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Abstract

Nonparametric regression with random design is considered. The L2 error with integra-
tion with respect to the design measure is used as the error criterion. Over-parametrized
deep neural network regression estimates with logistic activation function are de�ned,
where all weights are learned by gradient descent. It is shown that the estimates are able
to adapt to hierarchical composition models, i.e., in case that the regression function
satis�es such a model the estimates achieve a rate of convergence which is nearly optimal
for this model and hence are able to circumvent the curse of dimensionality.

AMS classi�cation: Primary 62G08; secondary 62G20.
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1 Introduction

Motivated by the great success of deep learning in applications, there is an increasing
interest in understanding theoretically why these estimate are so successful in practice.
In this context these estimates are often studied in the �eld of nonparametric regression.
In nonparametric regression, an Rd×R�valued random vector with EY 2 <∞ is given

and the problem of predicing the value of Y given the observed value of X is considered.
If the main goal of the analysis is the minimization of the expected squared error of
prediction, then the task is to �nd a function f∗ : Rd → R such that its so-called L2 risk

E{|Y − f∗(X)|2} (1)

∗Running title: Estimation of hierarchical composition models by deep neural networks
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is as small as possible.
Let m : Rd → R de�ned by m(x) = E{Y |X = x} be the so�called regression function

corresponding to (X,Y ). Then for any measurable function f : Rd → R

E{|Y − f(X)|2} = E{|Y −m(X)|2}+

∫
|f(x)−m(x)2PX(dx) (2)

holds (cf., e.g., Section 1.1 in Györ� et al. (2002)), which implies that the regression
function is the optimal predictor and that the so-called L2 error∫

|f(x)−m(x)2PX(dx) (3)

describes how far the L2 risk of a function f is away from its optimal value
E{|Y −m(X)|2}.
In applications usually the distribution of (X,Y ) and hence also the regression function

is unknown. But often it is possible to observe a sample of this distribution, and the
task is then to estimate the corresponding regression function. Formally, this can be
described as follows: Given a data set

Dn = {(X1, Y1), . . . , (Xn, Yn)} (4)

where (X,Y ), (X1, Y1), . . . , (Xn, Yn) are independent and identically distributed, con-
struct an estimate

mn(·) = mn(·,Dn) : Rd → R (5)

such that its L2 error ∫
|mn(x)−m(x)2PX(dx) (6)

is as small as possible.
It is well-known that without regularity assumptions on the underlying distribution,

in particular on the smoothness of the regression function, nontrivial results about the
rate of convergence of (6) towards zero cannot be derived (cf., e.g., Chapter 3 in Györ�
et al. (2002) and Devroye (1982)). Stone (1982) considered regression functions which
are (p, C)�smooth according to the following de�nition.

De�nition 1 Let p = q + s for some q ∈ N0 and 0 < s ≤ 1. A function m : Rd → R
is called (p, C)-smooth, if for every α = (α1, . . . , αd) ∈ Nd0 with

∑d
j=1 αj = q the partial

derivative ∂qm/(∂xα1
1 . . . ∂xαdd ) exists and satis�es∣∣∣∣ ∂qm

∂xα1
1 . . . ∂xαdd

(x)− ∂qm

∂xα1
1 . . . ∂xαdd

(z)

∣∣∣∣ ≤ C · ‖x− z‖s

for all x, z ∈ Rd, where ‖ · ‖ denotes the Euclidean norm.
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It was shown in Stone (1982) that the optimal Minimax rate of convergence of the
expected L2 error of a regression estimate in case of a (p, C)�smooth regression function
is

n
− 2p

2p+d . (7)

If p is small compared to d then this rate of convergence converges to zero rather slowly
(so-called curse of dimensionality). Since this rate of convergence is optimal, it can not
be improved in general. The only way to circumvent this curse of dimensionality is to
use additional assumptions on the structure of the regression function in order to be able
to derive better rates.
Stone (1985) showed that in case of additive models, where the regression function is

assumed to be a sum of d univariate functions applied to the d components of x, suitably
de�ned estimates achieve the rate of convergence

n
− 2p

2p+1 .

More generally, it was shown in Stone (1994) that in case that the regression function
satis�es an interaction model, where the regression function is given by a sum of functions
applied to subsets consisting of d∗ of the d components of x, suitably de�ned estimates
achieve a rate of convergence of order

n
− 2p

2p+d∗ .

Other classical assumptions which lead to a dimension reduction include single index
models (cf., Härdle, Hall and Ichimura (1993), Härdle and Stoker (1989), Yu and Rup-
pert (2002) and Kong and Xia (2007)) or projection pursuit (cf, Friedman and Stuetzle
(1981)).
For least squares neural network regression estimates it has been shown that these

estimates can achieve a dimension reduction under rather general assumptions, which is
one possibility to explain theoretically the success of deep learning in practice. In its most
general form, which includes additive models, interaction models, single index models
and projection pursuit models, the regression function is assumed to be a composition
of functions either depending only on a few components or being rather smooth. This
assumption can be formalized as follows:

De�nition 2 Let d ∈ N and m : Rd → R and let P be a subset of (0,∞)× N.
a) We say that m satis�es a hierarchical composition model of level 0 with order and

smoothness constraint P, if there exists a K ∈ {1, . . . , d} such that

m(x) = x(K) for all x = (x(1), . . . , x(d))> ∈ Rd.

b) We say that m satis�es a hierarchical composition model of level l + 1 with order

and smoothness constraint P, if there exist (p,K) ∈ P, C > 0, g : RK → R and

f1, . . . , fK : Rd → R, such that g is (p, C)�smooth, f1, . . . , fK satisfy a hierarchical

composition model of level l with order and smoothness constraint P and

m(x) = g(f1(x), . . . , fK(x)) for all x ∈ Rd.
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It was shown in Schmidt-Hieber (2020) that suitably de�ned least squares neural network
regression estimates achieve up to a logarithmic factor a rate of convergence of

max
(p,K)∈P

n
− 2p

2p+K

in case that the regression function satis�es a hierarchical composition model of some
�nite level with order and smoothness constraint P (for related results see Kohler and
Krzy»ak (2017), Bauer and Kohler (2019) and Kohler and Langer (2021)).
These results are valid for least squares neural network estimates, which are not com-

putable in practice. In practice neural network estimates are learned by gradient descent,
so if one wants to explain the success of deep neural networks in practice theoretically by
showing a dimension reduction in case that the regression function satis�es a hierarchical
composition model, it is necessary to show that such a dimension reduction also takes
place in case that the estimate is learned via gradient descent.

1.1 Main result in this article

In this article we show that the expected L2 error of suitably de�ned neural network
regression estimatesmn with logistic activation function, where all parameters are learned
by gradient descent, satis�es for any ε ∈ (0, 1)

E

∫
|mn(x)−m(x)|2PX(dx) ≤ c1 · max

(p,K)∈P
n
− 2p

2p+K
+ε

in case that the regression function satis�es a hierarchical composition model of some
�nite level with order and smoothness constraint P. Here the neural network depends on
(in the sample size) polynomially many weights, however the number of gradient descent
steps is chosen to be exponentially large, and during gradient descent exponentially many
pruning steps are needed (such that only varying subsets of the network are considered
during gradient descent). The pruning steps are here used to simplify the optimization
of the neural networks.

1.2 Discussion of related results

Inspired by immense success of deep learning in applications a lot of e�ort has been
recently devoted to analyze deep learning theoretically. The researchers focused on ap-
proximation and estimation capabilities of deep network estimates as well as their e�cient
implementations, i.e., on optimization. For some recent approximation results we refer
the reader to Yarotsky (2018), Yarotsky and Zhevnerchute (2019), Lu et al. (2020),
Langer (2021) and the literature cited therein. These papers demonstrate that smooth
functions can be approximated well by deep neural networks having appropriate topol-
ogy and they specify the numbers of nonzero weights necessary to approximate smooth
function up to some given error.
In practice, functions which one wants to approximate have to be estimated from the

observed data, which are usually contaminated by random errors. It has been studied in
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the literature how well deep networks learned from such noisy data generalize on a new
independent test data. Such results have been achieved by means of the classical VC
theory, e.g. by bounding the VC dimension of classes of neural networks, see Bartlett et
al. (2019), or in case of over-parametrized deep neural networks, in which the number of
free parameters learned from the observed data signi�cantly exceeds the sample size, by
bounding the Rademacher complexity, see, e.g., Liang, Rakhlin and Sridharan (2015),
Golowich, Rakhlin and Shamir (2019), Lin and Zhang (2019), Wang and Ma (2022) and
the literature cited therein. By putting together these results one could handle the er-
ror of the least squares regression estimates. As it was demonstrated in the papers by
Kohler and Krzy»ak (2017), Bauer and Kohler (2019), Schmidt-Hieber (2020) and Kohler
and Langer (2021) the least squares regression estimates using deep networks are able
to achieve a dimension reduction for estimated functions satisfying a hierarchical com-
position model, i.e., whenever estimated functions are compositions of smooth functions
either depending only on a few components or being rather smooth. This property fol-
lows from the network structure of deep networks implying that composition of networks
is itself a deep network. Thus, any approximation result obtained for some functions by
using deep networks can be extended to an approximation result for composition of such
functions by a deep network representing a composition of the approximating networks.
Here the number of weights and the depth of the network determining the VC dimension
and consequently the complexity of the network provided that it is not over-parametrized
(cf., Bartlett et al. (2019)), do not change a lot. Consequently such networks have ap-
proximation properties and complexity of a network for low dimensional predictors and
can thus achieve a dimension reduction.
Quite a large number of interesting results on optimization of deep neural networks

have recently appeared in the literature obtained, see, e.g., Zou et al. (2018), Du et
al. (2019), Allen-Zhu, Li and Song (2019) and Kawaguchi and Huang (2019), where
authors applied gradient descent to over-parameterized deep neural networks and ana-
lyzed the results. These papers demonstrated that this leads to neural networks which
(globally) minimize the empirical risk, but unfortunately, the corresponding estimates do
not perform well on a new independent data, see Kohler and Krzy»ak (2021).
The aforementioned theoretical results do not provide clear guidance to practitioners

applying deep neural networks, where it is essential to control simultaneously all three
errors, i.e., the approximation, generalization and optimization errors (cf., Kutyniok
(2020)). None of the works mentioned thus far deal with all these three errors together.
There are situations where approximation, estimation and optimization errors are in-

vestigated simultaneously in some equivalent models of deep learning. The best known
approach in this domain is the neural tangent kernel approach proposed by Jacot, Gabriel
and Hongler (2020). In this approach a kernel estimate is studied in lieu of neural net-
work estimate and the error of the kernel estimate is used to bound the error of the neural
network estimate, see Hanin and Nica (2019) and the literature cited therein for related
work. Nitanda and Suzuki (2021) observed that in most studies on the neural tangent
kernel the equivalence to deep neural networks holds only pointwise rather than for the
global L2 error, hence we cannot draw conclusions about the behavior of the L2 error
of the deep neural network from these results. Nitanda and Suzuki (2021) were able to
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analyze the global error of over-parametrized shallow neural networks learned by gradi-
ent descent. However, the use of the neural tangent kernel implies that the smoothness
condition imposed on the function to be estimated needs to be de�ned in terms of a norm
involving the kernel, which does not lead to the standard classical smoothness conditions,
making it di�cult to interpret the obtained results. Furthermore, their result did not
specify the number of neurons that shallow neural network must posses, it only implied
that the number of neurons must be su�ciently large. Thus it is not clear whether the
number of neurons should grow, e.g., exponentially in the sample size or not. Another
estimation approach studied in some asymptotically equivalent model is the mean �eld
approach, see Mei, Montanari, and Nguyen (2018), Chizat and Bach (2018) or Nguyen
and Pham (2020). The problem with this approach is that it is unclear how close the
behaviour of the deep networks in the equivalent model mimics their behaviour in the
applications, because they are based on some approximation of the application using e.g.
some asymptotic expansions.
The results of this paper follow the statistical theory for deep neural networks devel-

oped by Braun et al. (2023), Drews and Kohler (2022, 2023), Kohler and Krzy»ak (2022,
2023) and Kohler (2024).

1.3 Notation

The sets of natural numbers, real numbers and nonnegative real numbers are denoted
by N, R and R+, respectively. For z ∈ R, we denote the smallest integer greater than or
equal to z by dze. And the largest integer less than or equal to z is denoted by bzc. The
Euclidean norm of x ∈ Rd is denoted by ‖x‖. For a closed and convex set A ⊆ Rd we
denote by ProjAx that element ProjAx ∈ A with

‖x− ProjAx‖ = min
z∈A
‖x− z‖.

The diameter of a set A ⊆ Rd (w.r.t. the Euclidean norm) is denoted by diam(A). For
f : Rd → R

‖f‖∞ = sup
x∈Rd

|f(x)|

is its supremum norm, and we set

‖f‖∞,A = sup
x∈A
|f(x)|

for A ⊆ Rd.
A �nite collection f1, . . . , fN : Rd → R is called an Lp ε�covering of F on xn1 if for all

f ∈ F

min
1≤j≤N

(
1

n

n∑
k=1

|f(xk)− fj(xk)|p
)1/p

≤ ε

hold. The Lp ε�covering number of F on xn1 is the size N of the smallest Lp ε�covering
of F on xn1 and is denoted by Np(ε,F , xn1 ).
For z ∈ R and β ≥ 0 we de�ne Tβz = max{−β,min{β, z}}. If f : Rd → R is a function

then we set (Tβf)(x) = Tβ (f(x)).
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1.4 Outline

Section 2 contains the de�nition of the estimate. The main result is presented in Section
3 and proven in Section 4.

2 De�nition of the estimate

Throughout the paper we let σ(x) = 1/(1 + e−x) be the logistic squasher, i.e., we use the
so�called logistic activation function.
In the sequel we will de�ne hierarchically composed neural networks, which use as

building blocks neural networks with the following special topology: Let K,L, r ∈ N be
parameters of our class of neural networks. We consider neural networks which consist
of K fully connected neural networks of depth L and width r computed in parallel and
compute a linear combination of the outputs of these K neural networks. The weights

in the k-th such network are denoted by (w
(l)
k,i,j)i,j,l, where w

(l)
k,i,j is the weight between

neuron j in layer l and neuron i in layer l + 1. Formally we set for x ∈ Rd

fw(x) =

K∑
k=1

w
(L)
k,1,1 · f

(L)
k,1 (x) (8)

for some w
(L)
1,1,1, . . . , w

(L)
K,1,1 ∈ R, where f (L)

k,1 = f
(L)
w,k,1 are recursively de�ned by

f
(l)
k,i(x) = f

(l)
w,k,i(x) = σ

 r∑
j=1

w
(l−1)
k,i,j · f

(l−1)
k,j (x) + w

(l−1)
k,i,0

 (9)

for some w
(l−1)
k,i,0 , . . . , w

(l−1)
k,i,r ∈ R (l = 2, . . . , L) and

f
(1)
k,i (x) = f

(1)
w,k,i(x) = σ

 d∑
j=1

w
(0)
k,i,j · x

(j) + w
(0)
k,i,0

 (10)

for some w
(0)
k,i,0, . . . , w

(0)
k,i,d ∈ R. Let Fd,K,L,r be the set of all neural networks (8) of the

above form.
In the sequel we will estimate a regression function which satis�es a hierarchical com-

position model by a recursively de�ned function h : Rd → R. Here we will compose
functions of Fd,K,L,r with di�erent values for K, L, r and d.
Let l ∈ N be the depth of the hierarchical composition of neural networks. We de�ne

h : Rd → R recursively by

h(x) = h
(l)
1 (x) (x ∈ Rd) (11)

where
h

(s)
i (x) = gNN,i,s(h

(s−1)∑i−1
r=1Kr,s+1

(x), . . . , h
(s−1)∑i−1
r=1Kr,s+Ki,s

(x)) (12)
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for some
gNN,i,s ∈ FKi,s,K(s)

n ,Ls,ri,s

in case s ∈ {1, . . . , l} and i ∈ {1, . . . , Ns}, and

h
(0)
i (x) = gNN,i,0(x(1), . . . , x(d)) (13)

for some
gNN,i,0 ∈ Fd,K(0)

n ,L0,ri,0

in case i ∈ {1, . . . , N0}. Here Ns ∈ N is the number of functions gNN,i,s at level s which
is given by

Nl = 1 and Ns =

Ns+1∑
r=1

Kr,s for s ∈ {0, . . . , l − 1},

and K
(s)
n , Ls, ri,s,Ki,s ∈ N are parameters of the estimate.

In order to learn an estimate of the above type from the data using gradient descent
we proceed as follows:
We start with an initialization of the weights where all the weights of the hierarchically

composed networks gNN,i,s above are initialized independently from each other as follows:

We choose w
(Ls)
k,1,1 uniformly distributed on [−c3,n, c3,n] in case s < l, and in case s = l we

set w
(Ll)
k,1,1 = 0 for k ∈ {1, . . . ,K(l)

n }. We choose w
(t)
k,i,j uniformly distributed on [−c2,n, c2,n]

if t ∈ {1, . . . , Ls − 1}, and we choose w
(0)
k,i,j uniformly distributed on

[−c1,i,s,n, c1,i,s,n].

Here c1,i,s,n, c2,n, c3,n > 0 are parameters of the estimate, and the random values are
de�ned such that all components of w are independent, where w is the weight vector
containing all weights of the network as its components.
If we introduce after each of the above networks except the network on the highest

level an additional layer with the identity function as the activation function, we can
describe this deep network by a network of depth

L =
l−1∑
s=0

(Ls + 1) + Ll =

l∑
s=0

Ls + l

as follows:

fw(x) = h
(l)
1 (x) =

∑
j∈{1,...,kL} : (L,1,j)∈I

w
(L)
1,j · f

(L)
j (x) =

K
(l)
n∑

k=1

w
(L)
1,k · f

(L)
k (x), (14)

where

f
(s)
i (x) = σs

 ∑
j∈{0,...,ks−1} : (s−1,i,j)∈I

w
(s−1)
i,j · f (s−1)

j (x)

 for s ∈ {1, . . . , L} and i > 0

(15)

8



and

f
(1)
i (x) = σ1

 ∑
j∈{0,...,k0} : (0,i,j)∈I

w
(0)
i,j · f

(0)
j (x)

 = σ

 d∑
j=1

w
(0)
i,j · x

(j) + w
(0)
i,0

 for i > 0.

(16)
The activation functions depend here on the layer and are given by

σs(x) =

{
x if s ∈ {L0 + 1, L0 + L1 + 2. . . . , L0 + · · ·+ Ll−1 + l},

1
1+e−x elsewhere.

And we have used the abbreviations

f
(s−1)
0 (x) = 1 for s ∈ {1, . . . , L} and f

(0)
j (x) = x(j) for j ∈ {1, . . . , d},

and ks ∈ N and I ⊆ {0, . . . , L} × N× N are implicitly de�ned by (11)�(16).
This gives us our initial weight vector w(0) and our initial estimate fw(0) .
After that we perform tn ∈ N gradient descent steps each with a step size λn > 0 and

an additional projection step. More precisely, we let W be the set of all weight vectors

w = (w
(s)
i,j )s,i,j:0≤s≤L which satisfy

K
(l)
n∑

k=1

|w(L)
1,k |

2 ≤ αn and ‖(w(s)
i,j )i,j,s:(s,i,j)∈I,s<L − ((w(0))

(s)
i,j )i,j,s:(s,i,j)∈I,s<L‖ ≤ δn, (17)

where αn, δn ≥ 0 are parameters of the estimate. We choose a stepsize λn ≥ 0 and a
number tn ∈ N of gradient descent steps and we set

w(t) = ProjW

(
w(t−1) − λn · ∇wFn(w(t−1))

)
(t = 1, . . . , tn), (18)

where

Fn(w) =
1

n

n∑
i=1

|Yi − fw(Xi)|2

is the empirical L2 risk of fw.
During gradient descent (and also directly after the initialization) we apply the fol-

lowing pruning step (which simpli�es the optimization during the computation of the
estimate): For

t ∈ {0, sn, 2 · sn, . . . }

we select in the output level of all gNN,i,s with s < l randomly K̄
(s,i)
n of the K

(s)
n weights

using the uniform distribution. We ignore until the next pruning step all weight vectors
not chosen together with all the weights of the in parallel computed completely con-
nected small networks for which they are the top weights in all computations (also in the
projection step, so we compute the norm in the projection step using only a subset of
the weights). And directly after the selection of the weights we project the weight vector
of the chosen subnetwork towards the corresponding subvector of weights from w(0) in
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our standard way. This random selection of the weights is done independently for all
gNN,i,s. Furthermore, we keep the values of all weights not chosen during one pruning
step constant until the next pruning step.
Finally we de�ne our estimate as a truncated version of the neural network with that

weight vector w(t̂) for which the empirical L2 risk was minimal during the training, i.e.,
we set

mn(x) = Tβn(fw(t̂)(x)) where t̂ = arg min
t∈{0,1,...,tn−1}

Fn(w(t)) (19)

and βn = c2 · log n.

3 Main result

Our main result is the following bound on the expected L2 error of this estimate.

Theorem 1 Let n ∈ N, let (X,Y ), (X1, Yn), . . . , (Xn, Yn) be independent and identically
distributed Rd × R�valued random variables such that supp(X) is bounded and that

E{exp(c3 · Y 2)} <∞ (20)

holds for some c3 > 0. Let Ks,r ∈ N with K0,r = d and set Nl = 1 and Ns =
∑Ns+1

r=1 Kr,s

for s = 0, . . . , l − 1. Assume that the regression function m : Rd → R is given by

m(x) = h
(l)
1 (x),

where

h
(s)
i (x) = gi,s

(
h

(s−1)∑i−1
r=1Ks−1,r+1

(x), . . . , h
(s−1)∑i−1
r=1Ks−1,r+Ks−1,i

(x)
)

for s ∈ {1, . . . , L}, i ∈ {1, . . . , Ns},

h
(0)
i (x) = gi,0(x)

for i ∈ {1, . . . , N0}. Assume that

gi,s : RKi,s → R

are (pi,s, Ci,s)�smooth for some pi,s ≥ 1, Ci,s > 0 for all i, s. Let rmax = maxi,s ri,s and
Kmax = maxi,sKi,s. Set βn = c2 · log n for some c2 > 0 satisfying c2 · c3 ≥ 3. Set

K(s)
n = Kn (s = 0, . . . , l), Ls = L̄ (s = 0, . . . , l) and ri,s = 2 · (d2pi,s +Ki,se)2,

where Kn ∈ N satis�es

Kn

n(3·l+10)·(rmax+1)2·(L̄+Kmax)+7
→∞ (n→∞)

and
Kn

nκ
→ 0 (n→∞)
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for some κ > 0, and where

L̄ = max
r,s
dlog2(pr,s +Kr,s)e.

Set

K̄(s,i)
n =

⌈
c4 · n

Ki,s
2pi,s+Ki,s

⌉
for s = 1, . . . , l − 1. Set

c1,i,s,n = c5 · n
1

2pi,s+Ki,s · log n, c2,n = c6, c3,n = n, δn =
1

n3l+6
, αn =

1

n2
,

λn =
1

n4 ·K3
n

, sn = n4 ·K3
n and tn = de(logn)2·ne.

Let σ(x) = 1/(1 + e−x) be the logistic squasher, let c6 > 0 be su�ciently large, and

de�ne the estimate mn as above.

Then we have for any ε > 0:

E

∫
|mn(x)−m(x)|2PX(dx) ≤ c7 ·max

i,s
n
−

2pi,s
2pi,s+Ki,s

+ε
.

Remark 1. In the assumption on the regression function in Theorem 1 we can use

projections for the functions h
(0)
i , and since these projections are (p, C)�smooth for any

p > 0 they will have no in�uence on the upper bound on the rate of convergence in
Theorem 1.

Remark 2. The rate of convergence in Theorem 1 is optimal up to the ε factor in the
exponent. This factor ε appears due to our use of metric entropy bounds for bounding
the complexity of the over-parametrized deep neural networks. It is an open problem
whether one can show the same result without the ε factor in the exponent.

Remark 3. The result in Theorem 1 is valid for the logistic squasher. In our proof the
smoothness of the activation function is crucial in order to be able to apply the metric
entropy bounds mentioned in Remark 2, hence the result does not hold for the ReLU
activation function and it is an open problem whether one can show a similar result for
the ReLU activation function.

The estimate above depends on the structure of the hierarchical composition model.
Since in practice this structure will usually be unknown, any estimate using this struc-
ture in its de�nition cannot be applied directly. Of course, one can consider the whole
structure of the network as a parameter of the network and use a standard technique
(like splitting of the sample or cross validation (cf., e.g., Chapters 7 and 8 in Györ� et
al. (2002)) to choose this parameter in a data dependent way. However, in the case
of a hierarchical composition model there are too many values for the parameter to be
considered to apply this in practice.
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In the sequel we describe a more speci�c assumption from Kohler and Krzy»ak (2017)
for which least squares neural network regression estimates can achieve a dimension
reduction (cf., Kohler and Krzy»ak (2017) and Bauer and Kohler (2019)) and show that
Theorem 1 can also be applied to this special situation. This assumption will depend on
much less parameters so that they can in principle be chosen by splitting of the sample
or cross validation. Our next de�nition describes this more speci�c assumption.

De�nition 3 Let d ∈ N, d∗ ∈ {1, . . . , d} and m : Rd → R.
a) We say that m satis�es a generalized hierarchical interaction model of order

d∗ and level 0, if there exist a1, . . . , ad∗ ∈ Rd and f : Rd∗ → R such that

m(x) = f(aT1 x, . . . , a
T
d∗x) for all x ∈ Rd.

b)We say that m satis�es a generalized hierarchical interaction model of order d∗

and level l + 1, if there exist K ∈ N, gk : Rd∗ → R (k = 1, . . . ,K) and f1,k, . . . , fd∗,k :
Rd → R (k = 1, . . . ,K) such that f1,k, . . . , fd∗,k (k = 1, . . . ,K) satisfy a generalized

hierarchical interaction model of order d∗ and level l and

m(x) =

K∑
k=1

gk (f1,k(x), . . . , fd∗,k(x)) for all x ∈ Rd.

c) We say that the generalized hierarchical interaction model de�ned above is

(p, C)-smooth, if all functions occurring in its de�nition are (p, C)�smooth according to
De�nition 1.

So let us assume from now on that the regression function m : Rd → R satis�es
a (p, C)�smooth generalized hierarchical interaction model of order d∗ and �nite level
l̄. Let I ∈ N be the maximal number K which occurs in part b) of the de�nition of
this generalized hierarchical interaction model. We choose the topology of our neural
network estimate by (11)-(13), where we use the following values for the parameters: We
set l = 2 · l̄ + 1,

Ki,s =


I if s ∈ {3, 5, . . . , 2 · l̄ + 1},
d∗ if s ∈ {1, 2, 4, 6, . . . , 2 · l̄},
d if s = 0,

K
(s)
n = Kn (where the value of Kn will be chosen in Corollary 1 below),

Ls = L = max

{⌈
log2

(
p · d
d∗

+ d

)⌉
,

⌈
log2

(
p · I
d∗

+ I

)⌉}
and

ri,s =


2 · (d2 · p·Id∗ + Ie)2 if s ∈ {3, 5, . . . , 2 · l̄ + 1},
2 · (d2 · p+ d∗e)2 if s ∈ {1, 2, 4, 6, . . . , 2 · l̄},
2 · (d2 · p·dd∗ + de)2 if s = 0.

12



Furthermore we set

K̄(i,s)
n =

⌈
c9 · n

d∗
2p+d∗

⌉
,

c1,i,s,n =


c10 · n

d∗
2I·p+d∗·I · log n if s ∈ {3, 5, . . . , 2 · l̄ + 1},

c11 · n
1

2p+d∗ · log n if s ∈ {1, 2, 4, 6, . . . , 2 · l̄},

c12 · n
d∗

2·d·p+d∗·d if s = 0,

and choose c2,n, c3,n, δn, αn, λn, sn and tn as in Theorem 1. Let σ be the logistic squasher
and de�ne the estimate mn as in Section 2.

Corollary 1 Let n ∈ N, let (X,Y ), (X1, Yn), . . . , (Xn, Yn) be independent and identi-

cally distributed Rd ×R�valued random variables such that supp(X) is bounded and that

(20) holds for some c3 > 0. Assume that the regression functions satisfy a (p, C)�smooth
generalized hierarchical interaction model of order d∗ ∈ {1, . . . , d} and �nite level l̄ and
de�ne the estimate mn as above, where Kn ∈ N is chosen such that

Kn

n(6·l̄+13)·(2·(2·p·I+2·p·d+I+d)2+1)·(L̄+d+I)+7
→∞ (n→∞)

and
Kn

nκ
→ 0 (n→∞)

for some κ > 0 hold. Assume c2 · c3 ≥ 3.
Then we have for any ε > 0:

E

∫
|mn(x)−m(x)|2PX(dx) ≤ c13 · n−

2p
2p+d∗+ε

.

Proof. The generalized hierarchical interaction model in Corollary 1 can be represented
as the model for m in Theorem 1 if we choose l = 2 · l̄ + 1 and

h
(0)
i (x) = aTi x,

h
(1)
i (x) = fi(h

(0)
j1,i,1

(x), . . . , h
(0)
jd∗,i,1

(x)),

h
(2·s)
i (x) = gi(h

(2·s−1)
j1,i,2s

(x), . . . , h
(2·s−1)
jd∗,i,2s

(x)) (s = 1, . . . , l̄)

and

h
(2·s+1)
i (x) =

I∑
k=1

h
(2·s)
jk,i,2s+1

(x) (s = 1, . . . , l̄),

where we have used that we can extend the last sum to I terms by just adding zeros.
The projections at level 0 and the sums at levels 3, 5, . . . are arbitrary smooth, so in

particular we can assume that they are (p̄1, C)�smooth and (p̄1, C)�smooth, respectively,
with p̄1 = p · d/d∗ and p̄2 = p · I/d∗.
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The parameters of our estimate are chosen such that the assumptions of Theorem 1
are satis�ed. Hence we can conclude from Theorem 1

E

∫
|mn(x)−m(x)|2PX(dx) ≤ c14 ·max

{
n
− 2p̄1

2p̄1+d
+ε
, n
− 2p

2p+d∗+ε
, n
− 2p̄2

2p̄2+I
+ε
}

= c15 · n−
2p

2p+d∗+ε
.

�

Remark 4. The results above require an exponential large number of gradient descent
steps (in the sample size). It is an open problem whether one can show a similar result
for the number of gradient descent steps growing only polynomially.

Remark 5. It follows from the proof of Theorem 1 that it also holds if only the outer
weights of the deep neural network in our estimate are learned by gradient descent (and
the weights on all levels s < L use during gradient descent always their initial value).

4 Proof of Theorem 1

4.1 Neural network optimization

Our �rst lemma is our main tool to analyze the gradient descent.

Lemma 1 Let d1, d2 ∈ N, let Cn, Dn ≥ 0, let A ⊂ Rd1 and B ⊆ Rd2 be closed and

convex, and let F : Rd1 × Rd2 → R+ be a function such that

u 7→ F (u, v) is di�erentiable and convex for all v ∈ Rd1

and

‖(∇uF )(u, v)‖ ≤ Cn (21)

for all (u, v) ∈ A×B. Choose (u0, v0) ∈ A×B, let v1, . . . , vtn ∈ B and set

ut+1 = ProjA (ut − λ · (∇uF ) (ut, vt)) for t = 0, . . . , tn − 1,

where

λ =
1

tn
.

Let u∗ ∈ A, v∗ ∈ B, and assume

|F (u∗, vt)− F (u∗, v∗)| ≤ Dn · ‖u∗‖ · ‖vt − v∗‖ (22)

for all t = 1, . . . , tn. Then it holds:

min
t=0,...,tn−1

F (ut, vt) ≤ F (u∗, v∗) +Dn · ‖u∗‖ · diam(B) +
‖u∗ − u0‖2

2
+

C2
n

2 · tn
.
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Proof. The result follows in a straightforward way from the proof of Lemma 1 in Kohler
and Krzy»ak (2023). For the sake of completeness we repeat the proof below.
In the �rst step of the proof we show

1

tn

tn−1∑
t=0

F (ut, vt) ≤
1

tn

tn−1∑
t=0

F (u∗, vt) +
‖u∗ − u0‖2

2
+

1

2 · t2n

tn−1∑
t=0

‖(∇uF )(ut, vt)‖2. (23)

By convexity of u 7→ F (u, vt) and because of u∗ ∈ A we have

F (ut, vt)− F (u∗, vt)

≤< (∇uF )(ut, vt), ut − u∗ >

=
1

2 · λ
· 2· < λ · (∇uF )(ut, vt), ut − u∗ >

=
1

2 · λ
·
(
−‖ut − u∗ − λ · (∇uF )(ut, vt)‖2 + ‖ut − u∗‖2 + ‖λ · (∇uF )(ut, vt)‖2

)
≤ 1

2 · λ
·
(
−‖ProjA(ut − λ · (∇uF )(ut, vt))− u∗‖2 + ‖ut − u∗‖2 + λ2 · ‖(∇uF )(ut, vt)‖2

)
=

1

2 · λ
·
(
‖ut − u∗‖2 − ‖ut+1 − u∗‖2 + λ2 · ‖(∇uF )(ut, vt)‖2

)
.

This implies

1

tn

tn−1∑
t=0

F (ut, vt)−
1

tn

tn−1∑
t=0

F (u∗, vt)

=
1

tn

tn−1∑
t=0

(F (ut, vt)− F (u∗, vt))

≤ 1

tn

tn−1∑
t=0

1

2 · λ
·
(
‖ut − u∗‖2 − ‖ut+1 − u∗‖2

)
+

1

tn

tn−1∑
t=0

λ

2
· ‖(∇uF )(ut, vt)‖2

=
1

2
·
tn−1∑
t=0

(
‖ut − u∗‖2 − ‖ut+1 − u∗‖2

)
+

1

2 · t2n

tn−1∑
t=0

‖(∇uF )(ut, vt)‖2

≤ ‖u0 − u∗‖2

2
+

1

2 · t2n

tn−1∑
t=0

‖(∇uF )(ut, vt)‖2.

In the second step of the proof we show the assertion.
Using the result of step 1 we get

min
t=0,...,tn−1

F (ut, vt)

≤ 1

tn

tn−1∑
t=0

F (ut, vt)

≤ 1

tn

tn−1∑
t=0

F (u∗, vt) +
‖u∗ − u0‖2

2
+

1

2 · t2n

tn−1∑
t=0

‖(∇uF )(ut, vt)‖2
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≤ F (u∗, v∗) +
1

tn

tn−1∑
t=0

|F (u∗, vt)− F (u∗, v∗)|+ ‖u
∗ − u0‖2

2

+
1

2 · t2n

tn−1∑
t=0

‖(∇uF )(ut, vt)‖2.

By (22) we get

1

tn

tn−1∑
t=0

|F (u∗, vt)− F (u∗, v∗)| ≤ 1

tn

tn−1∑
t=0

Dn · ‖u∗‖ · ‖vt − v∗‖

≤ Dn · ‖u∗‖ · diam(B).

And by (21) we get

1

2 · t2n

tn−1∑
t=0

‖(∇uF )(ut, vt)‖2 ≤
1

2 · t2n

tn−1∑
t=0

C2
n =

C2
n

2 · tn
.

Summarizing the above results, the proof is complete. �
Next we prove two results which will help us to verify the assumptions of Lemma 1.

First we consider (22).

Lemma 2 Let d, Jn,Kn ∈ N, and for w = ((wk)k=1,...,Kn ,v) with wk ∈ R and v ∈ RJn
let fw : Rd → R be a (deep) neural network with weight vector w given by

fw(x) =

Kn∑
k=1

wk · f
(L)
v,k (x) (x ∈ Rn),

where |f (L)
v,k (x)| ≤ 1 for all x ∈ Rd (k = 1, . . . ,Kn). Set u = (wk)k=1,...,Kn, fu,v(x) =

fw(x) and

F (u, v) =
1

n

n∑
i=1

|Yi − fu,v(Xi)|2.

Let βn ≥ 0, Cn, En, K̃n ∈ N and assume

|Yi| ≤ βn (i = 1, . . . , n), (24)

Kn∑
k=1

|wk| ≤ En, (25)

|{k ∈ {1, . . . ,Kn} : wk 6= 0}| ≤ K̃n (26)

and

|f (L)
v,k (x)− f (L)

v(0),k
(x)| ≤ Cn · ‖v − v(0)‖ (27)

for all x ∈ {X1, . . . , Xn}. Then

|F (u, v)− F (u, v(0))| ≤ 2 · (βn + En) · Cn ·
√
K̃n · ‖u‖ · ‖v − v(0)‖.
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Proof. Because of (25) we have

|fu,v(Xi)| ≤ En and |fu,v(0)(Xi)| ≤ En.

This implies

|F (u, v)− F (u, v(0))|

=

∣∣∣∣∣ 1n
n∑
i=1

(Yi − fu,v(Xi) + Yi − fu,v(0)(Xi)) · (fu,v(Xi)− fu,v(0)(Xi))

∣∣∣∣∣
≤ (2 · βn + 2 · En) · 1

n

n∑
i=1

|fu,v(Xi)− fu,v(0)(Xi)|

≤ (2 · βn + 2 · En) · 1

n

n∑
i=1

Kn∑
k=1

|wk| · |f
(L)
v,k (Xi)− f (L)

(v(0)),k
(Xi)|

≤ (2 · βn + 2 · En) · 1

n

n∑
i=1

√√√√Kn∑
k=1

|wk|2 ·
√ ∑
k=1,...,Kn:wk 6=0

|f (L)
v,k (Xi)− f (L)

v(0),k
(Xi)|2

≤ (2 · βn + 2 · En) · 1

n

n∑
i=1

√√√√Kn∑
k=1

|wk|2 ·
√ ∑
k=1,...,Kn:wk 6=0

C2
n · ‖v − v(0)‖2

= 2 · (βn + En) · Cn · ‖u‖ ·
√
K̃n · ‖v − v(0)‖.

�
Lemma 2 requires (27), for which we will use our next lemma.

Lemma 3 De�ne

fw(x) = h
(l)
1 (x) =

K
(l)
n∑

k=1

w
(L)
1,k · f

(L)
k (x)

by (11)�(16) and set f
(L)
v,k (x) = f

(L)
k (x). Let α,An, Bn, En ≥ 1. Assume that the weight

vectors w of gNN,i,s de�ned in (12) and (13) satisfy

|w(0)
k,r,j | ≤ An for j > 0, (28)

|w(t)
k,r,j | ≤ Bn for j > 0 and t = 1, . . . , Ls − 1, (29)

and
K

(s)
n∑

k=1

|w(Ls)
k,1,1| ≤ En in case s < l. (30)

Then we have for any x ∈ [−α, α]d

|f (L)
v1,k

(x)− f (L)
v2,k

(x)| ≤ c16 ·
√

max
s=0,...,l−1

K
(s)
n ·Aln ·BL−2l−1

n · Eln · ‖v1 − v2‖.
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Proof. For s /∈ {L0 + 1, L0 + L1 + 2, . . . , L0 + · · ·+ Ll−1 + l} we have

|f (s)
i (x)| =

∣∣∣∣∣∣σ
 ∑
j∈{0,...,ks−1} : (s−1,i,j)∈I

w
(s−1)
i,j · f (s−1)

j (x)

∣∣∣∣∣∣ ≤ 1.

For s ∈ {L0 + 1, L0 + L1 + 2, . . . , L0 + · · ·+ Ll−1 + l} we can conclude from (30)

|f (s)
i (x)| =

∣∣∣∣∣∣
∑

j∈{0,...,ks−1} : (s−1,i,j)∈I

w
(s−1)
i,j · f (s−1)

j (x)

∣∣∣∣∣∣
≤

∑
j∈{0,...,ks−1} : (s−1,i,j)∈I

|w(s−1)
i,j | ≤ En.

Using that σs is Lipschitz continuous with Lipschitz constant one we get

|f (s)
v1,i

(x)− f (s)
v2,i

(x)| ≤
∣∣∣ ∑
j∈{0,...,ks−1} : (s−1,i,j)∈I

(v1)
(s−1)
i,j · f (s−1)

v1,j
(x)

−
∑

j∈{0,...,ks−1} : (s−1,i,j)∈I

(v2)
(s−1)
i,j · f (s−1)

v2,j
(x)
∣∣∣

≤

∣∣∣∣∣∣
∑

j∈{0,...,ks−1} : (s−1,i,j)∈I

((v1)
(s−1)
i,j − (v2)

(s−1)
i,j ) · f (s−1)

v1,j
(x)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

j∈{0,...,ks−1} : (s−1,i,j)∈I

(v2)
(s−1)
i,j · (f (s−1)

v1,j
(x)− f (s−1)

v2,j
(x))

∣∣∣∣∣∣
≤

∑
j∈{0,...,ks−1} : (s−1,i,j)∈I

∣∣∣(v1)
(s−1)
i,j − (v2)

(s−1)
i,j

∣∣∣ ·max
k
|f (s−1)

v1,k
(x)|

+
∑

j∈{0,...,ks−1} : (s−1,i,j)∈I

∣∣∣(v2)
(s−1)
i,j

∣∣∣ ·max
k
|f (s−1)

v1,k
(x)− f (s−1)

v2,k
(x)|

≤
√
|{j ∈ {0, . . . , ks−1} : (s− 1, i, j) ∈ I}|

·

√√√√ ∑
j∈{0,...,ks−1} : (s−1,i,j)∈I

∣∣∣(v1)
(s−1)
i,j − (v2)

(s−1)
i,j

∣∣∣2 ·max
k
|f (s−1)

v1,k
(x)|

+
∑

j∈{0,...,ks−1} : (s−1,i,j)∈I

∣∣∣(v2)
(s−1)
i,j

∣∣∣ ·max
k
|f (s−1)

v1,k
(x)− f (s−1)

v2,k
(x)|.

In case s = 1 we have
max
k
|f (s−1)

v1,k
(x)| ≤ α

and
max
k
|f (s−1)

v1,k
(x)− f (s−1)

v2,k
(x)| = 0,
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from which we can conclude

|f (1)
v1,i

(x)− f (1)
v2,i

(x)| ≤
√
d+ 1 · α · ‖v1 − v2‖.

In case s ∈ {2, 3, . . . , L0, L0 + 3, L0 + 4, . . . , L0 + L1 + 1, . . . , L0 + · · · + Ll−1 + l +
2, . . . , L0 + · · ·+ Ll + l} we have

|{j ∈ {0, . . . , ks−1} : (s− 1, i, j) ∈ I}| ≤ r + 1, (31)

max
k
|f (s−1)

v1,k
(x)| ≤ 1 (32)

and ∑
j∈{0,...,ks−1} : (s−1,i,j)∈I

∣∣∣(v2)
(s−1)
i,j

∣∣∣ ≤ (r + 1) ·Bn, (33)

from which we can conclude

|f (s)
v1,i

(x)− f (s)
v2,i

(x)| ≤
√
r + 1 · ‖v1 − v2‖+ (r + 1) ·Bn ·max

k
|f (s−1)

v1,k
(x)− f (s−1)

v2,k
(x)|.

In case s ∈ {L0 + 1, L0 + L1 + 2, . . . , L0 + · · ·+ Ll−1 + l} (32) holds, and in addition
we have

|{j ∈ {0, . . . , ks−1} : (s− 1, i, j) ∈ I}| ≤ max
s=0,...,l−1

K(s)
n

and ∑
j∈{0,...,ks−1} : (s−1,i,j)∈I

∣∣∣(v2)
(s−1)
i,j

∣∣∣ ≤ En,
from which we can conclude

|f (s)
v1,i

(x)− f (s)
v2,i

(x)| ≤
√

max
s=0,...,l−1

K
(s)
n · ‖v1 − v2‖+ En ·max

k
|f (s−1)

v1,k
(x)− f (s−1)

v2,k
(x)|.

In case s ∈ {L0 + 2, L0 + L1 + 3, . . . , L0 + . . . , Ll−1 + l + 1} we have

{j ∈ {0, . . . , ks−1} : (s− 1, i, j) ∈ I}| ≤ Ki,s + 1,

max
k
|f (s−1)

v1,k
(x)| ≤ En

and ∑
j∈{0,...,ks−1} : (s−1,i,j)∈I

∣∣∣(v2)
(s−1)
i,j

∣∣∣ ≤ (Ki,s + 1) ·An,

from which we can conclude

|f (s)
v1,i

(x)− f (s)
v2,i

(x)|

≤
√
Ki,s + 1 · En · ‖v1 − v2‖+ (Ki,s + 1) ·An ·max

k
|f (s−1)

v1,k
(x)− f (s−1)

v2,k
(x)|.
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Applying these inequalities recursively we get

|f (1)
v1,i

(x)− f (1)
v2,i

(x)| ≤ c17 · ‖v1 − v2‖,

|f (2)
v1,i

(x)− f (2)
v2,i

(x)| ≤ c18 · ‖v1 − v2‖+ c19 ·Bn · c17 · ‖v1 − v2‖ ≤ c20 ·Bn · ‖v1 − v2‖,

|f (L0)
v1,i

(x)− f (L0)
v2,i

(x)| ≤ c21 ·BL0−1
n · ‖v1 − v2‖,

|f (L0+1)
v1,i

(x)− f (L0+1)
v2,i

(x)|

≤
√

max
s=0,...,l−1

K
(s)
n · ‖v1 − v2‖+ En · c21 ·BL0−1

n · ‖v1 − v2‖

≤ c22 ·
√

max
s=0,...,l−1

K
(s)
n · En ·BL0−1

n · ‖v1 − v2‖,

|f (L0+2)
v1,i

(x)− f (L0+2)
v2,i

(x)|

≤ c23 · En · ‖v1 − v2‖+ c24 ·An · c22 ·
√

max
s=0,...,l−1

K
(s)
n · En ·BL0−1

n · ‖v1 − v2‖

≤ c25 ·
√

max
s=0,...,l−1

K
(s)
n ·An · En ·BL0−1

n · ‖v1 − v2‖,

|f (L0+L1+1)
v1,i

(x)− f (L0+L1+1)
v2,i

(x)|

≤ c26 ·
√

max
s=0,...,l−1

K
(s)
n ·An · En ·BL0+L1−2

n · ‖v1 − v2‖,

|f (L0+L1+2)
v1,i

(x)− f (L0+L1+2)
v2,i

(x)|

≤ c27 ·
√

max
s=0,...,l−1

K
(s)
n · ‖v1 − v2‖

+En · c26 ·
√

max
s=0,...,l−1

K
(s)
n ·An · En ·BL0+L1−2

n · ‖v1 − v2‖

≤ c28 ·
√

max
s=0,...,l−1

K
(s)
n ·An · E2

n ·BL0+L1−2
n · ‖v1 − v2‖

and �nally

|f (L)
v1,i

(x)− f (L)
v2,i

(x)| = |f (L0+···+Ll+l)
v1,i

(x)− f (L0+···+Ll+l)
v2,i

(x)|

≤ c29 ·
√

max
s=0,...,l−1

K
(s)
n ·Aln · Eln ·BL0+···+Ll−l−1

n · ‖v1 − v2‖.

�
Finally we present a result which will help us to verify (21).
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Lemma 4 Let F (u, v) = F (w) be de�ned as in Lemma 2 and assume that (24) and (25)

hold. Then ∥∥∥∇(wk)k=1,...,Kn
F (w)

∥∥∥ ≤ 2 · (βn + En) ·
√
Kn.

Proof. We have ∥∥∥∇(wk)k=1,...,Kn
F (w)

∥∥∥2

=

Kn∑
k=1

∣∣∣∣∣ 1n
n∑
i=1

2 · (fw(Xi)− Yi) · f (L)
v,k (Xi)

∣∣∣∣∣
2

≤
Kn∑
k=1

∣∣∣∣∣ 1n
n∑
i=1

2 · (En + βn) · 1

∣∣∣∣∣
2

= 4 ·Kn · (En + βn)2.

�

4.2 Neural network approximation

In this subsection we study the approximation properties of our hierarchical space of
deep neural networks. Our starting point is the following result from Kohler (2024).

Lemma 5 Let d ∈ N, p = q + β where β ∈ (0, 1] and q ∈ N0, C > 0, A ≥ 1 and

An, Bn, γ
∗
n ≥ 1. For L, r ∈ N let F be the set of all networks fw de�ned by (8)�(10) with

logistic squasher and K replaced by r, where the weight vector satis�es

|w(0)
k,i,j | ≤ An, |w(l)

k,i,j | ≤ Bn and |w(L)
k,1,1| ≤ γ

∗
n

for all l ∈ {1, . . . , L− 1}, all i, j and all k = 1, . . . , r, and for L, r,K ∈ N set

H =


Kd∑
k=1

fk : fk ∈ F (k = 1, . . . ,K)

 .

Let L, r ∈ N with

L ≥ dlog2(q + d)e and r ≥ 2 · (2p+ d) · (q + d),

and set

An = A ·K · logK, Bn = c30 and γ∗n = c31 ·Kq+d.

Assume K ≥ c32 for c32 su�ciently large. Then there exists for any (p, C)�smooth
f : Rd → R a neural network h ∈ H such that

sup
x∈[−A,A)d

|f(x)− h(x)| ≤ c33

Kp
.
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Proof. See Theorem 3 in Kohler (2024). �
Our next result extends Lemma 5 to the hierarchical spaces of neural networks intro-

duced in Section 2.

Lemma 6 Let Ks,r ∈ N with K0,r = d. Set Nl = 1 and Ns =
∑Ns+1

r=1 Kr,s for s ∈
{0, . . . , l − 1}. De�ne m : Rd → R by

m(x) = h
(l)
1 (x),

where

h
(s)
i (x) = gi,s(h

(s−1)∑i−1
r=1 Ks−1,r+1

(x), . . . , h
(s−1)∑i−1
r=1 Ks−1,r+Ks−1,i

(x))

for s ∈ {1, . . . , L}, i ∈ {1, . . . , Ns},

h
(0)
i (x) = gi,0(x)

for i ∈ {1, . . . , N0}. Assume that

gi,s : RKi,s → R

are (pi,s, Ci,s)�smooth for some pi,s ≥ 1, Ci,s > 0 for all i, s.

Let H be the set of all neural networks de�ned by (11)�(13) with K
(s)
n replaced by

K
(s,i)
n ∈ N, Ls = L̄ = maxr,t dlog2(pr,t +Kr,t)e, ri,s = 2 · (d(2pi,s+Ki,s)e)2 and where for

all i, s and each function from gNN,i,s ∈ FKi,s,K(s,i)
n ,Ls,ri,s

the weight constraints

|w(0)
k,i,j | ≤ c34·(K(s,i)

n )1/Ki,s ·logK(s,i)
n , |w(l)

k,i,j | ≤ c35 and |w(Ls)
k,1,1| ≤ c36·(K(s,i)

n )
pi,s+Ki,s
Ki,s

are satis�ed for l = 1, . . . , Ls − 1.

Then there exists h ∈ H such that for su�ciently large K
(s,i)
n it holds

sup
x∈[−A,A]d

|h(x)−m(x)| ≤ c37 ·max
i,s

1

(K
(s,i)
n )pi,s/Ki,s

.

Proof. Choose Ā ≥ A such that

hi,s(x) ∈ [−Ā, Ā]

holds for all x ∈ [−A,A]d and all i, s, which is possible because of the continuity of
the gi,s. For i, s let ĝi,s ∈ FKi,s,K(s,i)

n ,Ls,ri,s
be the neural network approximation of gi,s

de�ned in Lemma 5 which satis�es

sup
x∈[−Ā−1,Ā+1)Ki,s

|ĝi,s(x)− gi,s(x)| ≤ c38

(K
(s,i)
n )pi,s/Ki,s

(34)
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for some c38 ≥ 1. Let CLip ≥ 1 be an upper bound on the Lipschitz constant of gi,s
on [−Ā, Ā]Ki,s for all i, s (which exists because of pi,s ≥ 1). W.l.o.g. we assume in the

sequel that K
(s,i)
n is so large that

2l−1 · C l−1
Lip · c38

(K
(s,i)
n )pi,s/Ki,s

< 1

holds for all i, s.
De�ne

ĥ
(l)
1

recursively by

ĥ
(s)
i (x) = ĝi,s(ĥ

(s−1)∑i−1
r=1 Ks−1,r+1

(x), . . . , ĥ
(s−1)∑i−1
r=1 Ks−1,r+Ks−1,i

(x))

for s ∈ {1, . . . , L}, i ∈ {1, . . . , Ns} and

ĥ
(0)
i (x) = ĝi,0(x)

for i ∈ {1, . . . , N0}.
Then ĥ

(l)
1 is a function from H which satis�es the conditions of Lemma 6, hence it

su�ces to show

sup
x∈[−A,A]d

|ĥ(l)
1 (x)−m(x)| ≤ c39 ·max

i,s

1

(K
(s,i)
n )pi,s/Ki,s

.

To do this, we show recursively

sup
x∈[−A,A]d

|ĥ(s)
j (x)− h(s)

j (x)| ≤ 2s · CsLip · c38 · max
i,t:t≤s

1

(K
(t,i)
n )pi,t/Ki,t

(35)

for all j ∈ {1, . . . , Ns} and all s ∈ {0, 1, . . . , l}.
By construction (35) holds for s = 0 (cf., (34)). So assume now that (35) holds for

some s ∈ {0, . . . , l−1}. Then ĥ(s)
i (x) ∈ [−Ā−1, Ā+1), the choice of ĝi,s+1, the Lipschitz

smoothness of gi,s+1 (which holds because of pi,s+1 ≥ 1) and our induction assumption
imply for any x ∈ [−A,A]d and any i

|ĥ(s+1)
i (x)− h(s+1)

i (x)|

=

∣∣∣∣∣ĝi,s+1(ĥ
(s)∑i−1
r=1 Ks,r+1

(x), . . . , ĥ
(s)∑i−1
r=1Ks,r+Ks,i

(x))

−gi,s+1(h
(s)∑i−1
r=1Ks,r+1

(x), . . . , h
(s)∑i−1
r=1Ks,r+Ks,i

(x))

∣∣∣∣∣
≤

∣∣∣∣∣ĝi,s+1(ĥ
(s)∑i−1
r=1 Ks,r+1

(x), . . . , ĥ
(s)∑i−1
r=1Ks,r+Ks,i

(x))
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−gi,s+1(ĥ
(s)∑i−1
r=1Ks,r+1

(x), . . . , ĥ
(s)∑i−1
r=1Ks,r+Ks,i

(x))

∣∣∣∣∣
+

∣∣∣∣∣gi,s+1(ĥ
(s)∑i−1
r=1 Ks,r+1

(x), . . . , ĥ
(s)∑i−1
r=1Ks,r+Ks,i

(x))

−gi,s+1(h
(s)∑i−1
r=1Ks,r+1

(x), . . . , h
(s)∑i−1
r=1Ks,r+Ks,i

(x))

∣∣∣∣∣
≤ c38 ·

1

(K
(s+1,i)
n )pi,s+1/Ki,s+1

+ CLip · max
k=
∑i−1
r=1Ks,r+1,...,

∑i−1
r=1Ks,r+Ks,i

|ĥ(s)
k (x)− h(s)

k (x)|

≤ c38 ·
1

(K
(s+1,i)
n )pi,s+1/Ki,s+1

+ CLip · 2s · CsLip · c38 · max
i,t:t≤s

1

(K
(t,i)
n )pi,t/Ki,t

≤ 2s+1 · Cs+1
Lip · c38 · max

i,t:t≤s+1

1

(K
(t,i)
n )pi,t/Ki,t

.

�

4.3 Neural network generalization

Next we derive a bound on the covering number of hierarchically de�ned spaces of neural
networks. We do this by composing coverings, and in order to be able to prove that the
composed covering is a covering of the hierarchically de�ned function space, we will use
the following generalization of a supremum norm cover.

De�nition 4 Let ε > 0 and δ ≥ 0, let A ∈ R+, let F be a set of functions f : Rd → R,
and let f1, . . . , fn : Rd → R. {f1, . . . , fn} is called an ε-‖ · ‖∞,[−A,A]d-cover of F for δ
perturbated data, if for any f ∈ F there exists i ∈ {1, . . . , n} such that

sup
x∈[−A,A]d,x̃∈Rd : ‖x−x̃‖∞≤δ

|f(x)− fi(x̃)| < ε.

The ε-‖ · ‖∞,[−A,A]d-covering number of F for δ perturbated data

N‖·‖∞,[−A,A]d
,δ(ε,F)

is the minimal n ∈ N such that a ε-‖ · ‖∞,[−A,A]d-cover of F for δ perturbated data of size

n exists.

As our next result shows, the above introduced covering number is especially suited
for hierarchical compositions of function spaces.

Lemma 7 Let F be a set of functions f : RK → R, let α ≥ 1, let G1, . . . ,GK be sets of

functions g : Rd → [−α, α], and let H be the set of all functions

h(x) = f(g1(x), . . . , gK(x)) (x ∈ Rd)
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for some f ∈ F , g1 ∈ G1, . . . , gK ∈ GK . Then we have for any ε, η > 0 and any δ > 0

N‖·‖∞,[−A,A]d
,δ(ε,H) ≤ N‖·‖∞,[−α,α]K

,η(ε,F) ·
K∏
k=1

N‖·‖∞,[−A,A]d
,δ(η,Gk).

Proof. Let f1, . . . , fn : RK → R be an ε-‖ · ‖∞,[−α,α]K -cover of minimal size of F
for η perturbated data, and for k ∈ {1, . . . ,K} let gk,1, . . . , gk,nk : Rd → R be an η-
‖ · ‖∞,[−A,A]d-cover of minimal size of Gk for δ perturbated data. In the sequel we show
that the set of all functions

h(x) = fi(g1,j1(x), . . . , gK,jK (x)) (x ∈ Rd)

with i ∈ {1, . . . , n}, j1 ∈ {1, . . . , n1}, . . . , jK ∈ {1, . . . , nK} is an ε-‖ · ‖∞,[−A,A]d-cover
of H for δ perturbated data. From this we get the assertion, because from this we can
conclude

N‖·‖∞,[−A,A]d
,δ(ε,H) ≤ n ·

K∏
k=1

nk = N‖·‖∞,[−α,α]K
,η(ε,F) ·

K∏
k=1

N‖·‖∞,[−A,A]d
,δ(η,Gk).

In order to show that the functions h de�ned above are an ε-‖ · ‖∞,[−A,A]d-cover of H for
δ perturbated data, let h ∈ H be arbitrary. Then h is given by

h(x) = f(g1(x), . . . , gK(x)) (x ∈ Rd)

for some f ∈ F , g1 ∈ G1, . . . , gK ∈ GK . Choose i ∈ {1, . . . , n}, j1 ∈ {1, . . . , n1}, . . . ,
jK ∈ {1, . . . , nK} such that

sup
x∈[−α,α]K ,x̃∈RK : ‖x−x̃‖∞≤η

|f(x)− fi(x̃)| < ε

and
sup

x∈[−A,A]d,x̃∈Rd : ‖x−x̃‖∞≤δ
|gk(x)− gk,jk(x̃)| < η

hold for all k ∈ {1, . . . ,K}.
Then we get for any x ∈ [−A,A]d and x̃ ∈ Rd with ‖x− x̃‖∞ ≤ δ

gk(x) ∈ [−α, α] and |gk(x)− gk,jk(x̃)| < η for all k = 1, . . . ,K

(where the �rst relation holds by the de�nition of Gk), from which we conclude

|f(g1(x), . . . , gK(x))− fi(g1,j1(x̃), . . . , gK,jK (x̃))| < ε.

�
Our next lemma generalizes the result from Lemma 12 in Kohler (2024) to the more

complex notion of a covering introduced above.
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Lemma 8 Let α ≥ 1 and let A,B,C ≥ 1. Let σ : R→ R be k-times di�erentiable such
that all derivatives up to order k are bounded on R. Let F be the set of all functions fw
de�ned by (8)�(10) where the weight vector w satis�es

K∑
j=1

|w(L)
j,1,1| ≤ C, (36)

|w(l)
k,i,j | ≤ B (k ∈ {1, . . . ,K}, i, j ∈ {1, . . . , r}, l ∈ {1, . . . , L− 1}) (37)

and

|w(0)
k,i,j | ≤ A (k ∈ {1, . . . ,K}, i ∈ {1, . . . , r}, j ∈ {1, . . . , d}). (38)

Let ε, δ ∈ (0, 1] and assume

δ ≤ c43 · ε
d ·A ·BL−1 · C

(39)

for some suitably small constant c43 > 0. Then we have

N‖·‖∞,[−α,α]d
,δ(ε,F)

≤

(
c44 ·

Ak−1 ·B(L−1)·(k−1) · C
ε

)c45·αd·Ad·B(L−1)·d·(Cε )
d/k

.

Proof. It is shown in the proof of Lemma 12 in Kohler (2024) that for any fw ∈ F , any
x ∈ [−2α, 2α]d and any s1, . . . , sk ∈ {1, . . . , d}∣∣∣∣ ∂kfw

∂x(s1) . . . ∂x(sk)
(x)

∣∣∣∣ ≤ c46 · C ·B(L−1)·k ·Ak (40)

holds.
Partition [−2 · α, 2 · α]d into at most

K =


(
c47 ·

2 · (4α)k ·Ak ·B(L−1)·k · C
ε

)d/k
many cubes of side length

η =
4 · α
bK1/dc

≤ 4α

K1/d − 1

≤ 4α(
c47 · 2·(4α)k·Ak·B(L−1)·k·C

ε

)1/k
− 1

≤ 4α

1
2 ·
(
c47 · 2·(4α)k·Ak·B(L−1)·k·C

ε

)1/k

≤
(

1

c47/2k+1
· ε/4

Ak ·B(L−1)·k · C

)1/k

. (41)
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Here the second inequality holds if c47 ≥ 1, since

2 · (4α)k ·Ak ·B(L−1)·k · C
ε

≥ 2 · 4k ≥ 2k.

Let f ∈ F , let C be any cube of the above partition, and let p be the Taylor polynomial
of total degree k− 1 of f around the center xC of C. By using a standard bound on the
remainder of the multivariate Taylor polynomial it is possible to show that for any x̃,
which is in supremum norm not further away of the center of C than η/2, we have for
c47 su�ciently large

|f(x̃)− p(x̃)|

≤

∣∣∣∣∣ ∑
j1,...,jd∈N0:
j1+···+jd=k

k

j1! · · · · · jd!

∫ 1

0
(1− t)k−1 · ∂j1+···+jdf

∂j1x(1) . . . ∂jdx(d)
(xc − t · (x̃− xc)) dt

·(x̃(1) − x(1)
C )j1 · · · · · (x̃(d) − x(d)

C )jd

∣∣∣∣∣
≤ c48 · c46 · C ·B(L−1)·k ·Ak ·

(η
2

)k
≤ ε

4
.

Furthermore we have for any x ∈ [−α, α]d and any x̃ ∈ Rd with ‖x− x̃‖∞ ≤ δ

x̃ ∈ [−2α, 2α]d,

hence x̃ is contained in one set of the above partition, and it holds

|f(x)− f(x̃)| ≤
d∑
i=1

|f(x̃(1), . . . , x̃(i−1), x(i), . . . , x(d))− f(x̃(1), . . . , x̃(i), x(i+1), . . . , x(d))|

≤
d∑
i=1

∣∣∣∣ ∂f∂x(i)

∣∣∣∣
∞,[−2α,2α]d

· |x(i) − x̃(i)| ≤ d · c46 · C ·B(L−1) ·A · δ ≤ ε

4

provided c43 < 1/(4 · c46) (cf. (39)).
Let H be the set of all piecewise polynomials (with respect to the above partition of

[−2 · α, 2 · α]d) of total degree k − 1 with the coe�cients bounded in absolute value by
c46 ·C ·B(L−1)·k−1 ·Ak−1. This set contains all piecewise Taylor polynomials of the above
form. And for any f ∈ F we can �nd h ∈ H such that for any x ∈ [−α, α]d and any
x̃ ∈ Rd with ‖x− x̃‖∞ ≤ δ it holds

|f(x)− h(x̃)| = |f(x)− p(x̃)|
≤ |f(x)− f(x̃)|+ |f(x̃)− p(x̃)|

≤ ε

4
+
ε

4
=
ε

2
.

If we discretize in H all the
c49 ·K
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many coe�cients, which all take on values in an interval of length

2 · c50 · C ·B(L−1)·(k−1) ·Ak−1,

by a grid of size ε/(2 · c51), then∣∣∣∣∣ ∑
j1,...,jd∈N0:

j1+···+jd≤k−1

aj1,...,jd · (x
(1))j1 · · · · · (x(d))jd −

∑
j1,...,jd∈N0:

j1+···+jd≤k−1

bj1,...,jd · (x
(1))j1 · · · · · (x(d))jd

∣∣∣∣∣
≤ dk · (max{‖x‖∞, 1})k−1 · max

j1,...,jd∈N0:
j1+···+jd≤k−1

|aj1,...,jd − bj1,...,jd |

implies that the resulting set is (for c51 > dk · (2 ·α)k−1) an ε/2-‖ · ‖∞,[−2·α,2·α]d-covering
of H. Since the number of functions in this covering does not exceed(

2 · c50 · C ·B(L−1)·(k−1) ·Ak−1

ε/(2 · c51)

)c49·K

,

we get the desired cover of F . �

4.4 Proof of Theorem 1

W.l.o.g. we assume throughout the proof that n is su�ciently large and that ‖m‖∞ ≤ βn
holds. Let A > 0 with supp(X) ⊆ [−A,A]d. Set

K(s,i)
n =

⌈
c52 · n

Ki,s
2pi,s+Ki,s

⌉
(s = 0, . . . , l),

hence
K̄(s,i)
n = K(s,i)

n for s = 0, . . . , l − 1.

Set
K̄(l,1)
n = n5 ·K(l,1)

n .

Let w∗ be a weight vector of a neural network in Lemma 6 which approximates m, where
for the network approximating g1,l all the in parallel computed neural networks are re-

peated n5 times with values w
(Ll)
j,1,1 = w

(L)
1,j replaced by w

(Ll)
j,1,1/n

5. Then the corresponding
network

fw∗(x)

satis�es

sup
x∈[−A,A]d

|fw∗(x)−m(x)| ≤ c37 ·max
i,s

1

(K
(s,i)
n )pi,s/Ki,s

≤ c53 ·max
i,s

1

n
pi,s

2pi,s+Ki,s

.

The weight vectors corresponding to gNN,i,s of this hierarchically composed neural net-
work satisfy

(w∗)
(Ls)
k,1,1 ∈ [−c3,n, c3,n], (w∗)

(l)
k,r,j ∈ [−c2,n, c2,n] (l = 1, . . . , Ls − 1)
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and
(w∗)

(0)
k,r,j ∈ [−c1,i,s,n, c1,i,s,n].

Furthermore, the weights in the last layer of the hierarchical composed networks satisfy

n5·K(l,1)
n∑

k=1

|(w∗)(L)
1,k |

2 ≤ n5 ·K(l,1)
n ·

( n
n5

)2
≤ 1

n2
= αn.

Set

εn =
1

n3·l+9
.

Let An,1 be the event that the weight vector w(0) satis�es �rstly in each of the hierar-
chically combined networks gNN,i,s with s ∈ {0, . . . , l − 1}

|(w(0))
(r)
jt,i,s,k,j

− (w∗)
(r)
t,k,j | ≤ εn for all r ∈ {0, . . . , Ls}, t ∈ {1, . . . , K̄(s,i)

n }

for some pairwise distinct j1,i,s, . . . , jK̄(s,i)
n ,i,s

∈ {1, . . . ,Kn} and that it also satis�es in
g1,l

|(w(0))
(r)
jt,1,l,k,j

− (w∗)
(r)
t,k,j | ≤ εn for all r ∈ {0, . . . , Ll − 1}, t ∈ {1, . . . , K̄(l,1)

n }

for some pairwise distinct j1,1,l, . . . , jK̄(l,1)
n ,1,l

∈ {1, . . . ,Kn}. Let An,2 be the event that

in case that An,1 holds at some pruning step simultaneously all the weights

w
(Ls)
j1,i,s,1,1

, . . . , w
(Ls)
j
K̄

(s,i)
n ,i,s

,1,1

from gi,s are chosen for all i and all s = 0, . . . , l − 1. And let An,3 be the event that

max
i=1,...,n

|Yi| ≤
√
βn

holds. Let An be the event that An,1, An,2 and An,3 hold simultaneously.
In the sequel we decompose the L2 error of mn in a sum of several terms. Set

mβn(x) = E{TβnY |X = x}.

We have∫
|mn(x)−m(x)|2PX(dx)

=
(
E
{
|mn(X)− Y |2|Dn

}
−E{|m(X)− Y |2}

)
· 1An +

∫
|mn(x)−m(x)|2PX(dx) · 1Acn

=
[
E
{
|mn(X)− Y |2|Dn

}
−E{|m(X)− Y |2}

−
(
E
{
|mn(X)− TβnY |2|Dn

}
−E{|mβn(X)− TβnY |2}

) ]
· 1An
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+
[
E
{
|mn(X)− TβnY |2|Dn

}
−E{|mβn(X)− TβnY |2}

−2 · 1

n

n∑
i=1

(
|mn(Xi)− TβnYi|2 − |mβn(Xi)− TβnYi|2

) ]
· 1An

+
[
2 · 1

n

n∑
i=1

|mn(Xi)− TβnYi|2 − 2 · 1

n

n∑
i=1

|mβn(Xi)− TβnYi|2

−

(
2 · 1

n

n∑
i=1

|mn(Xi)− Yi|2 − 2 · 1

n

n∑
i=1

|m(Xi)− Yi|2
)]
· 1An

+
[
2 · 1

n

n∑
i=1

|mn(Xi)− Yi|2 − 2 · 1

n

n∑
i=1

|m(Xi)− Yi|2
]
· 1An

+

∫
|mn(x)−m(x)|2PX(dx) · 1Acn

=:
5∑
j=1

Tj,n.

In the remainder of the proof we bound

ETj,n

for j ∈ {1, . . . , 5}.
In the �rst step of the proof we show

ETj,n ≤ c54 ·
log n

n
for j ∈ {1, 3}.

This follows from the proof of Lemma 1 in Bauer and Kohler (2019).
In the second step of the proof we show

ET5,n ≤ c55 ·
(log n)2

n
.

The de�nition of mn implies
∫
|mn(x) − m(x)|2PX(dx) ≤ 4 · c2

2 · (log n)2, hence it
su�ces to show

P(Acn) ≤ c56

n2
. (42)

To do this, we consider separately in each of the hierarchically composed subnetworks a
sequential choice of the weights of the Kn fully connected neural networks. The prob-
ability that the weights in the �rst of the Kn in parallel computed neural networks in

gNN,i,s di�er in all components at most by εn from the weights in the �rst of the K̄
(s,i)
n

in parallel computed neural networks in the corresponding network in our hierarchically
composed network with good approximation properties constructed above is for large n
bounded from below by(

εn
2 · c3,n

)
·
(

εn
2 · c2,n

)rmax·(rmax+1)·(Lmax−1)

·
(

εn
2 · c1,i,s,n

)rmax·(Kmax+1)
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≥ n−(3·l+10)·(rmax+1)2·(Lmax+Kmax)

where
Kmax = max

i,s
Ki,s, rmax = max

i,s
ri,s and Lmax = max

s
Ls = L̄.

Hence the probability that none of the �rst n(3·l+10)·(rmax+1)2·(Lmax+Kmax)+1 neural net-
works satis�es this condition is bounded from above by

(1− n−(3·l+10)·(rmax+1)2·(Lmax+Kmax))n
(3·l+10)·(rmax+1)2·(Lmax+Kmax)+1

≤
(

exp
(
−n−(3·l+10)·(rmax+1)2·(Lmax+Kmax)

))n(3·l+10)·(rmax+1)2·(Lmax+Kmax)+1

= exp(−n).

And since there are only �nitely many of these subnetworks the probability that in any
of these subnetworks none of the �rst n(3·l+10)·(rmax+1)2·(Lmax+Kmax)+1 neural networks
satis�es this condition is for large n bounded from above by

c57 · exp(−n).

Since we have Kn ≥ n(3·l+10)·(rmax+1)2·(Lmax+Kmax)+1 · maxi,s K̄
(s,i)
n for n large we can

successively use the same construction for all of the weights in any of the subnetworks

and we can conclude: The probability that there exist (s, i) and k ∈ {1, . . . , K̄(s,i)
n } such

that none of the Kn weight vectors of the network corresponding to gNN,i,s di�ers in all

components by at most εn from (w
(r)
k,i,j)i,j,r:r≤Ls (or (w

(r)
k,i,j)i,j,r:r<Ls in case s = l) is for

large n bounded from above by

c58 ·max
i,s

K̄(s,i)
n · exp(−n) ≤ n6 · c59 · exp(−n) ≤ 1

n2
.

This implies for large n

P(Acn,1) + P(Acn,3) ≤ 1

n2
+ P{ max

i=1,...,n
|Yi| >

√
βn} ≤

1

n2
+ n ·P{|Y | >

√
βn}

≤ 1

n2
+ n · E{exp(c3 · Y 2)

exp(c3 · βn)
≤ c33

n2
,

where the last inequality follows from the assumption c2 · c3 ≥ 3. Furthermore, the
probability that during one pruning step An,1 holds and that in all hierarchical composed
networks just the subsets are chosen where according to An,1 the best approximating
weights are approximated with an error at most εn is for large n bounded from below by

n6 · c59 · exp(−n) ·

 1(
nκ

c61·n

)
c62

≥ n6 · c59 · exp(−n) · 1

(nκ)c63·n ≥ e
−c64·n·logn.

Since we perform at least btn/snc of these pruning steps independently, we can conclude

P{Acn,2} ≤
(

1− e−c64·n·logn
)tn/sn−1

≤ c65

n2
.
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Hence we have shown

P{Acn} ≤ P(Acn,1) + P(Acn,2) + P(Acn,3) ≤ c66

n2
.

Let ε > 0 be arbitrary. In the third step of the proof we show

ET2,n ≤ c67 ·max
i,s

n
−

2pi,s
2pi,s+Ki,s

+ε
.

Let Wn be the set of all weight vectors of the hierarchically composed neural network

de�ned by (11)�(13) with Ki,s, K
(s)
n , Ls and ri,s chosen as in Theorem 1, where for each

of the subnetwork gNN,i,s the weights (w
(l)
i,j,k)i,j,k,l satisfy

|w(Ls)
1,1,k| ≤ c68 · n (k = 1, . . . ,Kn),

|w(l)
i,j,k| ≤ c69 (l = 1, . . . , Ls − 1)

and

|w(0)
i,j,k| ≤ c70 · n

1
2pi,s+Ki,s · log n.

The initialization of w(0) together with (17) implies

w(t) ∈ Wn (t = 0, . . . , tn).

Hence, for any u > 0 we get

P{T2,n > u}

≤ P

{
∃f ∈ Fn : E

(∣∣∣∣f(X)

βn
−
TβnY

βn

∣∣∣∣2
)
−E

(∣∣∣∣mβn(X)

βn
−
TβnY

βn

∣∣∣∣2
)

− 1

n

n∑
i=1

(∣∣∣∣f(Xi)

βn
−
TβnYi
βn

∣∣∣∣2 − ∣∣∣∣mβn(Xi)

βn
−
TβnYi
βn

∣∣∣∣2
)}

>
1

2
·

(
u

β2
n

+ E

(∣∣∣∣f(X)

βn
−
TβnY

βn

∣∣∣∣2
)
−E

(∣∣∣∣mβn(X)

βn
−
TβnY

βn

∣∣∣∣2
))

,

where
Fn = {Tβnfw : w ∈ Wn} .

By Lemma 7 and Lemma 8 we get for any x1, . . . , xn ∈ supp(X)

N1

(
δ,

{
1

βn
· f : f ∈ Fn

}
, xn1

)
≤ N1 (δ · βn,Fn, xn1 )

≤ N‖·‖∞,[−A,A]d
,0 (δ · βn,Fn)

≤
∏
i,s

(
c71 · nc72

δ · βn/nc73·l

)c74·(n1/(2pi,s+Ki,s)·logn)Ki,s ·(c69)(Ls−1)·Ki,s ·
(

Kn·c68·n
βn·c76·δ/n

c77·l

)Ki,s/k
.
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By choosing k large enough we get for δ > 1/n2

N1

(
δ,

{
1

βn
· f : f ∈ Fn

}
, xn1

)
≤ c79 ·

∏
i,s

nc80·n
Ki,s

2pi,s+Ki,s
+ε/2

.

This together with Theorem 11.4 in Györ� et al. (2002) leads for u ≥ 1/n and n large
enough to

P{T2,n > u} ≤ 14 · c79 ·
∏
i,s

nc80·n
Ki,s

2pi,s+Ki,s
+ε/2

· exp

(
− n

5136 · β2
n

· u
)
.

For εn ≥ 1/n we can conclude

E{T2,n} ≤ εn +

∫ ∞
εn

P{T2,n > u} du

≤ εn + 14 · c79 ·
∏
i,s

nc80·n
Ki,s

2pi,s+Ki,s
+ε/2

· exp

(
− n

5136 · β2
n

· εn
)
· 5136 · β2

n

n
.

Setting

εn =
5136 · β2

n

n
· log

∏
i,s

nc80·n
Ki,s

2pi,s+Ki,s
+ε/2

= c81 ·
∑
i,s

n
Ki,s

2pi,s+Ki,s
+ε/2 · (log n)3

n

yields the assertion of the third step of the proof.
In the fourth step of the proof we show

E{T4,n} ≤ c82 ·max
i,s

n
−

2pi,s
2pi,s+Ki,s .

Using
|Tβnz − y| ≤ |z − y| for |y| ≤ βn

we get

T4,n/2

=
[ 1

n

n∑
i=1

|mn(Xi)− Yi|2 −
1

n

n∑
i=1

|m(Xi)− Yi|2
]
· 1An

≤
[ 1

n

n∑
i=1

|fw(t̂)(Xi)− Yi|2 −
1

n

n∑
i=1

|m(Xi)− Yi|2
]
· 1An

≤
[
Fn(w(t̂))− 1

n

n∑
i=1

|m(Xi)− Yi|2
]
· 1An .
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Let T ∈ N be a random number such that on An the pruning step number T leads to
the choice of the right subsets in An,3. By de�nition of t̂ we have

Fn(w(t̂)) = min
t=0,...,tn−1

Fn(w(t)) ≤ min
t=T ·sn,...,T ·sn+sn−1

Fn(w(t)),

hence

T4,n/2 ≤
[

min
t=T ·sn,...,T ·sn+sn−1

Fn(w(t))− 1

n

n∑
i=1

|m(Xi)− Yi|2
]
· 1An .

Next we apply Lemma 1 with

F (u, v) = Fn((w
(L)
1,k )k, ((w

(s)
i,j )i,j,s:s<L)),

u∗ = (((w∗)
(L)
k,1 )k and v∗ = (((w∗)

(s)
i,j )i,j,s:s<L).

By Lemma 4 we know

‖∇(wk)k=1,...,Kn
Fn(w)‖ ≤ 2 · (βn +

√
Kn ·

√
αn) ·

√
Kn ≤ Kn,

hence assumption (21) of Lemma 1 is satis�ed for

Cn = Kn.

In order to determine the value of Dn in assumption (22) of Lemma 1 we apply Lemma
2 and Lemma 3. Because of the pruning steps during the computation of our estimates
the occuring weights satis�es

K
(s)
n∑

k=1

|w(Ls)
k,1,1| ≤ max

i
K̄(i,s)
n · max

k=1,...,K
(s)
n

|w(Ls)
k,1,1| ≤ n

2,

and by Lemma 3 we can conclude

|f (L)
v1,k

(x)− f (L)
v2,k

(x)| ≤ c16 ·
√

max
i,s:s=0,...,l−1

K̄
(i,s)
n · nl · cL−2l−1

84 · n2l · ‖v1 − v2‖.

Application of Lemma 2 yields that assumption (22) of Lemma 1 is satis�ed for

Dn = 2 · (βn +K(l,1)
n · n) · c16 · cL−2l−1

84 · n3l+1/2 ·
√
n5 ·K(l,1)

n ≤ c85 · n3l+6,

where we have used
Kn∑
k=1

|(w∗)(L)
1,k | ≤ K

(l,1)
n · n.

Furthermore, if we set in ((w∗)
(l)
k,i,j)k,i,j,l:l<L all those components equal to the val-

ues in ((w(0))
(l)
k,i,j)k,i,j,l:l<L, where (w∗)

(Ls)
k,1,1 = 0, which does not change the value of

Fn(((w∗)
(L)
k,1 )k, ((w

∗)
(s)
i,j )i,j,s:s<L)), we have

‖((w∗)(s)
i,j )i,j,s:s<L − ((w(0))

(s)
i,j )i,j,l:s<L‖ ≤ c86 · n · εn ≤ δn.
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Application of Lemma 1 yields

T4,n/2 ≤
[
Fn(((w∗)

(L)
k,1 )k, ((w

∗)
(s)
i,j )i,j,s:s<L)) + c87 · n3·l+6 ·

√
αn · δn

+
αn
2

+
C2
n

2 · sn
− 1

n

n∑
i=1

|m(Xi)− Yi|2
]
· 1An

≤
[
Fn(((w∗)

(L)
k,1 )k, (((w

∗)
(l)
k,i,j)k,i,j,l:l<L))− 1

n

n∑
i=1

|m(Xi)− Yi|2
]
· 1An +

c88

n
.

This implies

E{T4,n/2}

≤ E

{[ 1

n

n∑
i=1

|Yi − fw∗(Xi)|2 −
1

n

n∑
i=1

|m(Xi)− Yi|2
]
· 1An

}
+
c88

n

≤ E

{
1

n

n∑
i=1

|Yi − fw∗(Xi)|2 −
1

n

n∑
i=1

|m(Xi)− Yi|2
}

+

√√√√√E


∣∣∣∣∣ 1n

n∑
i=1

|m(Xi)− Yi|2
∣∣∣∣∣
2
 ·√P(Acn) +

c88

n

≤
∫
|fw∗(x)−m(x)|2PX(dx) +

c89

n

≤ c90 ·max
i,s

n
−

2pi,s
2pi,s+Ki,s .
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