
Rate of convergence of over-parametrized deep
neural network regression estimates learned by

stochastic gradient descent ∗

Michael Kohler 1 and Adam Krzy»ak2,†
1 Fachbereich Mathematik, Technische Universität Darmstadt, Schlossgartenstr. 7,

64289 Darmstadt, Germany, email: kohler@mathematik.tu-darmstadt.de
2 Department of Computer Science and Software Engineering, Concordia University,

1455 De Maisonneuve Blvd. West, Montreal, Quebec, Canada H3G 1M8, email:

krzyzak@cs.concordia.ca

December 18, 2024

Abstract

Nonparametric regression with random design is considered. The L2 error with integra-
tion with respect to the design measure is used as error criterion. Over-parametrized deep
neural network estimates are de�ned with logistic activation function where all parame-
ters are learned by stochastic gradient descent. It is shown that the estimates achieve a
nearly optimal rate of convergence in case that the regression function is (p, C)�smooth.
In case that the regression function satis�es a projection pursuit model or more generally
a hierarchical composition model the estimate achieves a rate of convergence which does
not depend on the input dimension.

AMS classi�cation: Primary 62G08; secondary 62G20.
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1 Introduction

As demonstrated by the recent nobel prize in chemistry one half of which was awarded to
Demis Hassabis and John Jumper, who have developed with AlphaFold a deep learning
model able to predict protein structures (cf., e.g., Billings et al. (2019)), deep learning
had a major impact on modern science. This is thanks to its tremendous success in
applications, which include, besides the above mentioned application in chemistry, also
applications in image classi�cation (cf., e.g., Krizhevsky, Sutskever and Hinton (2012)),
language recognition (cf., e.g., Kim (2014)), machine translation (cf., e.g., Wu et al.
(2016)), mastering of games (cf., e.g., Silver et al. (2017)) or simulation of human
conversation (cf., e.g., Zong and Krishnamachari (2022)). Given this large success in
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applications, there is also an increasing interest in theoretical understanding of deep
learning. And this is where our article makes its contributions.
We study deep learning in the context of nonparametric regression. Here we are given

an Rd × R�valued random vector (X,Y ) with EY 2 < ∞, and our goal is to predict the
value of Y given the value of X. Let m(x) = E{Y |X = x} be the regression function.
Then any measurable f : Rd → R satis�es

E{|f(X)− Y |2} = E{|m(X)− Y |2}+

∫
|f(x)−m(x)|2PX(dx) (1)

(cf., e.g., Section 1.1 in Györ� et al. (2002)), hence in view of minimizing the L2 risk (1)
of f the regression function m is the optimal predictor, and the L2 error∫

|f(x)−m(x)|2PX(dx) (2)

describes how far the L2 risk of a function f is away from its optimal value.
In applications the distribution of (X,Y ) and hence also the corresponding regression

function m is typically unknown. But often it is possible to observe data from the un-
derlying distribution, and the task is to use this data to estimate the unknown regression
function. In view of minimization of the L2 risk of the estimate, here it is natural to use
the L2 error as an error criterion.
In order to introduce this problem formally, let (X,Y ), (X1, Y1), . . . , (Xn, Yn) be

independent and identically distributed. In nonparametric regression the data set

Dn = {(X1, Y1), . . . , (Xn, Yn)} (3)

is given, and the task is to construct an estimate

mn(·) = mn(·,Dn) : Rd → R

such that its L2 error ∫
|mn(x)−m(x)|2PX(dx)

is small. A systematic introduction to nonparametric regression, its estimates and known
results can be found, e.g., in Györ� et al. (2002).
In deep learning the regression function is estimated by �tting a deep neural network

to the data. Such a deep neural network depends on an activation function σ : R → R,
e.g., the logistic activation function

σ(x) =
1

1 + e−x
, (4)

or the ReLU activation function

σ(x) = max{x, 0}.
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In its simplest form (multilayer feedforward neural network) it has a number L ∈ N of
hidden layers (depth of the network) and a number r ∈ N of hidden neurons per layer
(width of the network) and it is recursively de�ned by

fw(x) =

r∑
k=1

w
(L)
1,k · f

(L)
w,k,1(x) + w

(0)
1,0,

where

f
(l)
w,i(x) = σ

(
r∑

k=1

w
(l−1)
i,k · f (l−1)

w,k,1(x) + w
(l−1)
i,0

)
for l ∈ {2, . . . , L}, and

f
(1)
w,i(x) = σ

(
d∑

k=1

w
(0)
i,k · x

(i) + w
(0)
i,0

)
.

Here
w =

(
w

(l)
k,i

)
k,i,l
∈ Rr·(d+1)+(L−2)·r·(r+1)+2·(r+1)

is the vector of the weights of the network, and one constructs neural network regression
estimates by �tting these weights to the data, i.e., by using the data to select the weights
such that the resulting neural network is a good approximation of the regression function.
The simplest approach is to use the principle of the least squares and to de�ne the

regression estimate by

mn(·) = arg min
f∈Fn

1

n

n∑
i=1

|f(Xi)− Yi|2,

where Fn is the set of all neural networks with depth Ln, width rn and some given
activation function. Here the so�called empirical L2 risk is minimized over the set of
these networks.
The rate of convergence of the least squares estimates based on multilayer neural

networks has been analyzed in Kohler and Krzy»ak (2017), Imaizumi and Fukamizu
(2018), Bauer and Kohler (2019), Suzuki and Nitanda (2019), Schmidt-Hieber (2020)
and Kohler and Langer (2021). One of the main results achieved in this context shows
that neural networks can achieve some kind of dimension reduction under rather general
assumptions. The most general form goes back to Schmidt-Hieber (2020). In order to
formulate it we need the following notion of smoothness.

De�nition 1 Let p = q + s for some q ∈ N0 and 0 < s ≤ 1. A function m : Rd → R
is called (p, C)-smooth, if for every α = (α1, . . . , αd) ∈ Nd0 with

∑d
j=1 αj = q the partial

derivative ∂qm/(∂xα1
1 . . . ∂xαdd ) exists and satis�es∣∣∣∣ ∂qm

∂xα1
1 . . . ∂xαdd

(x)− ∂qm

∂xα1
1 . . . ∂xαdd

(z)

∣∣∣∣ ≤ C · ‖x− z‖s

for all x, z ∈ Rd, where ‖ · ‖ denotes the Euclidean norm.
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Stone (1982) showed that in case of a (p, C)�smooth regression function the optimal
Minimax rate of convergence for the expected L2 error is

n
− 2p

2p+d .

This rate su�ers from the so�called curse of dimensionality: If the dimension d is large
compared to the smoothness p of the regression function, the exponent will be close to
zero and the rate of convergence will be rather slow. Since this rate is optimal, the
only way to circumvent this is to impose additional assumptions on the structure of the
regression function. Such constraints resulted in, e.g., additive models (cf., e.g., Stone
(1985)), interaction models (cf., e.g., Stone (1994)), single index models (cf., e.g., Härdle,
Hall and Ichimura (1993), Härdle and Stoker (1989), Yu and Ruppert (2002) and Kong
and Xia (2007)) or projection pursuit (cf, e.g., Friedman and Stuetzle (1981)), where
corresponding low dimensional rates of convergence can be achieved (cf., e.g., Stone
(1985, 1994) and Chapter 22 in Györ� et al. (2002)).
Schmidt-Hieber (2020) used an assumption of the following form to achieve a dimension

reduction for the least squares neural networks.

De�nition 2 Let d ∈ N and m : Rd → R and let P be a subset of (0,∞)× N.
a) We say that m satis�es a hierarchical composition model of level 0 with order and

smoothness constraint P, if there exists a K ∈ {1, . . . , d} such that

m(x) = x(K) for all x = (x(1), . . . , x(d))> ∈ Rd.

b) We say that m satis�es a hierarchical composition model of level l + 1 with order

and smoothness constraint P, if there exist (p,K) ∈ P, C > 0, g : RK → R and

f1, . . . , fK : Rd → R, such that g is (p, C)�smooth, f1, . . . , fK satisfy a hierarchical

composition model of level l with order and smoothness constraint P and

m(x) = g(f1(x), . . . , fK(x)) for all x ∈ Rd.

Note that this assumption is more general then the assumption used in additive models,
interaction models, single index models or projection pursuit models.
Schmid-Hieber (2020) showed that suitable the least squares neural network regression

estimates achieve (up to some logarithmic factor) a rate of convergence of order

max
(p,K)∈P

n
− 2p

2p+K

in case that the regression function satis�es a hierarchical composition model of some
�nite level with order and smoothness constraint P. Since this rate of convergence does
not depend on the dimension d of X, this results shows that the least squares neural
network regression estimates are able to circumvent the curse of dimensionality in case
that the regression function satis�es a hierarchical composition model.
The least squares neural network estimates described above cannot be used in practice,

since the minimization of the empirical L2 risk with respect to the weights of the neural
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network is a nonlinear minimization problem, and for solving this minimization problem
no feasible algorithm is known. In practice usually gradient descent (and its variants) are
applied to solve this problem approximately. To do this, one chooses (usually randomly)
a starting vector w(0) for the weights and then makes tn ∈ N gradient descent steps

w(t) = w(t−1) − λn · ∇w
1

n

n∑
i=1

|fw(t−1)(Xi)− Yi|2 (t = 1, . . . , tn)

with some stepsize λ > 0. Then the estimate is de�ned by

mn(x) = fw(tn)(x).

A modi�cation of the above gradient descent is stochastic gradient descent, where one
selects (e.g., randomly) for each gradient descent step one data point (Xit , Yit) and
updates the weight vector by

w(t) = w(t−1) − λn · ∇w|fw(t−1)(Xit)− Yit |2 (t = 1, . . . , tn).

In this case one does not need to store the whole sample at once in the memory, which
is an advantage for large data sets.
As was shown in Zou et al. (2018), Du et al. (2019), Allen-Zhu, Li and Song (2019) and

Kawaguchi and Huang (2019), in case of over-parameterized deep neural networks (which
have much more weights than there are data points) the application of gradient descent
to over-parameterized deep neural networks leads to neural networks which minimize the
empirical L2 risk. Unfortunately, as was shown in Kohler and Krzy»ak (2021), in general
the corresponding estimates do not behave well on the new independent data.
In order to get a good behaviour of the estimate on the new independent data, it

is necessary to study simultaneously the approximation error, the generalization error
and the optimization error (cf., e.g., Kutyniok (2020)). There exist various approaches
where these three components are studied simultaneously in some equivalent models of
deep learning. The most prominent approach here is the neural tangent kernel setting
proposed by Jacot, Gabriel and Hongler (2020). Here instead of a neural network estimate
a kernel estimate is studied and its error is used to bound the error of the neural network
estimate. For further results in this context see Hanin and Nica (2019) and the literature
cited therein. As was pointed out in Nitanda and Suzuki (2021) in most studies in
the neural tangent kernel setting the equivalence to deep neural networks holds only
pointwise and not for the global L2 error, hence from these result it is not clear how the
L2 error of the deep neural network estimate behaves. Nitanda and Suzuki (2021) were
able to analyze the global error of an over-parametrized shallow neural network learned
by gradient descent based on this approach. However, due to the use of the neural tangent
kernel, also the smoothness assumption of the function to be estimated has to be de�ned
with the aid of a norm involving the kernel, which does not lead to classical smoothness
conditions, which makes it hard to understand the meaning of the results. Furthermore,
their result did not specify how many neurons the shallow neural network must have, it
was only shown that the results hold if the number of neurons is su�ciently large, and it
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is not clear whether it must grow, e.g., exponentially in the sample size or not. Another
approach where the estimate is studied in some asymptotically equivalent model is the
mean �eld approach, cf., Mei, Montanari, and Nguyen (2018), Chizat and Bach (2018)
or Nguyen and Pham (2020).
In a standard statistical setting all three of the above aspects have been studied simul-

taneously in Drews and Kohler (2023, 2024), Kohler and Krzy»ak (2022, 2023) and Kohler
(2024) in case of over-parametrized deep neural network regression estimates learned by
gradient descent. Here the rate of convergence of the estimate in case of (p, C)�smooth
regression function was analyzed, and in case of interaction models it was shown that
these estimates achieve a dimension reduction. The basic idea in the proofs of these
results is that for smooth activation functions the inner weights do not change much
during learning if the stepsizes are su�ciently small and it was shown that at the same
time the outer weights will be chosen suitably by gradient descent. It can be shown that
the rates of convergence in these articles can also be achieved if only the weights of the
output layer are changed during gradient descent and all other weights retain their initial
values. This approach is related to the so�called random feature networks, where the
inner weights are not learned at all and gradient descent is applied only to the weights in
the output level, cf., e.g., Huang, Chen and Siew (2006) and Rahimi and Recht (2008a,
2008b, 2009).
In this article we use a similar approach and apply it to stochastic gradient descent. We

de�ne in Section 2 a special topology, where we compute a linear combination of many
fully connected neural networks with logistic activation function in parallel and apply
stochastic gradient descent together with suitable projection operators applied to the
weights (cf., Section 2 for the details) in order to learn the weights. We show for suitably
chosen parameters of the estimate three di�erent results for the rate of convergence of
the estimate: We show

E

∫
|mn(x)−m(x)|2PX(dx) ≤ c1 · n−

2p
2p+d

+δ
(5)

in case of a (p, C)�smooth regression function, and then

E

∫
|mn(x)−m(x)|2PX(dx) ≤ c2 · (log n)3/2 · n−

p
2p+1

+δ
(6)

in case of a regression function which satis�es a (p, C)�smooth projection pursuit model,
and �nally we show

E

∫
|mn(x)−m(x)|2PX(dx) ≤ c3 · (log n)3/2 · max

(p,K)∈P
n
− p

2p+K
+δ

(7)

in case of a regression function which satis�es a hierarchical composition model. Here
δ ∈ (0, 1) is arbitrary and the constants c1, c2 and c3 depend on δ. In the �rst two results
the number of weights of the neural networks and the number of gradient descent steps
are bounded by a polynomial in the sample size, but in the third result both are required
to grow exponential in the sample size.
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1.1 Notation

The sets of natural numbers, real numbers and nonnegative real numbers are denoted
by N, R and R+, respectively. For z ∈ R, we denote the smallest integer greater than or
equal to z by dze. The Euclidean norm of x ∈ Rd is denoted by ‖x‖. For a closed and
convex set A ⊆ Rd we denote by ProjAx that element ProjAx ∈ A with

‖x− ProjAx‖ = min
z∈A
‖x− z‖.

For f : Rd → R
‖f‖∞ = sup

x∈Rd
|f(x)|

is its supremum norm, and we set

‖f‖∞,A = sup
x∈A
|f(x)|

for A ⊆ Rd. Furthermore we set

‖f‖Cq(A) := max

{∥∥∥∥ ∂j1+···+jd

∂j1x(1) . . . ∂jdx(d)

∥∥∥∥
∞,A

: j1 + · · ·+ jd ≤ q, j1, . . . , jd ∈ N0

}

for A ⊆ Rd and f : Rd → R.
A �nite collection f1, . . . , fN : Rd → R is called an Lp ε�covering of F on xn1 if for all

f ∈ F

min
1≤j≤N

(
1

n

n∑
k=1

|f(xk)− fj(xk)|p
)1/p

≤ ε

hold. The Lp ε�covering number of F on xn1 is the size N of the smallest Lp ε�covering
of F on xn1 and is denoted by Np(ε,F , xn1 ).
For z ∈ R and β > 0 we de�ne Tβz = max{−β,min{β, z}}. If f : Rd → R is a function

then we set (Tβf)(x) = Tβ (f(x)).

1.2 Outline

The estimates are de�ned in Section 2. Section 3 contains the main results. The proofs
are given in Section 4.

2 De�nition of the estimate

Throughout the paper we let σ(x) = 1/(1 + e−x) be the logistic activation function.
We de�ne the topology of our neural networks as follows: We let Kn, Ln, rn ∈ N be
parameters of our estimate. We consider neural networks which consist of Kn fully
connected neural networks of depth Ln and width rn computed in parallel. The output
of our network is then a linear combination of the outputs of these Kn neural networks.
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In these networks we will denote the weights in the k-th network by (w
(l)
k,i,j)i,j,l. More

precisely, w
(l)
k,i,j will be the weight between neuron j in layer l and neuron i in layer l+ 1.

Formally we de�ne this network by setting

fw(x) =

Kn∑
k=1

w
(Ln)
k,1,1 · f

(Ln)
k,1 (x) (8)

for some w
(Ln)
1,1,1, . . . , w

(Ln)
Kn,1,1

∈ R, where f (Ln)
k,1 = f

(Ln)
w,k,1 are recursively de�ned by

f
(l)
k,i(x) = f

(l)
w,k,i(x) = σ

 rn∑
j=1

w
(l−1)
k,i,j · f

(l−1)
k,j (x) + w

(l−1)
k,i,0

 (9)

for some w
(l−1)
k,i,0 , . . . , w

(l−1)
k,i,rn

∈ R (l = 2, . . . , Ln) and

f
(1)
k,i (x) = f

(1)
w,k,i(x) = σ

 d∑
j=1

w
(0)
k,i,j · x

(j) + w
(0)
k,i,0

 (10)

for some w
(0)
k,i,0, . . . , w

(0)
k,i,d ∈ R.

We initialize the weights w(0) = ((w(0))
(l))
k,i,j)k,i,j,l as follows: We set

(w(0))
(Ln)
k,1,1 = 0 (k = 1, . . . ,Kn), (11)

we choose (w(0))
(l)
k,i,j uniformly distributed on [−c1,n, c1,n] if l ∈ {1, . . . , Ln − 1}, and we

choose (w(0))
(0)
k,i,j uniformly distributed on [−c2,n, c2,n], where c1,n, c2,n > 0 are param-

eters of the estimate. Here the random values are de�ned such that all components of
w(0) are independent.
Then we perform tn ∈ N stochastic gradient descent steps starting with

w(0).

Here we assume that tn/n is a natural number, and for s ∈ {1, . . . , tn/n} we let

j(s−1)·n, . . . , js·n−1

be an arbitrary permutation of 1, . . . , n, we choose a stepsize λn > 0 and we set

(
w(t+1))

(Ln)
k,1,1

)
k

= ProjA

((
(w(t))

(Ln)
k,1,1

)
k

−λn · ∇(w
(Ln)
k,1,1)k

Yjt − fw(t)(Xjt)

)2
 ,
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(
(w(t+1))

(l)
k,i,j

)
k,i,j,l:l<Ln

= ProjB

((
w(t)

)(l)

k,i,j
)k,i,j,l:l<Ln

−λn · ∇((w(t))
(l)
k,i,j)k,i,j,l:l<Ln

(
Yjt − fw(t)(Xjt)

)2
)

for t = 0, . . . , tn − 1. Here A is the set of all weight vectors (w
(Ln)
k,1,1)k which satisfy

Kn∑
k=1

|w(Ln)
k,1,1| ≤ γn and

Kn∑
k=1

|w(Ln)
k,1,1|

2 ≤ αn

and B is the set of all weight vectors (w
(l)
k,i,j)k,i,j,l:l<Ln which satisfy∥∥∥(w

(l)
k,i,j)k,i,j,l:l<Ln − ((w(0))

(l)
k,i,j)k,i,j,l:l<Ln

∥∥∥ ≤ c3,n.

Again γn, αn and c3,n are parameters of the estimate.
Our estimate is then de�ned by

mn(x) =
1

tn

tn−1∑
t=0

Tβnfw(t)(x) (x ∈ Rd), (12)

where βn = c4 · log n.

3 Main results

In our �rst result we analyze the rate of convergence of our estimate in case of a (p, C)�
smooth regression function.

Theorem 1 Let p, C > 0. Choose L, r ∈ N with

L ≥ log2(p+ d) and r ≥ 2 · (2p+ d) · (p+ d), (13)

let Kn ∈ N be such that
Kn

n10·r2·L →∞ (n→∞), (14)

and set

Ln = L, rn = r, γn = c5 · n2, αn =
c6

n6
, tn = dc7 · n5 ·Kne, λn =

1

tn
,

c1,n = n1/(2p+d) · (log n)2, c2,n = c8, c3,n = c9 · log n

and de�ne the estimate as in Section 2.

Assume that the distribution of (X,Y ) satis�es supp(PX) bounded,

E
{
ec10·Y

2
}
<∞ (15)
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for some c10 > 0 and m(·) = E(Y |X = ·) (p, C)�smooth, and assume that c8 is su�-

ciently large. Then we have for any δ > 0 that for n su�ciently large

E

∫
|mn(x)−m(x)|2PX(dx) ≤ c1 · n−

2p
2p+d

+δ

holds for some constant c1 > 0 which depends on δ.

In our second contribution we consider regression functions which satisfy a projection
pursuit model.

Theorem 2 Let δ ∈ (0, 1/4). Let Kn ∈ N be such that

Kn

n(22p+50)·((p+1)2+d+3)2+2
→∞ (n→∞) (16)

and set

Ln = L = 3, rn = r = max{(dpe+ 1)2, 4}, γn = c11 · n
1

2·(2p+1)
+δ
, αn = c12 ·

1

n4p+30
,

tn = dn5 ·Kne, λn =
1

tn
, c1,n = c2,n = c13 · np+5, c3,n = log n

and de�ne the estimate as in Section 2.

Assume that the distribution of (X,Y ) satis�es supp(PX) bounded, assumption (15)

and

m(x) =

K∑
k=1

mk(b
t
kx) (x ∈ Rd)

for some K ∈ N, bk ∈ Rd and some (p, C)�smooth functions mk : R→ R (k = 1, . . . ,K),
which satisfy

max
s∈N0:s≤p

‖m(s)
k ‖∞ ≤ c14 (k = 1, . . . ,K).

Then we have that for n su�ciently large

E

∫
|mn(x)−m(x)|2PX(dx) ≤ c2 · (log n)3/2 · n−

p
2p+1

+δ

holds for some constant c2 > 0 which depends on δ.

Next we formulate a result concerning the estimation of a regression function which
satis�es a hierarchical composition model with smoothness and order constraint P ⊆
[1,∞)×N. Let H(`,P) be the set of all functions which satisfy a hierarchical composition
model of level l with order and smoothness constraint P. In order to compute a function

h
(`)
1 ∈ H(`,P), one has to compute di�erent hierarchical composition models of some

level i (i ∈ {1, . . . , `− 1}). Let Ñi denote the number of hierarchical composition models

of level i, needed to compute h
(`)
1 . We denote in the following by

h
(i)
j : Rd → R (17)
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the j�th hierarchical composition model of some level i (j ∈ {1, . . . , Ñi}, i ∈ {1, . . . , `}),
that applies a (p

(i)
j , C)�smooth function g

(i)
j : RK

(i)
j → R with p

(i)
j = q

(i)
j + s

(i)
j , q

(i)
j ∈

N0 and s
(i)
j ∈ (0, 1], where (p

(i)
j ,K

(i)
j ) ∈ P. The computation of h

(`)
1 (x) can then be

recursively described as follows:

h
(i)
j (x) = g

(i)
j

(
h

(i−1)∑j−1
t=1 K

(i)
t +1

(x), . . . , h
(i−1)∑j
t=1K

(i)
t

(x)

)
(18)

for j ∈ {1, . . . , Ñi} and i ∈ {2, . . . , `} and

h
(1)
j (x) = g

(1)
j

(
x

(
π(
∑j−1
t=1 K

(1)
t +1)

)
, . . . , x

(
π(
∑j
t=1K

(1)
t )

))
(19)

for some function π : {1, . . . , Ñ1} → {1, . . . , d}.

Theorem 3 Assume that the distribution of (X,Y ) satis�es supp(PX) bounded, assump-
tion (15) and that the regression function m(·) = E(Y |X = ·) satis�es some hierarchical
composition model with order and smoothness constraint P described as above, where

|P| < ∞. Assume that the functions g
(i)
j are Lipschitz continuous with Lipschitz con-

stant CLip ≥ 1 (i.e., p
(i)
j ≥ 1 holds for all i, j) and satisfy

‖g(I)‖
C
q
(i)
j (Rd)

≤ c15

for some c15 > 0. Denote by Kmax = maxi,jK
(i)
j the maximal input dimension and by

pmax = maxi,j p
(i)
j the maximal smoothness of the functions g

(i)
j .

Let Kn ∈ N be such that

Kn

e(logn)2·n →∞ (n→∞). (20)

Let δ ∈ (0, 1) be arbitrary and set

Ln = L = l · (8 + dlog2(maxKmax, pmax + 1)e) + 1, rn =

c16 ·max
i,j

n

K
(i)
j

2·(2p(i)
j

+K
(i)
j

)

 ,
γn = c17 · nδ, αn =

c18

n2L·(5pmax+Kmax+6)
, tn = dc19 · n3 ·Kne, λn =

1

tn
,

c1,n = c2,n = c20 · n5pmax+Kmax+5, c3,n = c21 · log n,

and de�ne the estimate as in Section 2.

Then we have that for n su�ciently large

E

∫
|mn(x)−m(x)|2PX(dx) ≤ c3 · (log n)3/2 · max

(p,K)∈P
n
− p

2p+K
+δ

holds for some constant c3 > 0 which depends on δ.

11



Remark 1. The network in Theorem 1 has only polynomially many weights (in the
sample size), it is trained by stochastic gradient descent, and it achieves a nearly optimal
rate of convergence in case that the regression function is (p, C)�smooth. For gradient
descent a similar result was shown in Kohler (2024).
Remark 2. The rate of convergence in Theorem 2 is not optimal, the optimal rate
of convergence for a (p, C)�smooth projection pursuit regression model should be close
to n−2p/(2p+1) instead of n−p/(2p+1) as in Theorem 2. However, Theorem 2 is the �rst
result which shows that with a polynomial size network (stochastic) gradient descent can
achieve a dimension reduction for projection pursuit.
Remark 3. As in Theorem 2 the rate of convergence in Theorem 3 is not optimal,
however, Theorem 3 is the �rst result showing that (stochastic) gradient descent can
achieve a dimension reduction in case of a hierarchical composition model. In contrast
to Theorem 2 it is required in more general setting of Theorem 3 that the network be of
exponential size (in the sample size).

4 Proofs

4.1 A general result

In the proofs of our main results we will apply the following general result. This theorem
is an adaption to regression of Theorem 1 in Kohler, Krzy»ak and Sänger (2024), which
deals with pattern recognition.

Theorem 4 Assume that (X,Y ) satis�es E{Y |X = x} is bounded and E{ec10·Y 2} <∞.

Let Θ be the set of all weight vectors w = (wi,j,k)
(l))i,j,k,l which satisfy

|w(Ln)
i,j,k | ≤ γn, |w(l)

i,j,k| ≤ c2,n + c3,n, |w(0)
i,j,k| ≤ c1,n + c3,n

(l ∈ {1, . . . , Ln − 1}) for some γn, c1,n, c2,n, c3,n ≥ 0, Let Cn, Dn ≥ 0 . Assume

Kn∑
k=1

|f (Ln)
w,k,1(x)− f (Ln)

w̄,k,1(x)|2 ≤ C2
n ·
∥∥∥(w

(l)
k,i,j)k,i,j,l:l<Ln − (w̄

(l)
k,i,j)k,i,j,l:l<Ln

∥∥∥2
(21)

for all w, w̄ ∈ Θ and all x ∈ supp(X). De�ne the estimate as in Section 2 with

λn =
1

tn

and assume that on the event {maxi=1,...,n |Yi| ≤ βn}∥∥∥∥∇(w
(Ln)
k,1,1)k

(Yjt − fw(t)(Xjt))
2

∥∥∥∥
∞
≤ Dn (22)

holds a.s. for all t = 0, . . . , tn − 1. Let En be an event which depends only on w(0), and

let (w∗)
(Ln)
k,1,1 ∈ R (k = 1, . . . ,Kn) be such that

Kn∑
k=1

|(w∗)(Ln)
k,1,1| ≤ γn and

Kn∑
k=1

|(w∗)(Ln)
k,1,1|

2 ≤ αn.

12



Then

E

∫
|mn(x)−m(x)|2PX(dx)

≤ c22 ·

(
β2
n

n5
+ β2

n ·
√

P(Ecn) + E
{

sup
w∈Θ

(
E{|Tβnfw(X)− Y |2 − |m(X)− Y |2}

− 2

n

n∑
i=1

(
|Tβnfw(Xi)− Yi|2 − |m(Xi)− Yi|2

) )}
+E

{∫
|f

(((w∗)
(Ln)
k,1,1)k,((w(0))

(l)
k,i,j)k,i,j,l:l<Ln )

(x)−m(x)|2PX(dx) · 1En
}

+βn · n · λn ·Kn ·Dn + (βn + γn) ·
√
αn · Cn · c3,n +

Kn∑
k=1

|(w∗)(Ln)
k,1,1|

2 +
Kn ·D2

n

tn

)
.

In the proof of Theorem 4 we will apply the following lemma, which will help us to
bound the optimization error for stochastic gradient descent.

Lemma 1 Let l1, l2, tn ∈ N, let Dn ≥ 0, let A ⊂ Rl1 be closed and convex, let B ⊆ Rl2
and let Ft : Rl1×Rl2 → R (t = 0, . . . , tn−1) be functions such that for all t ∈ {0, . . . , tn−
1}

u 7→ Ft(u, v) is di�erentiable and convex for all v ∈ Rl2

and

‖(∇uFt)(u, v)‖ ≤ Dn (23)

for all (u, v) ∈ A×B. Choose (u0, v0) ∈ A×B, let v1, . . . , vtn ∈ B and set

ut+1 = ProjA (ut − λ · (∇uFt) (ut, vt)) (t = 0, . . . , tn − 1),

where

λ =
1

tn
.

Let u∗ ∈ A. Then it holds:

1

tn

tn−1∑
t=0

Ft(ut, vt) ≤
1

tn

tn−1∑
t=1

Ft(u
∗, v0) +

1

tn

tn−1∑
t=1

|Ft(u∗, vt)− Ft(u∗, v0)|+ ‖u
∗ − u0‖2

2
+

D2
n

2 · tn
.

Proof. By convexity of u 7→ Ft(u, vt) and because of u∗ ∈ A we have

Ft(ut, vt)− Ft(u∗, vt)
≤< (∇uFt)(ut, vt), ut − u∗ >

=
1

2 · λ
· 2· < λ · (∇uFt)(ut, vt), ut − u∗ >

=
1

2 · λ
·
(
−‖ut − u∗ − λ · (∇uFt)(ut, vt)‖2 + ‖ut − u∗‖2 + ‖λ · (∇uFt)(ut, vt)‖2

)

13



≤ 1

2 · λ
·
(
−‖ProjA(ut − λ · (∇uFt)(ut, vt))− u∗‖2 + ‖ut − u∗‖2 + λ2 · ‖(∇uFt)(ut, vt)‖2

)
=

1

2 · λ
·
(
‖ut − u∗‖2 − ‖ut+1 − u∗‖2 + λ2 · ‖(∇uFt)(ut, vt)‖2

)
.

This implies

1

tn

tn−1∑
t=0

Ft(ut, vt)−
1

tn

tn−1∑
t=0

Ft(u
∗, vt)

=
1

tn

tn−1∑
t=0

(Ft(ut, vt)− Ft(u∗, vt))

≤ 1

tn

tn−1∑
t=0

1

2 · λ
·
(
‖ut − u∗‖2 − ‖ut+1 − u∗‖2

)
+

1

tn

tn−1∑
t=0

λ

2
· ‖(∇uFt)(ut, vt)‖2

=
1

2
·
tn−1∑
t=0

(
‖ut − u∗‖2 − ‖ut+1 − u∗‖2

)
+

1

2 · t2n

tn−1∑
t=0

‖(∇uFt)(ut, vt)‖2

≤ ‖u0 − u∗‖2

2
+

1

2 · t2n

tn−1∑
t=0

‖(∇uFt)(ut, vt)‖2.

Using the above result and (23) we get

1

tn

tn−1∑
t=0

Ft(ut, vt)

≤ 1

tn

tn−1∑
t=0

Ft(u
∗, vt) +

‖u∗ − u0‖2

2
+

1

2 · t2n

tn−1∑
t=0

‖(∇uFt)(ut, vt)‖2

≤ 1

tn

tn−1∑
t=0

Ft(u
∗, v0) +

1

tn

tn−1∑
t=0

|Ft(u∗, vt)− Ft(u∗, v0)|+ ‖u
∗ − u0‖2

2
+

D2
n

2 · tn
.

�
Proof of Theorem 4. In the �rst step of the proof we upper bound the expected L2

error of the estimate by a sum of several terms.
Let Ēn be the event that En and {maxi=1,...,n |Yi| ≤ βn} hold. W.l.o.g. we assume
‖m‖∞ ≤ βn. We have

E

∫
|mn(x)−m(x)|2PX(dx)

≤ E

{∫
|mn(x)−m(x)|2PX(dx) · 1Ēn

}
+ 4 · β2

n ·P{Ēcn}

≤ E
{(

E{|mn(X)− Y |2|Dn,w(0)} −E{|m(X)− Y |2}
)
· 1Ēn

}
+ 4 · β2

n ·P{Ēcn}

14



= E

{(
E{| 1

tn

tn−1∑
t=0

Tβnfw(t)(X)− Y |2|Dn,w(0)} −E{|m(X)− Y |2}

)
· 1Ēn

}
+4 · β2

n ·P{Ēcn}

≤ E

{
1

tn

tn−1∑
t=0

(
E{|Tβnfw(t)(X)− Y |2|Dn,w(0)} −E{|m(X)− Y |2}

)
· 1Ēn

}
+4 · β2

n ·P{Ēcn}

= E

{
1

tn

tn−1∑
t=0

(
E{|Tβnfw(t)(X)− Y |2|Dn,w(0)} −E{|m(X)− Y |2}

−2 ·
(
|Tβnfw(t)(Xjt)− Yjt |2 − |m(Xjt)− Yjt |2

))
· 1Ēn

}

+2 ·E

{
1

tn

tn−1∑
t=0

(
|Tβnfw(t)(Xjt)− Yjt |2 − |m(Xjt)− Yjt |2

)
· 1Ēn

}
+4 · β2

n ·P{Ēcn}

=
1

tn/n

tn/n∑
s=1

E

{
1

n

s·n−1∑
t=(s−1)·n

(
E{|Tβnfw(t)(X)− Y |2|Dn,w(0)} −E{|m(X)− Y |2}

−2 ·
(
|Tβnfw(t)(Xjt)− Yjt |2 − |m(Xjt)− Yjt |2

))
· 1Ēn

}

+2 ·E

{
1

tn

tn−1∑
t=0

(
|Tβnfw(t)(Xjt)− Yjt |2 − |m(Xjt)− Yjt |2

)
· 1Ēn

}
+4 · β2

n ·P{Ēcn}

=
1

tn/n

tn/n∑
s=1

E

{
1

n

s·n−1∑
t=(s−1)·n

(
E{|Tβnfw(s·n)(X)− Y |2|Dn,w(0)} −E{|m(X)− Y |2}

−2 ·
(
|Tβnfw(s·n)(Xjt)− Yjt |2 − |m(Xjt)− Yjt |2

))
· 1Ēn

}

+
1

tn/n

tn/n∑
s=1

E

{
1

n

s·n−1∑
t=(s−1)·n

(
E{|Tβnfw(t)(X)− Y |2|Dn,w(0)} −

E{|Tβnfw(s·n)(X)− Y |2|Dn,w(0)}

)
· 1Ēn

}

+2 · 1

tn/n

tn/n∑
s=1

E

{
1

n

s·n−1∑
t=(s−1)·n

(
|Tβnfw(s·n)(Xjt)− Yjt |2

15



−|Tβnfw(t)(Xjt)− Yjt |2
)
· 1Ēn

}

+2 ·E

{
1

tn

tn−1∑
t=0

(
|Tβnfw(t)(Xjt)− Yjt |2 − |m(Xjt)− Yjt |2

)
· 1Ēn

}
+4 · β2

n ·P{Ēcn}
=: T1,n + T2,n + T3,n + T4,n + T5,n.

In the remainder of the proof we bound Tj,n for j ∈ {1, . . . , 5}.
In the second step of the proof we show

T5,n ≤ c23 · β2
n ·
(

P(Ecn) +
1

n10

)
.

This follows from
P{Ēcn} ≤ P{Ecn}+ P{ max

i=1,...,n
|Yi| > βn}

and

P{ max
i=1,...,n

|Yi| > βn} ≤ n·P{exp(c10·|Y |2) > exp(c10·β2
n)} ≤ n·E{exp(c10 · |Y |2)}

exp(c10 · β2
n)

≤ c24

n10
.

In the third step of the proof we show

T1,n ≤ c25 ·

(
E
{

sup
w∈Θ

(
E{|Tβnfw(X)− Y |2 − |m(X)− Y |2}

− 2

n

n∑
i=1

(
|Tβnfw(Xi)− Yi|2 − |m(Xi)− Yi|2

) )}
+ β2

n ·
√

P{Ecn}+
1

n5

)
.

By the de�nition of the estimate we know

w(s·n) ∈ Θ

and
{j(s−1)·n, . . . , js·n−1} = {1, . . . , n}

for all s ∈ {1, . . . , tn/n}. Hence

T1,n

=
1

tn/n

tn/n∑
s=1

E

{
1

n

s·n−1∑
t=(s−1)·n

(
E{|Tβnfw(s·n)(X)− Y |2|Dn,w(0)} −E{|m(X)− Y |2}

−2 ·
(
|Tβnfw(s·n)(Xjt)− Yjt |2 − |m(Xjt)− Yjt |2

))}
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− 1

tn/n

tn/n∑
s=1

E

{
1

n

s·n−1∑
t=(s−1)·n

(
E{|Tβnfw(s·n)(X)− Y |2|Dn,w(0)} −E{|m(X)− Y |2}

−2 ·
(
|Tβnfw(s·n)(Xjt)− Yjt |2 − |m(Xjt)− Yjt |2

))
· 1Ēn

}
≤ E

{
sup
w∈Θ

(
E{|Tβnfw(X)− Y |2 − |m(X)− Y |2}

− 2

n

n∑
i=1

(
|Tβnfw(Xi)− Yi|2 − |m(Xi)− Yi|2

) )}

+
1

tn/n

tn/n∑
s=1

E

{
1

n

s·n−1∑
t=(s−1)·n

(
E{|m(X)− Y |2}+ 2 · |Tβnfw(s·n)(Xjt)− Yjt |2

)
· 1Ēcn

}

≤ E
{

sup
w∈Θ

(
E{|Tβnfw(X)− Y |2 − |m(X)− Y |2}

− 2

n

n∑
i=1

(
|Tβnfw(Xi)− Yi|2 − |m(Xi)− Yi|2

) )}
+E{|m(X)− Y |2} ·P{Ēcn}+ 2 ·

√
max

i=1,...,n,
s=1,...,tn/n

E{|Tβnfw(s·n)(Xi)− Yi|4} ·
√

P{Ēcn}

≤ E
{

sup
w∈Θ

(
E{|Tβnfw(X)− Y |2 − |m(X)− Y |2}

− 2

n

n∑
i=1

(
|Tβnfw(Xi)− Yi|2 − |m(Xi)− Yi|2

) )}
+c26 ·P{Ēcn}+ c27 · β2

n ·
√

P{Ēcn}

≤ c25 ·

(
E
{

sup
w∈Θ

(
E{|Tβnfw(X)− Y |2 − |m(X)− Y |2}

− 2

n

n∑
i=1

(
|Tβnfw(Xi)− Yi|2 − |m(Xi)− Yi|2

) )}
+ β2

n ·
√

P{Ecn}+
1

n5

)
,

where the last inequality follows from the proof of the assertion of the second step.
In the fourth step of the proof we show

T2,n ≤ c28 · βn · (n · λn ·Kn ·Dn +
√
αn · Cn · c3,n) .

We have

T2,n

=
1

tn/n

tn/n∑
s=1

E

{
1

n

s·n−1∑
t=(s−1)·n

E
{

(Tβnfw(t)(X) + Tβnfw(s·n)(X)− 2Y )
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·(Tβnfw(t)(X)− Tβnfw(s·n)(X))
∣∣∣Dn,w(0)

})
· 1Ēn

}

≤ 1

tn/n

tn/n∑
s=1

E

{
1

n

s·n−1∑
t=(s−1)·n

√
E{(Tβnfw(t)(X) + Tβnfw(s·n)(X)− 2Y )2|Dn,w(0)}

·
√

E{(Tβnfw(t)(X)− Tβnfw(s·n)(X))2|Dn,w(0)} · 1Ēn

}

≤ c29 · βn ·
1

tn/n

tn/n∑
s=1

1

n

s·n−1∑
t=(s−1)·n

√
E{(Tβnfw(t)(X)− Tβnfw(s·n)(X))2} · 1Ēn .

Using that on Ēn we have

(Tβnfw(t)(X)− Tβnfw(s·n)(X))2

≤ (fw(t)(X)− fw(s·n)(X))2

=

(
Kn∑
k=1

(w(t))
(Ln)
k,1,1 · f

(Ln)

w(t),k,1
(X)−

Kn∑
k=1

(w(s·n))
(Ln)
k,1,1 · f

(Ln)

w(s·n),k,1
(X)

)2

≤ 2 ·

(
Kn∑
k=1

(w(t))
(Ln)
k,1,1 · f

(Ln)

w(t),k,1
(X)−

Kn∑
k=1

(w(s·n))
(Ln)
k,1,1 · f

(Ln)

w(t),k,1
(X)

)2

+2 ·

(
Kn∑
k=1

(w(s·n))
(Ln)
k,1,1 · f

(Ln)

w(t),k,1
(X)−

Kn∑
k=1

(w(s·n))
(Ln)
k,1,1 · f

(Ln)

w(s·n),k,1
(X)

)2

≤ 2 ·

(
Kn∑
k=1

|(w(t))
(Ln)
k,1,1 − (w(s·n))

(Ln)
k,1,1|

)2

+2 ·
Kn∑
k=1

|(w(s·n))
(Ln)
k,1,1|

2 ·
Kn∑
k=1

∣∣∣f (Ln)

w(t),k,1
(X)− f (Ln)

w(s·n),k,1
(X)

∣∣∣2
≤ 2 · (|t− s · n| · λn ·Kn ·Dn)2

+2 · αn · C2
n · ‖((w(t))

(l)
k,i,j)k,i,j,l:l<Ln − ((w(s·n))

(l)
k,i,j)k,i,j,l:l<Ln‖

2

≤ 2 · (|t− s · n| · λn ·Kn ·Dn)2 + 2 · αn · C2
n · 4 · c2

3,n

we get the assertion.
In the �fth step of the proof we show

T3,n ≤ c30 · βn · (n · λn ·Kn ·Dn +
√
αn · Cn · c3,n) .

Arguing as in the fourth step of the proof we get

T3,n
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≤ 2 · 1

tn/n

tn/n∑
s=1

E

{
1

n

s·n∑
t=(s−1)·n+1

c31 · βn · |Tβnfw(s·n)(Xjt)− Tβnfw(t)(Xjt)| · 1Ēn

}
≤ c30 · βn · (n · λn ·Kn ·Dn +

√
αn · Cn · c3,n) .

In the sixth step of the proof we show

T4,n

≤ c31 ·

(
E

{∫
|f

(((w∗)
(Ln)
k,1,1)k,((w(0))

(l)
k,i,j)k,i,j,l:l<Ln )

(x)−m(x)|2PX(dx) · 1En
}

+(βn + γn) ·
√
αn · Cn · c3,n +

Kn∑
k=1

|(w∗)(Ln)
k,1,1|

2 +
Kn ·D2

n

tn

)
.

To do this we apply Lemma 1. Because of |Tβnz−y| ≤ |z−y| for |y| ≤ βn the de�nition
of Ēn implies

T4,n

≤ 2 ·E

{
1

tn

tn−1∑
t=0

(
|fw(t)(Xjt)− Yjt |2 − |m(Xjt)− Yjt |2

)
· 1Ēn

}

= 2 ·E

{
1

tn

tn−1∑
t=0

Ft

(
((w(t))

(Ln)
k,1,1)k, ((w

(t))
(l)
k,i,j)k,i,j,l:l<Ln

)
· 1Ēn

}
where

Ft

(
(w

(Ln)
k,1,1)k, (w

(l)
k,i,j)k,i,j,l:l<Ln

)
= |f

((w
(Ln)
k,1,1)k,(w

(l)
k,i,j)k,i,j,l:l<Ln )

(Xjt)−Yjt |2−|m(Xjt)−Yjt |2

is a convex and di�erentiable function of its �rst argument with 2-norm of the gradient
bounded by

√
Kn ·Dn. Application of Lemma 1 with

ut = ((w(t))
(Ln)
k,1,1)k, vt = ((w(t))

(l)
k,i,j)k,i,j,l:l<Ln and u∗ = ((w∗)

(Ln)
k,1,1)k

yields

T4,n

≤ 2 ·E

{
1

tn

tn−1∑
t=0

Ft (u∗, v0) · 1Ēn

}
+ 2 ·E

{
1

tn

tn−1∑
t=0

|Ft(u∗, vt)− Ft(u∗, v0)| · 1Ēn

}
+ ‖u∗‖2

+
Kn ·D2

n

2 · tn
.

Arguing as in the �fth step of the proof we get

E

{
1

tn

tn−1∑
t=0

|Ft(u∗, vt)− Ft(u∗, v0)| · 1Ēn

}
≤ c32 · (βn + γn) ·

√
αn · Cn · c3,n.
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So it remains to bound

E

{
1

tn

tn−1∑
t=0

Ft (u∗, v0) · 1Ēn

}
.

Since Ēn ⊆ En we get

E

{
1

tn

tn−1∑
t=0

Ft (u∗, v0) · 1Ēn

}

≤ E

{
1

tn

tn−1∑
t=0

E

{
Ft (u∗, v0) · 1Ēn

∣∣∣∣∣w(0),Dn

}}

≤ E

{∫
|f

((w∗)
(Ln)
k,1,1)k,((w(0))

(l)
k,i,j)k,i,j,l:l<Ln )

(x)−m(x)|2PX(dx) · 1Ēn

}
≤ E

{∫
|f

((w∗)
(Ln)
k,1,1)k,((w(0))

(l)
k,i,j)k,i,j,l:l<Ln )

(x)−m(x)|2PX(dx) · 1En
}
.

Summarizing the above results the proof is complete. �

4.2 Proof of Theorem 1

4.2.1 Auxiliary results

In order to apply Theorem 4 in the proof of Theorem 1 we will need the following auxiliary
results.

Lemma 2 Let σ be the logistic activation function. Let a,Bn ≥ 1, Ln, rn ∈ N and de�ne

the deep neural network fw : Rd → R with weight vector w by (8)�(10). Assume that the

weight vectors w1 and w2 satisfy

|w(l)
k,i,j | ≤ Bn

for all l ∈ {1, . . . , Ln − 1}. Then we have for any x ∈ [−a, a]d and any k ∈ {1, . . . ,Kn}∣∣∣f (Ln)
w1,k,1,1

(x)− f (Ln)
w2,k,1,1

(x)
∣∣∣

≤ a · (max{2rn, d}+ 1)Ln ·BLn−1
n · ‖((w1)

(l)
k,i,j)i,j,l:l<Ln − ((w2)

(l)
k,i,j)i,j,l:l<Ln‖∞.

Proof. We show

|f (l)
w1,k,j

(x)− f (l)
w2,k,j

(x)|

≤ a · (max{2rn, d}+ 1)l ·Bl−1
n · ‖((w1)

(l̄)

k,̄i,j̄
)̄i,j̄,l̄ − ((w2)

(l̄)

k,̄i,j̄
)̄i,j̄,l̄‖∞

for l ∈ {1, . . . , Ln} by induction on l.
For l = 1 we use that σ is Lipschitz continuous with Lipschitz constant 1 and get

|f (1)
w1,k,i

(x)− f (1)
w2,k,i

(x)|
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≤

∣∣∣∣∣∣σ
 d∑
j=1

(w1)
(0)
k,i,j · x

(j) + (w1)
(0)
k,i,0

− σ
 d∑
j=1

(w2)
(0)
k,i,j · x

(j) + (w2)
(0)
k,i,0

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
d∑
j=1

(w1)
(0)
k,i,j · x

(j) + (w1)
(0)
k,i,0 −

d∑
j=1

(w2)
(0)
k,i,j · x

(j) − (w2)
(0)
k,i,0

∣∣∣∣∣∣
≤

d∑
j=1

|(w1)
(0)
k,i,j − (w2)

(0)
k,i,j | · a+ |(w1)

(0)
k,i,0 − (w2)

(0)
k,i,0|

≤ a · (max{2rn, d}+ 1)1 ·B1−1
n · ‖((w1)

(l̄)

k,̄i,j̄
)̄i,j̄,l̄ − ((w2)

(l̄)

k,̄i,j̄
)̄i,j̄,l̄‖∞.

Assume next that the assertion holds for some l ∈ {1, . . . , Ln − 1}. Then

|f (l+1)
w1,k,i

(x)− f (l+1)
w2,k,i

(x)|

≤

∣∣∣∣∣∣σ
 rn∑
j=1

(w1)
(l)
k,i,j · f

(l)
w1,k,j

(x) + (w1)
(l)
k,i,0

− σ
 rn∑
j=1

(w2)
(l)
k,i,j · f

(l)
w2,k,j

(x) + (w2)
(l)
k,i,0

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
rn∑
j=1

(w1)
(l)
k,i,j · f

(l)
w1,k,j

(x) + (w1)
(l)
k,i,0 −

rn∑
j=1

(w2)
(l)
k,i,j · f

(l)
w2,k,j

(x)− (w2)
(l)
k,i,0

∣∣∣∣∣∣
≤

rn∑
j=1

|(w1)
(l)
k,i,j · f

(l)
w1,k,j

(x)− (w2)
(l)
k,i,j · f

(l)
w2,k,j

(x)|+ |(w1)
(l)
k,i,0 − (w2)

(l−1)
k,i,0 |

≤
rn∑
j=1

|(w1)
(l)
k,i,j − (w2)

(l)
k,i,j |+

rn∑
j=1

|(w2)
(l)
k,i,j | · |f

(l)
w1,k,j

(x)− f (l)
w2,k,j

(x)|

+|(w1)
(l)
k,i,0 − (w2)

(l−1)
k,i,0 |

≤ (rn + 1) · ‖((w1)
(l̄)

k,̄i,j̄
)̄i,j̄,l̄ − ((w2)

(l̄)

k,̄i,j̄
)̄i,j̄,l̄‖∞

+rn ·Bn · a · (max{2rn, d}+ 1)l ·Bl−1
n · ‖((w1)

(l̄)

k,̄i,j̄
)̄i,j̄,l̄ − ((w2)

(l̄)

k,̄i,j̄
)̄i,j̄,l̄‖∞

≤ a · (max{2rn, d}+ 1)l+1 ·Bl
n · ‖((w1)

(l̄)

k,̄i,j̄
)̄i,j̄,l̄ − ((w2)

(l̄)

k,̄i,j̄
)̄i,j̄,l̄‖∞.

�

Lemma 3 Let σ be the logistic activation function. Let a,Bn ≥ 1, Ln, rn ∈ N and de�ne

the deep neural network fw : Rd → R with weight vector w by (8)�(10). Assume that the

weight vectors w1 and w2 satisfy

|w(l)
k,i,j | ≤ Bn

for all l ∈ {1, . . . , Ln − 1}. Then we have for any x ∈ [−a, a]d

Kn∑
k=1

∣∣∣f (Ln)
w1,k,1,1

(x)− f (Ln)
w2,k,1,1

(x)
∣∣∣2

≤ a2 · (max{2rn, d}+ 1)2Ln ·B2Ln−2
n · ‖((w1)

(l)
k,i,j)k,i,j,l:l<Ln − ((w2)

(l)
k,i,j)k,i,j,l:l<Ln‖

2.
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Proof. By Lemma 2 we get

Kn∑
k=1

∣∣∣f (Ln)
w1,k,1,1

(x)− f (Ln)
w2,k,1,1

(x)
∣∣∣2

≤
Kn∑
k=1

a2 · (max{2rn, d}+ 1)2Ln ·B2Ln−2
n · ‖((w1)

(l)
k,i,j)i,j,l:l<Ln − ((w2)

(l)
k,i,j)i,j,l:l<Ln‖

2
∞

≤
Kn∑
k=1

a2 · (max{2rn, d}+ 1)2Ln ·B2Ln−2
n · ‖((w1)

(l)
k,i,j)i,j,l:l<Ln − ((w2)

(l)
k,i,j)i,j,l:l<Ln‖

2

= a2 · (max{2rn, d}+ 1)2Ln ·B2Ln−2
n ·

Kn∑
k=1

‖((w1)
(l)
k,i,j)i,j,l:l<Ln − ((w2)

(l)
k,i,j)i,j,l:l<Ln‖

2

= a2 · (max{2rn, d}+ 1)2Ln ·B2Ln−2
n · ‖((w1)

(l)
k,i,j)k,i,j,l:l<Ln − ((w2)

(l)
k,i,j)k,i,j,l:l<Ln‖

2.

�
In order to bound the approximation error in the proof of Theorem 1 we will apply

the following result.

Lemma 4 Let d ∈ N, p = q + β where β ∈ (0, 1] and q ∈ N0, C > 0, A ≥ 1 and

An, Bn, γ
∗
n ≥ 1. For L, r,K ∈ N let F be the set of all networks fw de�ned by (8)�(10)

with Kn replaced by 1, Ln replaced by L and rn replaced by r, where the weight vector

satis�es

|w(0)
1,i,j | ≤ An, |w(l)

1,i,j | ≤ Bn and |w(L)
1,i,j | ≤ γ

∗
n

for all l ∈ {1, . . . , L− 1} and all i, j, and set

H =


Kd∑
k=1

fk : fk ∈ F (k = 1, . . . ,K)

 .

Let L, r ∈ N with

L ≥ dlog2(q + d)e and r ≥ 2 · (2p+ d) · (q + d),

and set

An = A ·K · logK, Bn = c34 and γ∗n = c35 ·Kq+d

with c34, c35 ≥ 0 su�ciently large. Assume K ≥ c36 for c36 > 0 su�ciently large. Then

there exists for any (p, C)�smooth f : Rd → R a neural network h ∈ H such that

sup
x∈[−A,A)d

|f(x)− h(x)| ≤ c37

Kp
.

Proof. See Lemma 2 in Kohler (2024). �
The generalization error in the proof of Theorem 1 will be bounded by using the

following metric entropy bound for deep neural networks with smooth activation function.
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Lemma 5 Let α, β ≥ 1 and let A,B,C ≥ 1. Let σ : R → R be k-times di�erentiable
such that all derivatives up to order k are bounded on R. Let F be the set of all functions

fw de�ned by (8)�(10) where the weight vector w satis�es

Kn∑
j=1

|w(L)
1,1,j | ≤ C, (24)

|w(l)
k,i,j | ≤ B (k ∈ {1, . . . ,Kn}, i, j ∈ {1, . . . , r}, l ∈ {1, . . . , L− 1}) (25)

and

|w(0)
k,i,j | ≤ A (k ∈ {1, . . . ,Kn}, i ∈ {1, . . . , r}, j ∈ {1, . . . , d}). (26)

Then we have for any 1 ≤ p <∞, 0 < ε < 1 and xn1 ∈ Rd

Np
(
ε, {Tβf · 1[−α,α]d : f ∈ F}, xn1

)
≤
(
c38 ·

βp

εp

)c39·αd·B(L−1)·d·Ad·(Cε )
d/k

+c40

.

Proof. See Lemma 4 in Drews and Kohler (2024). �

4.2.2 Proof of Theorem 1

The assertion follows more or less directly from Theorem 4 by using arguments as in
the proof of Theorem 1 in Kohler (2024). For the sake of completeness we nevertheless
present the complete proof.
W.l.o.g. we assume throughout the proof that n is su�ciently large and that ‖m‖∞ ≤

βn holds. Let A > 0 with supp(X) ⊆ [−A,A]d. Set

K̃n =
⌈
c41 · n

d
2p+d

⌉
and

Nn =
⌈
c42 · n9

⌉
and let w̄ be a weight vector of a neural networks where the results of Nn · K̃n in parallel
computed neural networks with L hidden layers and r neurons per layer are computed
such that the corresponding network

fw̄(x) =

Nn·K̃n∑
k=1

(w̄)1,1,k · f
(L)
w̄,k,1(x)

satis�es
sup

x∈[−A,A]d
|fw̄(x)−m(x)| ≤ c43

K̃
p/d
n

(27)

and

|(w̄)
(L)
k,1,1| ≤

c44 · K̃(q+d)/d
n

Nn
(k = 1, . . . , Nn · K̃n)
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and
|(w̄)

(l)
k,i,j | ≤ c45

for l ∈ {1, . . . , L− 1} and

|(w̄)
(0)
k,i,j | ≤ c46 · K̃1/d

n · log(K̃n).

Note that such a network exists according Lemma 4 if we repeat in the outer sum of the
function space H each of the fk's in Lemma 4 Nn�times with outer weights divided by
Nn. By construction, the outer weights of this network satisfy

Nn·K̃n∑
k=1

|(w̄)
(L)
k,1,1| ≤ K̃n · c44 · K̃

q+d
d

n ≤ γn

and
Nn·K̃n∑
k=1

|(w̄)
(L)
k,1,1|

2 ≤ K̃
(2q+3d)/d
n

Nn
≤ αn.

Set
εn =

c47

n3
.

Let En be the event that the weight vector w(0) satis�es

|(w(0))
(l)
js,k,i

− (w̄)
(l)
s,k,i| ≤ εn for all l ∈ {0, . . . , L− 1}, s ∈ {1, . . . , Nn · K̃n}, all k, i

for some pairwise distinct j1, . . . , jNn·K̃n ∈ {1, . . . ,Kn}. De�ne

(w∗)
(L)
jk,1,1

= w̄
(L)
k,1,1 (k = 1, . . . , Nn · K̃n)

and
(w∗)

(L)
k,1,1 = 0 (k ∈ {1, . . . ,Kn} \ {j1, . . . , jNn·K̃n}.

Next we check the assumptions of Theorem 4. By construction of our estimate its
weights satisfy the constraints

|w(Ln)
i,j,k | ≤ γn = c5 · n2, |w(l)

i,j,k| ≤ c2,n + c3,n ≤ c48 · log n

and
|w(0)
i,j,k| ≤ c1,n + c3,n ≤ c49 · (log n)2 · n

1
2p+d .

By Lemma 3 we know that (21) holds with

C2
n = c50 ·B2L

n = c50 · (c2,n + c3,n)2L ≤ c51 · (log n)2L.

And on the event {maxi=1,...,n |Yi| ≤ βn} we have∥∥∥∥∇(w
(Ln)
k,1,1)k

(Yjt − fw(t)(Xjt))
2

∥∥∥∥
∞
≤ max

k=1,...,Kn
2 · (βn + |fw(t)(Xjt)|) · |fw(t),1,k(Xjt)|
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≤ 2 · (βn + γn) · 1,

so (22) holds with
Dn = 2 · (βn + γn) ≤ c52 · n2.

Application of Theorem 4 yields

E

∫
|mn(x)−m(x)|2PX(dx)

≤ c53 ·

(
β2
n

n5
+ β2

n ·
√

P(Ecn) + E
{

sup
w∈Θ

(
E{|Tβnfw(X)− Y |2 − |m(X)− Y |2}

− 2

n

n∑
i=1

(
|Tβnfw(Xi)− Yi|2 − |m(Xi)− Yi|2

) )}
+E

{∫
|f

((w∗)(L),((w(0))
(l)
k,i,j)k,i,j,l:l<Ln )

(x)−m(x)|2PX(dx) · 1En
}

+βn · n · λn ·Kn ·Dn + (βn + γn) ·
√
αn · Cn · c3,n + ‖(w∗)(L)‖2 +

Kn ·D2
n

tn

)
.

Next we bound P(Ecn). To do this, we consider a sequential choice of the weights of
the Kn fully connected neural networks. The probability that the weights in the �rst of

these networks di�er in all components at most by εn from (w̄)
(l)
1,i,j (l = 0, . . . , L− 1) is

for large n bounded from below by(
c93

2 · c2 · n3

)r·(r+1)·(L−2)+r+1

·
(

c93

2 · (log n)2 · n1/(2p+d) · n3

)r·(d+1)

≥ n−r·(r+1)·(L−2)·3−3·(r+1)−4·r·(d+1)−0.5.

Hence probability that none of the �rst nr·(r+1)·(L−2)·3+3·(r+1)+4·r·(d+1)+1 neural networks
satis�es this condition is for large n bounded above by

(1− n−r·(r+1)·(L−2)·3−3·(r+1)−4·r·(d+1)−0.5)n
r·(r+1)·(L−2)·3+3·(r+1)+4·r·(d+1)+1

≤
(

exp
(
−n−r·(r+1)·(L−2)·3−3·(r+1)−4·r·(d+1)−0.5

))nr·(r+1)·(L−2)·3+3·(r+1)+4·r·(d+1)+1

= exp(−n0.5).

Since we have Kn ≥ nr(̇r+1)·(L−2)·3+3·(r+1)+4·r·(d+1)+1 · Nn · K̃n for n large we can suc-
cessively use the same construction for all of Nn · K̃n weights and we can conclude: The
probability that there exists k ∈ {1, . . . , Nn ·K̃n} such that none of the Kn weight vectors

of the fully connected neural network di�ers by at most εn from ((w̄)
(l)
i,j,k)i,j,l is for large

n bounded from above by

Nn · K̃n · exp(−n0.5) ≤ c54 · n10 · exp(−n0.5) ≤ c55

n2
.
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This proves

P{Ecn} ≤
c55

n2
.

Next we bound

E
{

sup
w∈Θ

(
E{|Tβnfw(X)−Y |2−|m(X)−Y |2}− 2

n

n∑
i=1

(
|Tβnfw(Xi)− Yi|2 − |m(Xi)− Yi|2

) )}
.

Set mβn(x) = E{TβnY |X = x}. Then

E
{

sup
w∈Θ

(
E{|Tβnfw(X)− Y |2 − |m(X)− Y |2} − 2

n

n∑
i=1

(
|Tβnfw(Xi)− Yi|2 − |m(Xi)− Yi|2

) )}
≤ E

{
sup
w∈Θ

(
E{|Tβnfw(X)− TβnY |2 − |mβn(X)− TβnY |2}

− 2

n

n∑
i=1

(
|Tβnfw(Xi)− TβnYi|2 − |mβn(Xi)− TβnYi|2

) )}
+E
{

sup
w∈Θ

(
E{|Tβnfw(X)− Y |2 − |m(X)− Y |2}

−E{|Tβnfw(X)− TβnY |2 − |mβn(X)− TβnY |2}
)}

+E
{

sup
w∈Θ

( 2

n

n∑
i=1

(
|Tβnfw(Xi)− TβnYi|2 − |mβn(Xi)− TβnYi|2

)
− 2

n

n∑
i=1

(
|Tβnfw(Xi)− Yi|2 − |m(Xi)− Yi|2

) )}
=: T1,n + T2,n + T3,n.

As in the proof of Lemma 1 in Bauer and Kohler (2019) we get

T2,n + T3,n ≤ c56 ·
(log n)2

n
.

Next we show

ET1,n ≤ c57 ·
nd/(2p+d)+δ

n
.

Let δn ≥ 1/n. Then

E{T1,n}

≤
∫ ∞

0
P{T1,n > t} dt

≤ δn +

∫ ∞
δn

P
{
∃w ∈ Θ :

(
E{|Tβnfw(X)− TβnY |2 − |mβn(X)− TβnY |2}

− 2

n

n∑
i=1

(
|Tβnfw(Xi)− TβnYi|2 − |mβn(Xi)− TβnYi|2

) )
> t
}
dt.
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By Theorem 11.4 in Györ� et al. (2002) we get for t > 1/n

P
{
∃w ∈ Θ :

(
E{|Tβnfw(X)− TβnY |2 − |mβn(X)− TβnY |2}

− 2

n

n∑
i=1

(
|Tβnfw(Xi)− TβnYi|2 − |mβn(Xi)− TβnYi|2

) )
> t
}

= P
{
∃w ∈ Θ :

(
E{|

Tβnfw(X)

βn
−
TβnY

βn
|2 − |

mβn(X)

βn
−
TβnY

βn
|2}

− 2

n

n∑
i=1

(
|
Tβnfw(Xi)

βn
−
TβnYi
βn
|2 − |

mβn(Xi)

βn
−
TβnYi
βn
|2
))

>
t

β2
n

}
≤ 14 · sup

xn1∈supp(X)
N2

(
1

80 · β2
n · n

,

{
1

βn
· fw : w ∈ Θ

}
, xn1

)
· exp

(
− n

5136 · β2
n

· t
)
.

Application of Lemma 5 with An = c58 · (log n)2 · n
1

2p+d , Bn = c59 · log n and Cn = γn =
c60 · n2 yields for k large enough

sup
xn1∈supp(X)

N2

(
1

80 · β2
n · n

,

{
1

βn
· Tβnfw : w ∈ Θ

}
, xn1

)
≤ sup

xn1∈supp(X)
N2

(
1

80 · βn · n
, {Tβnfw : w ∈ Θ}, xn1

)
≤ c61 · nc62·n

d
2p+d

+δ/2

.

Hence

E{T21n} ≤ δn + 14 · c61 · nc62·n
d

2p+d
+δ/2

· exp

(
− n

5136 · β2
n

· δn
)
· 5136 · β2

n

n
.

Setting

δn =
5136 · β2

n

n
· c62 · n

d
2p+d

+δ/2 · log n

we get

ET1,n ≤ c63 ·
nd/(2p+d)+δ

n
= c63 · n−

2p
2p+d

+δ
.

This proves

E
{

sup
w∈Θ

(
E{|Tβnfw(X)− Y |2 − |m(X)− Y |2}

− 2

n

n∑
i=1

(
|Tβnfw(Xi)− Yi|2 − |m(Xi)− Yi|2

) )}
≤ c64 · n−2p/(2p+d)+δ.

So it remains to bound

E

{∫
|f

(((w∗)
(Ln)
k,1,1)k,((w(0))

(l)
k,i,j)k,i,j,l:l<Ln )

(x)−m(x)|2PX(dx) · 1En
}
.

27



We have

E

{∫
|f

(((w∗)
(Ln)
k,1,1)k,((w(0))

(l)
k,i,j)k,i,j,l:l<Ln )

(x)−m(x)|2PX(dx) · 1En
}

≤ 2 ·
∫
|fw̄(x)−m(x)|2PX(dx)

+2 ·E
{∫
|fw̄(x)− f

(((w∗)
(Ln)
k,1,1)k,((w(0))

(l)
k,i,j)k,i,j,l:l<Ln )

(x)|2PX(dx) · 1En
}
.

By (27) we know ∫
|fw̄(x)−m(x)|2PX(dx) ≤ c2

43

K̃
2p/d
n

≤ c65 · n−
2p

2p+d .

And using that on En we have

|fw̄(x)− f
(((w∗)

(Ln)
k,1,1)k,((w(0))

(l)
k,i,j)k,i,j,l:l<Ln )

(x)|

=

∣∣∣∣∣∣
Nn·K̃n∑
k=1

(w̄)1,1,k · (f
(L)
w̄,k,1(x)− f (L)

w(0),jk,1
(x))

∣∣∣∣∣∣
≤

Nn·K̃n∑
k=1

|(w̄)
(L)
1,1,k| · |f

(L)
w̄,k,1(x)− f (L)

w(0),jk,1
(x)|

≤ γn · max
k=1,...,Nn·K̃n

|f (L)
w̄,k,1(x)− f (L)

w(0),jk,1
(x)|

≤ γn · c66 · εn ≤
c67

n

(where the third inequality followed from Lemma 2) we get

E

{∫
|fw∗(x)− f

(u∗,((w(0))
(l)
k,i,j)k,i,j,l:l<Ln )

(x)|2PX(dx) · 1En
}
≤ c68

n
.

Summarizing the above results we get

E

∫
|mn(x)−m(x)|2PX(dx)

≤ c69 ·

(
β2
n

n5
+
β2
n

n
+ n−2p/(2p+d)+δ + n

− 2p
2p+d +

1

n

+βn ·
1

n2
+ (βn + γn) · (log n)L+1 · 1

n3
+

1

n6
+

1

n

)
≤ c70 · n−

2p
2p+d

+δ
.

�

28



4.3 Proof of Theorem 2

4.3.1 Auxiliary results

The next lemma will be used in order to bound the approximation error in Theorem 2.

Lemma 6 Let a ≥ 1 and p = q + s for some q ∈ N0 and s ∈ (0, 1], and let C > 0. Let
m : Rd → R be a (p, C)-smooth function, which satis�es

max
j1,...,jd∈{0,1,...,q},

j1+···+jd≤q

∥∥∥∥ ∂j1+···+jdm

∂j1x(1) · · · ∂jdx(d)

∥∥∥∥
∞,[−2a,2a]d

≤ c71. (28)

Let ν be an arbitrary probability measure on Rd. Let N ∈ N0 be chosen such that N ≥ q
and let σ : R → [0, 1] be the logistic activation function. Then, for any η ∈ (0, 1) and

M ∈ N su�ciently large (independent of the size of a and η, but a ≤ M must hold), a

neural network of the type

t(x) =

(d+Nd )·(N+1)·(M+1)d∑
i=1

µi · σ
( 4d∑
l=1

λi,l · σ
( d∑
v=1

θi,l,v · x(v) + θi,l,0

)
+ λi,0

)
(29)

exists such that

|t(x)−m(x)| ≤ c72 · aN+q+3 ·M−p

holds for all x ∈ [−a, a]d up to a set of ν-measure less than or equal to η. The weights of
t(x) can be bounded by

|µi| ≤ c73 · aq ·MN ·p

|λi,l| ≤Md+p·(N+2)

|θi,l,v| ≤ 6 · d · 1

η
·Md+p·(2N+3)+1

for all i ∈
{

1, . . . ,
(
d+N
N

)
· (N + 1) · (M + 1)d

}
, l ∈ {0, . . . , 4d}, and v ∈ {0, . . . , d}.

Proof. See Theorem 2 in Bauer and Kohler (2019). �
The neural network in the lemma above has large outer weights. In order to construct

a neural network with smaller outer weights we will compose it with the network in the
next lemma.

Lemma 7 Let σ be the logistic activation function, let tσ ∈ R be such that σ′(tσ) 6= 0.
Then for any N ∈ N with N > 1 there exist

αj , βj ∈ R (j = 0, . . . , N − 1)

such that for any R > 0

fid(x) =
R

σ′(tσ)
·
N−1∑
j=0

αj · σ
(
βj · x
R

+ tσ

)
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satis�es for all A > 0 and all x ∈ [−A,A]:

|fid(x)− x| ≤ c74 ·
AN

RN−1

for some c74 = c54(N, σ(′)(tσ), ‖σ(N)‖∞, α0, . . . , αN−1, β0, . . . , βN−1) ≥ 0.

Proof. The proof is based on a modi�cation of the proof of Theorem 2 in Scarselli and
Tsoi (1998) presented in the proof of Lemma 9 in Kohler (2024).
Let βj ∈ R (j = 0, . . . , N − 1) be pairwise distinct. Then the vectors

vl = (βl0, . . . , β
l
N−1)T (l = 0, . . . , N − 1)

are linearly independent since
N−1∑
l=0

αl · vl = 0

implies that the polynomial

p(x) =

N−1∑
l=0

αl · xl

of degree N − 1 has the N roots β0, . . . , βN−1, which is possible only in case α0 = · · · =
αN−1 = 0. Hence we can choose α0, . . . , αN−1 ∈ R such that

α0 · v0 + · · ·+ αN−1 · vN−1

is equal to the second unit vector in RN , which implies

N−1∑
j=0

αj · βlj =

{
1, if l = 1

0, if l ∈ {0, . . . , N − 1} \ {1}.
(30)

Using these values for the αj and βj , a Taylor expansion of

u 7→ σ(u+ tσ)

around tσ of order N − 1 implies

fid(x) =
R

σ′(tσ)
·
N−1∑
j=0

αj ·

(
N−1∑
l=0

σ(l)(tσ)

l!
·
(
βj · x
R

)l
+
σ(N)(ξj)

N !
·
(
βj · x
R

)N)

=
R

σ′(tσ)
·
N−1∑
l=0

σ(l)(tσ)

l!
·
( x
R

)l
·

N−1∑
j=0

αj · βlj


+

R

σ′(tσ)
·
N−1∑
j=0

αj ·
σ(N)(ξj)

N !
·
(
βj · x
R

)N

30



= x+
1

σ′(tσ)
·
N−1∑
j=0

αj ·
σ(N)(ξj)

N !
·
βNj · xN

RN−1
,

where the last equality follows from (30). Hence

|fid(x)− x| ≤

∣∣∣∣∣∣ 1

σ′(tσ)
·
N−1∑
j=0

αj ·
σ(N)(ξj)

N !
· βNj

∣∣∣∣∣∣ · |x|
N

RN−1
≤ c74 ·

|x|N

RN−1
≤ c74 ·

AN

RN−1
.

�
In the next lemma we bound the generalization error of the estimate by a Rademacher

complexity.

Lemma 8 Assume that (X,Y ) satis�es m bounded and assumption (15). Let Θ be a set

of weight vectors w = (w
(l)
i,j,k)i,j,k,l of the neural networks fw de�ned by (8)�(10), where

all weight vectors satisfy
Kn∑
k=1

|w(Ln)
k,1,1| ≤ γn (31)

for some γn ≥ 0. Set βn = const · log n. Then

E
{

sup
w∈Θ

(
E{|Tβnfw(X)− Y |2 − |m(X)− Y |2}

− 1

n

n∑
i=1

(
|Tβnfw(Xi)− Yi|2 − |m(Xi)− Yi|2

) )}
≤ c75√

n
+ 8 · βn · γn ·E

{
sup

w∈Θ,k∈{1,...,Kn}

∣∣∣ 1
n

n∑
i=1

εi · f (Ln)
w,k,1(Xi)

∣∣∣},
where ε1, . . . , εn are independent Rademacher random variables which are independent

from X1, . . . , Xn.

Proof. Choose random variables (X ′1, Y
′

1), . . . , (X ′n, Y
′
n), ε1, . . . , εn such that

(X1, Y1), . . . , (Xn, Yn), (X ′1, Y
′

1), . . . , (X ′n, Yn′), ε1, . . . , εn

are independent,
(X1, Y1), . . . , (Xn, Yn), (X ′1, Y

′
1), . . . , (X ′n, Y

′
n),

are identically distributed and

P{εi = 1} = P{εi = −1} =
1

2
(i = 1, . . . , n).

We use the error decomposition

E
{

sup
w∈Θ

(
E{|Tβnfw(X)− Y |2 − |m(X)− Y |2}
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− 1

n

n∑
i=1

(
|Tβnfw(Xi)− Yi|2 − |m(Xi)− Yi|2

) )}
= E

{
sup
w∈Θ

(
E{|Tβnfw(X)− TβnY |2} −

1

n

n∑
i=1

|Tβnfw(Xi)− TβnYi|2
)}

+E
{
−E{|m(X)− Y |2}+

1

n

n∑
i=1

|m(Xi)− Yi|2
)}

+E
{

sup
w∈Θ

(
E{|Tβnfw(X)− Y |2 − |Tβnfw(X)− TβnY |2}

)}
+E
{

sup
w∈Θ

( 1

n

n∑
i=1

(
−|Tβnfw(Xi)− Yi|2 + |Tβnfw(Xi)− TβnYi|2

) )}
=: T1,n + T2,n + T3,n + T4,n.

We have

T2,n ≤

√√√√E
{∣∣∣−E{|m(X)− Y |2}+

1

n

n∑
i=1

|m(Xi)− Yi|2
)∣∣∣2}

=

√√√√Var
{ 1

n

n∑
i=1

|m(Xi)− Yi|2
}

≤ c76√
n
,

and as in the proof of Lemma 1 in Bauer and Kohler (2019) we get

T3,n + T4,n ≤ c77 ·
(log n)2

n
.

Hence it su�ces to show

T1,n ≤ 8 · βn · γn ·E
{

sup
w∈Θ,k∈{1,...,Kn}

∣∣∣∣∣ 1n
n∑
i=1

εi · f (Ln)
w,k,1(Xi)

∣∣∣∣∣ }. (32)

We have

E
{

sup
w∈Θ

(
E{|Tβnfw(X)− TβnY |2} −

1

n

n∑
i=1

|Tβnfw(Xi)− TβnYi|2
)}

= E
{

sup
w∈Θ

(
E
{ 1

n

n∑
i=1

|Tβnfw(X ′i)− TβnY ′i |2
∣∣(X1, Y1), . . . (Xn, Yn)

}
− 1

n

n∑
i=1

|Tβnfw(Xi)− TβnYi|2
)}

= E
{

sup
w∈Θ

E
{( 1

n

n∑
i=1

|Tβnfw(X ′i)− TβnY ′i |2
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− 1

n

n∑
i=1

|Tβnfw(Xi)− TβnYi|2
)∣∣(X1, Y1), . . . (Xn, Yn)

}}
≤ E

{
E
{

sup
w∈Θ

( 1

n

n∑
i=1

|Tβnfw(X ′i)− TβnY ′i |2

− 1

n

n∑
i=1

|Tβnfw(Xi)− TβnYi|2
)∣∣(X1, Y1), . . . (Xn, Yn)

}}
= E

{
sup
w∈Θ

( 1

n

n∑
i=1

|Tβnfw(X ′i)− TβnY ′i |2 −
1

n

n∑
i=1

|Tβnfw(Xi)− TβnYi|2
)}
.

The joint distribution of (X1, Y1), . . . , (Xn, Yn), (X ′1, Y
′

1), . . . , (X ′n, Y
′
n) does not change

if one (randomly) interchanges components of (X1, Y1), . . . , (Xn, Yn) and (X ′1, Y
′

1), . . . ,
(X ′n, Y

′
n). Consequently the right hand-side above is equal to

E
{

sup
w∈Θ

( 1

n

n∑
i=1

εi ·
(
|Tβnfw(X ′i)− TβnY ′i |2 − |Tβnfw(Xi)− TβnYi|2

))}
≤ E

{
sup
w∈Θ

( 1

n

n∑
i=1

εi · |Tβnfw(X ′i)− TβnY ′i |2
)}

+E
{

sup
w∈Θ

( 1

n

n∑
i=1

(−εi) · |Tβnfw(Xi)− TβnYi|2
)}

= 2 ·E
{

sup
w∈Θ

( 1

n

n∑
i=1

εi · |Tβnfw(Xi)− TβnYi|2
)}
.

Next we use a contraction style argument. Due to the independence of the data we can
compute the expectation above in such a way that we �rst compute the expectation with
respect to ε1 and then with respect to all other random variables. This implies that the
right-hand side above is equal to

2 ·E
{1

2
· sup

w∈Θ

( 1

n

n∑
i=2

εi · |Tβnfw(Xi)− TβnYi|2 +
1

n
· 1 · |Tβnfw(X1)− TβnY1|2

)
+

1

2
· sup

w∈Θ

( 1

n

n∑
i=2

εi · |Tβnfw(Xi)− TβnYi|2 +
1

n
· (−1) · |Tβnfw(X1)− TβnY1|2

)}
= E

{
sup

w,w̄∈Θ

( 1

n

n∑
i=2

εi · |Tβnfw(Xi)− TβnYi|2 +
1

n

n∑
i=2

εi · |Tβnfw̄(Xi)− TβnYi|2

+
1

n
· |Tβnfw(X1)− TβnY1|2 −

1

n
· |Tβnfw̄(X1)− TβnY1|2

)}
≤ E

{
sup

w,w̄∈Θ

( 1

n

n∑
i=2

εi · |Tβnfw(Xi)− TβnYi|2 +
1

n

n∑
i=2

εi · |Tβnfw̄(Xi)− TβnYi|2

+
1

n
· 4 · βn · |Tβnfw(X1)− Tβnfw̄(X1)|

)}
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≤ E
{

sup
w,w̄∈Θ

( 1

n

n∑
i=2

εi · |Tβnfw(Xi)− TβnYi|2 +
1

n

n∑
i=2

εi · |Tβnfw̄(Xi)− TβnYi|2

+
1

n
· 4 · βn · |fw(X1)− fw̄(X1)|

)}
.

The term in the above supremum is for �xed Xi, Yi, εi symmetric in w and w̄, hence

sup
w,w̄∈Θ

( 1

n

n∑
i=2

εi · |Tβnfw(Xi)− TβnYi|2 +
1

n

n∑
i=2

εi · |Tβnfw̄(Xi)− TβnYi|2

+
1

n
· 4 · βn · |fw(X1)− fw̄(X1)|

)
= sup

w,w̄∈Θ

( 1

n

n∑
i=2

εi · |Tβnfw(Xi)− TβnYi|2 +
1

n

n∑
i=2

εi · |Tβnfw̄(Xi)− TβnYi|2

+
1

n
· 4 · βn · 1 · (fw(X1)− fw̄(X1))

)
= sup

w,w̄∈Θ

( 1

n

n∑
i=2

εi · |Tβnfw(Xi)− TβnYi|2 +
1

n

n∑
i=2

εi · |Tβnfw̄(Xi)− TβnYi|2

+
1

n
· 4 · βn · (−1) · (fw(X1)− fw̄(X1))

)
This yields

E
{

sup
w,w̄∈Θ

( 1

n

n∑
i=2

εi · |Tβnfw(Xi)− TβnYi|2 +
1

n

n∑
i=2

εi · |Tβnfw̄(Xi)− TβnYi|2

+
1

n
· 4 · βn · |fw(X1)− fw̄(X1)|

)}
= E

{1

2
· sup

w,w̄∈Θ

( 1

n

n∑
i=2

εi · |Tβnfw(Xi)− TβnYi|2 +
1

n

n∑
i=2

εi · |Tβnfw̄(Xi)− TβnYi|2

+4 · βn ·
1

n
· 1 · (fw(X1)− fw̄(X1))

)
1

2
· sup

w,w̄∈Θ

( 1

n

n∑
i=2

εi · |Tβnfw(Xi)− TβnYi|2 +
1

n

n∑
i=2

εi · |Tβnfw̄(Xi)− TβnYi|2

+4 · βn ·
1

n
· (−1) · (fw(X1)− fw̄(X1))

)}
= E

{
sup

w,w̄∈Θ

( 1

n

n∑
i=2

εi · |Tβnfw(Xi)− TβnYi|2 +
1

n

n∑
i=2

εi · |Tβnfw̄(Xi)− TβnYi|2

+4 · βn ·
1

n
· ε1 · (fw(X1)− fw̄(X1))

)}
≤ E

{
sup
w∈Θ

( 1

n

n∑
i=2

εi · |Tβnfw(Xi)− TβnYi|2 + 4 · βn ·
1

n
· ε1 · (fw(X1)

)}
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+E
{

sup
w̄∈Θ

( 1

n

n∑
i=2

εi · |Tβnfw̄(Xi)− TβnYi|2 + 4 · βn ·
1

n
· (−ε1) · fw̄(X1)

)}
= 2 ·E

{
sup
w∈Θ

( 1

n

n∑
i=2

εi · |Tβnfw(Xi)− TβnYi|2 + 4 · βn ·
1

n
· ε1 · fw(X1)

)}
= . . .

≤ 2 ·E
{

sup
w∈Θ

( 1

n

n∑
i=3

εi · |Tβnfw(Xi)− TβnYi|2 + 4 · βn ·
1

n
· ε2 · fw(X2)

+4 · βn ·
1

n
· ε1 · fw(X1)

)}
≤ . . .

≤ 2 ·E
{

sup
w∈Θ

(4 · βn
n

n∑
i=1

εi · fw(Xi)
)}
.

By the de�nition of fw and (31) the right-hand side above is bounded by

2 ·E
{

sup
w∈Θ

∣∣∣4 · βn
n

n∑
i=1

εi ·
Kn∑
k=1

w
(Ln)
k,1,1 · f

(Ln)
w,k,1(Xi)

∣∣∣}
= 2 ·E

{
sup
w∈Θ

∣∣∣ Kn∑
k=1

w
(Ln)
k,1,1 ·

4 · βn
n

n∑
i=1

εi · f (Ln)
w,k,1(Xi)

∣∣∣}
≤ 2 ·E

{
sup
w∈Θ

Kn∑
k=1

|w(Ln)
k,1,1| ·

∣∣∣4 · βn
n

n∑
i=1

εi · f (Ln)
w,k,1(Xi)

∣∣∣}
≤ 2 ·E

{
sup
w∈Θ

γn ·
∣∣∣4 · βn
n

n∑
i=1

εi · f (Ln)
w,k,1(Xi)

∣∣∣}
= 8 · βn · γn ·E

{
sup
w∈Θ

∣∣∣ 1
n

n∑
i=1

εi · f (Ln)
w,k,1(Xi)

∣∣∣}.
�

4.3.2 Proof of Theorem 2

The regression function is given by

m(x) =
K∑
k=1

mk(b
t
kx) (x ∈ Rd)

where K ∈ N, bk ∈ Rd and mk : R→ R (k = 1, . . . ,K) are (p, C)�smooth functions. Let
p = q + s for some q ∈ N and s ∈ (0, 1].
We start the proof by constructing neural networks which approximate the functions

mk (k = 1, . . . ,K). To do this we use Lemma 6. Let

A = sup{btkx : x ∈ supp(X), k ∈ {1, . . . ,K}}.
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Set
Mn = dc78 · n

1
2·(2p+1) e,

ηn =
1

n2

and let νk be the measure de�ned by

νk(B) = P{btkX ∈ B}

for a Borel set B ⊆ R.
By Lemma 6 (applied with d = 1, N = q and M = Mn) there exists a neural network

gk,wk
(x) =

(q+1)2·(Mn+1)∑
i=1

µi · σ
( 4∑
l=1

λi,l · σ
(
θi,l,1 · x+ θi,l,0

)
+ λi,0

)
which approximates mk on [−A,A] outside of a set, which has νk-measure at most ηn,
with an error bounded in absolute value from above by

c79 ·M−pn = c80 · n−
p

2·(2p+1) ,

where all its weights are bounded in absolute value by

c81 ·
1

ηn
·Mp·(2p+3)+2

n ≤ c82 · np+4.

It follows from the proof of Theorem 2 in Bauer and Kohler (2019) that we can rewrite
gk,wk

in the form

gk,wk
(x) =

Mn+1∑
s=1

(q+1)2∑
i=1

µs,i · σ
( 4∑
l=1

λs,i,l · σ
(
θs,i,l,1 · x+ θs,i,l,0

)
+ λs,i,0

)
such that the above approximation result still holds, such that the weights are bounded
as before and such that in addition it holds∣∣∣∣∣∣

(q+1)2∑
i=1

µs,i · σ
( 4∑
l=1

λs,i,l · σ
(
θs,i,l,1 · x+ θs,i,l,0

)
+ λs,i,0

)∣∣∣∣∣∣ ≤ c83 · (‖mk‖∞ + 1) ≤ c84

for all s = 1, . . . ,Mn + 1 on [−A,A] outside of the above set which has νk-measure at
most ηn.
Set

Rn = c85 · nδ,

and let N ∈ N be such that
(N − 1) · δ ≥ 2.
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Let fid be the network from Lemma 7 which satis�es

|fid(x)− x| ≤ c86 ·
cN87

RN−1
n

≤ c88 ·
1

n2

for |x| ≤ c84. We will approximate mk(b
t
kx) by

Mn+1∑
s=1

fid

(q+1)2∑
i=1

µs,i · σ
( 4∑
l=1

λs,i,l · σ
(
θs,i,l,1 · btkx+ θs,i,l,0

)
+ λs,i,0

) .

By construction we have∣∣∣∣∣∣
Mn+1∑
s=1

fid

(q+1)2∑
i=1

µs,i · σ
( 4∑
l=1

λs,i,l · σ
(
θs,i,l,1 · btkx+ θs,i,l,0

)
+ λs,i,0

)−mk(b
t
kx)

∣∣∣∣∣∣
≤ c89

n2
· (Mn + 1)

+

∣∣∣∣∣∣
Mn+1∑
s=1

(q+1)2∑
i=1

µs,i · σ
( 4∑
l=1

λs,i,l · σ
(
θs,i,l,1 · btkx+ θs,i,l,0

)
+ λs,i,0

)
−mk(b

t
kx)

∣∣∣∣∣∣
≤ c90 · n−

p
2·(2p+1)

on supp(X) outside of a set of PX measure ηn and all weights of this network are bounded
in absolute value by c82 ·np+4 and its outer weights are bounded in absolute value by Rn.
So if we sum these networks up for k = 1, . . . ,K we approximate m on supp(X) outside
of a set of PX measure

K · ηn ≤
c91

n2

with a pointwise error of at most c92 · n−
p

2·(2p+1) , and the weights of the corresponding
networks are bounded as above.
Set

Nn = n12p+33

In order to get smaller outer weights we repeat this whole network Nn times with outer
weights divided by Nn and sum the resulting Nn networks up which yields the same
approximation result as above. In this way we construct a weight vector w̄ of a network

fw̄(x) =

Nn·K·(Mn+1)·N∑
k=1

w̄
(3)
k,1,1 · f

(3)
w̄,k,1(x)

where each of the f
(3)
w̄,k,1 is a network with L = 3 layers and at most

max{(q + 1)2, 4}
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neurons per hidden layer, and all weights bounded in absolute value by c82 · np+4 and
with outer weights bounded in absolute value by

c93 ·
Rn
Nn

.

Furthermore it satis�es
|fw̄(x)−m(x)| ≤ c94 · n−

p
2·(2p+1)

for x ∈ supp(X) outside of a set of PX measure c95/n
2.

Set

εn =
1

n6p+11

and let En be the event that there exist pairwise distinct j1, . . . , jNn·K·(Mn+1)·N ∈
{1, . . . ,Kn} such that∥∥∥((w(0))

(l)
jk,i,j

)i,j,l:l<L − (w̄
(l)
k,i,j)i,j,l:l<L

∥∥∥
∞
≤ εn

holds for all k ∈ {1, . . . , Nn ·K · (Mn + 1) ·N}.
If En holds, then set

(w∗)
(L)
jk,1,1

= (w̄)
(L)
k,1,1 for k = 1, . . . , Nn ·K · (Mn + 1) ·N,

and set
(w∗)

(L)
jk,1,1

= 0 for k ∈ {1, . . . ,Kn} \ {j1, . . . , jNn·K·(Mn+1)·N}.

If En does not hold, then set w∗ = 0.
Then

Kn∑
k=1

|(w∗)(L)
k,1,1| ≤ c96 · n

1
2·(2p+1)

+δ ≤ γn

and
Kn∑
k=1

|(w∗)(L)
k,1,1|

2 ≤ Nn ·K · (Mn + 1) ·N ·
(
c97 · nδ

Nn

)2

≤ αn

hold.
By Lemma 3 we know that assumption (21) of Theorem 4 is satis�ed for

Cn = c98 ·
(
np+4

)L−1 ≤ c99 · n2p+8.

Furthermore, on the event {maxi=1,...,n |Yi| ≤ βn}∥∥∥∥∇(w
(Ln)
k,1,1)k

(Yjt − fw(t)(Xjt))
2

∥∥∥∥
∞
≤ 2 · (βn + γn) ≤ c100 · n

1
2p+1

+δ

holds, hence assumption (22) of Theorem 4 is satis�ed for

Dn = c101 · n
1

2p+1
+δ
.

38



Application of Theorem 4 yields

E

∫
|mn(x)−m(x)|2PX(dx)

≤ c102 ·

(
β2
n

n5
+ β2

n ·
√

P(Ecn) + E
{

sup
w∈Θ

(
E{|Tβnfw(X)− Y |2 − |m(X)− Y |2}

− 2

n

n∑
i=1

(
|Tβnfw(Xi)− Yi|2 − |m(Xi)− Yi|2

) )}
+E

{∫
|f

(((w∗)
(Ln)
k,1,1)k,((w(0))

(l)
k,i,j)k,i,j,l:l<Ln )

(x)−m(x)|2PX(dx) · 1En
}

+
1

n

)
.

Hence it su�ces to show
P(Ecn) ≤ c103

n
, (33)

E
{

sup
w∈Θ

(
E{|Tβnfw(X)− Y |2 − |m(X)− Y |2}

− 2

n

n∑
i=1

(
|Tβnfw(Xi)− Yi|2 − |m(Xi)− Yi|2

) )}
≤ c104 · (log n)3/2 · n−

p
2p+1

+δ
(34)

and

E

{∫
|f

(((w∗)
(Ln)
k,1,1)k,((w(0))

(l)
k,i,j)k,i,j,l:l<Ln )

(x)−m(x)|2PX(dx) · 1En
}
≤ c105 · n−

p
2p+1 . (35)

Proof of (33): In order to bound P(Ecn) we consider a sequential choice of the weights of
the Kn networks

f
(L)

w(0),k,1
(k = 1, . . . ,Kn).

The probability that none of the

r · (d+ 1) + (L− 2) · r · (r + 1) + (r + 1) ≤ 3((p+ 1)2 + d+ 3)2

weights of the �rst of these networks di�ers from the corresponding weight in

f
(L)
w̄,1,1

by more than εn is for large n bounded from above by(
εn

2 · c106 · np+5

)3((p+1)2+d+3)2

≤ n−(21p+48)·((p+1)2+d+3)2−0.5.

Hence we get that the probability that none of the

dn(21p+48)·((p+1)2+d+3)2+1e
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many networks

f
(L)

w(0),k,1
(k = 1, . . . , dn(21p+48)·((p+1)2+d+3)2+1e)

di�er in all weights from the corresponding weight in

f
(L)
w̄,1,1

by at most εn is bounded from above by

(
1− n−(21p+48)·((p+1)2+d+3)2−0.5

)n(21p+48)·((p+1)2+d+3)2+1

≤ e−0.5·n.

Since we have for n large

Nn ·K · (Mn + 1) ·N · dn(21p+48)·((p+1)2+d+3)2+1e ≤ Kn,

we can conclude: The probability that for any k ∈ {1, . . . , Nn ·K · (Mn + 1) ·N} in all
of the networks

f
(L)

w(0),j,1
(j = (k − 1) · dn(21p+48)·((p+1)2+d+3)2+1e+ 1, . . . , k · dn(21p+48)·((p+1)2+d+3)2+1e

at least one of the weights di�ers from the corresponding weight in

f
(L)
w̄,k,1

by more than εn is bounded from above by

Nn ·K · (Mn + 1) ·N · e−0.5·n ≤ c107

n
.

Since P{Ecn} is upper bounded by this probability, this implies (33).
Proof of (34): By Lemma 8 we have

E
{

sup
w∈Θ

(
E{|Tβnfw(X)− Y |2 − |m(X)− Y |2}

− 1

n

n∑
i=1

(
|Tβnfw(Xi)− Yi|2 − |m(Xi)− Yi|2

) )}
≤ c108√

n
+ c109 · βn · c110 · n

1
2·(2p+1)

+δ ·E
{

sup
w∈Θ,k∈{1,...,Kn}

∣∣∣∣∣ 1n
n∑
i=1

εi · f (L)
w,k,1(Xi)

∣∣∣∣∣ }.
By discretizing the

r · (d+ 1) + (L− 2) · r · (r + 1) + (r + 1) ≤ 3((p+ 1)2 + d+ 3)2

many coe�cients in each of the classes

{f (L)
w,k,1 : w ∈ Θ} (k = 1, . . . ,Kn)
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on a grid of length
∆n = 2 · c111 · np+5

and grid size less than or equal to

1/n

c112 · n2p+10
,

which leads for all k to the same set of functions, we get (by Lemma 2) a 1/n-supremum
norm cover of

{f (L)
w,k,1 : w ∈ Θ, k ∈ {1, . . . ,Kn}}

of size (
∆n

1/n
c113·n2p+10

)3((p+1)2+d+3)2

≤ c114 · n(9p+48)·((p+1)2+d+3)2 .

Together with the union bound and the inequality of Hoe�ding (cf., e.g., Lemma A.3 in
Györ� et al. (2002)) this implies for δn ≥ 2/n

E
{

sup
w∈Θ,k∈{1,...,Kn}

∣∣∣∣∣ 1n
n∑
i=1

εi · fw,k,1(Xi)

∣∣∣∣∣ }
≤ δn +

∫ ∞
δn

P

{
sup

w∈Θ,k∈{1,...,Kn}

∣∣∣∣∣ 1n
n∑
i=1

εi · fw,k,1(Xi)

∣∣∣∣∣ > t

}
dt

≤ δn + c114 · n(9p+48)·((p+1)2+d+3)2 ·
∫ ∞
δn

2 · e−
n·(t/2)2

4 dt

≤ δn + c114 · n(9p+48)·((p+1)2+d+3)2 ·
∫ ∞
δn

2 · e−
n·t·δn

8 dt

≤ δn + c114 · n(9p+48)·((p+1)2+d+3)2 · 16

n · δn
· e−

n·δ2n
8 .

With

δn =

√
16

n
· (9p+ 48) · ((p+ 1)2 + d+ 3)2 · log n

we get

E
{

sup
w∈Θ,k∈{1,...,Kn}

1

n

n∑
i=1

εi · fw,k,1(Xi)
}
≤ c115 ·

√
log n · 1√

n
,

which implies (34).

Proof of (35): The de�nition of ((w∗)
(L)
k,1,1)k implies

|f
(((w∗)

(Ln)
k,1,1)k,((w(0))

(l)
k,i,j)k,i,j,l:l<Ln )

(x)−m(x)|2

= |
Nn·K·(Mn+1)·N∑

k=1

w̄
(L)
k,1,1 · f

(L)

w(0),jk,1
(x)−m(x)|2
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≤ 2 · |
Nn·K·(Mn+1)·N∑

k=1

w̄
(L)
k,1,1 · f

(L)

w(0),jk,1
(x)− fw̄(x)|2 + 2 · |fw̄(x)−m(x)|2

≤ 2 · |
Nn·K·(Mn+1)·N∑

k=1

w̄
(L)
k,1,1 · f

(L)

w(0),jk,1
(x)− fw̄(x)|2 + 2 ·

(
c116 ·max

i,j
n

−p
2·(2p+1)

)2

,

where the last inequality holds outside of a set of PX measure 1/n2. On En we get by
Lemma 2 that this in turn is bounded from above by

2 ·
Nn·K·(Mn+1)·N∑

k=1

|w̄(L)
k,1,1|

2 ·
Nn·K·(Mn+1)·N∑

k=1

|f (L)

w(0),jk,1
(x)− f (L)

w̄,k,1(x)|2

+2 ·
(
c116 · n−

p
2·(2p+1)

)2

≤ 2 · αn ·Nn ·K · (Mn + 1) ·N · c117 · n4p+16 · ε2n + 2 ·
(
c116 · n−

p
2·(2p+1)

)2

≤ 2c117 ·K ·N · n12p+20 · ε2n + 2 ·
(
c116 · n−

p
2·(2p+1)

)2

≤ c118 · n
−p

2p+1 .

Since
|f

(((w∗)
(Ln)
k,1,1)k,((w(0))

(l)
k,i,j)k,i,j,l:l<Ln )

(x)| ≤ γn = c11 · n
1

2·(2p+1)
+δ

we can conclude

E

{∫
|f

(((w∗)
(Ln)
k,1,1)k,((w(0))

(l)
k,i,j)k,i,j,l:l<Ln )

(x)−m(x)|2PX(dx) · 1En
}

≤ c118 · n−
p

2p+1 + c11 · n
1

2·(2p+1)
+δ · 1

n2

≤ c105 · n−
p

2p+1 .

�

4.4 Proof of Theorem 3

4.4.1 Auxiliary results

In the proof of Theorem 3 we will apply the following result in order to bound the
approximation error of the estimate.

Lemma 9 Let m : Rd → R be contained in the class H(l,P) for some l ∈ N and

P ⊆ [1,∞) × N. Describe m as in Theorem 3, and assume that the functions g
(i)
j are

Lipschitz continuous with Lipschitz constant CLip ≥ 1 and satisfy

‖g(I)‖
C
q
(i)
j ([−a,a]d)

≤ c119

42



for some c119 > 0. Denote by Kmax = maxi,jK
(i)
j the maximal input dimension and by

pmax = maxi,j p
(i)
j the maximal smoothness of the functions g

(i)
j . Then, for any a ≥ 1

and Mj,i ∈ N su�ciently large a neural network fw with logistic activation function and

L = l · (8 + dlog2(max{Kmax, pmax + 1}e)

layers and

r = max
i∈{1,...,l}

Ñi∑
j=1

29

K(i)
j + q

(i)
j

q
(i)
j

 · (K(i)
j )2 · (q(i)

j + 1) ·M
K

(i)
j

j,i

neurons per layers, where the weight vector w satis�es

‖w‖∞ ≤ c120 · a24 · e12·22(Kmax+1)+1·a·Kmax ·maxj,iM20pmax+4Kmax+20
j,i ,

exists such that

‖fw −m‖∞,[−a,a]d ≤ c121 · a5·pmax+3 ·max
i,j

M
−2·p(i)j
j,i .

Proof. See Theorem 2 in Langer (2021). �

4.4.2 Proof of Theorem 3

Set

Mi,j =

⌈
c122 · n

1

2·(2p(i)
j

+K
(i)
j

)

⌉
,

Rn = c123 · nδ

and choose N ∈ N so large that

(N − 1) · δ ≥ 1

2
.

Let gw be the neural network from Lemma 9 with

L̄ = l · (8 + dlog2(max{Kmax, pmax + 1}e)

layers and

r = max
i∈{1,...,l}

Ñi∑
j=1

29

K(i)
j + q

(i)
j

q
(i)
j

·(K(i)
j )2·(q(i)

j +1)·M
K

(i)
j

j,i ≤

c16 ·max
i,j

n

K
(i)
j

2·(2p(i)
j

+K
(i)
j

)

 = rn

neurons per layers, where all the weights are bounded in absolute value by

c125 ·max
j,i

M20pmax+4Kmax+20
j,i ≤ c126 · n5pmax+Kmax+5, (36)
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which satis�es

‖gw −m‖∞,supp(X) ≤ c127 ·max
i,j

n

−p(i)
j

2p
(i)
j

+K
(i)
j .

Let fid be the network from Lemma 7 where the N outer weights are bounded in absolute
value by

c128 ·Rn = c129 · nδ, (37)

which satis�es

|fid(x)− x| ≤ c130 ·
1

RN−1
n

= c131 · n−δ·(N−1) ≤ c131 · n−1/2

for all x ∈ [−‖m‖∞ − 1, ‖m‖∞ + 1].
Then the neural network

fid ◦ gw

has L = L̄ + 1 layers with (for n large enough) at most rn neurons, all its weights are
bounded in absolute value by (36) and its outer weights are bounded in absolute value
by (37). Furthermore, for n large enough we have

‖gw −m‖∞,supp(X) ≤ 1,

which implies

‖fid ◦ gw −m‖∞,supp(X) ≤ ‖fid ◦ gw − gw‖∞,supp(X) + ‖gw −m‖∞,supp(X)

≤ c131 · n−1/2 + c132 ·max
i,j

n

−p(i)
j

2p
(i)
j

+K
(i)
j

≤ c133 ·max
i,j

n

−p(i)
j

2p
(i)
j

+K
(i)
j .

Set
Nn = n2L·(5pmax+Kmax+8)

and let

fw̄(x) =

N ·Nn∑
k=1

w̄
(L)
k,1,1 · f

(L)
w̄,k,1(x)

be a linear combination of Nn of the neural networks fid ◦ gw computed in parallel (with
di�erent weights), where the weights in the linear combination of these networks are all
equal to 1/Nn. Consequently,

|w̄(L)
k,1,1| ≤

c129 · nδ

Nn
(k = 1, . . . , N ·Nn),

N ·Nn∑
k=1

|w̄(L)
k,1,1| ≤ c129 · nδ
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for some c129 = c129(δ) and

‖fw̄ −m‖∞,supp(X) = ‖fid ◦ gw −m‖∞,supp(X) ≤ c133 ·max
i,j

n

−p(i)
j

2p
(i)
j

+K
(i)
j

hold.
Set

εn =
1

nL/2+(10pmax+2Kmax+10)·L+3

and let En be the event that there exist pairwise distinct j1, . . . , jN ·Nn ∈ {1, . . . ,Kn}
such that ∥∥∥((w(0))

(l)
jk,i,j

)i,j,l:l<L − (w̄
(l)
k,i,j)k,i,j,l:l<L

∥∥∥
∞
≤ εn

holds for all k ∈ {1, . . . , N ·Nn}.
If En holds, then set

(w∗)
(L)
jk,1,1

= (w̄)
(L)
k,1,1 for k = 1, . . . , N ·Nn,

and set
(w∗)

(L)
jk,1,1

= 0 for k ∈ {1, . . . ,Kn} \ {j1, . . . , jN ·Nn}.

If En does not hold, then set w∗ = 0.
Then

Kn∑
k=1

|(w∗)(L)
k,1,1| ≤ c129 · nδ ≤ γn

and
Kn∑
k=1

|(w∗)(L)
k,1,1|

2 ≤ N ·Nn ·
(
c129 · nδ

Nn

)2

= N · c2
129 ·

n2δ

Nn
≤ αn

hold.
By Lemma 3 we know that assumption (21) of Theorem 4 is satis�ed for

Cn = c133 · rLn ·
(
n5pmax+Kmax+5

)L−1 ≤ c134 · nL·(5pmax+Kmax+5).

Furthermore, on the event {maxi=1,...,n |Yi| ≤ βn}∥∥∥∥∇(w
(Ln)
k,1,1)k

(Yjt − fw(t)(Xjt))
2

∥∥∥∥
∞
≤ 2 · (βn + c17 · nδ) ≤ c135 · nδ

holds, hence assumption (22) of Theorem 4 is satis�ed for

Dn = c135 · nδ.

Application of Theorem 4 yields

E

∫
|mn(x)−m(x)|2PX(dx)
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≤ c136 ·

(
β2
n

n5
+ β2

n ·
√

P(Ecn) + E
{

sup
w∈Θ

(
E{|Tβnfw(X)− Y |2 − |m(X)− Y |2}

− 2

n

n∑
i=1

(
|Tβnfw(Xi)− Yi|2 − |m(Xi)− Yi|2

) )}
+E

{∫
|f

(((w∗)
(L)
k,1,1)k,((w(0))

(l)
k,i,j)k,i,j,l:l<L)

(x)−m(x)|2PX(dx) · 1En
}

+
1

n
+ (βn + nδ) · 1

nL·(5pmax+Kmax+6)
· nL·(5pmax+Kmax+5) · log n+

n2δ

Nn
+
n2δ

n3

)
.

Hence it su�ces to show
P(Ecn) ≤ c137

n
, (38)

E
{

sup
w∈Θ

(
E{|Tβnfw(X)− Y |2 − |m(X)− Y |2}

− 2

n

n∑
i=1

(
|Tβnfw(Xi)− Yi|2 − |m(Xi)− Yi|2

) )}

≤ c138 · (log n)3/2 ·max
i,j

n

−p(i)
j

2p
(i)
j

+K
(i)
j

+δ

(39)

and

E

{∫
|f

(((w∗)
(L)
k,1,1)k,((w(0))

(l)
k,i,j)k,i,j,l:l<L)

(x)−m(x)|2PX(dx) · 1En
}
≤ c139 ·max

i,j
n

−p(i)
j

2p
(i)
j

+K
(i)
j .

(40)
Proof of (38): In order to bound P(Ecn) we consider a sequential choice of the weights of
the Kn networks

f
(L)

w(0),k,1
(k = 1, . . . ,Kn).

The probability that none of the

rn · (d+ 1) + (L− 2) · rn · (rn + 1) + (rn + 1) ≤ c140 · n

weights of the �rst of these networks di�ers from the corresponding weight in

f
(L)
w̄,1,1

by more than εn is bounded from above by(
εn

2 · c20 · n5pmax+Kmax+5

)c140·n
≤ e−c141·(logn)·n.

Hence we get that the probability that none of the

dn · ec141·(logn)·ne
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many networks

f
(L)

w(0),k,1
(k = 1, . . . , dn · ec141·(logn)·ne)

di�er in all weights from the corresponding weight in

f
(L)
w̄,1,1

by at most εn is bounded from above by(
1− e−c141·(logn)·n

)n·ec141·(logn)·n
≤ e−n.

Since we have for n large

N ·Nn · dn · ec141·(logn)·ne ≤ Kn,

we can conclude: The probability that for any k ∈ {1, . . . , N ·Nn} in all of the networks

f
(L)

w(0),j,1
(j = (k − 1) · dn · ec141·(logn)·ne+ 1, . . . , k · dn · ec141·(logn)·ne)

at least one of the weights di�ers from the corresponding weight in

f
(L)
w̄,k,1

by more than εn is bounded from above by

N ·Nn · e−n ≤
c142

n
.

Since P{Ecn} is upper bounded by this probability, this implies (38).
Proof of (39): By Lemma 8 we have

E
{

sup
w∈Θ

(
E{|Tβnfw(X)− Y |2 − |m(X)− Y |2} − 1

n

n∑
i=1

(
|Tβnfw(Xi)− Yi|2 − |m(Xi)− Yi|2

) )}
≤ c143√

n
+ c144 · βn · c145 · nδ ·E

{
sup

w∈Θ,k∈{1,...,Kn}

∣∣∣∣∣ 1n
n∑
i=1

εi · fw,k,1(Xi)

∣∣∣∣∣ }.
By discretizing the

rn · (d+ 1) + (L− 2) · rn · (rn + 1) + (rn + 1) ≤ c146 ·max
i,j

n

K
(i)
j

2p
(i)
j

+K
(i)
j

many weights in each of the classes

{f (L)
w,k,1 : w ∈ Θ} (k = 1, . . . ,Kn)

by creating a grid in the intervals of length

∆n = 2 · c147 · n5pmax+Kmax+5
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with grid size
1/n

c148 · nL/2+L·(5pmax+Kmax+5)
,

which leads for all k to the same set of functions, we get (cf., Lemma 2) a 1/n-supremum
norm cover of

{f (L)
w,k,1 : w ∈ Θ, k ∈ {1, . . . ,Kn}}

of size at most

ec149·(logn)·maxi,j n

K
(i)
j

2p
(i)
j

+K
(i)
j
.

Together with the union bound and the inequality of Hoe�ding (cf., e.g., Lemma A.3 in
Györ� et al. (2002)) this implies for δn ≥ 2/n

E
{

sup
w∈Θ,k∈{1,...,Kn}

∣∣∣∣∣ 1n
n∑
i=1

εi · f (L)
w,k,1(Xi)

∣∣∣∣∣ }
≤ δn +

∫ ∞
δn

P

{
sup

w∈Θ,k∈{1,...,Kn}

∣∣∣∣∣ 1n
n∑
i=1

εi · f (L)
w,k,1(Xi)

∣∣∣∣∣ > t

}
dt

≤ δn + 2 · ec149·(logn)·maxi,j n

K
(i)
j

2p
(i)
j

+K
(i)
j

∫ ∞
δn

2 · e−
2·n·(t/2)2

4 dt

≤ δn + ec149·(logn)·maxi,j n

K
(i)
j

2p
(i)
j

+K
(i)
j

∫ ∞
δn

2 · e−
n·t·δn

8 dt

≤ δn + ec149·(logn)·maxi,j n

K
(i)
j

2p
(i)
j

+K
(i)
j 16

n · δn
e−

n·δ2n
8 .

With

δn =

√√√√ 8

n
· c149 · (log n) ·max

i,j
n

K
(i)
j

2p
(i)
j

+K
(i)
j + 8 · log n

n

we get

E
{

sup
w∈Θ,k∈{1,...,Kn}

∣∣∣∣∣ 1n
n∑
i=1

εi · f (L)
w,k,1(Xi)

∣∣∣∣∣ } ≤ c150 ·
√

log n ·max
i,j

n

−p(i)
j

2p
(i)
j

+K
(i)
j

which implies (39).

Proof of (40): The de�nition of ((w∗)
(L)
k,1,1)k implies that on the event En we have

|f
(((w∗)

(L)
k,1,1)k,((w(0))

(l)
k,i,j)k,i,j,l:l<L)

(x)−m(x)|2
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= |
N ·Nn∑
k=1

w̄
(L)
k,1,1 · f

(L)

w(0),jk,1
(x)−m(x)|2

≤ 2 · |
N ·Nn∑
k=1

w̄
(L)
k,1,1 · f

(L)

w(0),jk,1
(x)− fw̄(x)|2 + 2 · |fw̄(x)−m(x)|2

≤ 2 · |
N ·Nn∑
k=1

w̄
(L)
k,1,1 · f

(L)

w(0),jk,1
(x)− fw̄(x)|2 + 2 ·

c151 ·max
i,j

n

−p(i)
j

2·(2p(i)
j

+K
(i)
j

)


2

.

On En we get by Lemma 2 that this in turn is bounded from above by

2 · αn · c152 ·
(
nL/2 · nL·(5pmax+Kmax+5)

)2
· ε2n + 2 ·

c151 ·max
i,j

n

−p(i)
j

2·(2p(i)
j

+K
(i)
j

)


2

≤ c153 ·max
i,j

n

−p(i)
j

2p
(i)
j

+K
(i)
j ,

which implies (40).
�
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