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Abstract

In this paper a new multivariate regression estimate is introduced. It is based on

ideas derived in the context of wavelet estimates and is constructed by hard thresholding

of estimates of coefficients of a series expansion of the regression function. Multivariate

functions constructed analogously to the classical Haar wavelets are used for the series

expansion. These functions are orthogonal in L2(µn), where µn denotes the empirical

design measure. The construction can be considered as designing adapted Haar wavelets.

Bounds on the expected L2 error of the estimate are presented, which imply that the

estimate is able to adapt to local changes in the smoothness of the regression function and

to the distribution of the design. This is also illustrated by simulations.
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1 Introduction

1.1 Nonparametric regression. In regression analysis an IRd×IR-valued random vector

(X,Y ) with EY 2 < ∞ is considered and the dependency of Y on the value of X is of

interest. More precisely, the goal is to find a function f : IRd → IR such that f(X) is a

“good approximation” of Y . In the sequel we assume that the main aim of the analysis is
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minimization of the mean squared prediction error or L2 risk

E{|f(X) − Y |2}. (1)

In this case the optimal function is the so-called regression function m : IRd → IR, m(x) =

E{Y |X = x}. Indeed, let f : IRd → IR be an arbitrary (measurable) function and denote

the distribution of X by µ. Then

E{|f(X) − Y |2} = E{((f(X) − m(X)) + (m(X) − Y ))2}

= E{|f(X) − m(X)|2} + E{|m(X) − Y |2}

= E{|m(X) − Y |2} +

∫

|f(x) − m(x)|2µ(dx). (2)

Here the second equation follows from

E{(f(X) − m(X)) · (m(X) − Y )} = E{(f(X) − m(X)) ·E{(m(X) − Y )|X}} = 0.

Since the integral on the right-hand side of (2) is always nonnegative, (2) implies that the

regression function is the optimal predictor in view of minimization of the L2 risk:

E{|m(X) − Y |2} = min
f :IRd→IR

E{|f(X) − Y |2}. (3)

In addition, any function f is a good predictor in the sense that its L2 risk is close to the

optimal value, if and only if the so-called L2 error

∫

|f(x) − m(x)|2µ(dx) (4)

is small. This motivates to measure the error caused by using a function f instead of the

regression function by the L2 error (4).

In applications, usually the distribution of (X,Y ) (and hence also the regression func-

tion) is unknown. But often it is possible to observe a sample of the underlying distribu-

tion. This leads to the regression estimation problem. Here (X,Y ), (X1, Y1), . . . , (Xn, Yn)

are independent and identically distributed random vectors. The set of data

Dn = {(X1, Y1), . . . , (Xn, Yn)}

is given, and the goal is to construct an estimate

mn(·) = mn(·,Dn) : IRd → IR
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of the regression function such that the L2 error
∫

|mn(x) − m(x)|2µ(dx)

is small. For a detailed introduction to nonparametric regression we refer the reader to

the monography Györfi et al. (2002).

1.2 Orthonormal series estimates. Orthonormal series regression estimates have been

originally introduced in the context of regression estimation with fixed, equidistant design

(see Donoho and Johnston (1994), Donoho et al. (1995), and the literature cited therein).

In the sequel we motivate their use for random design regression problems.

Let L2(µ) be the set of all square integrable functions f : [0, 1]d → IR with respect to

µ. Let {fj}j∈IN be a complete orthonormal system in L2(µ), i.e., assume that

< fj, fk >L2(µ):=

∫

fj(x)fk(x)µ(dx) =







1 if j = k,

0 if j 6= k,

and that each function in L2(µ) can be approximated arbitrarily exactly (with respect

to ‖ · ‖L2(µ)) by linear combinations of the {fj}j∈IN. Let mn be an arbitrary estimate of

the regression function m and assume m,mn ∈ L2(µ). Then analogously to the classical

Fourier series expansion it can be shown that

m =

∞
∑

j=1

aj · fj where aj =< m, fj >L2(µ)=

∫

m(x) · fj(x)µ(dx)

and

mn =

∞
∑

j=1

b̂j · fj where b̂j =< mn, fj >L2(µ)=

∫

mn(x) · fj(x)µ(dx).

Furthermore, the L2 error of the estimate is equal to the sum of the squared distances

between the coefficients of the two series expansions:

∫

|mn(x) − m(x)|2µ(dx) =

∫





∞
∑

j=1

(b̂j − aj) · fj(x)





2

µ(dx) =
∞
∑

j=1

(b̂j − aj)
2. (5)

This shows that it is important to construct regression estimates in such a way that the

estimated coefficients b̂j of the above series expansion of m are close to the actual coeffi-

cients aj. And it motivates to consider so-called orthonormal series regression estimates

defined by

mn(·) =
∑

j∈J

âj · fj, (6)
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where {fj}j is an orthonormal system in L2(µ) (which we assume temporarily to be given),

âj = âj(Dn) are estimates of the coefficients aj =< m, fj >L2(µ) based on the data Dn

and J is a (usually finite) subset of IN.

A reasonable estimate of aj is

âj =
1

n

n
∑

i=1

Yi · fj(Xi), (7)

which is an unbiased estimate of aj:

E{âj} = E{E{âj|X1, . . . ,Xn}} = E

{

1

n

n
∑

i=1

m(Xi) · fj(Xi)

}

=

∫

m(x) · fj(x)µ(dx) = aj. (8)

To motivate a good choice for J we consider for fixed J ⊆ IN the expected L2 error of

the estimate mn defined by (6) and (7). Using (5) and (8) we get

E

∫

|mn(x) − m(x)|2µ(dx) = E







∑

j∈J

(âj − aj)
2 +

∑

j /∈J

a2
j







=
∑

j∈J

Var{âj} +
∑

j /∈J

a2
j .

If we assume for simplicity that Var{âj} = 1
nVar{Y fj(X)} does not depend on j, then

E

∫

|mn(x) − m(x)|2µ(dx) = const · |J | +
∑

j /∈J

a2
j .

So, including an index j in the set J increases the expected L2 error by the constant

const, while not including it increases it by a2
j . As a consequence, the expected L2 error

is minimal if we choose

J = Joptimal =
{

j ∈ IN : |aj |2 > const
}

.

Clearly, this choice is not possible in an application, because it depends on the unknown

coefficients aj . But what can be done in an application is to approximate it by

Ĵ =
{

j ∈ IN : |âj |2 > const
}

.

The heuristic behind this choice is that even if not all of the estimates âj are accurate,

they will hopefully at least have the same order of magnitude as the aj’s.
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This leads to so-called hard-thresholding orthogonal series estimates

mn(x) =

K
∑

j=1

ηδ(âj) · fj(x),

where

ηδ(âj) =







âj if |âj | > δ,

0 if |âj | ≤ δ,
(9)

δ ∈ IR+ is a parameter of the estimate (so-called threshold), and K is usually chosen to

be approximately equal to n.

Until now we have worked under the assumption that the orthonormal system {fj}j in

L2(µ) is given. Clearly, this is not a reasonable assumption in most applications, because

there the distribution of (X,Y ), and hence also the distribution of X, is unknown. And

even if the distribution of X is known, it is not obvious what a proper choice for the

orthonormal system is.

There is one special situation, where it is easy to choose an orthonormal system in

L2(µ): If X is uniformly distributed on [0, 1]d, then one needs an orthonormal system in

L2(λ), where λ is the Lebesgue measure on [0, 1]d, and as was shown, e.g., in Donoho and

Johnstone (1994) and Donoho et al. (1995), in this case the use of wavelet systems leads

to estimates which have many nice properties.

Motivated by the success of these estimates for this special case, it was suggested to

use also for more general design measures orthonormal systems in L2(λ) and not in L2(µ).

But there are two problems in the above considerations if {fj}j is an orthonormal system

in L2(λ) and X is not uniformly distributed on [0, 1]d. Firstly, in this case the estimate (7)

is no longer reasonable (in particular it is no longer unbiased). But as was shown, e.g., in

Neuman and Spokoiny (1995), Hall and Turlach (1997), and Kovac and Silverman (2000),

even then reasonable estimates of aj =
∫

m(x)fj(x)dx can be constructed. But secondly,

and more important, in addition relation (5) does no longer hold. It is this relation,

which ensures that it makes sense to estimate the coefficients of a series expansion of

the regression function. Obviously, to motivate this it is not necessary that the L2 error

is exactly equal to the sum of the squared differences between the coefficients and its

estimates. It suffices, that the L2 error is bounded from above and from below by some

constant times the latter term. This in turn is satisfied if the distribution of X has a
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density with respect to the Lebesgue measure, which is bounded away from zero and

infinity on [0, 1]d. So under the last assumption the above considerations can be (and have

already been) modified (see, e.g., Neuman and Spokoiny (1995) and Hall and Turlach

(1997)). But in many multivariate applications some of the components of X are discrete

so that X cannot have a density with respect to the Lebesgue measure. Therefore we want

in the sequel to avoid to assume that a density of X exists.

1.3 Description of the main results. In this paper we use a different approach to

apply the above ideas to regression estimation problems with general design measures.

The basic idea is to estimate the distribution of X by the empirical distribution

µn(A) =
1

n

n
∑

i=1

I{Xi∈A} (A ⊆ IRd),

and to use an orthonormal system in L2(µn). This orthonormal system is constructed by

using ideas from the classical Haar wavelets.

Let f1, . . . , fK : IRd → IR be the piecewise constant orthonormal system in L2(µn)

defined in Section 2 below. Due to the orthonormality of the functions the best approxi-

mation (with respect to ‖ · ‖L2(µn)) of the regression function by a linear combination of

these functions is given by
K
∑

j=1

< m, fj >L2(µn) ·fj. (10)

We estimate

< m, fj >L2(µn)=
1

n

n
∑

i=1

m(Xi)f(Xi)

by

âj =
1

n

n
∑

i=1

Yif(Xi), (11)

and by hard-thresholding of the estimated coefficients we define the estimate

m̃n =

K
∑

j=1

ηδ(âj) · fj. (12)

Here the threshold δ > 0 is a parameter of the estimate and ηδ is the hard-thresholding

defined in (9).

The main theoretical result of this paper is Theorem 1 below, in which we derive an

upper bound on the expected L2 error of a truncated version mn of the estimate m̃n. In
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this bound the estimate mn is compared with an ideal piecewise constant least squares

estimate, where the underlying partition is chosen in an optimal way for the distribution

of (X,Y ). Such an optimal choice of the partition is never computable in an application,

but as is shown in Theorem 1 below the expected L2 error of the estimate mn is bounded

from above by some logarithmic factor times a term which is approximately equal to the

L2 error of this ideal estimate. Since for this ideal estimate a partition can be chosen,

which is especially fine in areas, where the regression function changes a lot or where the

integration in the L2 error gives large weight to the pointwise error, this theoretical result

indicates that the estimate mn is able to adapt to local changes in the smoothness of the

regression function and to the distribution of the design. By applying the estimate to

simulated data we show that this is (at least in the examples which we consider) indeed

true.

In addition, we conclude from Theorem 1 that the estimate achieves (up to some

logarithmic factor) the optimal rate of convergence for Lipschitz continuous regression

function. Here the estimate is able to automatically adapt to the Lipschitz constant. For

univariate X we can improve this result provided that X has a bounded density: In this

case the estimate achives for regression functions, which have finitely many jump points

and are otherwise Lipschitz continuous, again up to some logarithmic factor the optimal

rate of convergence for Lipschitz continuous regression functions. Here the estimate is able

to adapt to the Lipschitz constant and to the location of the jump points.

1.4 Discussion of related results. As described above there have been several attemps

to generalize wavelet estimates from regression estimation with fixed equidistant design

to random design regression (which is difficult because the random design will be in ap-

plications usually neither equidistant nor univariate). In most of them the orthonormal

system is chosen as for fixed equidistant design and the way of estimating the coefficients

has been adjusted to the design (see, e.g., Antoniadis, Gijbels and Grégoire (1997), An-

toniadis, Grégoire and Vial (1997), Hall and Turlach (1997), Kovac and Silverman (2000)

and Neuman and Spokoiny (1995)).

In this article we use the idea of adapting the wavelets to the random design. This idea

was already used in Kohler (2000, 2003) and in Delouille, Franke and von Sachs (2001) in

case of univariate X. In Kohler (2000, 2003) the adaptation of the wavelets to the random
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design was done by constructing orthonormal systems consisting of piecewise polynomials

of some fixed degree M . For M = 0 the resulting orthonormal system can be considered

as design adapted Haar wavelets and is the same as the one used in Delouille, Franke and

von Sachs (2001). In Kohler (2000, 2003) and in Delouille, Franke and von Sachs (2001)

the position of the jump points of these Haar wavelets are chosen as quantiles of the

empirical design measure. Unfortunately, it doesn‘t seem possible to generalize this idea

to multivariate X. The reason is that for multivariate X a partition into tensor products

of intervals does in general not satisfy that each set in it contains the same number of

data points. Therefore we use in this article a different idea, namely to choose the jump

points as in case of the classical Haar wavelets but to adapt the values of the functions

to the empirical design measure. As in the univariate case we adapt our orthonormal

system to the design points, however in contrast to the univariate case our wavelets are

piecewise constant with respect to a cubic (and data-independent) partition. This allows

us to define multivariate orthonormal systems and hence also multivariate estimates, while

the approach in Kohler (2000, 2003) and in Delouille, Franke and von Sachs (2001) leads

only to univariate estimates. In addition, in contrast to the articles cited just before, the

approach used here allows us also to adapt the basis to the regression function, e.g., to

choose in areas, where the regression function chances a lot, a “finer” basis than elsewhere

(cf. Section 4). The multivariate Haar wavelets which we use can be considered as special

cases of the unbalanced Haar wavelets introduced in Girardi and Sweldens (1997).

Our main result (Theorem 1 below) is similar to Theorem 2 in Kohler (2003). However,

the choice of the partition of the ideal least squares estimate, which is compared to the

orthogonal series estimate, is for univariate X in Theorem 1 below much more restricted

than in Theorem 2 in Kohler (2003). As a consequence, the derived rate of convergence

result for piecewise Lipschitz continuous regression function requires in this article the

existence of a bounded density of the design measure with respect to the Lebesgue-Borel

measure, while this is not necessary for the corresponding result in Kohler (2003). On the

other hand, this time the result is also valid for multivariate X.

Comparing our results with the theoretical results in Delouille, Franke and von Sachs

(2001) we see again that the estimate in Delouille, Franke and von Sachs (2001) works

only for univariate X and that, in addition, the derived rate of convergence there, which is
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similar to the result in Corollary 1 below, requires the existence of a density (with respect

to the Lebesgue-Borel measure) of the design measure, which is not required in Corollary

1.

The proof of our main result is based on the fact that the estimate mn minimizes a

penalized empirical risk:

1

n

n
∑

i=1

|m̃n(Xi) − Yi|2 + |{j : |âj | > δ}| · δ2

= min
J⊆{1,...,K}



 min
aj :j∈J

1

n

n
∑

i=1

|
∑

j∈J

ajfj(Xi) − Yi|2 + |J | · δ2



 . (13)

This property of the estimates follows from Section 4 in Kohler (2003). In the theory

of least squares estimates these kind of estimates are quite well understood (for results

concerning estimates which minimize such a penalized empirical risk, see, e.g., Barron,

Birgé and Massart (1999), Kohler (1998), Krzyżak and Linder (1998), van de Geer (2001),

and the literature cited therein). In the proof we will use a result from van de Geer (2001),

in which orthogonal series estimates are analyzed in a fixed design regression setting. This

result will more or less directly imply a fixed design regression version of our main result.

The above connection between orthogonal series estimates and (penalized) least squares

estimates was already used in Donoho (1997). There piecewise constant least squares

estimates were analyzed by using results derived for orthogonal series estimates. As in

Kohler (2000, 2003) we use this connection in this article in the opposite direction to

analyze orthogonal series estimates by the aid of results for least squares estimates.

1.5 Notation. IN, IR and IR+ are the sets of natural, real and nonnegative real numbers,

resp. For x ∈ IR we denote the smallest integer greater than or equal to x by ⌈x⌉. I{x∈A}

denotes the indicator function, |A| the cardinality of a set A. The natural logarithm is

denoted by log(·), the logarithm with base two by log2(·), and the distribution of X is

denoted by µ. The Euclidean norm of x ∈ IRd is denoted by ‖x‖, the components of x are

denoted by x(1),. . . , x(d).

1.6 Outline. An orthornormal system in L2(µn) consisting of piecewise constant functions

is defined in Section 2. The main theoretical results concerning rate of convergence of

the estimates are described in Section 3 and proven in Section 5. Section 4 describes

applications of the estimate to simulated data.
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2 A multivariate orthormal system in L2(µn)

In this section we construct an orthonormal system in L2(µn) consisting of piecewise

constant functions, i.e., we construct piecewise constant functions f1, . . . , fK with the

property

< fj, fk >L2(µn):=
1

n

n
∑

i=1

fj(Xi) · fk(Xi) = 0 (14)

for 1 ≤ j < k ≤ K and

‖fj‖2
L2(µn) :=< fj, fj >L2(µn)=

1

n

n
∑

i=1

fj(Xi)
2 = 1 (15)

for 1 ≤ j ≤ K.

Clearly, the main difficulty here is to construct an orthogonal system in L2(µn), i.e.,

to construct functions f1, . . . , fK with satisfy (14). From such functions an orthonormal

system can be constructed by skipping all those functions with ‖fj‖L2(µn) = 0 and by renor-

malizing the rest of them (i.e., by replacing each remaining function f by f/‖f‖L2(µn)).

Here functions with ‖fj‖L2(µn) = 0 vanish on all x-values of the data points and hence do

not contribute anything to the minimization of the empirical L2 risk (defined as the first

term on the left-hand side of (13)) of a linear combination of the orthogonal functions.

The construction of the orthogonal system is done analogously to the classical Haar-

wavelets. This leads (up to some multiplicative constants) to the following orthogonal

system in L2(µn):

f1(x) =







1 , x ∈ [0, 1],

0 , else,

f2(x) =



















∑n
i=1 I{Xi∈[1/2,1]} , x ∈ [0, 1/2),

−∑n
i=1 I{Xi∈[0,1/2)} , x ∈ [1/2, 1],

0 , else,

f3(x) =



















∑n
i=1 I{Xi∈[1/4,1/2)} , x ∈ [0, 1/4),

−∑n
i=1 I{Xi∈[0,1/4)} , x ∈ [1/4, 1/2),

0 , else,

f4(x) =



















∑n
i=1 I{Xi∈[3/4,1]} , x ∈ [1/2, 3/4),

−∑n
i=1 I{Xi∈[1/2,3/4)} , x ∈ [3/4, 1],

0 , else,
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and so on. Except f1, all these functions are of the form

f(x) =



















∑n
i=1 I{Xi∈B} , x ∈ A,

−∑n
i=1 I{Xi∈A} , x ∈ B,

0 , else,

for some disjoint intervals A and B, and satisfy therefore

1

n

n
∑

i=1

f(Xi) =
1

n

n
∑

i=1

I{Xi∈A} · f(Xi) +
1

n

n
∑

i=1

I{Xi∈B}f(Xi) + 0

=
1

n

n
∑

i=1

I{Xi∈A} ·
n
∑

i=1

I{Xi∈B} +
1

n

n
∑

i=1

I{Xi∈B} · (−1) ·
n
∑

i=1

I{Xi∈A}

= 0.

As for the classical Haar wavelets, this together with the fact that for j < k fj is con-

stant (maybe even constant zero) on the support of fk, implies that f1, f2, . . . are indeed

orthogonal in L2(µn).

In the sequel we use the same approach to construct a multivariate orthonormal system

in L2(µn). We start again with the indicator function of the cube [0, 1]d:

f1(x) =







1 , x ∈ [0, 1]d,

0 , else,

But instead of a subdivision of [0, 1] into two equidistant subintervals, we subdivide now

[0, 1]d into the 2d equivolume cubes B1 × B2 × . . . × Bd, where Bi is either [0, 1/2) or

[1/2, 1]. As explained below this subdivision will give us additional 2d − 1 functions for

the orthogonal system. After that we apply the same procedure recursively to each of the

2d cubes constructed above, to get the next 2d · (2d − 1) functions for the orthonormal

system, and so on.

In the sequel we explain how one gets the 2d−1 additional functions for the orthogonal

system corresponding to a subdivision of a set A1 × . . .×Ad (in the first step this set will

be equal to [0, 1]d). We need the following notation: For an interval A = [a, b] we define

the two subintervals which one gets via equidistant subdivision of this interval by

AL = [a, (a + b)/2) and AR = [(a + b)/2, b].

Analogously we define for A = [a, b)

AL = [a, (a + b)/2) and AR = [(a + b)/2, b).
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The functions which we construct are piecewise constant with respect to the partition

{

AM1

1 × . . . × AMd

d : Mi ∈ {L,R}
}

of A1 × . . . × Ad. Each function corresponds to one of the 2d − 1 sets

A1 × . . . × Ad, AL
1 × A2 × . . . × Ad, AR

1 × A2 × . . . × Ad,

AL
1 × AL

2 × A3 × . . . × Ad, AL
1 × AR

2 × A3 × . . . × Ad,

AR
1 × AL

2 × A3 × . . . × Ad, AR
1 × AR

2 × A3 × . . . × Ad,

AL
1 × AL

2 × AL
3 × A4 × . . . × Ad, . . . , AR

1 × . . . × AR
d−1 × Ad.

Let AM1

1 × . . . × A
Mj−1

j−1 × Aj × . . . × Ad with j ∈ {1, . . . , d} and M1, . . . ,Mj−1 ∈ {L,R}
be one of these sets. We subdivide this set in the j-th component in two sets A and B,

where

A = AM1

1 × . . . × A
Mj−1

j−1 × AL
j × . . . × Ad (16)

and

B = AM1

1 × . . . × A
Mj−1

j−1 × AR
j × . . . × Ad. (17)

Then the corresponding function is

f(x) =



















∑n
i=1 I{Xi∈B} , x ∈ A,

−∑n
i=1 I{Xi∈A} , x ∈ B,

0 , else.

(18)

By construction, it satisfies
1

n

n
∑

i=1

f(Xi) = 0. (19)

Furthermore, if we choose two of those functions then one of them is constant on the

support of the other, which together with (19) implies that they are orthogonal in L2(µn).

By the same argument we see that they are orthogonal to any function which is constant

on A1 × . . . × Ad.

Let f1, . . . , f2d−1 be those functions (where fj = 0 is possible). By construction, the

linear span of

I{x∈A1×...×Ad}, f1, . . . , f2d−1 (20)
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is a subset of the linear span of

{

I{x∈A
M1
1

×...×A
Md
d

} : M1, . . . ,Md ∈ {L,R}
}

. (21)

Since the linear spans of I{x∈A} and I{x∈B}, and of I{x∈A∪B} and f , where A, B and f

are defined in (16), (17) and (18), are equal (here we consider the functions as elements of

L2(µn) and identify two functions which have the same value at all x-components of the

data), it follows furthermore that the two sets of functions are equal. So the linear span

of the functions in (20) consists of all functions which are piecewise constant with respect

to a partition constructed by subdivision of A1 × . . . × Ad into 2d equivolume cubes and

which are zero outside from A1 × . . . × Ad.

To summarize, for arbitrary dimension d we construct the orthonormal system as

follows: We start with I{x∈[0,1]d}. Then we construct as described above 2d − 1 additional

functions corresponding to the subdivision of [0, 1]d into 2d equivolume cubes. For each of

these cubes we construct additional 2d−1 functions by subdividing it again. We recursively

apply this procedure k = ⌈log2(n)/d⌉ times, which gives as all together

1 + (2d − 1) + 2d(2d − 1) + . . . + (2d)k−1(2d − 1) = (2d)k ≈ n

orthogonal functions. Choosing k larger than above would lead to much more functions

in the orthogonal system, which would imply that it is no longer possible to compute the

orthonormal system in time O(n · log(n)).

To get an orthonormal system, we skip all those functions which vanish on all x-

components of the data points and renormalize the rest of the functions such that each

function has L2(µn)-norm one. This gives us an orthonormal system {fj}j=1,...,K (with

K ≤ n), which we will use for our orthogonal series estimate.

This orthogonal system can be used to represent special piecewise constant functions

in an efficient way. These functions are piecewise constant with respect to partitions

π ∈ ∪n
k=1Πk, where Πk is recursively defined as follows: Π1 = {{[0, 1]d}} and Πk+1 is the

set of all partitions which one obtains by choosing a partion of Πk and by subdividing one

of the sets of this partition into 2d equivolume subsets. More precisely, Πk+1 consists of

all partitions

{π \ A1 × . . . × Ad} ∪
{

AM1

1 × . . . × AMd

d : Mi ∈ {L,R}
}

13



where π ∈ Πk, A1 × . . . × Ad ∈ π and Ai are intervals of length greater than or equal to

2−⌈log2(n)/d⌉+1.

For a partition π let Gc ◦π be the set of all piecewise constant functions with respect to

that partition. As our next lemma shows, with the orthonormal system {fj}j=1,...,K one

can represent in an efficient way functions from Gc ◦π for arbitrary partitions π ∈ ∪n
k=1Πk.

Lemma 1 Let {fj}j=1,...,K be the orthonormal system (in L2(µn)) constructed above. Let

k ∈ {1, . . . , n} and π ∈ Πk be arbitrary. Then there exist indices j1, . . . , jl ∈ {1, . . . ,K}
such that

span{fj1, . . . , fjl
} = Gc ◦ π in L2(µn) and l ≤ |π|.

The proof of Lemma 1 will be given in Section 5.

3 Rate of convergence

In this section we present bounds on the expected L2 error of the estimate. Throughout

this section we will impose the following three regularity assumptions on the underlying

distribution:

(A1) X ∈ [0, 1]d a.s.,

(A2) Y − m(X) is uniformly Sub-Gaussian, i.e.,

R2E
{

exp((Y − m(X))2/R2) − 1|X
}

≤ σ2
0 a.s.

for some R,σ0 > 0,

(A3) There exists a constant L ∈ IR+ such that |m(x)| ≤ L for x ∈ [0, 1]d.

(A1) requires that X takes on with probability one only values from some bounded set. By

translating and rescaling of X we can assume w.l.o.g. that this bounded set is contained

in [0, 1]d.

In (A2) we impose a condition on the exponential moment of Y −m(X). This condition

is, e.g., satisfied if Y − m(X) is bounded in absolute value by some constant β > 0 (take

R = β and σ2
0 = (e− 1)β2), or if Y −m(X) is independent of X and normally distributed

with mean zero and variance σ2 (take R = 2σ and σ2
0 = 3σ2).

14



In (A3) we assume that the regression function is bounded in absolute value by some

known constant L > 0. If this is indeed true, then truncation of any estimate at ±L leads

to an estimate with smaller L2 error. We will denote this truncated estimate by TLm̃n,

i.e., we will set

(TLm̃n)(x) =



















L , m̃n(x) > L,

m̃n(x) ,−L ≤ m̃n(x) ≤ L,

−L , else.

It is known that many least squares estimates need some kind of truncation to be consistent

in random design regression (cf., Problem 10.3 in Györfi et al. (2002)). We do not know

whether this is also the case for the estimate considered in this paper.

In the next theorem we compare the L2 error of our estimate with the L2 error of an

arbitary estimate which fits a piecewise constant function to the data, where the underlying

partition is chosen from the set ∪n
k=1Πk of partitions defined at the end of Section 2.

Let mn be an arbitrary estimate constructed by fitting via least squares a piecewise

constant function, which is defined with respect to a given partition π ∈ ∪n
k=1Πk, to the

data. Clearly, such an estimate cannot approximate the regression function better than

the “best” piecewise constant function in Gc ◦ π, which induces an (approximation) error

of at least

inf
f∈Gc◦π

∫

|f(x) − m(x)|2µ(dx).

Furthermore, estimation of the |π| function values of the piecewise constant function in-

duces an additional error (“variance”) of order

|π|
n

.

Now assume that one has an oracle available, which produces in dependency of the un-

derlying distribution of (X,Y ) an ideal partition for the above estimate. The expected L2

error of the resulting estimate will be of order

min
k∈{1,...,n}

inf
π∈Πk

{ |π|
n

+ inf
f∈Gc◦π

∫

|f(x) − m(x)|2µ(dx)

}

.

Clearly, such an estimate will never be applicable in practice, because there we do not have

an oracle which helps us to choose the underlying partition in an optimal way. But as our

next theorem shows, a truncated version of the estimate m̃n has (up to some logarithmic

factor) this (optimal) lower bound as an upper bound for the expected L2 error.
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Theorem 1 Let L > 0 be arbitrary. Set mn(x) = TLm̃n(x), where m̃n is the estimate

defined via (11) and (12) with δ =
√

c1 log(n)/n and c1 > 0 sufficiently large. Then there

exists a constant c2 > 0 which depends only on R, σ0 and L such that

E

∫

|mn(x) − m(x)|2µ(dx)

≤ 4 min
k∈{1,...,n}

min
π∈Πk

{

c1 · log(n) · |π|
n

+ inf
f∈Gc◦π

∫

|f(x) − m(x)|2µ(dx)

}

+
c2

n

for all distributions of (X,Y ) which satisfy (A1), (A2) and (A3).

The error bound above depends on the quality of the approximation of the regression

function by piecewise constant functions. If we impose smoothness assumptions on m, we

can control the approximation error.

Definition 1 Let 0 < p ≤ 1 and C ∈ IR+. A function f : [0, 1]d → IR is called (p,C)-

smooth if

|f(x) − f(z)| ≤ C · ‖x − z‖p

for all x, z ∈ [0, 1]d.

Corollary 1 Let 0 < p ≤ 1, C ∈ IR+ and L > 0 be arbitrary. Set mn(x) = TLm̃n(x),

where m̃n is the estimate defined via (11) and (12) with δ =
√

c1 log(n)/n and c1 > 0

sufficiently large. Assume that the distribution of (X,Y ) satisfies (A1), (A2) and (A3),

and that the regression function is (p,C)-smooth. Then there exists a constant c3 > 0

which depends only on d, c1, R, σ0 and L such that for n sufficiently large

E

∫

|mn(x) − m(x)|2µ(dx) ≤ c3 · C2d/(2p+d) ·
(

log(n)

n

)2p/(2p+d)

.

Proof. Let the partitions πl be recursively defined as follows: π1 = {[0, 1]d} and πl+1 is

obtained from πl by subdividing each set in πl into 2d equivolume cubes. So πl consists of

2d(l−1) cubes of side length 2−(l−1).

Set l = 1 + ⌈log2(C
2/(2p+d)(n/ log(n))1/(2p+d))⌉. By approximating m on each set of

πl by the value of m at the center of this set, we can conclude from Theorem 1 and the

(p,C)–smooth property of m

E

∫

|mn(x) − m(x)|2µ(dx)
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≤ 4c1 · log(n) · |πl|
n

+ 4 inf
f∈Gc◦πl

∫

|f(x) − m(x)|2µ(dx) +
c2

n

≤ 4c1 · log(n) · 2d(l−1)

n
+ 4 sup

x,z∈[0,1]d,‖x−z‖≤2
√

d2−l

|m(x) − m(z)|2 +
c2

n

≤ 4c1 · log(n) · 2d(l−1)

n
+ 4 · C22−2l·p · 22p · dp +

c2

n

≤ c3 · C2d/(2p+d) ·
(

log(n)

n

)2p/(2p+d)

for n sufficiently large. �

Let d = 1 and let f : [0, 1] → IR be piecewise constant with respect to a partition

π consisting of finitely many intervals. Then we can find a function g ∈ Gc ◦ π̃ with

π̃ ∈ Πlog2(n)·(|π|+1) such that g is equal to f except on some set with small Lebesgue

measure (see proof of Corollary 2 below). If we assume that this set has also small µ

measure, then we can derive error bounds for regression functions which are piecewise

smooth according to the following definition.

Definition 2 Let 0 < p ≤ 1, C ∈ IR+ and let π be a partition of [0, 1] consisting of finitely

many intervals. A function f : [0, 1]d → IR is called piecewise (p,C)-smooth with respect

to π, if

|f(x) − f(z)| ≤ C · ‖x − z‖p (x, z ∈ A)

for all A ∈ π.

Corollary 2 Let 0 < p ≤ 1, C ∈ IR+, L > 0 and let π be a partition of [0, 1] consisting of

finitely many intervals. Set mn(x) = TLm̃n(x), where m̃n is the estimate defined via (11)

and (12) with δ =
√

c1 log(n)/n and c1 > 0 sufficiently large. Let d = 1. Assume that

the distribution of (X,Y ) satisfies (A1), (A2) and (A3), and that the regression function

is piecewise (p,C)-smooth with respect to π, and that X has a density with respect to the

Lebesgue-Borel measure which is bounded on [0, 1]. Then there exists a constant c4 > 0

which depends only on c1, R, σ0 and L such that for n sufficiently large

E

∫

|mn(x) − m(x)|2µ(dx) ≤ c4 · C2/(2p+1) ·
(

log(n)

n

)2p/(2p+1)

.

Proof. Let the partition πl be recursively defined as in the proof of Corollary 1, and set

l = 1 + ⌈log2(C
2/(2p+1)(n/ log(n))1/(2p+1))⌉. Construct a partition π̃ from π by replacing
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recursively all intervalls A ∈ πl, which contain an endpoint of an interval of π, by the two

intervals AL and AR, unless all those intervals have length less than 1/n. Let A1, . . . , AN ,

with N ≤ |π| + 1, be those intervals. Using on [0, 1] \ ∪N
j=1Aj the same approximation of

m by piecewise constant functions as in the proof of Corollary 1, we get

inf
f∈Gc◦π̃

∫

|f(x) − m(x)|2µ(dx)

≤ sup
x,z∈[0,1]\(∪N

j=1
Aj),|x−z|≤2·2−l

|m(x) − m(z)|2 + (4L)2µ
(

∪N
j=1Aj

)

≤ C22−2l·p · 2p + (4L)2(|π| + 1) · sup
x∈[0,1]

|f(x)| · 1

n
,

where f is the density of X. Application of Theorem 1 yields the desired result. �

Remark 1. It follows from Stone (1982) that for (p,C)–smooth (and thus especially for

piecewise (p,C)–smooth) regressions functions no estimate can achieve a minimax rate

better than C2d/(2p+d)n
− 2p

2p+d (see also Chapter 3 in Györfi et al. (2002)). The estimate

in Corollary 1 achieves this rate up to the logarithmic factor (log(n))
2p

2p+d , although its

definition depends not on the smoothness (measured by (p,C)) of the regression function.

Remark 2. It follows from the proof of Corollary 2 that the result is also valid, if the

number of discontinuities of the regression function increases with growing sample size at

a rate not faster than O(( n
log(n))

1

2p+1 / log(n)).

Remark 3. We want to stress that in Theorem 1 and Corollary 1 there is no assumption

on the distribution of X besides boundedness, especially it is not required that X has a

density with respect to the Lebesgue–Borel measure.

Remark 4. By using a efficient implementation for computing

n
∑

i=1

I{Xi∈A} and

n
∑

i=1

I{Xi∈A} · Yi

for all sets (16) and (17) used in the construction of the orthonormal system, the estimate

can be computed in time O(n · log(n)) for a sample of size n. Hence it is applicable also

to very large data sets.

Remark 5. The results above require that c1 > 0 is chosen sufficiently large depending

on the constants L, R and σ0 from (A2) and (A3). In any application c1 has to be chosen

such that it depends only on the given data, e.g. by splitting of the sample (cf. Section

4).
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Remark 6. In view of having better approximation properties for smoother functions it

would be nice to construct orthogonal systems in L2(µn) consisting of smooth functions.

As far as the author knows, it is an open research problem whether this is possible for

general multivariate design measures.

4 Applications to simulated data

In our applications we choose the threshold in a data-dependent way by splitting of the

sample. We split the sample of size n in a learning sample of size nl < n and a testing

sample of size nt = n− nl. We use the learning sample to define for a fixed value δ of the

threshold an estimate m̃nl,δ, and compute the empirical L2 risk of this estimate on the

testing sample. Since the testing sample is independent of the learning sample, this gives

us an unbiased estimate of the L2 risk of m̃nl,δ. Then we choose δ by minimizing this

estimate with respect to δ. Our choice of nl and nt is mostly ad hoc, but motivated by

theoretical considerations which show that splitting of the sample gives an estimate which

has an L2 error bounded by some constant times the optimal L2 error (i.e., the L2 error

of the estimate which threshold chosen in an optimal way), plus some log-factor divided

by the size of the testing sample (cf. Hamers and Kohler (2003)). This indicates that nt

might be much smaller than n provided n is large. In the sequel we use n = 4000 and

nt = 1000.

In order to compute the L2 error of our estimates, we use MC integration, i.e., we

approximate

∫

|m̃n(x) − m(x)|2µ(dx) = E{|m̃n(X) − m(X)|2|X,Dn}

by

1

N

N
∑

j=1

|m̃n(X̃j) − m(X̃j)|2,

where the random variables X̃1, X̃2, . . . are i.i.d. with distribution µ and independent of

Dn. In the sequel we use N = 2000.

In our first example we define the distribution of (X,Y ) by

Y = m(X(1),X(2)) + ǫ,
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where X is uniformly distributed on [−1, 1]2, m(x, z) = 4 − 4x2 + 4z3, and ǫ is standard

normally distributed and independent of X. We choose n = 4000, nl = 3000 and nt =

1000. In Figure 1 we plot the regression function. Figure 2 shows the estimate m̃n. By

x1
x2

y

Figure 1: Regression function in first example.

MC integration with N = 2000 we get that the L2 error of the estimate is approximately

equal to 0.307.

The underlying partition used by the estimate m̃n in Figure 2 is finer at the border

than in the center of [−1, 1]2. This shows that the estimate is able to adapt to the local

behaviour of the regression function (which changes on the border of [−1, 1]2 more than in

the center), and uses a especially fine partition in areas where the values of the regression

function change a lot.

In our second example the regression function and Y are chosen as above, but X is

with probability 0.4 uniformly distributed on [0, 1]2, and with probability 0.6 uniformly

distributed on [−1, 1]2 \ [0, 1]2, so X gives [0, 1]2 twice as much probability than, e.g.,

[−1, 0]2.

Figure 3 shows the estimate for this data, again with n = 4000, nl = 3000 and
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x1

x2

y

Figure 2: Estimate m̃n applied to data from the first example.

nt = 1000. By MC integration with N = 2000 we get that the L2 error of the estimate

is approximately equal to 0.205. Figure 3 indicates that the estimate also adapts to the

distribution of X in the sense that in areas with high µ-measure (which have especially

large weight in the L2 error) it tries to approximate the regression function especially well.

In our next two examples we choose

m(x, z) =
10

1 + 5x2 + 5z2

and X and Y as in the first two examples. Again we use sample size n = 4000, nl = 3000

and nt = 1000. Figure 4 shows the regression function, in Figure 5 we see the estimate

applied to the data with X uniformly distributed on [−1, 1]2, and in Figure 6 we see the

estimate for data with X chosen as in the second example above. Estimation of the L2

error via MC integration gives 0.250 for the estimate in Figure 5 and 0.199 for the estimate

in Figure 6.

Again we see in Figure 5, that in areas where the values of the regression function

change a lot (e.g., away from the center and from the border of [−1, 1]2) the estimate uses

a finer partition than elsewhere. In addition, we see in Figure 6, that the approximation
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x1

x2

y

Figure 3: Estimate m̃n applied to data from the second example. Here the distribution

of X gives [0, 1]2 and [−1, 1]2 \ [0, 1]2 probability 0.4 and 0.6 resp., so for the L2 error it

is important that the approximation on [0, 1]2 is better than on each of the sets [−1, 0]2,

[−1, 0] × [0, 1] and [0, 1] × [−1, 0].

is on [0, 1]2 (where the measure µ has larger values) better than in the rest of [−1, 1]2.

In order to compare the estimates proposed in this paper with other nonparametric

regression estimates we made a small simulation study analogously to the one in Beliakov

and Kohler (2005). Here we define (X,Y ) by

Y = m(X) + 0.2 · ǫ

for X uniformly distributed on [−2, 2]d with d ∈ {1, 2, 3, 4}, ǫ standard normally dis-

tributed and independent of X, and

m(x(1), . . . , x(d)) =

d
∑

j=1

(−1)j+1 · x(j) · sin((x(j))2).

We compare our estimate with neural networks and regression trees (as implemented in

R) by applying every one of these three estimates to 100 samples of size n ∈ {500, 3000}.
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x2

y

Figure 4: Regression function in the third example.

Table 1 below reports the mean and the standard deviation of Monte Carlo estimates of

the corresponding L2 errors of the estimates. Here the errors for neural networks and

regression trees have been computed in Beliakov and Kohler (2005).

sample size dimension orthogonal series neural networks regression trees

500 1 0.018 (0.004) 0.0019 (0.01) 0.05 (0.015)

500 2 0.350 (0.042) 0.096 (0.05) 0.27 (0.01)

500 3 1.396 (0.101) 0.53 (0.06) 0.88 (0.02)

500 4 1.962 (0.152) 0.86 (0.50) 1.10 (0.01)

3000 1 0.005 (0.0008) 0.0021 (0.02) 0.04 (0.01)

3000 2 0.072 (0.006) 0.084 (0.06) 0.25 (0.01)

3000 3 0.670 (0.050) 0.46 (0.05) 0.79 (0.01)

3000 4 1.757 (0.145) 0.51 (0.4) 0.95 (0.01)

Table 1. Mean (and in brackets: standard deviation) of the L2 error for the orthogonal

series regression estimates, compared to L2 error of Neural Networks and regression trees.
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x1

x2

y

Figure 5: Estimate m̃n applied to the data from the third example.

Not surprisingly, Table 1 shows that our estimate behaves pourly if the sample size

is small (i.e., for n = 500) or if the dimension is large (say, d ≥ 4). The later point is

due to the curse of dimensionality. However, for n = 3000 and d ≤ 3 it behaves for the

above distribution better than regression trees and comparable (for d = 2 even better)

than neural networks. Here we consider for d = 1 also the standard deviation of the errors,

which is for neural networks rather large.

From the above simulation one can expect that the newly proposed estimate is rea-

sonable for large sample sizes and moderate dimensions.

5 Proofs

5.1 Proof of Lemma 1

Since we are interested only in the equality of the function spaces in L2(µn), it suffices to

proof the assertion for the orthogonal system constructed in Section 2, which we denote

again by {fj}j=1,...,K . We proceed by induction on k.
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Figure 6: Estimate m̃n applied to data from the fourth example. Here the distribution

of X gives [0, 1]2 and [−1, 1]2 \ [0, 1]2 probability 0.4 and 0.6 resp., so for the L2 error it

is important that the approximation on [0, 1]2 is better than on each of the sets [−1, 0]2,

[−1, 0] × [0, 1] and [0, 1] × [−1, 0].

The assertion is trivial for k = 1, because in this case we have π = {[0, 1]d} and

Gc ◦ π = span{f1}.
Let

π = {π̃ \ A1 × . . . × Ad} ∪ {AM1

1 × . . . × AMd

d : Mi ∈ {L,R}} (22)

for some π̃ ∈ Πk and A1 × . . .×Ad ∈ π̃ where the Ai’s are intervals of length greater than

or equal to 2−⌈log2(n)/d⌉+1, and assume that the assertion holds for π̃. Then there exists

j1, . . . , jl ∈ {1, . . . ,K} such that

span{fj1, . . . , fjl
} = Gc ◦ π̃ and l ≤ |π̃|.

By (22) we can conclude

span
{

{fj1, . . . , fjl
} ∪ {I{x∈A

M1
1

×...×A
Md
d

} : Mi ∈ {L,R}}
}

= Gc ◦ π.
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It follows from the construction of the orthogonal system in Section 2 (cf. proof of

the equality of the linear spans of the functions in (20) and (21)) that there exists

k1, . . . , k2d−1 ∈ {1, . . . ,K} such that

span
{

I{x∈A1×...×Ad}, fk1
, . . . , fk

2d
−1

}

= span
{

I{x∈A
M1
1

×...×A
Md
d

} : Mi ∈ {L,R}
}

.

Now

I{x∈A1×...×Ad} ∈ Gc ◦ π̃ = span{fj1, . . . , fjl
}

implies

span{fj1, . . . , fjl
, fk1

, . . . , fk
2d

−1
} = Gc ◦ π.

Because of

l + 2d − 1 ≤ |π̃| + 2d − 1 = |π|,

the assertion follows. �

5.2 Proof of Theorem 1

Let x1, . . . , , xn ∈ IRd and set xn
1 = (x1, . . . , xn). Define the distance d2(f, g) between

f, g : IRd → IR by

d2(f, g) =

(

1

n

n
∑

i=1

|f(xi) − g(xi)|2
) 1

2

.

Let F be a set of functions f : IRd → IR. An ǫ–cover of F (w.r.t. the distance d2) is a set

of functions f1, . . . , fk : IRd → IR with the property

min
1≤j≤k

d2(f, fj) < ǫ for all f ∈ F .

Let N2(ǫ,F , xn
1 ) denote the size k of the smallest ǫ–cover of F w.r.t. the distance d2, and

set N2(ǫ,F , xn
1 ) = ∞ if there doesn’t exist any ǫ–cover of F of finite size.

In the proof of Theorem 1 we will need the following two auxiliary results.

Lemma 2 Let L ≥ 1, let m : IRd → [−L,L] and let F be a class of functions

f : IRd → [−L,L]. Let 0 < ǫ < 1 and α > 0. Assume that

√
nǫ

√
α ≥ 1152L
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and that, for all x1, . . . , xn ∈ IRd and all δ ≥ 2L2α,

√
nǫδ

768
√

2L2
≥

∫

√
δ

ǫδ

128L2

(

logN2

(

u

4L
,

{

f − m : f ∈ F ,
1

n

n
∑

i=1

|f(xi) − m(xi)|2 ≤ δ

L2

}

, xn
1

))1/2

du. (23)

Then

P

{

sup
f∈F

∣

∣E{|f(X) − m(X)|2} − 1
n

∑n
i=1 |f(Xi) − m(Xi)|2

∣

∣

α + E{|f(X) − m(X)|2} + 1
n

∑n
i=1 |f(Xi) − m(Xi)|2

> ǫ

}

≤ 15 exp

(

− nαǫ2

512 · 2304L2

)

.

Proof. See Lemma 5 in Kohler (2006). �

Lemma 3 Let F be a set of functions f : IRd → IR. Assume that F is a linear vector

space of dimension D. Then one has for arbitrary R > 0, u > 0 and x1, . . . , xn ∈ IRd:

N2

(

u,

{

f ∈ F :
1

n

n
∑

i=1

|f(xi)|2 ≤ R2

}

, xn
1

)

≤
(

4R + u

u

)D

.

Proof. See Corollary 2.6 in van de Geer (2000). �

Proof of Theorem 1. Set

‖f‖2 =

∫

|f(x)|2µ(dx),

‖f‖2
n =

1

n

n
∑

i=1

|f(Xi)|2

and

penn(

K
∑

j=1

αjfj) = c1 ·
log(n) · |{j : αj 6= 0}|

n
.

We use the error decomposition

∫

|mn(x) − m(x)|2µ(dx) = T1,n + T2,n, (24)

where

T1,n = ‖mn − m‖2 − 2 · ‖mn − m‖2
n − 2 · penn(m̃n)

and

T2,n = 2 ·
(

‖mn − m‖2
n + penn(m̃n)

)

.
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In the first part of the proof we bound ET2,n. Because of (A3) we have

|mn(x) − m(x)| = |TLm̃n(x) − m(x)| ≤ |m̃n(x) − m(x)|

for all x ∈ [0, 1]d, which implies

T2,n ≤ 2 ·
(

‖m̃n − m‖2
n + penn(m̃n)

)

.

By Lemma 3.8 in van de Geer (2001) and (13) we get for the latter term

E
{

‖m̃n − m‖2
n + penn(m̃n)|X1, . . . ,Xn

}

≤ 2 · inf
f=

PK
j=1

αjfj :αj∈IR

{

c1
log(n) · |{j : αj 6= 0}|

n
+

1

n

n
∑

i=1

|f(Xi) − m(Xi)|2
}

+
c5

n
.

Application of Lemma 1 yields that the right-hand side above is bounded by

2 min
k∈{1,...,n}

inf
π∈Πk

{

c1
log(n) · |π|

n
+ inf

f∈Gc◦π
1

n

n
∑

i=1

|f(Xi) − m(Xi)|2
}

+
c5

n
.

Summarizing the above results we get

E{T2,n}

≤ 2 ·E
{

E
{

‖m̃n − m‖2
n + penn(m̃n)|X1, . . . ,Xn

}}

≤ 4 ·E
{

min
k∈{1,...,n}

inf
π∈Πk

{

c1
log(n) · |π|

n
+ inf

f∈Gc◦π
1

n

n
∑

i=1

|f(Xi) − m(Xi)|2
}}

+
c5

n

≤ 4 · min
k∈{1,...,n}

inf
π∈Πk

{

c1
log(n) · |π|

n
+ inf

f∈Gc◦π

∫

|f(x) − m(x)|2µ(dx)

}

+
c5

n
. (25)

In the second part of the proof we bound ET1,n. By construction of the orthogonal

system in Section 2, each function fj is piecewise constant with respect to a partition

of [0, 1]d into three sets, where the first two sets are of the form (16) and (17) and fj

vanishes on the third set. Here the sets (16) and (17) do not depend on the data. In the

construction of the orthonormal system there occur at most

2 + 2 · (2d − 1) + 2 · 2d(2d − 1) + . . . + 2 · (2d)k−1(2d − 1) = 2 · (2d)k ≤ 2d+1n

different sets of this form. If we take two pairs of sets of the form (16) and (17), then they

are either disjoint, or the sets of one of the pairs are contained in one set of the other pair.

Hence for j1, . . . , jl ∈ {1, . . . ,K} arbitrary we have

span{fj1, . . . , fjl
} ⊆ F2l+1,
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where F2l+1 is the set of all functions which are piecewise constant with respect to a

partition of [0, 1]d consisting of 2l sets, which are constructed by choosing 2l sets of the

form (16) and (17) and by intersecting each of these sets with the complements of all those

of the 2l − 1 remaining sets which are contained in this set, and one additional set, on

which the functions in F2l+1 vanish. Because of

mn(x) = TL





K
∑

j=1

ηδ(âj) · fj(x)





we can conclude

mn(·) ∈ F2·|{j:ηδ(âj)6=0}|+1 and ‖mn‖∞ ≤ L.

Using this we get for t > 0 arbitrary:

P{T1,n > t}

≤ P

{ ‖mn − m‖2 − ‖mn − m‖2
n

t + 2 · penn(m̃n) + ‖mn − m‖2
>

1

2

}

≤
2dn
∑

k=1

P

{

∃f ∈ F2k+1 : ‖f‖∞ ≤ L and
‖f − m‖2 − ‖f − m‖2

n

t + 2c1 · log(n)·k
n + ‖f − m‖2

>
1

2

}

. (26)

To bound the above probabilities, we use Lemma 2. There are at most
(

2d+1n

2k

)

≤ (2d+1n)2k

possibilities to choose the 2k sets of the form (16) and (17) used in the definition of F2k+1.

Therefore

{f − m : f ∈ F2k+1, ‖f‖∞ ≤ L} ⊆ {f + α · m : α ∈ IR, f ∈ F2k+1, ‖f + α · m‖∞ ≤ 2L}

is a subset of a union of at most (2d+1n)2k linear vector spaces of dimension 2k +1. Using

this together with Lemma 3 we get for arbitrary u > c6/n and arbitrary xn
1 ⊆ (IRd)n

N2

( u

4L
, {f − m : f ∈ F2k+1, ‖f‖∞ ≤ L} , xn

1

)

≤ (2d+1n)2k ·
(

4 · (2L) + u/(4L)

u/(4L)

)2k+1

≤ (c7 · n)4k+1.

Hence for δ ≥ c8/n (23) follows from
√

nδ/2

768
√

2L2
≥

√
δ · ((4k + 1) · log(c9 · n))1/2 .
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The last inequality is in turn implied by

δ ≥ c10 ·
log(n) · k

n
.

Application of Lemma 2 with α = t + 2 · c1 · log(n)·k
n yields for c1 sufficiently large (i.e., for

2c1 ≥ c10)

P{T1,n > t} ≤
2dn
∑

k=1

15 · exp

(

− n/4

512 · 2304 · L2
·
(

t + 2c1 ·
log(n) · k

n

))

≤ c11 · exp

(

−n · t
c11

)

.

From this we get

E{T1,n} ≤
∫ ∞

0
P{T1,n > t} dt ≤ c2

11

n
. (27)

The assertion follows from (24), (25) and (27). �
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