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Abstract

Nonparametric regression with random design is considered. The Ly error with integra-
tion with respect to the design measure is used as error criterion. Over-parametrized deep
neural network estimates are defined with logistic activation function where all parame-
ters are learned by stochastic gradient descent. It is shown that the estimates achieve a
nearly optimal rate of convergence in case that the regression function is (p, C')-smooth.
In case that the regression function satisfies a projection pursuit model or more generally
a hierarchical composition model the estimate achieves a rate of convergence which does
not depend on the input dimension.
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1 Introduction

As demonstrated by the recent nobel prize in chemistry one half of which was awarded to
Demis Hassabis and John Jumper, who have developed with AlphaFold a deep learning
model able to predict protein structures (cf., e.g., Billings et al. (2019)), deep learning
had a major impact on modern science. This is thanks to its tremendous success in
applications, which include, besides the above mentioned application in chemistry, also
applications in image classification (cf., e.g., Krizhevsky, Sutskever and Hinton (2012)),
language recognition (cf., e.g., Kim (2014)), machine translation (cf., e.g., Wu et al.
(2016)), mastering of games (cf., e.g., Silver et al. (2017)) or simulation of human
conversation (cf., e.g., Zong and Krishnamachari (2022)). Given this large success in
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applications, there is also an increasing interest in theoretical understanding of deep
learning. And this is where our article makes its contributions.

We study deep learning in the context of nonparametric regression. Here we are given
an R? x R-valued random vector (X,Y) with EY? < oo, and our goal is to predict the
value of Y given the value of X. Let m(z) = E{Y|X = x} be the regression function.
Then any measurable f : R? — R satisfies

B{|f(X) ~ Y} = B{jm(X) - Y[} + / () — m(z) PP (de) (1)

(cf., e.g., Section 1.1 in Gyorfi et al. (2002)), hence in view of minimizing the Lo risk (1)
of f the regression function m is the optimal predictor, and the Ly error

[17) = m(@)*Px (o 2)

describes how far the Lo risk of a function f is away from its optimal value.

In applications the distribution of (X,Y’) and hence also the corresponding regression
function m is typically unknown. But often it is possible to observe data from the un-
derlying distribution, and the task is to use this data to estimate the unknown regression
function. In view of minimization of the Lo risk of the estimate, here it is natural to use
the Ly error as an error criterion.

In order to introduce this problem formally, let (X,Y), (X1,Y1), ..., (Xn,Yn) be
independent and identically distributed. In nonparametric regression the data set

Dp ={(X1,Y1),..., (X, Ya)} (3)
is given, and the task is to construct an estimate
mn(-) = mp(-,Dy) : RT 5 R
such that its Lo error
[ () = mia) PP (o)

is small. A systematic introduction to nonparametric regression, its estimates and known
results can be found, e.g., in Gyorfi et al. (2002).

In deep learning the regression function is estimated by fitting a deep neural network
to the data. Such a deep neural network depends on an activation function o : R — R,
e.g., the logistic activation function

(4)

or the ReLU activation function



In its simplest form (multilayer feedforward neural network) it has a number L € N of
hidden layers (depth of the network) and a number r € N of hidden neurons per layer
(width of the network) and it is recursively defined by

L L 0
fw(w)—z w18 (@) + ),
k=1

where
l -1 -1
() _U<Zw( ) fwkl(x)"i_wz(,o )>

fori e {2,...,L}, and

_U<Zwlk x +w(0)>.

Here
w = (w(l)> c RT(d+D)+H(L=2)r(r+1)+2:(r+1)
ki il

is the vector of the weights of the network, and one constructs neural network regression
estimates by fitting these weights to the data, i.e., by using the data to select the weights
such that the resulting neural network is a good approximation of the regression function.

The simplest approach is to use the principle of the least squares and to define the
regression estimate by

my(-) = arg mln—Z\f - Y%

where F, is the set of all neural networks with depth L,, width r, and some given
activation function. Here the so—called empirical Lo risk is minimized over the set of
these networks.

The rate of convergence of the least squares estimates based on multilayer neural
networks has been analyzed in Kohler and Krzyzak (2017), Imaizumi and Fukamizu
(2018), Bauer and Kohler (2019), Suzuki and Nitanda (2019), Schmidt-Hieber (2020)
and Kohler and Langer (2021). One of the main results achieved in this context shows
that neural networks can achieve some kind of dimension reduction under rather general
assumptions. The most general form goes back to Schmidt-Hieber (2020). In order to
formulate it we need the following notion of smoothness.

Definition 1 Let p = q + s for some ¢ € Ng and 0 < s < 1. A function m : R* = R
is called (p, C)-smooth, if for every o = (av,. .., aq) € N& with Z;l:l o = q the partial
derivative 09m/(0x{" ... 0xy?) exists and satisfies

09m 0%9m

_ < (O - —zll®
8x{f‘1...8m3d(x) 3xf1...8x3‘d(z) < C-lx—=

for all x,z € RY, where || - || denotes the Buclidean norm.



Stone (1982) showed that in case of a (p, C')—smooth regression function the optimal
Minimax rate of convergence for the expected Lo error is

__2p
n 2vtd,

This rate suffers from the so—called curse of dimensionality: If the dimension d is large
compared to the smoothness p of the regression function, the exponent will be close to
zero and the rate of convergence will be rather slow. Since this rate is optimal, the
only way to circumvent this is to impose additional assumptions on the structure of the
regression function. Such constraints resulted in, e.g., additive models (cf., e.g., Stone
(1985)), interaction models (cf., e.g., Stone (1994)), single index models (cf., e.g., Hérdle,
Hall and Ichimura (1993), Hérdle and Stoker (1989), Yu and Ruppert (2002) and Kong
and Xia (2007)) or projection pursuit (cf, e.g., Friedman and Stuetzle (1981)), where
corresponding low dimensional rates of convergence can be achieved (cf., e.g., Stone
(1985, 1994) and Chapter 22 in Gyorfi et al. (2002)).

Schmidt-Hieber (2020) used an assumption of the following form to achieve a dimension
reduction for the least squares neural networks.

Definition 2 Let d € N and m : R* — R and let P be a subset of (0,00) x N.
a) We say that m satisfies a hierarchical composition model of level O with order and
smoothness constraint P, if there exists a K € {1,...,d} such that

m(x) = J}(K) fOT all x = (-r(l)a s 7x(d)>—|— € Rd

b) We say that m satisfies a hierarchical composition model of level | + 1 with order
and smoothness constraint P, if there exist (p, K) € P, C > 0, g : RE — R and
i fx + R — R, such that g is (p,C)-smooth, fi,...,fx satisfy a hierarchical
composition model of level | with order and smoothness constraint P and

m(x) = g(f1(x),..., fx(x)) for all x € RY.

Note that this assumption is more general then the assumption used in additive models,
interaction models, single index models or projection pursuit models.
Schmid-Hieber (2020) showed that suitable the least squares neural network regression
estimates achieve (up to some logarithmic factor) a rate of convergence of order
2p

max n 2r+tK
(p,K)eP

in case that the regression function satisfies a hierarchical composition model of some
finite level with order and smoothness constraint P. Since this rate of convergence does
not depend on the dimension d of X, this results shows that the least squares neural
network regression estimates are able to circumvent the curse of dimensionality in case
that the regression function satisfies a hierarchical composition model.

The least squares neural network estimates described above cannot be used in practice,
since the minimization of the empirical Lo risk with respect to the weights of the neural



network is a nonlinear minimization problem, and for solving this minimization problem
no feasible algorithm is known. In practice usually gradient descent (and its variants) are
applied to solve this problem approximately. To do this, one chooses (usually randomly)
a starting vector w(®) for the weights and then makes ¢, € N gradient descent steps

1 n
w) = wl=t — . Vw z_; [fwe-0(Xi) = Yil> (t=1,...,t)

with some stepsize A > 0. Then the estimate is defined by

M () = fn) (2).

A modification of the above gradient descent is stochastic gradient descent, where one
selects (e.g., randomly) for each gradient descent step one data point (X;,,Y;,) and
updates the weight vector by

wit = wl=D = X V[ fyen (X)) = Yi P (E=1,.. 1),

In this case one does not need to store the whole sample at once in the memory, which
is an advantage for large data sets.

As was shown in Zou et al. (2018), Du et al. (2019), Allen-Zhu, Li and Song (2019) and
Kawaguchi and Huang (2019), in case of over-parameterized deep neural networks (which
have much more weights than there are data points) the application of gradient descent
to over-parameterized deep neural networks leads to neural networks which minimize the
empirical Lo risk. Unfortunately, as was shown in Kohler and Krzyzak (2021), in general
the corresponding estimates do not behave well on the new independent data.

In order to get a good behaviour of the estimate on the new independent data, it
is necessary to study simultaneously the approximation error, the generalization error
and the optimization error (cf., e.g., Kutyniok (2020)). There exist various approaches
where these three components are studied simultaneously in some equivalent models of
deep learning. The most prominent approach here is the neural tangent kernel setting
proposed by Jacot, Gabriel and Hongler (2020). Here instead of a neural network estimate
a kernel estimate is studied and its error is used to bound the error of the neural network
estimate. For further results in this context see Hanin and Nica (2019) and the literature
cited therein. As was pointed out in Nitanda and Suzuki (2021) in most studies in
the neural tangent kernel setting the equivalence to deep neural networks holds only
pointwise and not for the global Ly error, hence from these result it is not clear how the
Ly error of the deep neural network estimate behaves. Nitanda and Suzuki (2021) were
able to analyze the global error of an over-parametrized shallow neural network learned
by gradient descent based on this approach. However, due to the use of the neural tangent
kernel, also the smoothness assumption of the function to be estimated has to be defined
with the aid of a norm involving the kernel, which does not lead to classical smoothness
conditions, which makes it hard to understand the meaning of the results. Furthermore,
their result did not specify how many neurons the shallow neural network must have, it
was only shown that the results hold if the number of neurons is sufficiently large, and it



is not clear whether it must grow, e.g., exponentially in the sample size or not. Another
approach where the estimate is studied in some asymptotically equivalent model is the
mean field approach, cf., Mei, Montanari, and Nguyen (2018), Chizat and Bach (2018)
or Nguyen and Pham (2020).

In a standard statistical setting all three of the above aspects have been studied simul-
taneously in Drews and Kohler (2023, 2024), Kohler and Krzyzak (2022, 2023) and Kohler
(2024) in case of over-parametrized deep neural network regression estimates learned by
gradient descent. Here the rate of convergence of the estimate in case of (p, C')-smooth
regression function was analyzed, and in case of interaction models it was shown that
these estimates achieve a dimension reduction. The basic idea in the proofs of these
results is that for smooth activation functions the inner weights do not change much
during learning if the stepsizes are sufficiently small and it was shown that at the same
time the outer weights will be chosen suitably by gradient descent. It can be shown that
the rates of convergence in these articles can also be achieved if only the weights of the
output layer are changed during gradient descent and all other weights retain their initial
values. This approach is related to the so—called random feature networks, where the
inner weights are not learned at all and gradient descent is applied only to the weights in
the output level, cf., e.g., Huang, Chen and Siew (2006) and Rahimi and Recht (2008a,
2008b, 2009).

In this article we use a similar approach and apply it to stochastic gradient descent. We
define in Section 2 a special topology, where we compute a linear combination of many
fully connected neural networks with logistic activation function in parallel and apply
stochastic gradient descent together with suitable projection operators applied to the
weights (cf., Section 2 for the details) in order to learn the weights. We show for suitably
chosen parameters of the estimate three different results for the rate of convergence of
the estimate: We show

B [ fia(z) — m(z) *Px(ds) < ey 0”50 5
in case of a (p, C)—smooth regression function, and then
E/ Ima(z) — m(2)|?Px (dz) < ¢ - (logn)¥? - n 21t ©)

in case of a regression function which satisfies a (p, C)—smooth projection pursuit model,
and finally we show

E/ Imp () — m(z))*Px (dz) < ez - (logn)*? - max n~ R (7)
(p,K)eP

in case of a regression function which satisfies a hierarchical composition model. Here
0 € (0,1) is arbitrary and the constants c1, ca and ¢3 depend on 4. In the first two results
the number of weights of the neural networks and the number of gradient descent steps
are bounded by a polynomial in the sample size, but in the third result both are required
to grow exponential in the sample size.



1.1 Notation

The sets of natural numbers, real numbers and nonnegative real numbers are denoted
by N, R and Ry, respectively. For z € R, we denote the smallest integer greater than or
equal to z by [z]. The Euclidean norm of z € R? is denoted by ||z||. For a closed and
convex set A C R? we denote by Projaz that element Projaxz € A with

_ Pro o Ll
lz = Projaz|| = min ||z — 2|
For f:RY = R
[flloo = sup | f(z)|
z€R4

is its supremum norm, and we set
[Fllseca = 5up 1 2)
€A

for A C R?, Furthermore we set

Hirt+ia ) ) ) )
1£lloacay -= max ‘ i i@ | It IS4 g da € No
for ACR% and f:R? — R.
A finite collection f1,..., fx : R? = R is called an L, e—covering of F on z7 if for all

ferF
Lo 1/p

hold. The L, e-covering number of F on z7 is the size N of the smallest L, e-covering
of F on z7 and is denoted by N (e, F, 27).
For z € R and 8 > 0 we define Tgz = max{—3, min{3, z}}. If f : RY — R is a function

then we set (Tsf)(z) =Tp (f(z)).

1.2 Qutline

The estimates are defined in Section 2. Section 3 contains the main results. The proofs
are given in Section 4.

2 Definition of the estimate

Throughout the paper we let o(x) = 1/(1 + e™*) be the logistic activation function.
We define the topology of our neural networks as follows: We let K, Ly, 7, € N be
parameters of our estimate. We consider neural networks which consist of K, fully
connected neural networks of depth L,, and width r,, computed in parallel. The output
of our network is then a linear combination of the outputs of these K, neural networks.



In these networks we will denote the weights in the k-th network by (w,(cl)i )il More
@

precisely, wy; j will be the weight between neuron j in layer [ and neuron ¢ in layer [ + 1.
Formally we define this network by setting

K'"/
Ln Ln
fule) =Y wit - i (@) (8)
k=1
for some ngl”%, . ,w%ﬂ")m € R, where f]ELl”) = ‘EVLZ)l are recursively defined by
! ! S (-1) -1
Jer@) = Foha(@) = o | Do w15 @) +wiy) (9)
j=1
£ (1-1) (1-1) _
or some wy ; o’y ., Wy, €ER (1=2,...,Ly) and
1 d 0
o (2) = fugi@) =0 Zwk R (10)
for some wl(c(,)z‘),m e ,w,(g?i)’d eR.
We initialize the weights w(®) = ((W(O))]E;l)l)j)k,z,jl as follows: We set
(W =0 (k=1,...,Ky), (11)
we choose (w(o))g’)m uniformly distributed on [—c¢i,,c1,]) if 1 € {1,..., L, — 1}, and we

choose (W(O))g)i)j uniformly distributed on [—c2,, c2n], Where ¢1p,c2, > 0 are param-
eters of the estimate. Here the random values are defined such that all components of
w(® are independent.

Then we perform ¢, € N stochastic gradient descent steps starting with

w®.
Here we assume that ¢, /n is a natural number, and for s € {1,...,t,/n} we let

j(s—1)~n7 cee ajs-nfl

be an arbitrary permutation of 1,...,n, we choose a stepsize A, > 0 and we set
Ly . Ly,
( (t+1)>§€’1’%>k = PT'O]A( ((W(t))l({:,l,i)k

2
Voo | Y = fww (X5) ;
(wk,l,l)k



((W(H_l))g)- i

v >k,z‘,j,l:l<Ln kyi,j

) @
= Projp ( <W(t)) ki lid<Ln

2
A V()0 egaicnn <th - fwm(Xﬁ)) )

fort=0,...,t, — 1. Here A is the set of all weight vectors (w ,(g ))k which satisfy

1,1
(Ln
Z’Wk11‘<7n and Z‘ kli

and B is the set of all weight vectors (w,(gl)l.j)k7i,j,l;l<Ln which satisfy

! l
W iiaier, = (WO Disarer, | < can
Again v,, a, and c3,, are parameters of the estimate.
Our estimate is then defined by
=
Z Ts, fow () (x €RY), (12)

where 8, = ¢4 - logn.

3 Main results

In our first result we analyze the rate of convergence of our estimate in case of a (p, C')—
smooth regression function.

Theorem 1 Let p,C > 0. Choose L,r € N with

L>logy(p+d) and r>2-(2p+d)-(p+d), (13)
let K, € N be such that
K
10':;L — 00 (n— o0) (14)
and set
2 ‘6 5 1
L,=L, 7,=m, Yn=0C- "Ny Qn=—¢, tn:(c7'n'Kn~|7 An = ,
n tn,
Cln = nl/(ptd). (log ”)Qa Con =C8, C3, =Cg-logn
and define the estimate as in Section 2.
Assume that the distribution of (X,Y) satisfies supp(Px) bounded,
E {ecww} < (15)



for some c19p > 0 and m(-) = E(Y|X =) (p,C)-smooth, and assume that cg is suffi-
ciently large. Then we have for any § > 0 that for n sufficiently large

E/ [ (z) — m(x)‘ZP)((d:c) <c .n72;£d+5

holds for some constant c; > 0 which depends on §.

In our second contribution we consider regression functions which satisfy a projection
pursuit model.

Theorem 2 Let § € (0,1/4). Let K, € N be such that

Ky
n(22p+50)-((p+1)2+d+3)2+2 =00 (n—00) (16)
and set
L,=L=3, r,=r=max{([p] +1)% 4}, =c T o, = ¢ LN
n — = 9, n — - p 3 s Yn = C11 s kp — C12 n4p+307

th = ME) Ky, A = facl,n =Copn =C13" np+5,63’n =logn
n
and define the estimate as in Section 2.
Assume that the distribution of (X,Y) satisfies supp(Px) bounded, assumption (15)

and

K
m(x) = ka(b}tc:c) (z € RY)
k=1

for some K € N, b, € R? and some (p,C)-smooth functions my, : R - R (k=1,..., K),
which satisfy

max_ [m\V 0 <eu (k=1,...,K).
s€Np:s<p

Then we have that for n sufficiently large
E [ male) - m()"Px(ds) < ca- (log)®/2 55770

holds for some constant co > 0 which depends on §.

Next we formulate a result concerning the estimation of a regression function which
satisfies a hierarchical composition model with smoothness and order constraint P C
[1,00) xN. Let H (¢, P) be the set of all functions which satisfy a hierarchical composition
model of level [ with order and smoothness constraint P. In order to compute a function

hgg) € H(¢,P), one has to compute different hierarchical composition models of some
level i (i € {1,...,£—1}). Let N; denote the number of hierarchical composition models

of level 7, needed to compute hgg). We denote in the following by

B R R (17)

10



the j—th hierarchical composition model of some level i (5 € {1,... ,Ni},z’ e{1,....0}),

. . (4) . . i i
that applies a (pg-z),C)fsmooth function g]@ : R — R with pg.z) = ](,Z) + s§ ), ](-) €
Ny and sgi) € (0,1], where (p§i),KJ(i)) € P. The computation of hge)(x) can then be
recursively described as follows:

(4) _ @) [ (G-1) (i—1)
0@ = (W50 g, @) ) (18)
for je{1,...,N;} and i € {2,...,¢} and

hél)(x) = gj(-l) (x(ﬂ(zi—ll Kfl)H)), o (T Kf”))) (19)

for some function 7 : {1,..., N1} — {1,...,d}.

Theorem 3 Assume that the distribution of (X,Y) satisfies supp(Px) bounded, assump-
tion (15) and that the regression function m(-) = E(Y'|X =) satisfies some hierarchical
composition model with order and smoothness constraint P described as above, where

(%)

|P| < oo. Assume that the functions gji are Lipschilz continuous with Lipschitz con-
stant Cprip > 1 (i.e., pg-i) > 1 holds for all i, j) and satisfy

9Pl o <es
CY (RY)

for some c15 > 0. Denote by Kypqp = max; j K]@ the mazimal input dimension and by

Pmaz = MaX; j p@ the mazimal smoothness of the functions gj(»i),
Let K,, € N be such that
K,
e(logﬁ—>oo (n — 00). (20)

Let 6 € (0,1) be arbitrary and set

L,=L=1-(8+ [logy(max Kaz,Pmaz +1)]) +1, 7= |c16-maxn ,

_ ) _ €18 — 3K _1
T = T O = e Rt ) 0 T [erg-n™ - Kal, An = tn
Clp = Cop = Cgp - mPPmasTHmas®s oy | — 091 - logm,

and define the estimate as in Section 2.
Then we have that for n sufficiently large

E/ () — m(z)2Px (dz) < c3 - (logn)¥? - max n R0
(n,K)eP

holds for some constant c3 > 0 which depends on §.

11



Remark 1. The network in Theorem 1 has only polynomially many weights (in the
sample size), it is trained by stochastic gradient descent, and it achieves a nearly optimal
rate of convergence in case that the regression function is (p, C')-smooth. For gradient
descent a similar result was shown in Kohler (2024).

Remark 2. The rate of convergence in Theorem 2 is not optimal, the optimal rate
of convergence for a (p, C')—smooth projection pursuit regression model should be close
to n~2P/(2p+1) ingtead of n~?/(2Pt1) ag in Theorem 2. However, Theorem 2 is the first
result which shows that with a polynomial size network (stochastic) gradient descent can
achieve a dimension reduction for projection pursuit.

Remark 3. As in Theorem 2 the rate of convergence in Theorem 3 is not optimal,
however, Theorem 3 is the first result showing that (stochastic) gradient descent can
achieve a dimension reduction in case of a hierarchical composition model. In contrast
to Theorem 2 it is required in more general setting of Theorem 3 that the network be of
exponential size (in the sample size).

4 Proofs

4.1 A general result

In the proofs of our main results we will apply the following general result. This theorem
is an adaption to regression of Theorem 1 in Kohler, Krzyzak and Sanger (2024), which
deals with pattern recognition.

Theorem 4 Assume that (X,Y) satisfies E{Y|X =z} is bounded and E{e®0Y’} < cc.
Let © be the set of all weight vectors w = (wi7j7k)(l))i7j7k7l which satisfy

0

Ly 0
w31 < Ams Jwl) gl < con+eany w4l < ern+ e

(led{l,...,L, —1}) for some vy, C1p, C2n, C3n >0, Let Cp, Dy, >0 . Assume

Ky
Ly Ly l _ (1 2
SIS @) — KGR @ < G- || il Drsgiace, = W0 Dragaa<s | 2D
k=1
for all w,w € © and all © € supp(X). Define the estimate as in Section 2 with
1
)\'n, = T
tn
and assume that on the event {max;—1 _, |Yi| < Bn}
Vot (Vi = fww (X)) < Dy (22)
(wk,l,l)k

o0

holds a.s. for allt =0,...,t, — 1. Let E, be an event which depends only on w(©, and
let (w*)\7) €R (k=1,...,K,) be such that

Ky K,
Ly L
SoIwIT < and Y1 < an

k=1 k=1

12



Then

E / () — () 2P x (dz)

2
<om (ig) + 0 /PR + B sup (B{ITs, fu(X) = VP = m(X) = VP’)

n

2
—= 3 (1T f(X0) = il = Im(X0) — Vi) ) }
1=1

2

B { / D, s aacrn) @)~ M@ Px(de) 1E"}
S (v (L2, Ko D

+ﬁn‘n‘/\n'Kn'Dn+(ﬁn+'7n)'Van'Cn'C3,n+Z|(W )]g,171’ + ¢ :

k=1 "

In the proof of Theorem 4 we will apply the following lemma, which will help us to
bound the optimization error for stochastic gradient descent.

Lemma 1 Let l1,1s,t, € N, let D,, > 0, let A C RY pe closed and conver, let B C Rz
and let Fy : Rh xR2 - R (t=0,...,t,—1) be functions such that for allt € {0,... t,—

1}

u— Fy(u,v) s differentiable and convex for all v € R

and
[(VuFy)(u,v)|| < Dy (23)

for all (u,v) € A x B. Choose (ugp,vo) € A X B, let v1,...,v, € B and set
U1 = Proja (up — A - (Vo Iy) (ug,v))  (68=0,...,t, — 1),

where

1
A= —.
tn
Let u* € A. Then it holds:
tn—1 tn—1 th—1
13 1< 1 < |lu* —uo|?> D2
T tE:O t(ug, v) < tn ;:1 #(u”, vo) + tn ;:1 (™, o) = Fy(u”, vo)| + —— 5t

Proof. By convexity of u — F;(u,v;) and because of u* € A we have

Ft(utavt) - Ft(U*,Ut)

<K (qut)(ut,’l}t), Ut — u* >
1

= T 22 <A (qut)(Ut,’Ut),ut —u* >

= (e = wF = N (VaF) (ug, o) 1P+ (e — w*[1° + A (VuF) (ug, v)]]%)

[\
.‘H
> >

13



(= l1Projalue = A+ (VuFy) (ur, v)) = w*|* + [lue — w*|* + A% [(VuF?) (ue, ve)[?)

= o (e =17 = flueer = w2 (T F) (g, ) ) -

This implies

1 ol 1 ol
. Z Fy(ug, ) — . Z Fy(u”, vy)
" =0 " =0
1 tnl
= Z (Fi(ue, ve) — Fe(u®, )
n t=
tn—1 tn—1
1% 1 N N 1 «— A\
<= oy (e =P = Jluger = a1P) + = D> 5 (V) (urs v) |2
tn 2-A tn 2
t=0 t=0
1 tn—1 1 tn—1
=520 (hue =P = e = w*1?) + 575 D I(VuFo) (e, )
t=0 " =0
tn—1
luo —w*[* | 1
< + o > (Va3 (ut, 00)|%
2 2-tz P

Using the above result and (23) we get

lu —uol2 . 1 %=

2
2 + 2. t% tz:; (Vo Fy) (ug, ve) ||

1 Ef . . [ -
E Fi(u*,v) + — |Fy(u®, v¢) — Fy(u®,vo)| + + :
t=0 tn t=0 2 2+ tn

IN
|
g
=
=
“@
+

IA
|

0

Proof of Theorem 4. In the first step of the proof we upper bound the expected Lo
error of the estimate by a sum of several terms.

Let E, be the event that E, and {max;,—1__,|Y;] < B,} hold. W.Lo.g. we assume
|mlco < Brn. We have

E/WM@—m@WPﬂm)

< B{ [ Imala) — m@)*Px(ds) - 1g, | +1-52 - PLES)

< E{(E{lma(X) = Y2y, w} — B{m(X) - Y}) - 15, } +4- 52 - P{Eg)

14



{(E{nthlTﬁﬂ w0 (X) = Y |Dn, w9} — E{|m(X) _YP}) .1En}
+4.- 82 - P{ES}

{ . thl (BAIT5, futo (X) = Y PP, WO} = E{fm(X) = YI2}) - 1En}
+4'53'P{E2}

tn—1
= E{tl > (E{|T5nfw<t> (X) = Y|P, w0} — E{|m(X) - Y}

™ =0
-2 (|T, X;,) =Y, 12— m(X;,) = Y;,1%) | 1z
: (| anw(t)( ]t) ]t| |m( ]t) ]t| ) 1B,

t 1

1 n

+2 E{t Z (|T5nfw(t) (th) - Y}t|2 - |m(th) - th|2) : 1En}
" =0

+4- 2 - P{ES}

tn/n sn—1
1 ZE{i > (E{rTﬁnm(X)—Y|2|Dn,w<°>}—E{m<X>—YP}

tn/n t=(s—1)n

-2 (|T,3nfw(f) (th) - th|2 - |m(th) - th|2) ) : 1En}

tn—1
1 n
2 E{t > (Tafato (X5) = Yi* = [m(X;) = Y3, [*) - 1En}

t=0
+4- By - P{E}}

tn/n sn—1
! ZE{i 3 (E{!Tgn e (X) = YP[D, w©} — E{Jm(X) — Y[2}

tn/n s=1 t=(s—1)n

-2 (|Tﬁnfw(5'n) (th) - }/jt|2 - |m(th) - }/jt|2) ) : 1En}

tn/n sn—1
Z E{ Z (E{|Tﬁnfw<t>(X) —Y)?|D,, w®} —
t=

n/n (s—1)n

E{’Tﬁnfw(s'n) (X) - Y|2‘Dnaw(0)}> ! 1En}

tn/n sn—1
2
tn/n Z E{ Z <|T5nfw(s‘“) (Xjf) B Y}f|

15



_’Tﬁnfw(t) (th) - th ’2> ) lEn}

tn—1
1 n
2 E{t > (Tsfao (X5) = Yi* = (X)) = Y [*) - 1En}

™ =0
+4- 8, - P{E}
=: Tl,n + T2,n + T3,n + T4,n + T5,n-

In the remainder of the proof we bound T}, for j € {1,...,5}.
In the second step of the proof we show

1
T5,n < c93- ﬁq% : <P(Ercl) + 7”L10> .

This follows from
P{E;} <P{E;} + P{ max [Vi[ > f,}

and

'E{GXP(Clo Y} < 4
exp(cio-B2) — nl0

P{iirllaxn |Yi| > Bn} < n-P{eXp(clo'|Y|2) > exp(cwﬂi)} <n

In the third step of the proof we show

T, < co5- (E{ sup (E{|T5an(X) —YP = m(X) =Y’}
we®

‘% > (1T, fu(X) = Vil = Im(X) = Vil?) ) } + B2 VP{E} + nls>
=1

By the definition of the estimate we know
wi™ c @

and
{j(s—l)-na ... 7j8-n71} — {]-a “e. ,’I’l}
for all s € {1,...,t,/n}. Hence

Tl,n
tn/m sn—1
= L STRIL S (BT faen (X) = VP w0} — E{m(X) — V[2}
tn/n —1 nt:(s—1)~n new

—2- (‘Tﬁnfw(sﬂ) (th) - YJ ’2 - ’m(th) - th’2) ) }

16



tn/n sn—1
1 1
i > jE{n > (E{’Tﬁnfw(sm)(X) — Y PIDn, w} — E{m(X) - Y*}
n s=1 t=(s—1)n

—2- (‘Tﬂnfw(sﬂ) (th) - }/jt|2 - ]m(th) - }/jt|2) ) : 1En}

<B{ sup (B{IT5, fw(X) = VP =~ m(X) - T?)

35 oy i)
=1

tn/n sn—1
1 1
+t /n E E{n E (E{’m(X) - Y|2} +2- |T5nfw(5'”)(th) - }/jt‘Q) ’ 1]_77,3}
n s=1

t=(s—1)n

< B{ sup (BT, fw(X) = VP~ m(X) - Y[}

2 3 (s (X0 = Vil = ()~ ¥i1) )}
1=1

+E{m(X) — Y} P{Eg} +2- [ max  B{|Tp, fyen (Xi) = Yil'} - |/P{EG)

,,,,,

< B{ sup (B{|Ts, fu(X) = Y’ = [m(X) - Y]*)
weo

25 i)
=1

+cCog - P{EZ} + co7 - 5721 . \/P{ETCZ}

< ez <E{ sup (BT, fu(X) = YI* = [m(X) - Y[’}

2 < 1
— =3 (1Ta fw(X0) = Vi = [m(X) = Yif?) ) | + 82 /P{EG} + n5> ,
i=1
where the last inequality follows from the proof of the assertion of the second step.
In the fourth step of the proof we show
T2,n§C28’5n’(n‘An'Kn'Dn"i_\/an'Cn'CS,n)-
We have

TQ,n

tn/n sn—1
- ZE{i > E{(T,anwm(X)+T,anw<s~n)(X)—QY)

tn/m s=1 t=(s—1)n

17



(Tp, fowy (X) = T, fotsm) (X))‘Dm W(O)}> ' 1En}

/ sn—1
1/ Z { > \/ E{(T5s, fo)(X) + Ts, forism) (X) — 2Y)2| Dy, w0}
=1

t=(s—1)n

'\/E{(Tﬂn Faw (X) = Tp, frutom (X))?| D, wO} - 15, }

tn/ﬂ sn—1
<29 Bn Z > \/E{ (Th, fwn (X) = Tp,, fptsm (X))?} - 15, .
”/n 1" (s—1)-

Using that on E,, we have

(T/Bn w(t)( ) T/anw(s'")(X»Q
< (fo (X) = fpom (X))?

Kn Ky, 2
Ly, Ly sn Ln Ln
=(Z<w“>>é,d-févm’,k,l(X)—Z<w< DR F (X >)

k=1 k=1

(]

K, Kn 2

Ly, Ly Ly Ly

sz-( (W) - £ 00 = S wlem i f ) (x >)
k=1 k=1

Kn Kn 2
sSn Ln Ln s$n Ln Ln
D WO T o (0 = Do W O - L (X >)

+2.(
k=1 k=1

K., 2

Ly s-n)\ (Ln

<2 (Z (W) = (w >>,2,1,i\>

k=1

L L)z 5| AL (Ln) 2

w23 w3 | 0 = £l (0]

k=1 k=1
<2-(t—s-n| M- Ky Dp)?

+2- o Cp - ”((W(t));E;l,)i7j)k,z‘,j,z:z<Ln — ((w' n));(g)”)k,z,jzanH

§2-(|t—s'n|-)\n~Kn-Dn)2+2-an-C',2L-4-037n

we get the assertion.
In the fifth step of the proof we show

T3,n §C305n(n)\nKnDn+ \/O‘n'Cn‘C?),n)-
Arguing as in the fourth step of the proof we get

TS,n

18



1 tn/n 1 sn
<25 n > E{n > st Bu T, Faom (X5) = Tp, Fru (X5,)] - 1En}
n

s=1 t=(s—1)n+1
§C30'Bn'(n'An'Kn‘Dn+\/an‘Cn'C3,n)-

In the sizth step of the proof we show

T4,n
= (E {/ L e I O Gl S CR 1En}
1,1k vi,3 /R85, < Em
K
+(r6n+’7n)‘van'Cn'c3,n+2|(w )I(g7L1,%2+ t )
k=1 "

To do this we apply Lemma 1. Because of |1,z —y| < |z—y| for |y| < B, the definition
of E,, implies

T4,n
1 tn—1

=2 E{t D~ (o (X5) = Yi* = Im(X5) = Y3 ) - 1En}
" =0

tn—1
1 n . l
=2. E{t By (W) Dk (WO, i, ) - 1Eﬂ}
where

Ly l
Fy ((W](c,lg)b (W](g}i’j)k,’i7j7lil<l/n> = |f(( )(th)_}/jt|2_|m(th)_}/jt|2

L !
W;(g,ffi)k»(W;,)i,j)k,i,j,z:KLn

is a convex and differentiable function of its first argument with 2-norm of the gradient
bounded by K, - D,. Application of Lemma 1 with

ue = (W Dke o= (W) Dkijuier, and u* = (W)

yields
T4,n
1 tn—1 1 tn—1
<2-E{— Y F(ufw) g, ¢ +2-ES = |F(ut,vu) - F(u*, )| 15, ¢+ u]
bn t=0 tn t=0
+K"'D?L.
2,

Arguing as in the fifth step of the proof we get

tn—1
1 n . .
E{t Z ‘Ft(u ,Ut) _Ft(u 7U0)’ : 1En} <c32- (Bn+7n) '\/an'cn'c3,n-
" =0

19



So it remains to bound

tn—1
1 n
E{tn Z Ft (u*,'l)()) . 1En}‘

t=0

Since E,, C E,, we get
=
E{ > Fi(u”vo) 1En}
tn t=0
=
) E{t 3 E{F () 1,

W(O),Dn}}

IN

L—)
E n
{ f (W DR (WO, Dijii<rn)

() = m(z)]*Px(dz) - 1

E

n

J— 2 .
< E{/‘f((W*)(Ln))k7((W<0))Sy)i’j)k,i,j,l:l<Ln)(x) m(x)| Px(dﬂf) 1En

k,1,1

Summarizing the above results the proof is complete.

4.2 Proof of Theorem 1

4.2.1 Auxiliary results

}
|

In order to apply Theorem 4 in the proof of Theorem 1 we will need the following auxiliary

results.

Lemma 2 Let o be the logistic activation function. Let a, By, > 1, Ly, r, € N and define
the deep neural network fy : R? — R with weight vector w by (8)—(10). Assume that the

weight vectors w1 and wo satisfy

l
wi);| < Ba

foralll € {1,...,L, —1}. Then we have for any x € [—a,a]? and any k € {1,...,K,}

Ln Ln,
f\Evl,Iz,l,l (z) — f\EVQ,Iz,l,l(x)

n n— l l
< a- (max{2ry, d} + )5 BTV (W) igiier, — (W) )iguicrloo.

Proof. We show

l l
1) @) = £ (@)

< a- (max{2ro, d} + 1)1 Bl (w) )i — (wa)!

ki

for i € {1,..., Ly} by induction on I.

)ijil

o0

For [ = 1 we use that o is Lipschitz continuous with Lipschitz constant 1 and get

| v(vll),k,z'(x) - fxgle),k,i(x”
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S
&

8
3
<
N

_l’_

=z
S—
=
)
o

|
(=
=
S~—
>3
2
&

8
=
<
=

=

DN

S~—
3
=

J:
d
0 0 0 0
< ST wii) = (W) a+ [(w) — (wa)i)

_ ) l
< - (max{2r,, d} + D1 B (W) iz — (W)l igilleo:

Assume next that the assertion holds for some [ € {1,..., L, — 1}. Then

<

IN

<

<

l l
O @) = f ) @)

o (Z<w s FY @)+ <wl>,§{é,0> —0 (Z<w N f @)+ <vv2>,§{é,0>

Jj=1 Jj=1

Tn Tn

Sw)l s £ @)+ w) = S wa)l £ (@) — (wa)

Jj=1 J=1

l l l l—
Z Db F9 @) = (W) 9 @)+ (W) — (wa)i |

Z Dy = W) 1+ S (wa) i £ (@) = £ (@)

=1 =
l l
+|(W1)I(c,)i,0 (Wz);(“é)l
D
(ra + 1) - (WD) Y50 = (w2) )5 1l
41 By (max{2r,d} +1) - B (w0 )

)
51— (W) )i llee
l
o (max{2r,, d} + DB ((w) )i — (W)

)il

= N‘

O

Lemma 3 Let o be the logistic activation function. Let a, By, > 1, Ly, r, € N and define
the deep neural network fy : RT — R with weight vector w by (8)-(10). Assume that the
weight vectors w1 and wo satisfy

foralll € {1,...,L, —1}. Then we have for any x € [—a,a)?

(Ln) (Ln)
Z‘fwl,k,Ll - W27k,171( )

2

" — l l
< a?- (max{2r,, d} + 1) - B2 (wi)) wigaaer, — (W2)i Dwigsicr, ]
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Proof. By Lemma 2 we get

(Ln) 2
Z‘ wih1(2) = furi 11 (@)
n n-— l l
<Za (max{2ry, d} + 1257 - B2 |[((wi)iD) )igaer, — (W) Digaicrall%
<Za (max{2ry, d} + 1257 - B2E=2 - |[((wi)iD )igaier, — (Wo)ih Digai<ra|l?

l
a? - (max{2ry, d} + 1)2k" . B2Ln=2 ZH (W Vigaaer, — (W) Digai<r, I
k=1

_ l l
= a? - (max{2ry, d} + 1% B2 ||(wWi)) kigiier, — (W2)ih ki, |?.
]

In order to bound the approximation error in the proof of Theorem 1 we will apply
the following result.

Lemma 4 Let d € N, p = ¢+ 8 where 5 € (0,1] and ¢ € No, C > 0, A > 1 and
Ap,Bn,v: > 1. For L,r, K € N let F be the set of all networks fw defined by (8)-(10)
with K, replaced by 1, L, replaced by L and r, replaced by r, where the weight vector
satisfies

l L "
Wi | < An, )| < By and i) <ok
foralll e {1,...,L —1} and all i,j, and set

Kd
e o freF (k=1,....K)
k=1

Let L,r € N with

L>Tlogy(g+d)] and 7>2-(2p+d)-(q+d),

and set
A, =A-K-logK, B,=c3 and 72:035-Kq+d

with ¢34, css > 0 sufficiently large. Assume K > csg for csg > 0 sufficiently large. Then
there exists for any (p,C)-smooth f : R — R a neural network h € H such that

C37
sup |f(z) — h(z)| < .
z€[-A,A)d KP

Proof. See Lemma 2 in Kohler (2024). O
The generalization error in the proof of Theorem 1 will be bounded by using the
following metric entropy bound for deep neural networks with smooth activation function.
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Lemma 5 Let a,8 > 1 and let A,B,C > 1. Let 0 : R — R be k-times differentiable
such that all derivatives up to order k are bounded on R. Let F be the set of all functions
fw defined by (8)-(10) where the weight vector w satisfies

Kn
S il <, (24)
j=1
\w;(f,)i,j! <B (ke{l,....K,},i,je{l,....,r},1€{l,...,L—1}) (25)
and
i | <A (ke {l,... Ka}ie{l,... rhje{l,....d}. (26)

Thenwehaveforanyl§p<oo,O<e<1and:c’fG]Rd

d/k
p>639.ad.B<Ll)'d.Ad.(€) / +ca0

Np (67 {Tsf Lli_ane : f€ f},w’f) < <038 F—

b

Proof. See Lemma 4 in Drews and Kohler (2024). O

4.2.2 Proof of Theorem 1

The assertion follows more or less directly from Theorem 4 by using arguments as in
the proof of Theorem 1 in Kohler (2024). For the sake of completeness we nevertheless
present the complete proof.

W.lo.g. we assume throughout the proof that n is sufficiently large and that ||m/|e <
By, holds. Let A > 0 with supp(X) C [-A4, A]. Set

d
K, = ’7041 : n2p+d—‘

and
Nn = [642 ' n9—|

and let w be a weight vector of a neural networks where the results of N, - K,, in parallel
computed neural networks with L hidden layers and r neurons per layer are computed
such that the corresponding network

Nn' n
fa@) = > (@) fi (@)
k=1
satisfies .
sup | fw(z) —m(@)] < —s (27)
z€[—A,A]d kP
and ard)/d
K -
(W)l < (h=1,..., N, Kp)
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and l
(W) ] < eas

for l € {1,...,L—1} and
’(V_V)J(coz)j\ < g6 - KM log(K,).

Note that such a network exists according Lemma 4 if we repeat in the outer sum of the
function space H each of the fi’s in Lemma 4 N,—times with outer weights divided by
N,. By construction, the outer weights of this network satisfy

(L) . _gtd
Z (W) i1l S Kp-caa  Kn® <
k=1
and )
NnKn = (2q+3d)/d
_\(L K,
Z |(W)I(cl)1’2 < nT < ap,.
k=1 n
Set
e — AT
n n3 .

Let E, be the event that the weight vector w(® satisfies

(WD = @) <en forallefo,...,L—1}se{l,.... Ny Ky}, all ki

for some pairwise distinct ji,...,jy . € {1,...,K,}. Define
s\ (L _ (L ~
(W) =W k=1, Ny Ky
and
* L . .
(W =0 (ke {1, K3\ (it iy i)
Next we check the assumptions of Theorem 4. By construction of our estimate its

weights satisfy the constraints

| (Ln)

2
Wi gk

|§7n205'n =~

l
s ) < ean + s < cas - logn

and
(0) 2 i
lw; ikl < cin+e3pn < cag - (logn)” - n2¥d.

By Lemma 3 we know that (21) holds with
C2 = c50- B2 = c50 - (con + c3.0)* < 51 - (logn)?E.

And on the event {max;—1 _, |Yi| < By} we have

Vo, Vi = faw (X5))? < max 2 (B + | o (X)) - [fwo 1 6(X5)]
(Wk,1,1)k k K

00 EEREERAN
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S 2'(/8n+7n)'1a

o (22) holds with
Dn:2 (/Bn"i"}/n) < 652'712.

Application of Theorem 4 yields
E / () — m(2)|?P x (dr)
2
< sy (§5 + 52 V/PUE) + B sup (B{Ts, fulX) = Y = m(X) - V)

——Z Ts, fwl(X0) = Yil? = [m(X) - Yif?) ) }

{/ |f (w*) (&), (w) )kzjll<Ln)(x) — m(x)|*Px(dz) - 1En}

K, - D?

Next we bound P(ES). To do this, we consider a sequential choice of the weights of
the K, fully connected neural networks. The probability that the weights in the first of

these networks differ in all components at most by €, from (W )5)1 J (l=0,...,L—1)is
for large n bounded from below by

Cos r(r+1)-(L=2)+r+1 ' Co3 r(d+1)
2. ¢y -m3 2 - (logn)? - nl/r+d) . p3

> (HD(L=2)3=3:(r+ 1)~ dr(d+1)=0.5.

Hence probability that none of the first n” (") (L=2):3+3(r+1)+4-7(d+1)+1 1) ayra] networks
satisfies this condition is for large n bounded above by

(1 — o7 () (E=2) 3-8 ()= (1) =05 FD 2340 s ) 1
n'r<('r+1)<(L72)-3+3<('r+1)+4-r»(d+1)+1

< (eXp (_n*r'(7"+1)'(L*2)-373-(r+1)74-r-(d+1)—0,5> )

= exp(—n"?).

Since we have K, > nrt’”“l)'(L_2)'3+3'(T+1)+4""(d+1z+1 - N, - K,, for n large we can suc-
cessively use the same construction for all of Ny, - K;, weights and we can conclude: The
probability that there exists k € {1,..., N,,- K, } such that none of the K,, weight vectors
of the fully connected neural network differs by at most €, from ((v‘v)(l)

ij 1)ij1 is for large
n bounded from above by

~ c
N, - K, - exp(—n®?) < ¢54 - 00 exp(—n0'5) < 55
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This proves

C55
P{ES} < R
Next we bound

n

B{ sup (BAITs, fu(X) =Y Polm(X)=Y )= 3 (1Ta, ful(X) = il = Im(X) - YiP) ) }.
weE i=1

Set mg, () = E{T3,Y|X = x}. Then

n

B{ sup (B{ITs, fwlX) = Y = [m(X) = Y1} = 2 37 (T, Sl X0) = Vi = m(X) ~ YiP) ) }
we i=1
< E{ sup <E{\T5nfw(X) — Ty, Y — Jmg, (X) — T, Y|?}

weo®
2 n
237 (1T fu(X3) = T Vi — [, (X) = T, Yil?) ) }
=1
B sup (BT, fw(X) = VI = m(X) = V)

~E{|Ts, fu(X) = Tp,Y 2 = |mp, (X) = T, Y} ) |

2
+B{ sup (23 (1T, fu(X0) = T, Yil? — Img, (X0) = Tp, Vi)

we® 1 i—1
2 n
~= 3 (1T, fu(X0) = Vil = (X))~ i) ) }
=1
= Tl,n + TQ,n + TS,n-

As in the proof of Lemma 1 in Bauer and Kohler (2019) we get

logn)?
T2,n+T3,n§656-( gn ) :

Next we show
nd/(2p+d)+6

ETi, <cs7-
n

Let §, > 1/n. Then
E{T,}
o
g/ P{T\, >t}dt
0

<y, +/ P{Hw €0: (E{IT,anw(X) — T3, Y|* = |mp, (X) = T3, Y "}
5

2 n
—2 3 (1T fu(X3) = T Yil? — [, (X) = T, Yil?) ) >t} .
=1
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By Theorem 11.4 in Gyorfi et al. (2002) we get for t > 1/n

P@we@(mmmwm—%ﬂﬁwmmm—%wm

riﬂwmz = Ty, Vil = Img, (X;) - T, YiP?) ) > t}

Tﬁnfw( ) . TﬁnY|2 _ |mﬁn(X) _ TﬁnY|2}
Bn Bn Bn Bn

2~ (T fw(Xi)  TpYio mp(Xi) Tp,Yi t
Rl e e e e SIS 3

TL

1 1 n
<14- sup N <,{ w:we@)},x”)-exp<—-t>,
e oS0 B ! i 5136 72

1
Application of Lemma 5 with A, = cs8 - (logn)? - n2+d, B, = c59 -logn and C,, = 7y, =
ceo - n? yields for k large enough

1 1
sup N(,{-Tﬂw:we(-)},x”>
P esupp(X) 2 8061%” Bn o f !

- P{EIW cO: (E{\

1
< sup MNo <,{T fw i WE @},x’f)
P esupp(X) 80 By n oW
< ce1 - nc62 n2p+d+5/2'

Hence

g +/2 5136 - 52
E{T>1,} < 6, +14-ce- pcez e " €Xp <_ g ‘ 5“) . 7@1

5136 - ﬁ% n
Setting
5136 - B2
677, = 76 Cg2 - n2p+d+ 5/2 logn
n
we get
& nd/(2p+d)+5 +(5
ETI,n < 63 - ? =cC3 N 2P+d

This proves

E{ sup (E{|T5nfw(X) —Y]? = |m(X) - Y[’}
wee

2 2 N v2
0 2 (5 £ulX) = ¥ = (3 viP?) )}
< gy - 2P/ @rrd)FS

So it remains to bound

p— 2 .
E{ / (o EDrt WO i) 7~ @) Px () 1En}'
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We have
B {1 o @)~ @) PP a0) 1, |
<32, /ﬁn, ~ m(@)PPx (dr)

— _ 2 .
+2-E {/ ‘fw(fﬂ) f(((w*)gc%lr?i)k’((w(o))gy)iﬁj)k,i,j,l:KLn)(w)| PX(dLL') 1En} .

By (27) we know

2

Ca3 _2p
/‘fw — ‘2PX (dx) < K2p/ < cgs-n 2pHd,

n

And using that on FE,, we have

(@) = F oy D), i) )
Nn-Kn
= | Y Wk (k@) = 120, (@)
k=1
nKn

L L
22 WL @) = 18 @)

()
< . v —
S, max ! fara(@) = £, (@)

Ce7
< Yn - Co6 - €n < 7

(where the third inequality followed from Lemma 2) we get

¢
{/ | fw (@) — (0))(> )k,i,j,l:KLn)(‘T)‘QPX(dx) : 1En} < %

Summarizing the above results we get

E/mmw—mmeﬂm>

2 2 9 1
< cgg - ("g + @ + n—2p/(2p+d)+5 + n_Tf_d + =
n n n
1 RS R
+ﬂn'ﬁ+(/8n+7n)‘(10gn) "I’L3+7”L6+’I’L>

<C7O n 2P+d+5
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4.3 Proof of Theorem 2
4.3.1 Auxiliary results

The next lemma will be used in order to bound the approximation error in Theorem 2.

Lemma 6 Let a > 1 and p = q+ s for some q € Ny and s € (0,1], and let C > 0. Let
m :R? = R be a (p,C)-smooth function, which satisfies

it iy, 28
max - - < cr1. 28
G1seerdg€l0,1,....a}, 71 (D) ... §dd g (d) da
! jlﬁuﬂdgq 9 0 00,[—2a,2a)

Let v be an arbitrary probability measure on R, Let N € Ny be chosen such that N > ¢
and let o : R — [0,1] be the logistic activation function. Then, for any n € (0,1) and
M € N sufficiently large (independent of the size of a and n, but a < M must hold), a
neural network of the type

(TEN)-(N+1)-(M+1)*

4d d
= X wee(The( e e 0u0) £ h0)  09)
=1 v=1

i=1

exists such that
|t(z) — m(z)| < cro - aNtat3 . prp

holds for all x € [—a, a]d up to a set of v-measure less than or equal to n. The weights of
t(z) can be bounded by

|>\“| < Md+p-(N+2)

|0i10] <6-d- 1 L M- (2N+3)+1
" —_ n

forallie{1,...,(d;r\,N)-(N+1)-(M—|—1)d},ZG{O,...,4d}, and v € {0,...,d}.

Proof. See Theorem 2 in Bauer and Kohler (2019). O

The neural network in the lemma above has large outer weights. In order to construct
a neural network with smaller outer weights we will compose it with the network in the
next lemma.

Lemma 7 Let o be the logistic activation function, let t, € R be such that o'(ty) # 0.
Then for any N € N with N > 1 there exist

aj, B €R (j=0,...,N—1)

B..x
Oéj~U<JR+to>

such that for any R >0

N—

—_

R

o'(ty) =

fia(x) =




satisfies for all A > 0 and all x € [—A, A]:

AN
| fia(x) — 2] < e74 RN-T
for some c74 = c54(N, U(’)(tg), ||U(N)||oo,a0, ces N1, 80y BN=1) =0

Proof. The proof is based on a modification of the proof of Theorem 2 in Scarselli and
Tsoi (1998) presented in the proof of Lemma 9 in Kohler (2024).
Let Bj € R (j =0,...,N — 1) be pairwise distinct. Then the vectors

Vl:(/B(l)w.,?BgV—l)T (l:077N_1)

are linearly independent since

N—-1
Q) -V =
1=0
implies that the polynomial
N-1
o -t
1=0
of degree N — 1 has the N roots Sy, ..., Bn—1, which is possible only in case ap = --- =
any_1 = 0. Hence we can choose aq,...,an_1 € R such that

Qo Vo+- - t+aN—1"VN-1

is equal to the second unit vector in RY, which implies

Nz‘:l . 1, ifi=1 (30)
ST 0, e {0, N~ 1)\ {1}

Using these values for the o; and 3, a Taylor expansion of
u— o(u+tsy)
around %, of order N — 1 implies

= oty S (E5 () -5 ()

7=0 =0

N-1

R oW(ty) ! =
- a(m',zg Il '<E)' ;aj'ﬂé

R = o™ /8 -x\V
Yo T .<JR )
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1 oM BN

. a . 5
o' (ts) = J N! RN-1

where the last equality follows from (30). Hence

I S () e I B AN

: aj - ——— B |- —1 S Cr4- — S cic ST
(ta) — N! J RN 1 RN 1 RN 1
]:

| fia(z) — 2] < |

O
In the next lemma we bound the generalization error of the estimate by a Rademacher
complexity.

Lemma 8 Assume that (X,Y") satisfies m bounded and assumption (15). Let © be a set

of weight vectors w = (wgl; )ikl of the neural networks fvw defined by (8)-(10), where
all weight vectors satisfy

Ky

Ly,
Sl < (31)
k=1

for some v, > 0. Set B, = const -logn. Then

B{ sup (B{|T5, fw(X) = VP ~m(X) = ¥])
we®

5wty 0
=1

3

where €1,...,€, are independent Rademacher random wvariables which are independent
from X4, ..., X,.

c 1 — L,
SE—FS-,BTL"V”'E{ sup ‘*Zﬁi'févka(Xi)
n we® ke{l,.. . Ky} ' i o

Proof. Choose random variables (X1,Y/), ..., (X],Y.)), €1, ..., €, such that

nyin
(le Yl)a RN (Xn?Yn)a (XLYl/)? SRR (X7/7,a Yn/)7 €1y .--5€n

are independent,
(Xla }/1)5 ey (Xna Yn)v (X{a }/1,)5 ey (X/ Y,)v

n)-n

are identically distributed and

Ple, =1} =P{e, = -1} = (i=1,...,n).

N

We use the error decomposition

E{ sup (E{|Tﬁnfw(X) _ Y|2 (X)) — Y\Q}
wee®
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15 it i)}
=1

= E{ sup (E{ITﬂnfw(X) ~Tp,Y "} - %Z [Ty for(Xi) = Tﬂ"m2>}

we® =1

B{ ~ B(m(X) - VP}+ > imix) - viP)}
=1

+BY{ weo (BAITp, o (X) = Y = [T, fu(X) = T5, Y} ) }

—I-E{ sup (% Zn: (—|T3, fw(Xs) — Yi|? + |Tp, fw(Xi) — TBnYi|2) )}

weo® _
=: Tl,n + T2,n + T3,n + T4,n-
We have
T < Bl Bimx) - v+ LS ) - i)
o <\ B{| - B{m(X) - P 2 Il - )}
_ Var{lzn:]m(X)—YP}
nl:l (] (]
C76
< —
= ﬁ’

and as in the proof of Lemma 1 in Bauer and Kohler (2019) we get

logn)?
T3,n+T4,nSC77'( i ) :

Hence it suffices to show

1 n
Tin <8 Bn-Yn- E{ sup T £ x)
we® ke{l,..Kn} | i Y

3

We have

B{ sup (B{|Ts, fu(X) - T,V "} - DILRNETEERTY)
we i=1
—E{ SUP (E{ Z|T,3nfw ) 13,Y; /|2’(X1?Y1>?"'(me”)}
_*Z’ T, fw(Xi) — T3, Yi] )}

= {SUP E{( Z|T/3nfw ~Tp,Y]?
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—% DT, fu(X3) - Tgnn|2) (X1, 7). ... (Xn,m}}
B{B{ sup (5,2 5, fu(X) ~ 13,1

=1

—% Z |Ts, fw (Xi) — Tﬁnm?) (X1, Y1), ... (X, Yn)}}

{ sup ( Z|T5nfw — T, Y])? - fZ‘Tgnfw ) — T3, Yil )}

wee
The joint distribution of (X1,Y1), ..., (Xn,Ya), (X1,Y?), ..., (X],,Y,)) does not change
if one (randomly) interchanges components of (X1,Y7), ..., (Xn,Y ) and (X1,Y{), ...,
(X,,Y,). Consequently the right hand-side above is equal to

B sup (- S e ([T, X)) = T VI — 1T, £u(X0) — T3, i) ) )
=1

weo®

gE{ sup (Tllzn:ez ‘Tﬁnfw( ) Tp Y/‘ )}

wee i—1

+E{ sup (l i<—ei> s, fw(Xi) = TBHYZ'F) }
=1

we®

=2 E{ sup ( Zez T, fw(Xs) — TﬂnYHZ)}.
weo®

Next we use a contraction style argument. Due to the independence of the data we can

compute the expectation above in such a way that we first compute the expectation with

respect to €; and then with respect to all other random variables. This implies that the

right-hand side above is equal to

1 1
2. E{2 - sup ( Zez |T5nfW X;) — TﬁnYz‘|2 +-.1. |Tﬁnfw(X1) _ TBnY1|2)
weo® n

n

1 1 1
55 (=D [Ty, ful(X0) = Tp, Yil? + — - (=1) - [T, fu(X2) = T, 11?) }
wee® ni 2

n n

1 1
=E{ swp (=36 Tp, fu(X0) — To, Vil + — 3 e+ |T5, fo(X0) = T3, Yil?
w,we® \N 5 ni
1 1
[T, for(X1) = T, Yal* = — - [T, far(X1) = TBnYl\Q)}
1 o 1 o
<E{ sw (=6 [Tp, fulXe) = T, Vil + — > 6 [Ty, falX) = T, Yif?
w,we® M i s

1
=4 By |Tp, for(X1) = Tﬁnfv'v(Xl)D}
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1< 1<
SE{ sup (*Zﬁi'!Tﬁnfw(Xi)—TﬁnYiler = e [T, fa(X0) = Tp, Vil
W,V_VEG n i=2 n i=2

—i—% A B | fw(X1) = fw(Xa) )}

The term in the above supremum is for fixed X, Y;, ¢; symmetric in w and w, hence

n n

1 1
sup (=37 e [T, fo(X0) = T, Vil 4 — 3" i [T, fu(X) = T, Vil
w,we® \N 5 ni

P By | ulX0) — (X))

1 1
I (f D € T, fu(Xo) = T YilP + = e+ [T, fw(Xi) = Tp, il
w,we® n =2 n i=2

+% 4By 1 (fw(X1) — fv—v(Xl)))

1 — 1 —
= sup (n§€i'|Tanw(Xi)_TﬁnYi|2+ nz;ei-Tﬁnfw(Xi)—TﬁnEIQ
1= 1=

VA C)
% 4B (<1) - (fw(X1) — fv-v(Xl)))

This yields
n n

E{ sup (% D e |Tp, fw(Xi) = Ty, Yil* + %ZGZ T, fo(Xi) — T3, Yil?

w,wel i=2 =2

PR g () (X))

n n

1 1 1
=E{5- s (=3 e T, fulX) — T, il + — " e [Ty, fu(Xs) = T, Yil?
w,we® 1T ne
1
FA B 1 (fwlX) = f(X0)

3o > e s fulX) = T ¥ + : > i o) = T, i
1
4 B = (<1) - (fulX0) = fo(X0)) ) }

1 1 ¢
w,we® \N N5

e (fulX0) — fe(X0) )

< E{ sup (% Zﬁi T, fw(Xi) — T, Yil> +4- By - % “€ - (fw(X1)>}

wee iz
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n

B{ sup (23 6 Ty, fo(X0) — Ty, YilP 4B - (—e) - fu(X0))}

weo®

=2
1< 1
_9. E{ sup <f N i 1 Tp fo(Xs) = Tp, Yil? +4- B~ -1 - fw(Xl))}
weo® ni:g n

1 1
<2-B{ sup (=36 [Th, fulX0) = T3, Vil +4- o~ -2 fu(X)
=3

+4 - Bp - % €1 - fw(Xl))}

IN

<2. E{ sup (4 'nﬁn Zn:éz‘ : fW(Xi))}'

weo i

By the definition of fy and (31) the right-hand side above is bounded by

4 B n Kn
Ln Ln
2-B{ sup ”Zq-Zwéli-f&kMXi)}
we® n - — sdy sfvy
=2 E{ sup ‘ }
= Z k,l,l - wkl
4-8 Ln
<2 { SUP Z |wk,1,1 ‘ . Zei' \Ev,k,)l(Xi) }

=1

<2 E{ sup Y - ‘ f" ZEz Wb (X0)

weo

}
L

1=

1
=8 bn-Tn- E{ sup | — Zei : févl:]:?l(Xz)
=1

wee '

4.3.2 Proof of Theorem 2

The regression function is given by
K
m(zx) = ka(b';:c) (x € RY)
k=1

where K € N, b, € RYand my, : R - R (k= 1,..., K) are (p,C)-smooth functions. Let
p=q+ s for some g € Nand s € (0,1].

We start the proof by constructing neural networks which approximate the functions
my (k=1,...,K). To do this we use Lemma 6. Let

A =sup{blr : v € supp(X), k€ {1,...,K}}.
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Set )
Mn — [078 . n2»(2p+1)—|’

1

= —

and let v; be the measure defined by
ve(B) = P{b.X € B}

for a Borel set B C R.
By Lemma 6 (applied with d =1, N = ¢ and M = M,,) there exists a neural network

(g+1)-(Mn+1)

4
Ghywy () = Z i - U(Z R U<9i,l,1 T+ 91‘,[,0) + >\z‘,0>
=1

i=1

which approximates my on [—A, A] outside of a set, which has vg-measure at most 7,
with an error bounded in absolute value from above by

P
cr9 - M P =cgp-n 2@+
where all its weights are bounded in absolute value by

1
o MPCPH+2 < ooy ppHd,
n

Cg1 -

It follows from the proof of Theorem 2 in Bauer and Kohler (2019) that we can rewrite
Jk,w, in the form

Mp+1 (g+1)2

9k Wk Z Z Msyi U(Z )\s il ( s,0,0,1 * L + 95,i,l,0> + )\s,i,0>

such that the above approximation result still holds, such that the weights are bounded
as before and such that in addition it holds

(g+1)?

4
Z Msyi 0<Z)\s,i,l ’ 0< sl 1T+ 05,1,l,0> + )\s,i,0> < cs3- (HmkHoo + 1) < cs4
=1

forall s = 1,..., M, + 1 on [—A, A] outside of the above set which has vi-measure at
most 7y,.
Set
Ry = cg5 - n(i’
and let N € N be such that
(N—-1)-6>2.
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Let f;q be the network from Lemma 7 which satisfies

| fia(z) — ] < cs6 - RN

n

for || < cga. We will approximate my(blz) by

Mp+1 (q+1)2

4
Z fid Z Msi - O ( Z )\s,i,l : U( $,5,0,1 " bkm + 93,1,l,0) + )\s,i70>
s=1 =1

By construction we have

My+1 (g+1)? 4
Z fid Z fs,i - 0<Z Asjil O (93,1',1,1 bz + ‘98,271,0> + )\s,w) — my(bj,z)
= =1
89
< — - (M, +1)
n
Myp+1 (¢+1)?

4
Z Z Ms,i - 0<Z Aol " U<95,i,l,1 bl + 95,1‘,[,0) + )\s,w) — my(bl.x)
=1

S Cy0 * ni 2~(2p+1)

on supp(X) outside of a set of Py measure 7,, and all weights of this network are bounded
in absolute value by cgo -nP™* and its outer weights are bounded in absolute value by R,,.
So if we sum these networks up for k = 1,..., K we approximate m on supp(X) outside
of a set of Px measure

C
K-ny <=5
n

___pP
with a pointwise error of at most cgo - n 2@+D  and the weights of the corresponding
networks are bounded as above.
Set
N, = p!2p+33

In order to get smaller outer weights we repeat this whole network NV, times with outer
weights divided by N, and sum the resulting N,, networks up which yields the same
approximation result as above. In this way we construct a weight vector w of a network

Nyp-K-(Mp+1)-N
k=1
where each of the f‘g’ )k , is a network with L = 3 layers and at most

max{(q + 1)?,4}
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neurons per hidden layer, and all weights bounded in absolute value by cgs

with outer weights bounded in absolute value by

R,
C93 - —.
93 N,
Furthermore it satisfies ,
fal@) = m(@)| < cgs - n” T

for z € supp(X) outside of a set of Px measure cgs/n?.

Set
1

€ = ———
n nbp+11

and let E, be the event that there exist pairwise distinct ji,...

{1,..., K,} such that

H((W(O))gi),i,j)i,jJIKL ~ (W) )Z’JJZKLHOO =cn

holds for all k € {1,...,N,,- K - (M,, + 1) - N}.
If E, holds, then set

(W*)gf,)l,l = (W)l(f,Ll),l fork=1,...,N, - K- (Mn + 1) - N,

and set

(W) =0 for ke {1, K \ Lty dn k(Mg 1) -

If E,, does not hold, then set w* = 0.

Then
K, _
> \(W*)zg,Lf,1| < cgg - NI 0 <
k=1
and
o Cg7 - 1N
S W) P <Ny K- (M, +1)-N - < o7
k=1
hold.

By Lemma 3 we know that assumption (21) of Theorem 4 is satisfied for

-1
Cp = cog - (nPT1) 77" < cgg - n?PH8,

Furthermore, on the event {max;—1 __, |Yi| < 8n}

UM, , .

holds, hence assumption (22) of Theorem 4 is satisfied for

_1
D,, = cio1 - 7”L219+1+§.

38
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Application of Theorem 4 yields

E/|mn(:z) — m(x)|*Px(dz)
2
<ciop <ﬁ5 + 02 V(B + B sup (BT, fu(X) = Y = m(X) = ¥T?)

2 3 (s (X0 = Vil = ()~ ¥i1) )}
=1

1
J— 2 . —
+E {/ ‘f(((w*)lgffz)kv((w(o))gl,j)k,i,j,l:KLn)<x) m(x)’ PX(dm) 1En} + n) .

Hence it suffices to show

P(E;) < 22, (33)

{ Sup (E{|Tﬁnfw(X) — Y|2 — |m(X) _ Y|2}
weod®
_EE:UL%ﬁ4&)—EF—VMXn—HFU}

n
=1

< c104 - (logn)*/? - n” (34)

and
—_— 2 . . 7L
E{/‘f(((W*)z(f,Lff;)ky((w@))g,l;,j)k,i,j,z:z<Ln)(aj) m(@)I'Px(dv) 1En} = eros - W (35)

Proof of (33): In order to bound P(EY) we consider a sequential choice of the weights of
the K, networks ;
PO e =1, Ky,
The probability that none of the
ro(d+1)+(L—2)-7-(r+1)+(r+1)<3((p+1)*+d+3)?

weights of the first of these networks differs from the corresponding weight in

by more than ¢, is for large n bounded from above by

e 3((p+1)*+d+3)?

S < g~ (21p+48)-((p+1)*+d+3)*—0.5
2 . 0106 . np+5 —

Hence we get that the probability that none of the

"n(21p+48)-((p+1)2+d+3)2+1‘|
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many networks
L . ) ,
fv(v(())ml (k=1,..., [n@PH48)((+1)*+d+3)*+17)

differ in all weights from the corresponding weight in

by at most €, is bounded from above by

) ) n(21p+48)-((p+1)2+d+3)2+1
(1 _ - (21p+48)-((p+1)?+d+3) —0.5) < ¢ 05m

Since we have for n large
Ny K- (M,+1)-N- [n(21p+48)-((p+1)2+d+3)2+1] <K,,

we can conclude: The probability that for any £ € {1,..., N, - K - (M, +1)- N} in all
of the networks

f(L)

7 (j=(k—1)- [n(21p+48)'((17+1)2+d+3)2+1“ +1 k. (n(21p+48)'((P+1)2+d+3)2+11
w1 by

at least one of the weights differs from the corresponding weight in

by more than €, is bounded from above by

Ny K- (M, +1)-N.e05m < 407
n
Since P{E¢} is upper bounded by this probability, this implies (33).
Proof of (34): By Lemma 8 we have

E{ sup (E{|T5nfw(X) —Y|? = |m(X) =Y’}
we®

1
— > (1T fw(X0) = Vil = [m(X) = i) ) |
i=1
o B by e i)
= = = 0109 . . Cllo . n2 . Sup 1 .. | |
\/ﬁ n w697k6{17...7Kn} nlz:l ? W,k,l 7

By discretizing the
re(d+1)+(L—2) 7 (r+1)+@+1)<3((p+1)>+d+3)°
many coefficients in each of the classes

(fh, + wee) (k=1,... K,
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on a grid of length
Ap=2-cpy -0t

and grid size less than or equal to

1/n
)
criz - n2p 1o

which leads for all k to the same set of functions, we get (by Lemma 2) a 1/n-supremum
norm cover of

Uy wee ke (LK)
of size
3((p+1)%+d+3)?
<1An> < c1i4 - n(9p+48)‘((p+1)2+d+3)2.
6113'4%

Together with the union bound and the inequality of Hoeffding (cf., e.g., Lemma A.3 in
Gyorfi et al. (2002)) this implies for 6,, > 2/n

1 n
- Z € fwk1(Xi)
i

= Z €+ fwr1(Xq)

n-
=1

o
<o +/ P sup >t dt
Sn wed kefl,... Kn}

o0 2
< 6y + 114 - nOPHS) (H) Hd43)% / 2. et
on

E{ sup
weB ke{l,..., K}

<p+cr14 - n(9p+48)-((p+1)%+d+3)* | /Oo 9. o et b "
dn
<, +ci14 - n(9p+48)'((?7+1)2+d+3)2 . i ) 6_%6’%‘
n-op
With
on = \/17:3 ~(9p+48) - ((p+1)2 +d+3)2-logn
we get

1 1
E{ sup =D € f ,k71(X')}§0115'\/10gn'77
wed ke{l,....K,} T ; Cw ’ Vn
which implies (34).
Proof of (35): The definition of ((W*)](CLl)l)k implies
(Ln) O]

() B D WD, it i)
Np-K-(Mp+1)-N

_ (L L
= w0 @) = m@)?

z) —m(z)|
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Np-K-(Mp+1)-N
_ L L
<21 Y w0, @) @) 2 fala) - m)
k=1
Ny K-(Mp+1)-N N2
<2 V_VIE;,L1),1 : f‘EV[(/()))Jk’l('/’U) — fw(@)? +2- <0116 ' Irzlé;xnw’””> ;
k=1 ’

where the last inequality holds outside of a set of Px measure 1/n%. On E, we get by
Lemma 2 that this in turn is bounded from above by

Ny K -(Mp+1)-N Np-K-(Mp+1)-N
_ 2 (L) 2
2 Z |w k,1,1| Z ‘fw(o) ks 1( z) — fw7k71(x)|
k=1 k=1

__ 2
_|_2 . <6116 n 2'(2P+1))
__>r 2
S 2an Nn K- (Mn+ 1) NCll? n4p+16 €%+2 . (0116 n 2‘(2P+1)>
__p _\2

< 2cy17- K- N -nt2Pt20. 6121 +92. <0116 ‘n 2»(2p+1))

_—D_
< cp18 - n2etL.

Since

s 0
< = . 2-(2p+1)
e Dt OO iy rrcn) B S 0 = 1o

we can conclude

{/ |f (Lm W(O)) kil l<Ln)(x) B m(w)|2px(d$) . 1En}

st 1
< c118 * n 2p+1 + ci1 - n2-(2p+1) [

n2

__pP
S ci1o5 - M 2p+1 |

4.4 Proof of Theorem 3
4.4.1 Auxiliary results

In the proof of Theorem 3 we will apply the following result in order to bound the
approximation error of the estimate.

Lemma 9 Let m : R — R be contained in the class H(l,P) for some | € N and

P C [1,00) x N. Describe m as in Theorem 3, and assume that the functions gj(i) are
Lipschitz continuous with Lipschitz constant Cr,;, > 1 and satisfy

g1l o0 < c119
¢ ([-aa)?
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for some ci119 > 0. Denote by Ky = max; j K](-i) the mazimal input dimension and by

Prmaz = MAax; j péi) the mazimal smoothness of the functions g§i), Then, for any a > 1

and M;; € N sufficiently large a neural network fw with logistic activation function and

L =1-(8+ [logg(max{Kmaz, Pmaz + 1}1)

layers and
N (4) (4) ;
- T4 i i @
r = max 29 J (i)] K§))2-(§)+1)-Mji]
ie{l,...,1} £ qJ

neurons per layers, where the weight vector w satisfies

24 . 612.22(Kmaz+1)+1.a‘Kmaz MQmeax+4Kmaw+20

[Wlleo < €120 - @ i )

. maxj’i
exists such that
Q-p(,i)

o
-max M, ; .
Z?J

HfW - m”oo7[—a,a]d < c121 - a”Pmaats

Proof. See Theorem 2 in Langer (2021). O

4.4.2 Proof of Theorem 3
Set

1
QIO
2.(2p\W) 4 K {
M;; = {0122 - )—‘ ;

Ry, = cia3 -1’

and choose N € N so large that

(N-1)-6=>

N |

Let gw be the neural network from Lemma 9 with

L =1 (8 + [logy(max{ Kmaz, Pmax + 1}])

layers and
X CI0 T
i K9 4 4 , 4 %0 OO
r = max 29 Ty '(K('Z))z'(q(z)—kl)‘M'ij < e - maxn ™ G | =1,
ief{l,..,0} q](?) J J I i
neurons per layers, where all the weights are bounded in absolute value by
20 max 4Kmaa: 20 max max
C125 - Iax M; P * 20 < eygq - pPPmar tRmarts, (36)
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which satisfies .
00

J

2p(D 4 (D
lgw — Mloo,supp(x) < c127 - HZR;X” A

Let f;q be the network from Lemma 7 where the N outer weights are bounded in absolute
value by
cios - Ry = c1a9 - 0, (37)

which satisfies
1 —5(N-1 ~1/2
| fia(w) — 2] < ci30 - RN-T =GB W=D < eyg1 -
n

for all z € [—||m|lcc — 1, [[Mm||oo + 1].
Then the neural network
fid © gw
has L = L + 1 layers with (for n large enough) at most r, neurons, all its weights are

bounded in absolute value by (36) and its outer weights are bounded in absolute value
by (37). Furthermore, for n large enough we have

ng - mHoo,supp(X) <1,

which implies

Hfld °gw — mHoo,supp(X) < Hfld © 0w — gWHoo,supp(X) + ng - m”oqsupp(X)
(3p§i)(')
< ez on Y%+ ez maxn ™ T
17]
,pj(_”“')
[OI%O)
< cigz-maxn®
2%}
Set
Nn — nQL'(5pmaac+Kmam+8)
and let

N-Nn
Z év 1(55)

be a linear combination of N,, of the neural networks f;; 0 gw computed in parallel (with
different weights), where the weights in the linear combination of these networks are all
equal to 1/N,,. Consequently,

_ (L) C129 -
‘Wl(ﬁll — N, (]{Z:L 7N‘Nn)7
n
N-Np,
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for some c129 = c129(0) and

(;p;i)(')
| f = mlloo supp) = i © Gw = mlloo,suppx) < eras - maxn ™55
hold.

Set
1

- nL/2+(10pmaz+2Kmazs+10)-L43

€n

and let E, be the event that there exist pairwise distinct ji,...,j5n.n, € {1,...

such that . l
H((W(O))§'k),i7j)i,j,l:l<L - (V_VIE;,)W‘)WJ’Z:KLH =en
oo

holds for all k € {1,...,N - N,}.
If E, holds, then set

=\ (L (L
(W) = (W), fork=1,...,N- N,

and set ;
(W) =0 for ke {1, Ko} \ {1, dinem, )
If E,, does not hold, then set w* = 0.

Then
Kn
L
S Iw L < crog - nd <
k=1
and
Ko, c nd\ 2 n20
Z|(W*)1(CL1)1|2<N Ny - ( = > =N - ciy < ap
—1 7 Ny, n
hold.

By Lemma 3 we know that assumption (21) of Theorem 4 is satisfied for

L (n5pmaz+Kmaz+5)L_1

n "

L- (5p”maz +Kmaz +5)

C, =cizz-r <ciza-n .

Furthermore, on the event {max;—1,._,|Y;| < 8.}

Hv(wﬁlf)k(yjt = Jwin (X ))2H <2-(Bu+ar-n’) <cissen’

[e.9]

holds, hence assumption (22) of Theorem 4 is satisfied for
Dn = C135 TL(S.

Application of Theorem 4 yields

E / () — () PP (dz)
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2
< €136 - (ig + 85 VP(ES) + E{ sgg <E{’T6nfw(X) YR m(X) = Y2}
2 3 (T fu(X) = Y = (%) = i) )}
i=1

2
+ { / () d O, s ey @) — M@ Px(d) 1En}

1 5 1 L-(5pmas-+ Kmas-+5) n2 20
to At Bt 1) e " dogn oty o)
Hence it suffices to show c
P(ES) < 27, (38)
n

E{ sup (E{|T5nfw(X) YR = m(X) - Y2}

weo®
2 n
~2 3 (1T, fu(X0) = Vil = (X)) ~ i) ) }
=1
_p®
3/2 MON=OR
< c1as - (logn)*/? - maxn ™ (39)

and
,py’)
E { / i) OO rssaaeny ()~ M@ Px(de) 1En} = Cago rmaxn Ty
(40)
Proof of (38): In order to bound P(E¢) we consider a sequential choice of the weights of
the K, networks

L
f;(gw (k=1,...,K,).
The probability that none of the
rn'(d+1)+(L_2)‘rn'(Tn—Fl)—F(Tn-Fl) <ciq0n
weights of the first of these networks differs from the corresponding weight in

L
g

by more than €, is bounded from above by

€ C140°M (l )
n —c141-(logn)-n
<2 - Cop + n5pmax+Kmax+5> S € ’

Hence we get that the probability that none of the

[TL . gluar (logmn) n'|
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many networks

fvalgz))7k71 (k=1,...,[n- 60141~(logn).n-|)

differ in all weights from the corresponding weight in

by at most €, is bounded from above by

n-ec141-(logn)-n

(1 __efch(bgn)n) <e ™
Since we have for n large
NN, - [n-ecarlosn)n] < g
we can conclude: The probability that for any k£ € {1,..., N - N, } in all of the networks
F 50 U= (k= 1) o e 0omIm] g [ o Gogmn)
at least one of the weights differs from the corresponding weight in
L
foka
by more than €, is bounded from above by

C142
4;;*.

N-N, -e"<

Since P{E¢} is upper bounded by this probability, this implies (38).
Proof of (39): By Lemma 8 we have

n

B{ sup (B{[Ts, fw(X) = Y~ m(X) = ¥} = S (175, fu(X0) — ¥il? = Im(X0) - i) )}

weo® i=1

n
€143 1
< —= 4 craa - B cras o n’ - E{ sup — Zfi *fwk1(Xi) }
\/ﬁ WEG),]CE{L---,KWL} n i=1
By discretizing the
(9
J
2p<.i) +K<Z)
Tn-(d4+ 1)+ (L=2)rp-(rn+1)+ (rn+1) < cg6-maxn™i "
Zh]
many weights in each of the classes
L
{fév,])ﬁ1 . we®}t (k=1,...,K,)
by creating a grid in the intervals of length
Spmaz+Kmaz+5

A, =2 -clar-m
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with grid size
1/n
6148 . nL/2+L'(5pmax+K7na:c+5) ’

which leads for all & to the same set of functions, we get (cf., Lemma 2) a 1/n-supremum
norm cover of
(fh 0 we®e ke {l,... K.}}
of size at most
&

ecl4g~(log n)-max; ;jn_ J

Together with the union bound and the inequality of Hoeffding (cf., e.g., Lemma A.3 in
Gyorfi et al. (2002)) this implies for 6,, > 2/n

I, )
E{ sup — e - fo (X }
we® ke{l,...,.K,} | T ; ,k,l( )
§6n+/ P sup - & fH (x| >t at
On {we@,ke{l,...,Kn} n ; k1

KW
j
@ x® oo 2
2p: + K -n-(t
< 6, 4+ 2. goro(logn)max; ;7 T / 2. g
on
KW
2p

i
[ONNO S .
<6, -+ ecl49~(10gn).maxi,]-n J J / 9. 6_" t86n di
On,

x(D

- J
@ @ 52
< 5n_|_ecl49~(logn)~maxi,jn2pj K 16 6_%
n- oy
With
Q)
J
8 OO logn
On ="\~ - ca9 - (logn) - maxn™s 5" 48 &
n ]
we get
_,0
1 ¢ RONO)
L .74 .7,
B sw D3 a0, 060| ) < erso Viogn maxn
wed ke{l,....K,} |1 i1 B 1,j

which implies (39).
Proof of (40): The definition of ((w*)gfl 1)k implies that on the event E,, we have

_ 2
) B DD i aany ®) — L))
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_(L L
=12 Wl(c,l),l ' f‘fv(g>,jk,1($) —m(z)|?

—~' (@ L
<2 | 3wl 8 @) = fe@)P 2 fala) - m)
k=1
NN, o ’
—~' _(L L ENONPO)
<2 Wl(c,l),l : fév(<)3>7jk71(~"3) - fw(x)‘Q +2- | cis -nﬁxnz By
k=1 ’

On E,, we get by Lemma 2 that this in turn is bounded from above by

W 2

J
2 NP OION
2 “ Qi - C152 ¢ (nL/2 . nL'(5p'maw+K7naw+5)> . 6721 + 2 . c151 - maXn2 <2T-’j +Kj )
Z?]

.0

(4) (4)
< c153 -maxn i T

l?]

which implies (40).
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