . . . , κ}) defined

as in (56), (57) and (58). Assume that the corresponding functions g(i)
j are Lipschitz

continuous with Lipschitz constant CLip ≥ 1 and satisfy

‖g(i)
j ‖

C
q
(i)
j (RK

(i)
j )
≤ c43

for some constant c43 > 0. Denote by Kmax = maxi,jK
(i)
j < ∞ the maximal input

dimension and set qmax = maxi,j q
(i)
j <∞, where q(i)

j is the integer part of the smoothness

p
(i)
j of g(i)

j . Let A ≥ 1. Choose h ∈ N such that

c44 ≤ h ≤ n (60)
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holds for n large and for some sufficiently large constant c44, choose

I ≥
κ∑
i=1

Ñi + d+ l + 4 and dkey ≥ 3

and set
N = I · (qmax ·Kmax + 1), dmodel = h · I, dv = I.

Then there exists a transformer network fϑ, where the matrices in the attention heads
have in each row at most nonzero τ entries, where all matrices Wr,1 and Wr,2 in the
pointwise feedforward neural networks have the property that in each row of Wr,1 and in
each column of Wr,2 there are at most τ nonzero components, and where all parameters
are bounded in absolute value by c45 ·nc46 provided c45, c46 > 0 are sufficiently large, such
that for each Transformer network fϑ̃ which has the same structure and which weights
are in supremum norm not further away than

0 ≤ ε ≤ 1

c47

from the weights of this network for some suitable large constant c47 ≥ 1 and where the
matrices W̃query,r,s, W̃key,r,s and W̃value,r,s satisfy the assumptions of Lemma 9, satisfies
for n large

‖fϑ̃ −m‖∞,[−A,A]d·l ≤ c48 · (Kmax + 1)κ ·max
j,i

h−p
(i)
j /K

(i)
j

+c49 · n(I+1)·(qmax·Kmax+2) · d(I+1)·(qmax·Kmax+1)
model · ε

provided ε ≥ 0 satisfies

ε ≤ 1

2 · c50 · n8(
∑κ
i=1

Ñs)·(2·qmax·Kmax+4) · d8(
∑κ
i=1

Ñs)·(2·qmax·Kmax+4)

model

. (61)

Proof. From the Lipschitz continuity of the g(i)
j and the recursive definition of the h(i)

j

we conclude that there exists 1 ≤ Ā ≤ c51 ·A such that

h
(i)
j (x) ∈ [−Ā, Ā] (62)

holds for all x ∈ [−A,A]d·l, j ∈ {1, . . . , Ñi} and i ∈ {1, . . . , κ− 1}.
Our transformer encoder successively approximates h(1)

1 (x), . . . , h(1)
N1

(x), h(2)
1 (x), . . . ,

h
(2)
N2

(x), . . . , h(κ)
1 (x) and saves the computed values successively in z(d+l+5)

r,1 , z(d+l+6)
r,1 , . . . ,

z
(d+l+4+

∑κ
i=1 Ñi)

r,1 . Here h(j)
i is approximated by computing in a first step a truncated

power basis of a tensor product spline space of degree q(j)
i on an equidistant grid in

[−Ā− 1, Ā+ 1]K
(j)
i
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consisting of h− 1 basis functions, which are evaluated at the arguments of h(j)
i in (58),

and by using in a second step a linear combination of these basis functions to approximate

g
(i)
j

(
h

(i−1)∑j−1
t=1 K

(i)
t +1

(x), . . . , h
(i−1)∑j
t=1K

(i)
t

(x)

)
.

The approximate computation of this truncated power basis can be done as in Lemma
11 using layers (Ñi−1 + j − 1) · (qmax ·Kmax + 1) + 1 till (Ñi−1 + j) · (qmax ·Kmax + 1) of
our transformer encoder. Here the computed values of this basis will have an error not
exceeding

c51 · n8(
∑i−1
s=1 Ñs+j)·(2·qmax·Kmax+4)

· d8(
∑i−1
s=1 Ñs+j)·(2·qmax·Kmax+4)

model · ε.

Using standard approximation results from spline theory (cf., e.g., Theorem 15.2 and
proof of Theorem 15.1 in Györfi et al. (2002) and Lemma 1 in Kohler (2014)) and the
Lipschitz continuity of g(i)

j this results in an approximation

g̃
(i)
j

of g(i)
j which satisfies

‖g̃(i)
j − g

(i)
j ‖
∞,[−Ā−1,Ā+1]

K
(i)
j

(63)

≤ c52 · h−p
(i)
j /K

(i)
j + c51 · h · n8(

∑i−1
s=1 Ñs+j)·(2·qmax·Kmax+4)

· d8(
∑i−1
s=1 Ñs+j)·(2·qmax·Kmax+4)

model · ε

≤ c52 · h−p
(i)
j /K

(i)
j + c51 · n8(

∑i−1
s=1 Ñs+j)·(2·qmax·Kmax+4)

· d8(
∑i−1
s=1 Ñs+j)·(2·qmax·Kmax+4)

model · ε.

The approximation h̃(κ)
1 (x) of h(κ)

1 (x) which our transformer encoder computes is defined
as follows:

h̃
(1)
j (x) = g̃

(1)
j

(
x
π(

∑j−1
t=1 K

(1)
t +1)

, . . . , x
π(

∑j
t=1K

(1)
t )

)
for j ∈ {1, . . . , Ñ1} and

h̃
(i)
j (x) = g̃

(i)
j

(
h̃

(i−1)∑j−1
t=1 K

(i)
t +1

(x), . . . , h̃
(i−1)∑j
t=1K

(i)
t

(x)

)
for j ∈ {1, . . . , Ñi} and i ∈ {2, . . . , κ}.

Assume that (62) holds. From (61), (62) and (63) we conclude

|h̃(i)
j (x)| ≤ |h̃(i)

j (x)− h(i)
j (x)|+ |h(i)

j (x)| ≤ Ā+ 1.

Consequently we get from (63) for n sufficiently large

|h̃(i)
j (x)− h(i)

j (x)|

≤ |g̃(i)
j

(
h̃

(i−1)∑j−1
t=1 K

(i)
t +1

(x), . . . , h̃
(i−1)∑j
t=1K

(i)
t

(x)

)
− g(i)

j

(
h̃

(i−1)∑j−1
t=1 K

(i)
t +1

(x), . . . , h̃
(i−1)∑j
t=1K

(i)
t

(x)

)
|
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+|g(i)
j

(
h̃

(i−1)∑j−1
t=1 K

(i)
t +1

(x), . . . , h̃
(i−1)∑j
t=1K

(i)
t

(x)

)
− g(i)

j

(
h

(i−1)∑j−1
t=1 K

(i)
t +1

(x), . . . , h
(i−1)∑j
t=1K

(i)
t

(x)

)
|

≤ c52 · h−p
(i)
j /K

(i)
j + c51 · n8(

∑i−1
s=1 Ñs+j)·(2·qmax·Kmax+4)

· d8(
∑i−1
s=1 Ñs+j)·(2·qmax·Kmax+4)

model · ε

+|g(i)
j

(
h̃

(i−1)∑j−1
t=1 K

(i)
t +1

(x), . . . , h̃
(i−1)∑j
t=1K

(i)
t

(x)

)
− g(i)

j

(
h

(i−1)∑j−1
t=1 K

(i)
t +1

(x), . . . , h
(i−1)∑j
t=1K

(i)
t

(x)

)
|

≤ c52 · h−p
(i)
j /K

(i)
j + c51 · n8(

∑i−1
s=1 Ñs+j)·(2·qmax·Kmax+4)

· d8(
∑i−1
s=1 Ñs+j)·(2·qmax·Kmax+4)

model · ε

+c53 ·
K

(i)
j∑

s=1

|h̃(i−1)∑j−1
t=1 K

(i)
t +s

(x)− h(i−1)∑j−1
t=1 K

(i)
t +s

(x)|,

where the last inequality follows from the Lipschitz continuity of g(i)
j . Together with

|h̃(1)
j (x)− h(1)

j (x)| ≤ c54 · h−p
(1)
j /K

(1)
j + c55 · n8j·(2·qmax·Kmax+4) · d8j·(2·qmax·Kmax+4)

model · ε,

which follows again from (63), an easy induction shows

|h̃(κ)
1 (x)− h(κ)

1 (x)| ≤ c56 · (Kmax + 1)κ ·max
j,i

h−p
(i)
j /K

(i)
j

+c57 · n8(
∑κ
s=1 Ñs)·(2·qmax·Kmax+4)

· d8(
∑κ
s=1 Ñs)·(2·qmax·Kmax+4)

model · ε.

�

Remark 6 It follows from the proof of Theorem 3 (i.e., in particular from the proof of
Lemma 9) that even if ε does not satisfy (63) then the all maximal attentions are attended
at some data-independent indices provided 0 ≤ ε ≤ 1/c58 holds.

Lemma 12 Set

f(z) =


∞ , z = 1

log z
1−z , 0 < z < 1

−∞ , z = 0,

let K ∈ N with K ≥ 6 and let A ≥ 1. Let m : Rd·l → [0, 1] and let ḡ : Rd·l → R such that
‖ḡ −m‖∞,[−A,A]d·l ≤ ε for some

0 ≤ ε ≤ 1

K
.

Then there exists a neural network f̄ : R → R with ReLU activation function, and one
hidden layer with 3 ·K + 9 neurons, where all the weights are bounded in absolute value
by K, such that for each network f̃ : R→ R which has the same structure and which has
weights which are in supremum norm not more than

0 ≤ ε̄ ≤ 1
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away from the weights of the above network we have

sup
x∈[−A,A]d·l

(∣∣∣m(x) ·
(
ϕ(f̃(ḡ(x))− ϕ(f(m(x))

)∣∣∣
+
∣∣∣(1−m(x)) ·

(
ϕ(−f̃(ḡ(x)))− ϕ(−f(m(x))

)∣∣∣)

≤ c58 ·
(

logK

K
+ ε

)
+ 132 ·K2 · ε̄.

Proof. In the first part part of the proof we show the assertion in case ε̄ = 0.
For k ∈ {−1, 0, . . . ,K + 1} define

Bk(z) =


0 , z < k−1

K

K · (z − k−1
K ) , k−1

K ≤ z < k
K

K · (k+1
K − z) , kK ≤ z <

k+1
K

0 , z ≥ k+1
K ,

(which implies Bk(k/K) = 1 and Bk(j/K) = 0 for j ∈ Z \ {k}) and set

f̄(z) = f(1/K) · (B−1(z) +B0(z)) +

K−1∑
k=1

f(k/K) ·Bk(z) + f(1− 1/K) · (BK(z) +BK+1(z))

=:
K+1∑
k=−1

ak ·Bk(z).

Then f̄ interpolates the points (−1/K, f(1/K)), (0, f(1/K)), (1/K, f(1/K)), (2/K, f(2/K)),
. . . , ((K − 1)/K, f((K − 1)/K)), (1, f((K − 1)/K)) and (1 + 1/K, f((K − 1)/K)),
is zero outside of (−2/K, 1 + 2/K) and is linear on each interval [k/K, (k + 1)/K]
(k ∈ {−2, . . . ,K + 1}). Because of

Bk(z) = σ

(
K ·

(
z − k − 1

K

))
− 2 · σ

(
K ·

(
z − k

K

))
+ σ

(
K ·

(
z − k + 1

K

))
,

f̄ can be computed by a neural network with ReLU activation function and one hidden
layer with 3 · (K + 3) = 3 ·K + 9 neurons. Set

h1(z) = ϕ(f(z)) = log

(
1 + exp

(
− log

z

1− z

))
= log

(
1 +

1− z
z

)
= − log z

and
h2(z) = ϕ(−f(z)) = log

(
1 + exp

(
log

z

1− z

))
= − log(1− z).

First we consider the case m(x) ∈ [0, 2/K], which implies

f(m(x)) ≤ f(2/K) = − log(K/2− 1) < 0.
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In this case we have −1/K ≤ ḡ(x) ≤ 3/K and

− log(K − 1) = f(1/K) ≤ f̄(ḡ(x)) ≤ f(3/K) = − log(K/3− 1)

(where we have used that f̄ is monotone increasing and satisfies f̄(− 1
K ) = f( 1

K ) and
f̄( 3

K ) = f( 3
K )). Consequently we get∣∣m(x) ·

(
ϕ(f̄(ḡ(x))− ϕ(f(m(x))

)∣∣ ≤ m(x) · ϕ(f̄(ḡ(x)) +m(x) · h1(m(x))

≤ 2

K
· log(1 + exp(log(K − 1))) +m(x) · log(

1

m(x)
)

≤ 4 · logK

K

(where we have used the inequality z · log(1/z) ≤ (2/K) · log(K/2) for 0 < z < 2/K) and∣∣(1−m(x)) ·
(
ϕ(−f̄(ḡ(x))− ϕ(−f(m(x))

)∣∣
≤ ϕ(−f̄(ḡ(x)) + ϕ(−f(m(x))

= log(1 + exp(f̄(ḡ(x)))) + log(1 + exp(f(m(x))))

≤ log(1 + exp(− log(K/3− 1))) + log(1 + exp(− log(K/2− 1)))

≤ 2 · exp(− log(K/3− 1)) =
6

K − 3
.

Similarly we get in case m(x) ≥ 1− 2/K∣∣m(x) ·
(
ϕ(f̄(ḡ(x))− ϕ(f(m(x))

)∣∣+
∣∣(1−m(x)) ·

(
ϕ(−f̄(ḡ(x))− ϕ(−f(m(x))

)∣∣
≤ 12 · logK

K − 3
.

Hence it suffices to show

sup
x∈Rd,

m(x)∈[2/K,1−2/K]

(∣∣m(x) ·
(
ϕ(f̄(ḡ(x))− ϕ(f(m(x))

)∣∣
+
∣∣(1−m(x)) ·

(
ϕ(−f̄(ḡ(x))− ϕ(−f(m(x))

)∣∣)

≤ c59 · (
logK

K
+ ε).

By the monotonicity of f , |f ′(z)| = 1
z·(1−z) ≥ 1 for z ∈ (0, 1), the mean value theorem

and the definition of f̄ we conclude that for any x ∈ Rd·l with m(x) ∈ [2/K, 1− 2/K] we
find ξx, δx ∈ R with |ξx| ≤ 1

K , |δx| ≤ 1
K + ε and m(x) + δx ∈ [1/K, 1− 1/K] such that

f̄(ḡ(x)) = f(ḡ(x) + ξx) = f(m(x) + δx). (64)

This implies

sup
x∈Rd,

m(x)∈[2/K,1−2/K]

(∣∣m(x) ·
(
ϕ(f̄(ḡ(x))− ϕ(f(m(x))

)∣∣

60



+
∣∣(1−m(x)) ·

(
ϕ(−f̄(ḡ(x))− ϕ(−f(m(x))

)∣∣)

= sup
x∈Rd,

m(x)∈[2/K,1−2/K]

(
|m(x)| · |h1(m(x) + δx)− h1(m(x))|

+|1−m(x)| · |h2(m(x) + δx)− h2(m(x))|

)
.

Consequently it suffices to show that there exist constants c60, c61 > 0 such that we have
for any z ∈ [2/K, 1− 2/K] and any δ ∈ R with |δ| ≤ 1

K + ε and z + δ ∈ [1/K, 1− 1/K]

|z| · |h1(z + δ)− h1(z)| ≤ c60 ·
(

1

K
+ ε

)
(65)

and
|1− z| · |h2(z + δ)− h2(z)| ≤ c61 ·

(
1

K
+ ε

)
. (66)

Obviously

h′1(z) = −1

z
.

By the mean value theorem we get for some ξ ∈ [min{z + δ, z},max{z + δ, z}]

|z| · |h1(z + δ)− h1(z)| = |z| · 1

|ξ|
· |δ| ≤ 4 · |δ| ≤ 4 ·

(
1

K
+ ε

)
,

where we have used that z, z + δ ∈ [1/K, 1− 1/K] and |δ| ≤ 2/K imply 4|ξ| ≥ |z|.
In the same way we get

h′2(z) =
1

1− z
and

|1− z| · |h2(z + δ)− h2(z)| = |1− z| · 1

|1− ξ|
· |δ| ≤ 4 · |δ| ≤ 4 ·

(
1

K
+ ε

)
.

In the second step of the proof we show that if a network f̃ has the same structure as
the network f̄ in the first step of the proof and if the supremum norm distance between
the weights of f̃ and f̄ is at most ε, then we have:

sup
x∈Rd·l

∣∣∣f̃(ḡ(x)− f̄(ḡ(x))
∣∣∣ ≤ 11 · (3 ·K + 9) ·K · ε̄.

Let

f(z) =

Jn∑
j=1

v
(1)
j · σ

(
v

(0)
j,1 · z + v

(0)
j,0

)
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be a neural network with one hidden layer with Jn neurons, where all the weights are
bounded in absolute value by β = K. It suffices to show that for any z ∈ [−1, 2] and any
network f̃ which has the same structure as f and where the weights are in supremum
norm not further away from the weights of f than ε̄, it holds

|f̃(z)− f(z)| ≤ 11 · β · Jn · ε̄.

To prove this we observe

|ṽ(0)
i,1 · z + ṽ

(0)
i,0 − (v

(0)
i,1 · z + v

(0)
i,0 )| ≤ |(ṽ(0)

i,1 − v
(0)
i,1 ) · z|+ ε̄ ≤ 2 · ε̄+ ε̄ = 3 · ε̄,

which implies
|σ(ṽ

(0)
i,1 · z̃ + ṽ

(0)
i,0 )− σ(v

(0)
i,1 · z + v

(0)
i,0 )| ≤ 3 · ε̄,

and
|σ(ṽ

(0)
i,1 · z̃ + ṽ

(0)
i,0 )| ≤ 3 · ε̄+ |σ(v

(0)
i,1 · z + v

(0)
i,0 )| ≤ 3 · ε̄+ 5β ≤ 8β.

Hence we have

|f̃(z)− f(z)| =

∣∣∣∣∣∣
Jn∑
j=1

ṽ
(1)
j · σ

(
ṽ

(0)
j,1 · z + ṽ

(0)
j,0

)
−

Jn∑
j=1

v
(1)
j · σ

(
v

(0)
j,1 · z + v

(0)
j,0

)∣∣∣∣∣∣
≤

Jn∑
j=1

|ṽ(1)
j − v

(1)
j | · σ

(
ṽ

(0)
j,1 · z + ṽ

(0)
j,0

)

+

Jn∑
j=1

|v(1)
j | ·

∣∣∣σ (ṽ(0)
j,1 · z + ṽ

(0)
j,0

)
− σ

(
v

(0)
j,1 · z + v

(0)
j,0

)∣∣∣
≤ 8 · β · Jn · ε̄+ β · Jn · 3 · ε̄ ≤ 11 · β · Jn · ε̄,

which yields the assertion.
Since ϕ is Lipschitz continuous the assertion of Lemma 12 follows from steps 1 and 2.

�

Lemma 13 Let A ≥ 1 and let 0 ≤ ε ≤ 1/(2 · c62). Let fϑ be a transformer classifier
defined as in Section 2 where the weights in all attention units and in all piecewise
feedforward networks are in supremum norm not further away than 1/(2 · c62) from the
weights of the transformer network in Theorem 3, and where the weights in the feedfoward
network are not further away than ε from the weights of the feedforward neural network
in Lemma 12. Let fϑ̃ be a transformer classifier of the same form which satisfies

‖ϑ̃− ϑ‖∞ ≤ ε.

Assume dff = 2 · h + 2, h ≤ c64 · n, dmodel = h · I and I = dlog ne. Then we have for
c65, c66 > 0 sufficiently large

‖fϑ̃ − fϑ‖[−A,A]d·l,∞ ≤ c65 · nc66 · ‖ϑ̃− ϑ‖∞.
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Proof. Since the weights in the transformer classifiers fϑ and fϑ∗ are not further away
than 1/c63 from the weights of the transformer network in Theorem 3, it follows from the
proof of Theorem 3 that in both transformer network all maximal attention are attained
at the same indices, namely at the indices where the transformer network in Theorem 3
attains its maximal attentions (cf., Remark 6). Consequently we can ignore the selection
of the maximal attention in the rest of the proof.
Let

qk,r−1,s,i = Wquery,k,r,s · zk,r−1,i, kk,r−1,s,i = Wkey,k,r,s · zk,r−1,i,

vk,r−1,s,i = Wvalue,k,r,s · zk,r−1,i, q̃k,r−1,s,i = W̃query,k,r,s · z̃k,r−1,i,

k̃k,r−1,s,i = W̃key,k,r,s · z̃k,r−1,i, ṽk,r−1,s,i = W̃value,k,r,s · z̃k,r−1,i

where all the weights in the matrices above are bounded in absolute value by B ≥ 1, and
set

yk,r,i = zk,r−1,i + vk,r−1,s,r1 · < qk,r−1,s,i, kk,r−1,s,r1 >

and
ỹk,r,i = z̃k,r−1,i + ṽk,r−1,s,r1 · < q̃k,r−1,s,i, k̃k,r−1,s,r1 > .

In the first step of the proof we show

‖ỹk,r,i − yk,r,i‖∞
≤ c67 · dkey · d3

model ·B2 · (max{‖zk,r−1,i‖∞, ‖z̃k,r−1,i‖∞, 1})3

·max
{
‖W̃query,k,r−1,s −Wquery,k,r−1,s‖∞, ‖W̃key,k,r−1,s −Wkey,k,r−1,s‖∞,

‖W̃value,k,r−1,s −Wvalue,k,r−1,s‖∞
}

+c68 · dkey · d3
model ·B3 · (max{‖zk,r−1,i‖∞, ‖z̃k,r−1,i‖∞, 1})2 · ‖z̃k,r−1 − zk,r−1‖∞.

We have

‖ỹk,r,i − yk,r,i‖∞
≤ ‖z̃k,r,i − zk,r,i‖∞ + ‖ṽk,r,r1 − vk,r,r1‖∞ · | < q̃k,r,i, k̃k,r,r1 > |

+‖vk,r,r1‖∞ · | < q̃k,r,i, k̃k,r,r1 > − < qk,r,i, kk,r,r1 > |.

With

‖ṽk,r,r1 − vk,r,r1‖∞
≤ ‖(W̃value,k,r,s −Wvalue,k,r,s) · z̃k,r−1,r1‖∞ + ‖Wvalue,k,r,s · (z̃k,r−1,r1 − zk,r−1,r1)‖∞
≤ dmodel · ‖W̃value,k,r,s −Wvalue,k,r,s‖∞ · ‖z̃k,r−1,r1‖∞

+dmodel ·B · ‖z̃k,r−1,r1 − zk,r−1,r1‖∞,

| < q̃k,r,i, k̃k,r,r1 > | ≤ dkey ·B2 · dmodel · ‖z̃k,r−1,r1‖2∞,

‖vk,r,i‖∞ ≤ dmodel ·B · ‖zk,r−1,i‖∞
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and

| < q̃k,r,i, k̃k,r,r1 > − < qk,r,i, kk,r,r1 > |
≤ | < q̃k,r,i − qk,r,i, k̃k,r,r1 > |+ | < qk,r,i, k̃k,r,r1 − kk,r,r1 > |

≤ dkey ·
(
‖(W̃query,k,r,s −Wquery,k,r,s) · z̃k,r−1,i‖∞

+‖Wquery,k,r,s · (z̃k,r−1,i − zk,r−1,i)‖∞
)
· ‖k̃k,r,r1‖∞

+dkey · ‖qk,r,i‖∞ ·
(
‖(W̃key,k,r,s −Wkey,k,r,s) · z̃k,r−1,i‖∞

+‖Wkey,k,r,s · (z̃k,r−1,i − zk,r−1,i)‖∞
)

≤ dkey · (dmodel · ‖W̃query,k,r,s −Wquery,k,r,s‖∞ · ‖z̃k,r−1‖∞
+dmodel ·B · ‖z̃k,r−1 − zk,r−1‖∞) · dmodel ·B · ‖z̃k,r−1‖∞

+dkey · dmodel ·B · ‖zk,r−1‖∞ · (dmodel · ‖W̃key,k,r,s −Wkey,k,r,s‖∞ · ‖z̃k,r−1‖∞
+dmodel ·B · ‖z̃k,r−1 − zk,r−1‖∞)

we get the assertion.
Set

zr,s = yr,s +Wr,2 · σ (Wr,1 · yr,s + br,1) + br,2

and
z̃r,s = ỹr,s + W̃r,2 · σ

(
W̃r,1 · ỹr,s + b̃r,1

)
+ b̃r,2,

where all weights of the neural networks above are bounded in absolute value by B ≥ 1.
In the second step of the proof we show

‖zr,s − z̃r,s‖∞
≤ c69 · dff · dmodel ·B ·max{‖yr,s‖∞, ‖ỹr,s‖∞, 1}

·max
{
‖W̃r,2 −Wr,2‖∞, ‖W̃r,1 −Wr,1‖∞, ‖b̃r,2 − br,2‖∞, ‖b̃r,1 − br,1‖∞

}
+c70 · dff · dmodel ·B2 · ‖ỹr,s − yr,s‖∞.

We have

‖zr,s − z̃r,s‖∞
≤ ‖yr,s − ỹr,s‖∞ + ‖W̃r,2 · σ

(
W̃r,1 · ỹr,s + b̃r,1

)
−Wr,2 · σ (Wr,1 · yr,s + br,1) ‖∞

+‖b̃r,2 − br,2‖∞
≤ ‖yr,s − ỹr,s‖∞ + ‖(W̃r,2 −Wr,2) · σ

(
W̃r,1 · ỹr,s + b̃r,1

)
‖∞

+‖Wr,2 · (σ
(
W̃r,1 · ỹr,s + b̃r,1

)
− σ (Wr,1 · yr,s + br,1))‖∞ + ‖b̃r,2 − br,2‖∞

≤ ‖yr,s − ỹr,s‖∞ + dff · ‖W̃r,2 −Wr,2‖∞ · ‖W̃r,1 · ỹr,s + b̃r,1‖∞
+dff ·B · ‖W̃r,1 · ỹr,s −Wr,1 · yr,s + b̃r,1 − br,1‖∞ + ‖b̃r,2 − br,2‖∞.

64



Using
‖W̃r,1 · ỹr,s + b̃r,1‖∞ ≤ dmodel ·B · ‖ỹr,s‖∞ +B

and

‖W̃r,1 · ỹr,s −Wr,1 · yr,s‖∞
≤ ‖(W̃r,1 −Wr,1) · ỹr,s‖∞ + ‖Wr,1 · (ỹr,s − yr,s)‖∞
≤ dmodel · ‖W̃r,1 −Wr,1‖∞ · ‖ỹr,s‖∞ + dmodel ·B · ‖ỹr,s − yr,s‖∞

we get the assertion.
Let

f(z) =

Jn∑
j=1

v
(1)
j · σ

(
v

(0)
j,1 · z + v

(0)
j,0

)
and

f̃(z̃) =

Jn∑
j=1

ṽ
(1)
j · σ

(
ṽ

(0)
j,1 · z̃ + ṽ

(0)
j,0

)
,

where all the weights of the networks above are bounded in absolute value by B ≥ 1. In
the third part of the proof we show

|f̃(z̃)− f(z)| ≤ c71 · Jn ·B ·max{z̃, z, 1} ·max{|ṽ(1)
j − v

(1)
j |, |ṽ

(0)
j,1 − v

(0)
j,1 |, |ṽ

(0)
j,0 − v

(0)
j,0 |}

+c72 · Jn ·B2 · |z̃ − z|.

We have

|f̃(z̃)− f(z)|

≤
Jn∑
j=1

|ṽ(1)
j · σ

(
ṽ

(0)
j,1 · z̃ + ṽ

(0)
j,0

)
− v(1)

j · σ
(
v

(0)
j,1 · z + v

(0)
j,0

)
|

≤ Jn · max
j=1,...,Jn

(
|ṽ(1)
j − v

(1)
j | · σ

(
ṽ

(0)
j,1 · z̃ + ṽ

(0)
j,0

)
+|v(1)

j | · |σ
(
ṽ

(0)
j,1 · z̃ + ṽ

(0)
j,0

)
− σ

(
v

(0)
j,1 · z + v

(0)
j,0

)
|
)
.

With
σ
(
ṽ

(0)
j,1 · z̃ + ṽ

(0)
j,0

)
≤ |ṽ(0)

j,1 · z̃ + ṽ
(0)
j,0 | ≤ B · |z̃|+B

and

|σ
(
ṽ

(0)
j,1 · z̃ + ṽ

(0)
j,0

)
− σ

(
v

(0)
j,1 · z + v

(0)
j,0

)
|

≤ |ṽ(0)
j,1 · z̃ − v

(0)
j,1 · z + ṽ

(0)
j,0 − v

(0)
j,0 | ≤ |ṽ

(0)
j,1 · (z̃ − z)|+ |(ṽ

(0)
j,1 − v

(0)
j,1 ) · z|+ |ṽ(0)

j,0 − v
(0)
j,0 |

≤ B · |z̃ − z|+ |ṽ(0)
j,1 − v

(0)
j,1 | · |z|+ |ṽ

(0)
j,0 − v

(0)
j,0 |

we get the assertion.
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In the fourth part of the proof we use the above results to show the assertion of the
lemma.
All weights in the above transformer classifiers are bounded in absolute value by

c73 · nc74 + ε ≤ 2 · c73 · nc74 =: B.

Because of
‖yk,r‖∞ ≤ 2 · dff · d2

key · dmodel ·B3 ·max{‖zk,r−1‖3∞, 1},

‖zk,r‖∞ ≤ 4 · dff · dmodel ·B2 ·max{‖yk,r‖∞, 1}

and
‖z0,r‖∞ ≤ A

an easy induction shows

‖yk,r‖∞ ≤ 12832·r−2 · d42·r−2

ff · d42·r−2

model ·B92·r−2 ·A3r

and
‖zk,r‖∞ ≤ 12832·r−2 · d42·r−2+1

ff · d42·r−2+1
model ·B92·r−2+2 ·A3r

for r ≥ 1. The same inequalities also hold for ỹk,r and z̃k,r. This implies

max {‖yk,r‖∞, ‖ỹk,r‖∞, ‖zk,r‖∞, ‖z̃k,r‖∞} ≤ c75 · nc76

for r ≤ N , where c75 = c75(N), c76 = c76(N) > 0 are finite constants.
Consequently we can conclude from Step 1

‖ỹk,r,i − yk,r,i‖∞
≤ c77 · nc78 ·max

{
‖W̃query,k,r−1,s −Wquery,k,r−1,s‖, ‖W̃key,k,r−1,s −Wkey,k,r−1,s‖,

‖W̃value,k,r−1,s −Wvalue,k,r−1,s‖, ‖z̃k,r−1 − zk,r−1‖∞
}
,

from Step 2

‖zr,s − z̃r,s‖∞
≤ c79 · nc80 ·max

{
‖W̃r,2 −Wr,2‖∞, ‖W̃r,1 −Wr,1‖∞, ‖b̃r,2 − br,2‖∞,

‖b̃r,1 − br,1‖∞, ‖ỹr,s − yr,s‖∞
}
,

and from Step 3

‖fϑ̃ − fϑ‖[−A,A]d·l,∞

≤ c81 · nc82 ·max{|ṽ(1)
j − v

(1)
j |, |ṽ

(0)
j,1 − v

(0)
j,1 |, |ṽ

(0)
j,0 − v

(0)
j,0 |, ‖z̃N,1 − zN,1‖∞}.

Using these relations recursively we conclude

‖fϑ̃ − fϑ‖[−A,A]d·l,∞ ≤ c83 · nc84

for c83, c84 > 0 sufficiently large (and depending on N). �
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