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1 Introduction

We consider a basic imperative programming language Lp whose syntax is
given (in BNF-form) by

P ::= a | P ; P | cond(b, P, P ) | while(b, P ) | P p⊕P | P8P

where b ranges over a set BExp of boolean expressions, a ranges over a set Act
of basic actions and p is a real number with 0 < p < 1. We write cond(b, P, Q)
for the conditional usually denoted as if b then P else Q fi and while(b, P )
for the while loop usually denoted as while b do P od The program P8Q
nondeterministically executes either P or Q. The program P p⊕Q executes P
with probability p and Q with probability 1−p.

A variant of this language has been considered by A. McIver and C. Mor-
gan in [MMa,MMb,MM] together with a state transformer and a predicate
transformer semantics associating with every program P a state transformer
[[P ]] : S → PUV(S) and a predicate transformer wp(P ) : IS → IS, respectively,
where I is the unit interval [0, 1], S is a set of states and PU is a kind of
powerdomain suitable for total correctness over the space V(S) of subprob-
ability distributions over S. Moreover, these two semantics are related by a
function Wp :

[
S → PUV(S)

]
→

[
IS → IS

]
such that wp(P ) = Wp

(
[[P ]]

)
for

all programs P .

In their work, McIver and Morgan considered mainly finite, occasionally count-
ably infinite, sets S of states and the result sketched in the previous paragraph
cannot be found, stated and proved completely in one single paper but is
scattered over various of their publications. Besides treating the problem over
arbitrary infinite sets of states, we consider as the main achievement of this
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paper the identification of a Minkowksi type duality between PUV(S) and a
class G(S) of “good” functionals G : IS → I where Q ∈ PUV(S) is represented
by its “Minkowski functional”

ΦQ : IS → I : γ 7→ min
µ∈Q

〈µ, γ〉

and from such a functional G the set Q may be reconstructed as

ΨG = {µ ∈ V(S) | ∀γ ∈ IS. G(γ) ≤ 〈µ, γ〉}

where 〈µ, γ〉 stands for
∑

s∈S µ(s)γ(s), the integral of γ w.r.t. µ.

We show that Φ : PUV(S) → G(S) is a bijection preserving all relevant struc-
ture and exploit this fact for showing that wp(P ) = Wp([[P ]]). Thus Minkowski
duality is the mathematical principle from which the correspondence between
state and predicate transformer semantics follows for nondeterministic prob-
abilistic languages like Lp.

The Minkowski duality has been worked out in [KP] for the general framework
of dcpo-cones. As V(S) is not a cone but only a kind of a truncated cone, we
cannot apply those results directly.

We slightly deviate from McIver and Morgan’s approach in restricting values
of predicates to I instead of R+ for systematic reasons and in a different, but
equivalent, formulation of the healthiness conditions adapting their terminol-
ogy to a well-established one in mathematics.

In state transformer semantics, a crucial point is the correct definition of the
semantics of the composition of programs. McIver and Morgan are guessing
the correct formula from a good intuition. We derive this formula in a natural
way with the help of the Minkowski duality.

2 Preliminaries

We denote by R, R+, and I the reals, the nonnegative reals, and the unit
interval [0, 1], respectively, endowed with their usual topology and linear order.

For an arbitrary set S, the spaces RS, RS
+ and IS of all functions γ from S

into R, R+ and I, respectively, are endowed with the pointwise defined order

γ ≤ β ⇐⇒ γ(s) ≤ β(s) for all s ∈ S

and the topology of pointwise convergence, also called the product topology.
The sets

Ur,s = {γ | γ(s) > r} and Lt,s = {γ | γ(s) < t}
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where s ranges over S and r, t over real numbers, form a subbasis for the open
sets of the product topology. Note that IS is a compact space by Tychonoff’s
theorem. With respect to the order, we have a pointwise defined meet opera-
tion in all of our three function spaces

(γ ∧ β)(s) = min(γ(s), β(s))

Also, RS is a real vector space for pointwise defined addition and scalar mul-
tiplication and IS is a convex subset. More generally, a subconvex combination
of γ and β is an element of the form rγ + tβ with r, t ∈ I and r + t ≤ 1. If
t = 1 − r, then we have a convex combination. The space IS is closed under
subconvex and, in particular, under convex combinations. For A ⊆ IS, we
write conv(A) for its convex hull, the smallest convex set containing A, which
can be obtained from A by closing up under convex combinations.

We need two basic concepts from domain theory. (For an extensive treatment
of domain theory one may consult [GHK+].)

A bounded directed complete partially ordered set (a bdcpo, for short) is a
partially ordered set L in which every directed family (di)i, which has an
upper bound, has a least upper bound supi di. If every directed family in L
has a least upper bound, then L is called directed complete (or a dcpo, for
short). We also suppose that our dcpos always have a smallest element. An
upper set in a (b)dcpo is a subset A with the property that x ≥ a ∈ A implies
x ∈ A. Lower sets are defined dually. Upper subsets are also called saturated ;
for any subset A, its saturation is

↑A = {b | a ≤ b for some a ∈ A}

A map f from a (b)dcpo L to another (b)dcpo M is said to be Scott-continuous
if it preserves the order (i.e., a ≤ b =⇒ f(a) ≤ f(b)) and suprema of
(bounded) directed sets (i.e., f(supi di) = supi f(di) for every (bounded) di-
rected family (di)i in L). The set [L → M ] of all Scott-continuous maps from
L to M with the pointwise defined order is again a (b)dcpo with directed
suprema being defined pointwise.

R and R+ and the function spaces RS and RS
+ are examples of bdcpos, and I

and IS are dcpos. Addition (γ, β) 7→ γ+β and the meet operation (γ, β) 7→ γ∧
β is continuous as well as Scott-continuous on R and RS; scalar multiplication
(r, γ) 7→ r · γ is continuous, but Scott-continuous only if we restrict to r ≥ 0
and γ ≥ 0. It follows that subconvex combinations (r, t, γ, β) 7→ rγ + tβ
depend continuously on all of their arguments simultaneously, and that Scott
continuity is guaranteed, when γ, β ≥ 0.

Let us stress that topological notions, like closed set, continuous function al-
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ways refer to the Hausdorff topologies considered at the beginning of these
preliminaries, whilst the term Scott-continuous refers to the order theoretical
notion of preservation of directed suprema.

Notice, moreover, that dcpos form a cartesian closed category (with exponen-
tial objects [L → M ] as described above) and thus provides a model for typed
λ-calculus (see e.g. [Plo,Str]). This has the consequence that every λ-definable
function is automatically Scott-continuous. This fact will be used later on in
a crucial way for simplifying arguments. Occasionally we will informally use
the notation of λ-calculus, where λx.E(x) stands for x 7→ E(x).

3 State transformer semantics for Lp

Let S be some unspecified (countable) set of states. Basic actions are inter-
preted as (and identified with) certain functions a : S → S. We now have to
build our powerdomain.

The set V(S) of subprobability distributions on S consists of all µ : S → I with∑
s∈S µ(s) ≤ 1. We may put µ(⊥) = 1−∑

s∈S µ(s) giving rise to a probability
measure µ on S⊥ = S ∪ {⊥} with µ(A) =

∑
s∈A µ(s) for arbitrary A ⊆ S⊥.

Note that V(S) is a closed lower subset of IS, also closed under subconvex
combinations. In particular, V(S) is a compact convex ordered space.

There is a canonical inclusion

η : S⊥ → V(S)

sending ⊥ to the constant map with value 0 and s ∈ S to the Dirac measure
η(s) defined by η(s)(t) = 1 if s = t and η(s)(t) = 0 otherwise.

The upper powerdomain PUV(S) consists of all subsets Q of V(S) which are
nonempty, compact, convex and saturated and is ordered by reverse in-
clusion Q1 v Q2 iff Q1 ⊇ Q2. For a directed family (Qi)i∈I in PUV(S) its

intersection
⋂

i∈I Qi is again in PUV(S) whence
(
PUV(S),v

)
is a dcpo with⊔

i Qi =
⋂

i∈I Qi. There is a canonical inclusion

i = (µ 7→ ↑µ) : V(S) → PUV(S)

which is easily seen to be Scott-continuous. Composing the two canonical maps
we obtain a canonical map

ε = i ◦ η =
(
s 7→ ↑η(s)

)
: S → PUV(S)

The semantics we will define for Lp will associate with every program P a
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function [[P ]] : S → PUV(S). For interpreting probabilistic choice p⊕ we need
the following lemma.

Lemma 1 For Q1, Q2 ∈ PU(V(S)) and 0 < p < 1, the convex combination

Q1 p⊕Q2 = pQ1 + (1− p)Q2 = {pµ1 + (1− p)µ2 | µ1 ∈ Q1, µ2 ∈ Q2}

is again a member of PUV(S).

PROOF. 1 Being the image of the compact convex set Q1 × Q2 under the
continuous affine map (µ1, µ2) 7→ pµ1+(1−p)µ2, the set pQ1+(1−p)Q2 is also
compact and convex. In order to prove that it is saturated, let pµ1+(1−p)µ2 ≤
µ ∈ V(S) for some µ1 ∈ Q1, µ2 ∈ Q2. Let rs = µ(s)

pµ1(s)+(1−p)µ2(s)
whenever the

denominator is not 0. Clearly r(s) ≥ 1. Define µ′1(s) = rsµ1(s) and µ′2(s) =
rsµ2(s) for all s ∈ S for which rs was defined, and let µ′1(s) = µ′2(s) = µ(s)
for all other s ∈ S. Then

∑
s∈S µ′1(s) ≤

∑
s∈S µ(s) ≤ 1, whence µ′1 ∈ V(S),

and similarly µ′2 ∈ V(S). Further, µ1 ≤ µ′1 and µ2 ≤ µ′2, whence µ′1 ∈ Q1 and
µ′2 ∈ Q2, and µ = pµ′1 + (1− p)µ′2 ∈ pQ1 + (1− p)Q2.

For interpreting u we need the existence of binary infima in PUV(S) as guar-
anteed by the following lemma.

Lemma 2 For any two members Q1, Q2 of PUV(S), the convex hull

Q1 uQ2 = conv(Q1 ∪Q2)

is again compact, convex and saturated and, hence, the smallest member of
PUV(S) containing Q1 and Q2.

PROOF. The convex hull of Q1 ∪Q2 is equal to
⋃

p∈I pQ1 +(1− p)Q2. Being
the union of sets that are saturated by the previous lemma, conv(Q1 ∪ Q2)

1 Added November 23, 2008: This proof is completely wrong. The mistake occurs
where we claim that

∑
s∈S µ′1(s) ≤

∑
s∈S µ(s) ≤ 1, whence µ′1 ∈ V(S). But the

lemma is true. For proving that pQ1 + (1 − p)Q2 is saturated, it suffices to prove
this in the case where Q1 = ↑µ1 and Q2 = ↑µ2. In this case p · ↑µ1 + (1− p) · µ2 =
↑(pµ1 + (1− p)µ2).

PROOF. We first note that r ·V(S)+s·V(S) = (r+s)·V(S). Secondly we note that
↑µ1 = µ1+(1−||µ1||1)V(S), where ||µ1||1 =

∑
s µ1(s). Hence, p· ↑µ1+(1−p)· ↑µ2 =

pµ1 + p(1− ||µ1||1)V(S) + (1− p)µ2 + (1− p)(1− ||µ2||1)V(S) = pµ1 + (1− p)µ2 +(
p(1− ||µ1||1) + (1− p)(1− ||µ2||1)

)
V(S) = pµ1 + (1− p)µ2 +

(
1− (p||µ1||1 + (1−

p)||µ2||1)
)
V(S) = pµ1+(1−p)µ2+

(
1−||pµ1+(1−p)µ2||1

)
V(S) = ↑(pµ1+(1−p)µ2).
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is saturated, too. It also is compact and convex, as it is the image of the
compact set [0, 1]×Q1×Q2 under under the continuous affine map (p, µ1, µ2) 7→
pµ1 + (1− p)µ2.

In order to define the semantics of composition we have to be able to lift
a function f : S → PUV(S) to a Scott-continuous function f † : PUV(S) →
PUV(S) because then we may define [[P1; P2]] as [[P2]]

† ◦ [[P1]]. Moreover, in
order to define the semantics of recursive programs it is necessary that the
lifting operation

(−)† : [S → PUV(S)] → [PUV(S) → PUV(S)]

itself is Scott-continuous. For this purpose it is helpful to exploit the fact that
PUV(S) is isomorphic to a certain set G(S) of Scott-continuous functions from
IS to I (see Appendix A for details).

Let G(S) be the set of all Scott-continuous G : IS → I such that for all γ, β ∈ IS

and r, t ∈ I with r + t ≤ 1 it holds that

G(rγ + tβ) ≥ rG(γ) + tG(β)

G(rγ + t1) ≤ rG(γ) + t

where 1 denotes the constant function with value 1. For t = 0, these two
equations imply that G(rγ) = rG(γ) for all r ∈ I; this means that G is
superlinear and satisfies condition (*) in the terminology of Appendix A. Due
to lack of a better name we will refer to the functionals in G(S) as “good”
functionals.

By definition, G(S) is a subset of the set IIS
of all functions G : IS → I.

From our preliminaries, replacing there S by IS, we know that IIS
is a dcpo

with a Scott-continuous meet operation and subconvex combinations which
are Scott-continuous in each argument, where the order relation, directed
suprema, binary meets and subconvex combinations are defined pointwise. It
is straightforward to verify that G(S) is closed under all of these operations:

Lemma 3

(a) For every directed family (Gi)i in G(S), the (pointwise) supremum G(γ) =
supi Gi(γ) is again a member of G(S).

(b) For G1 and G2 in G(S), the (pointwise) meet G1 ∧G2 is again a member
of G(S).

(c) For G1 and G2 in G(S), the (pointwise defined) subconvex combination
rG1 + tG2 is again a member of G(S), where r, t ∈ I with r + t ≤ 1.
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Thus G(S) is a dcpo with Scott-continuous binary meets and Scott-continuous
subconvex combinations.

By Proposition 20 in the Appendix there is an order isomorphism Φ: PUV(S) →
G(S). Using the notation 〈µ, γ〉 =

∑
s µ(s)γ(s), it is given by

ΦQ(γ) = min
µ∈Q

〈µ, γ〉 for all γ ∈ IS

the inverse being the map Ψ: G(S) → PUV(S) given by

ΨG = {µ ∈ V(S) | 〈µ, γ〉 ≥ G(γ) for all γ ∈ IS}

Next we show that Φ and Ψ preserve all relevant structure.

Lemma 4

(a) Φ and Ψ are Scott-continuous.
(b) Φ and Ψ preserve binary meets, i.e. ΦQ1uQ2 = ΦQ1 ∧ ΦQ2 and ΨG1∧G2 =

ΨG1 uΨG2.
(c) Φ and Ψ preserve convex combinations, i.e. ΦQ1 p⊕ Q2 = pΦQ1 +(1−p)ΦQ2

and ΨpG1+(1−p)G2 = ΨG1 p⊕ ΨG2.

PROOF. (a) and (b) are just consequences of the order isomorphism prop-
erty. Claim (c) is shown by the following calculation

pΦQ1(γ) + (1− p)ΦQ2(γ) = p minµ1∈Q1〈µ1, γ〉+ (1− p) minµ2∈Q2〈µ2, γ〉

= minµ1∈Q1〈pµ1, γ〉+ minµ2∈Q2〈(1− p)µ2, γ〉

= minµ1∈pQ1〈µ1, γ〉+ minµ2∈(1−p)Q2〈µ2, γ〉

= minµ1∈pQ1,µ2∈(1−p)Q2(〈µ1, γ〉+ 〈µ2, γ〉)

= minµ1∈pQ1,µ2∈(1−p)Q2〈µ1 + µ2, γ〉

= minµ∈pQ1+(1−p)Q2〈µ, γ〉

= ΦpQ1+(1−p)Q2(γ)

where γ ∈ IS and p ∈ I.

As the meet operation and subconvex combinations are Scott-continuous in
G(S), the preceding lemma allows us to conclude:

Corollary 5 The operations u and p⊕ are Scott-continuous on PUV(S).
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Recall that in continuation semantics (see e.g. [BHM]) a function f : S → IIS

is lifted to the function

f# =
(
G 7→ λγ.G(λs.f(s)(γ)

)
: [IS → I] → [IS → I]

which is Scott-continuous since it is λ-definable. The so defined lifting opera-
tion (−)# validates the laws

f# ◦ η = f g# ◦ f# = (g# ◦ f)#

where η = λs.λγ.γ(s) : S → IIS
. These laws guarantee that [S → IIS

] is a
monoid w.r.t. (Kleisli) composition f ; g = g# ◦f with unit η. The next lemma
tells us that this lifting restricts to G(S) in the following sense.

Lemma 6 For f : S → G(S) its lifting f# restricts to a Scott-continuous
endomap on G(S) which preserves subconvex combinations and binary meets.
Moreover, the restricted lifting map

f 7→ f# : [S → G(S)] → [G(S) → G(S))]

is itself Scott-continuous.

PROOF. For f : S → G(S) ⊆ [IS → I] its lifting f# is λ-definable and thus
Scott-continuous. Moreover, the map

(−)# : [S → [IS → I]] → [[IS → I] → [IS → I]]

itself is also λ-definable and thus Scott-continuous.

Since f#(G)(γ) = G(λs.f(s)(γ)) it validates all inequalities holding for G.
Thus f# sends elements of G(S) to elements of G(S) and preserves the oper-
ations ∧ and p⊕ since they are defined pointwise.

Using the isomorphism Φ: PUV(S) → G(S) of Proposition 20 we can define
the lifting of maps S → PUV(S) as follows

Definition 7 For f : S → PUV(S) let

f † = Ψ ◦ (Φ ◦ f)# ◦ Φ : PUV(S) → PUV(S)
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as illustrated by

S
η

- G(S) �
Φ

PUV(S)

PUV(S)

f

?

Φ
- G(S)

(Φ ◦ f)#

?

Ψ
- PUV(S)

f †

?

where η(s) = λγ.γ(s).

The so defined f † is Scott-continuous and preserves p⊕ and u. Moreover, this
lifting operation (−)† is again Scott-continuous and satisfies the laws

f † ◦ η = f g† ◦ f † = (g† ◦ f)†

for all f, g : S → PUV(S).

Now we are ready to give the clauses for the direct semantics for Lp.

Definition 8 Let Act be some set of endofunctions on S and BExp be some
set of functions from S to {0, 1}. The direct semantics associating to every
Lp program P a function

[[P ]] : S → PUV(S)

is defined inductively by the following semantic clauses

[[a]] = η ◦ a

[[P1; P2]] = [[P2]]
† ◦ [[P1]]

[[P1p⊕P2]](s) = p · [[P1]](s) + (1−p) · [[P2]](s)

[[P18P2]](s) = [[P1]](s) u [[P2]](s)

[[cond(b, P1, P2)]](s) = b(s) · [[P1]](s) + ¬b(s) · [[P2]](s)

[[while(b, P )]] = Minfixf.λs. b(s) · f †([[P ]](s)) + ¬b(s) · ε(s))

where s ranges over S, b over BExp and ¬b(s) = 1−b(s). Further, MinfixX.E(X)
denotes the least fixed point of the map X 7→ E(X) which is well defined, if
X ranges over a dcpo with a smallest element and if the map X 7→ E(X) is
Scott-continuous, which is the case in our setting.

Next we give an explicit construction of f † : PUV(S) → PUV(S) from f : S →
PUV(S) which has an immediate intuitive operational reading.

Lemma 9 For f : S → PUV(S) its lifting f † : PUV(S) → PUV(S)) is given
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by

f †(Q) =

x
{∑

s

µ(s)h(s) | h ∈
∏
s∈S

f(s) and µ ∈ Q

}
for Q ∈ PUV(S). In particular, we have

f †( ↑µ) =

x
{∑

s

µ(s)h(s) | h ∈
∏
s∈S

f(s)

}

for µ ∈ V(S).

PROOF. Let Q ∈ PUV(S). The set

Mf =

{∑
s

µ(s)h(s) | h ∈
∏
s

f(s) and µ ∈ Q

}

is convex and nonempty and, moreover, compact since it arises as image under
a continuous function of the compact set Q×∏

s f(s). Thus its upward closure
is an element of PUV(S). Thus, for showing the desired equality by Definition 7
it suffices to show that

(Φ ◦ f)#(ΦQ) = Φ↑Mf

For this purpose for γ ∈ IS we calculate as follows

(Φ ◦ f)#(ΦQ(γ)) = ΦQ(λs. (Φ ◦ f)(s)(γ)) = ΦQ(λs. Φf(s)(γ))

= minµ∈Q
∑

s µ(s) · Φf(s)(γ)

= minµ∈Q
∑

s µ(s) ·minν∈f(s)〈ν, γ〉
(∗)
= minµ∈Q minh∈Πsf(s)

∑
s µ(s) · 〈h(s), γ〉

= minµ∈Q minh∈Πsf(s) 〈
∑

s µ(s)h(s), γ〉

= minν∈Mf
〈ν, γ〉 = minν∈↑Mf

〈ν, γ〉

= Φ↑Mf
(γ)

where (∗) follows from the fact that for every s ∈ S we may choose an h(s) ∈
f(s) with 〈h(s), γ〉 = minν∈f(s)〈ν, γ〉.
The particular case follows from the fact that

∑
s µ(s)h(s) ≤ ∑

s ν(s)h(s)
whenever µ ≤ ν.

Thus, according to this lemma µ′ ∈ f †(Q) iff its is above some subconvex
combination

∑
s µ(s) · h(s) of possible results h(s) ∈ f(s) where the weights

are given by some µ ∈ Q.
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An immediate consequence of Lemma 9 is the following explicitation of the
semantics of sequential compositions of programs

[[P1; P2]](s) = [[P2]]
†([[P1]](s)) =

x
{∑

s

µ(s)h(s) | µ ∈ [[P1]](s), h ∈
∏
s

[[P2]](s)

}

which is taken as a defining clause of the state transformer semantics presented
in [MM] (Def. 5.4.7 on p. 140).

4 From state to predicate transformer semantics

The idea of predicate transformer semantics is to consider instead of f : S → S
(thought of as the meaning of a total deterministic program) the function
Σf : ΣS → ΣS where Σ = {0, 1} is the Sierpiński space of truth values. The
advantage of such a view is that it is closer to reasoning about programs than
its direct semantics because A ⊆ Σf (B) iff for all s ∈ A the result f(s) ∈ B,
usually denoted as {A}f{B}. Thus Σf (B) is the weakest precondition guaran-
teeing that the execution of the program denoting f results in a state which is
an element of B. Predicate transformers T : ΣS → ΣS with T = Σf for some
f : S → S can be characterised as those maps ΣS → ΣS such that Φ preserves
arbitrary suprema and finite infima.

The intention of this section is to study predicate transformer semantics for
programs in the language Lp and how to derive it from its direct semantics.
Recall from the previous section that the interpretation of an Lp program is
a function S → PUV(S) which by Proposition 20 may be identified with a
function f : S → G(S) ⊆ [IS → I] which uniquely corresponds to a Scott-
continuous function Wp(f) : IS → IS as described in the following theorem.

Theorem 10 The function Wp : [S → G(S)] → [IS → IS] with Wp(f)(γ)(s) =
f(s)(γ) is Scott-continuous and one-to-one. The image of Wp consists precisely
of those Scott-continuous functions T : IS → IS satisfying the conditions

(1) T (rγ + tβ) ≥ rT (γ) + tT (β)
(2) T (rγ + t1) ≤ rT (γ) + t1

for all γ, β ∈ IS and r, t ∈ I with r + t ≤ 1. We write PT for the image of Wp.

PROOF. The function Wp(f) is Scott-continuous since it is λ-definable and
for the same reason the function Wp itself is Scott-continuous, too.

A function T : IS → IS is in the image of Wp iff for all s ∈ S the function
λγ.T (γ)(s) ∈ G(S) which is equivalent to the conditions (1) and (2) which
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express precisely this requirement.

For f : S → PUV(S) the associated predicate transformer Wp(Φ ◦ f) is also
denoted as Wp(f) and can be described explicitly as follows.

Corollary 11 For f : S → PUV(S) we have

Wp(f)(γ)(s) = Wp(Φ ◦ f)(γ)(s) = Φf(s)(γ) = inf
µ∈f(s)

〈µ, γ〉

for all γ ∈ IS and s ∈ S.

In [MM] the elements of IS are called expectations. We do not follow this
terminology because they have nothing to do with expectation values in the
sense of probability theory. Nor should elements of IS be thought of as prob-
ability distributions since in general they do not sum up to a number less or
equal 1. In our opinion only elements of the form Wp(f)(b) with b ∈ {0, 1}S

have an intuitive meaning 2 whereas the more general Wp(f)(β) with β ∈ IS

have a merely auxiliary status because they arise as intermediate steps when
computing Wp([[P ; Q]]) as in the subsequent Theorem 13.

The following Theorem 13 gives rise to a definition of a predicate transformer
semantics for Lp which fully avoids any kind of powerdomains and thus makes
it easier to reason about Lp programs and was introduced for this purpose in
[MM] (for a variant of L− p called pGCL). We think that the following Theo-
rem 13 gives a kind of “rational reconstruction” of this predicate transformer
semantics because it shows how it can be derived from the direct semantics
and the function Wp which are both well-motivated.

Definition 12 For an Lp program P let wp(P ) = Wp([[P ]]) be the predicate
transformer associated with P .

Theorem 13 The following equations hold for wp and characterise it uniquely

wp(a)(γ) = γ ◦ a

wp(P1; P2) = wp(P1) ◦ wp(P2)

wp(P1p⊕P2)(γ) = p · wp(P1)(γ) + (1−p) · wp(P2)(γ)

wp(P18P2)(γ) = wp(P1)(γ) ∧ wp(P2)(γ)

wp(cond(b, P1, P2))(γ) = (b ∧ wp(P1)(γ)) ∨ (¬b ∧ wp(P2)(γ))

wp(while(b, P ))(γ) = Minfix β. (b ∧ wp(P )(β)) ∨ (¬b ∧ γ)

2 namely as the probability that the program with direct semantics f terminates
with final state in b when started in state s
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where ∧ and ∨ stand for the pointwise infimum and supremum on IS, respec-
tively, (¬b)(s) = 1− b(s) and MinfixX.E[X] stands for the least fixed point of
the Scott-continuous function λX.E[X].

PROOF. The crucial cases are composition and the while-loop whereas all
other cases are straightforward and left to the reader. For sake of simplicity
we work rather on the side of G(S) than on the side of the more complicated
PUV(S) which does not do any damage since they are isomorphic by our
crucial Proposition 20.

For Lp-programs P1 and P2 we have

wp(P1; P2)(γ)(s) = Wp([[P1; P2]])(γ)(s) = Wp([[P2]]
# ◦ [[P1]])(γ)(s)

= ([[P2]]
# ◦ [[P1]])(s)(γ) = [[P2]]

#([[P1]](s))(γ)

= [[P1]](s)(λs.[[P2]](s)(γ)) (by def. of (−)#)

= Wp([[P1]])(Wp([[P2]])(γ))(s)

=
(
Wp([[P1]]) ◦Wp([[P2]])

)
(γ)(s)

Next we consider the case of while-loops. For γ ∈ IS we define the auxiliary
functions

hγ(f) := Wp(f)(γ)
k(f) := λs:S. b(s) · f#([[P ]](s)) + ¬b(s) · η(s)
g(β) := (b ∧ wp(P )(β)) ∨ (¬b ∧ γ)

One easily checks that hγ is strict (i.e. preserves the least element) and the
diagram

G(S)S hγ- IS

G(S)S

k
?

hγ

- IS

g
?

commutes from which it follows by Plotkin’s Lemma on least fixed point op-
erators (see [Plo] or [GHK+] II-2.4) that

wp(while(b, P )) = hγ(µ(k)) = µ(g) = µβ. (b ∧ wp(P )(β)) ∨ (¬b ∧ γ)

as desired.
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A Appendix: The Minkowski duality

Although for semantics the case of a countable set of states is the most relevant
one, the following developments hold for any set S considered as a discrete set
without any topology or order.

We consider the linear subspace `∞ of the vector space RS consisting of all
bounded functions γ : S → R. We equip this linear subspace with the topol-
ogy of pointwise convergence, that is, the topology induced from the product
topology on RS as in the preliminary section 2, and with the pointwise defined
order β ≤ γ iff β(s) ≤ γ(s) for all s ∈ S. The graph of this order is closed.
The positive cone, i.e. the set of all nonnegative functions γ ∈ `∞, is denoted
by `∞+ .

As before, we use the notation 1 for the constant function with value 1. Then
IS = {γ ∈ `∞+ | γ ≤ 1} is a compact convex subset of the vector space `∞

which is also closed under subconvex combinations.

In `∞ we consider the linear subspace `1 of all functions µ : S → R such that∑
s∈S |µ(s)| < +∞ with the norm |µ|1 =

∑
s∈S |µ(s)|. However, we will not

consider the norm topology but instead the topology of pointwise convergence
as above. The positive cone, i.e. the set of all nonnegative functions γ ∈ `1, is
denoted by `1

+.

The set V(S) of subprobability distributions on S consists of all µ ∈ `1
+ with

|µ|1 ≤ 1.

Lemma 14 If A ⊆ `∞ is convex (resp. compact) then its saturation ↑A =
{γ ∈ `∞ | γ ≥ α for some α ∈ A} is also convex (resp. closed).

PROOF. First consider a convex set A. If γ1, γ2 ∈ ↑A, then there are β1, β2 ∈
A with γ1 ≥ β1 and γ2 ≥ β2. For 0 < p < 1, we then have pγ1 + (1 − p)γ2 ≥
pβ1 + (1− p)β2 ∈ A, whence pγ1 + (1− p)γ2 ∈ ↑A.

When A is compact, consider a generalised sequence γi in ↑A (indexed by
some directed set I) converging to some γ. There are βi ∈ A with βi ≤ γi for
every i. In the compact set A, the βi have a subsequence βij converging to
some β ∈ A. As βij ≤ γij and as the graph of the order is closed, we conclude
that β = limj βij ≤ limj γij = γ, whence γ ∈ ↑A.

Recall that a function f from a topological space X into R (or into a subset of
R) is lower semicontinuous if the set of all x ∈ X such that f(x) > r is open
in X for every r ∈ R. Next we show that, in our setting, lower semicontinuity
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is equivalent to Scott continuity, a fact that will be used subsequently without
further mention.

Lemma 15 An function f from `∞+
(
`1
+, IS, V(S), respectively

)
to R+ is order

preserving and lower semicontinuous if and only if it is Scott-continuous.

PROOF. For the forward direction it suffices to notice that, if γ is the
pointwise supremum of a directed family γi and if U is a basic open neigh-
borhood of γ, then γi ∈ U for some i. For the reverse direction fix γ and
consider an arbitrary r < f(γ). For every finite subset F of S of cardinal-
ity n define γF (s) = max(γ(s) − 1

n
, 0), whenever s ∈ F , and γF (s) = 0,

else. Then γ = supF γF . Since f is assumed to be Scott-continuous we have
f(γ) = supF f(γF ). Thus, there is an F such that f(γF ) > r. For all β ≥ γF ,
we then have f(β) > r, as f is supposed to be order preserving, and the set
of all these β is a neighborhood of γ.

Let V+ be any of the positive cones R+, `∞+ , `1
+. Recall that a function f : V+ →

R+ is called

homogeneous if f(rγ) = rf(γ) for all r ∈ R+,
superadditive if f(γ + β) ≥ f(γ) + f(β),
superlinear if it is homogeneous and superadditive,
linear if f(rγ + tβ) = rf(γ) + tf(β) whenever r, t ∈ R+.

In V+, consider the subset K = I, IS,V(S), respectively, which is a closed lower
set also closed under subconvex combinations.

We want to apply the above terminology to functions g : K → I. As addition
and scalar multiplication lead out of K, we have to modify the definition in
the following way: A function g : K → I is called

homogeneous if g(rγ) = rg(γ) for all r ∈ I,
0-concave if g(rγ + tβ) ≥ rg(γ) + tg(β) whenever r, t ∈ I and r + t ≤ 1,
superlinear if it is 0-concave and homogeneous,
linear if g(rγ + tβ) = rg(γ) + tg(β) whenever r, t ∈ I and r + t ≤ 1.

Each homogeneous functional g : K → I has a unique extension to a homoge-
neous functional ĝ : V+ → R+: for β ∈ V+ there is a γ ∈ K such that β = rγ
for some r ∈ R+, and if we set ĝ(β) = rg(γ) this value is independent of the
choice of γ in K because of homogeneity.

The extension ĝ : V+ → R+ of a homogeneous functional g : K → I is super-
linear, linear, and Scott-continuous, respectively, if g is.
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Note that any superlinear functional f : V+ → R+ is order preserving. Indeed,
if β ≤ γ in V+, then γ − β ∈ V+ and f(β) ≤ f(β) + f(γ − β) ≤ f(β + (γ −
β)) = f(γ) by superlinearity. We conclude that every superlinear functional
g : K → I is order preserving, too, as such a g can be extended to a superlinear
functional on V+. All of this applies in particular to linear functionals.

Although being defined as a subspace of `∞+ , the cone `1
+ should rather be

considered as the dual of `∞+ and vice versa as described in Lemma 16. In
order to formulate this duality for every µ ∈ `1

+ and every γ ∈ `∞+ consider

〈µ, γ〉 =
∑
s

µ(s)γ(s)

which converges (absolutely) since |µ(s)γ(s)| ≤ µ(s) and
∑

s µ(s) converges
by definition.

Lemma 16

(a) The mapping

(µ, γ) 7→ 〈µ, γ〉 : `1
+ × `∞+ → R+

is bilinear and Scott-continuous.
(b) For every Scott-continuous linear functional f : `∞+ → R+ there is a

(unique) µ ∈ `1 such that f(γ) = 〈µ, γ〉 and |µ|1 = f(1), and for ev-
ery Scott-continuous linear functional g : `1

+ → R+ there is a (unique)
γ ∈ `∞+ such that g(µ) = 〈µ, γ〉.

PROOF. (a) Bilinearity is straightforward. For γ ∈ `∞+ and every finite sub-
set F ⊆ S, we define γ|F (s) = γ(s), whenever s ∈ F , and γ|F (s) = 0,
else. Similarly, we define µ|F for µ ∈ `1

+. The function (µ, γ) 7→ 〈µ|F , γ|F 〉 =∑
s∈F µ(s) · γ(s) is continuous on `1

+ × `∞+ . As 〈µ, γ〉 =
∑

s∈S µ(s)γ(s) =
supF

∑
s∈F µ(s) · γ(s) = supF 〈µ|F , γ|F 〉, where F ranges over all finite subsets

of S, the map (µ, γ) 7→ 〈µ, γ〉 : `1
+ × `∞+ → R+ is the (pointwise) supremum

of a directed family of continuous functions and hence lower semicontinuous,
whence Scott-continuous by Lemma 15.

(b) For every s ∈ S, we denote by η(s) the Dirac measure η(s)(s) = 1 and
η(s)(t) = 0 for all t 6= s. Every γ ∈ `∞+ can be written in the form γ =
supF

∑
s∈F γ(s)η(s), where F ranges over all finite subsets of S, and similarly

for every µ ∈ `1
+

Let f be a Scott-continuous linear functional on `∞+ . We define µ(s) = f(η(s)).
Then f(γ) = f(supF

∑
s∈F γ(s)η(s)) = supF

∑
s∈F γ(s)µ(s) =

∑
s∈S γ(s)µ(s) =

〈µ, γ〉, where we have used the Scott-continuity and the linearity of f . If we
choose γ = 1, then |µ|1 =

∑
s∈S µ(s) = 〈µ,1〉 = f(1) < +∞, which shows

that µ ∈ `∞+ .
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Now let g be any Scott-continuous linear functional on `1
+. We define γ(s) =

g(η(s)). Then γ(s) ≥ 0 and, for all µ ∈ `1
+, we have g(µ) = g(supF

∑
s∈F µ(s)η(s)) =

supF

∑
s∈F µ(s)γ(s) =

∑
s∈S µ(s)γ(s) = 〈µ, γ〉, where we have used the Scott-

continuity and the linearity of g. Note that γ ∈ `∞. Indeed, if we had sups γ(s) =
+∞, we could choose a sequence sn in S such that γ(sn) ≥ 22n and, for µ
with µ(sn) = 2−n and µ(s) = 0 for s different from all sn, we would have
g(µ) =

∑
n µ(sn)γ(sn) ≥ ∑

n 2−n · 22n ≥ +∞, a contradiction.

¿From Lemma 16 we deduce a duality between IS and V(S) as follows.

Corollary 17

(a) The function
(µ, γ) 7→ 〈µ, γ〉 : V(S)× IS → I

is bilinear and Scott-continuous.
(b) For every Scott-continuous linear functional f : IS → I, there is a (unique)

µ ∈ V(S) such that f(γ) = 〈µ, γ〉 for all γ ∈ IS and for every Scott-
continuous linear functional g : V(S) → I there is a (unique) γ ∈ IS such
that g(µ) = 〈µ, γ〉 for all µ ∈ V(S).

Note. Every Scott-continuous linear functional f : IS → I is not only lower
semicontinuous by Lemma 15, but also upper semicontinuous and hence con-
tinuous.

Indeed, let f : IS → I be linear. If f(1) = 0 then f = 0 and there is nothing
to be shown. If f(1) > 0 we replace f by 1

f(1)
· f and thus may suppose

w.l.o.g. that f(1) = 1. We then have f(γ) = 1 − f(1 − γ) by linearity for
all γ ∈ IS. Let γi be any downdirected family in IS and γ = infi γi. Then
1 − γi is an updirected family with supremum 1 − γ. Since f is assumed
as Scott-continuous we conclude f(1 − γ) = supi f(1 − γi). Hence f(γ) =
1 − f(1 − γ) = infi(1 − f(1 − γi)) = infi f(γi). Thus lower semicontinuity
implies upper semicontinuity.

There are discontinuous linear functionals f : IS → I, whenever S is infi-
nite. Indeed, if U is a non-principal ultrafilter on S, then every γ ∈ IS

has a limit along U and γ 7→ limU γ is a linear functional which is not
lower semicontinuous; indeed, limU 1|F = 0 for every finite subset F , whence
0 = supF limU 1|F 6= limU supF 1|F = limU 1 = 1.

In contrast most Scott-continuous linear functionals on V(S) are not upper
semicontinuous.

We now consider the powerdomain PUV(S) of all subsets of V(S) which are
nonempty, compact, convex and saturated (i.e. upper sets in V(S)).
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We want to extend the correspondence between elements of V(S) and Scott-
continuous linear functionals f : IS → I (see corollary 17) to a Minkowski
type correspondence between the sets Q ∈ PUV(S) and certain functionals
G : IS → I. In his seminal paper [Min], H. Minkowski has established a one-
to-one correspondence between compact convex sets in R3 and superlinear
functionals on R3. There are many generalisations of Minkowski’s duality to
much more general situations (see e.g. [Tol]). But we could not find the result
that we need in the literature. In the following we proceed quite along the
same lines as Minkowski’s original result.

To every Q ∈ PUV(S) we associate the functional ΦQ =: IS → I defined by

ΦQ(γ) = inf
µ∈Q

〈µ, γ〉

As µ 7→ 〈µ, γ〉 is lower semicontinuous this function attains its minimum on
the compact set Q so that we can write

ΦQ(γ) = min
µ∈Q

〈µ, γ〉

Being the (pointwise) infimum of linear functionals, ΦQ is superlinear and,
hence, order preserving. Moreover it has the following property:

(∗) G(rγ + t1) ≤ rG(γ) + t for all β, γ ∈ IS and r, t ∈ I with r + t ≤ 1

since ΦQ(rγ+t1) = minµ∈Q(r〈γ, µ〉+t〈1, µ〉) ≤ minµ∈Q r〈γ, µ〉+t = ΦQ(γ)+t.

Lemma 18 The functional ΦQ is Scott-continuous.

PROOF. We show that ΦQ is lower semicontinuous. Fix γ and consider any
r such that ΦQ(γ) > r. Then, 〈µ, γ〉 > r for every µ ∈ Q. As (µ, γ) 7→ 〈µ, γ〉
is lower semicontinuous, for every µ ∈ Q, there are neighborhoods Uµ of γ
and Vµ of µ such that 〈ν, β〉 > r for all β ∈ Uµ and all ν ∈ Vµ. As Q is
compact, it is covered by finitely many Vµ1 , . . . , Vµn . For the neighborhood
U = Uµ1 ∩ · · · ∩ Uµn of γ we then have 〈µ, β〉 > r for all β ∈ U and all µ ∈ Q,
whence ΦQ(β) = minµ∈Q〈µ, β〉 > r for all β ∈ U .

Conversely, for a Scott-continuous superlinear functional G : IS → I satisfying
(∗) let

ΨG = {µ ∈ V(S) | 〈µ, γ〉 ≥ G(γ) for all γ ∈ IS}

Lemma 19 ΨG is a compact, convex and saturated subset of V(S).

PROOF. Clearly, ΨG is saturated. As G is superlinear, ΨG is convex. For the
compactness, it suffices to prove that ΨG is closed in V(S). Thus, take a net µi
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in ΨG which converges to some µ ∈ V(S), that is, µ(s) = limi µi(s) for every s.
We want to show that 〈µ, ϕ〉 ≥ G(ϕ) for all ϕ ∈ IS. Consider first elements ϕ
with finite support, i.e., ϕ =

∑
s∈F rsη(s) for a finite subset F of S and rs ∈ I.

Then 〈µ, ϕ〉 =
∑

s∈F µ(s)rs = limi
∑

s∈F µi(s)rs = limi〈µi, ϕ〉 ≥ G(ϕ). An
arbitrary element ϕ ∈ IS can be represented as the pointwise supremum of the
directed family ϕ|F of its restrictions to finite subsets: ϕ|F =

∑
s∈F ϕ(s)η(s).

As the functions G and ϕ 7→ 〈µ, ϕ〉 are Scott-continuous, we obtain 〈µ, ϕ〉 =
〈µ, supF ϕ|F 〉 = supF 〈µ, ϕ|F 〉 ≥ supF G(ϕ|F ) = G(supF ϕ|F ) = G(ϕ).

We are now ready for the main result of this Appendix. In its proof we will use
the following two standard Hahn-Banach separation theorems (a convenient
reference is e.g. [DS, Theorem V.2.8 ff.]):

(a) If A is a closed convex and B an open convex subset disjoint from A in a
topological vector space V then there exists a continuous linear functional
f : V → R and a real number r such that f(a) ≤ r for all a ∈ A and
r < f(b) for all b ∈ B.

(b) If A is a closed convex subset of a locally convex topological vector space
V then for every b ∈ V \A there is a continuous linear functional f : V →
R such that f(b) < f(a) for all a ∈ A.

Proposition 20 Q 7→ ΦQ and G 7→ ΨG are mutually inverse order isomor-
phisms between the collection PUV(S) of all nonempty compact convex upper
subsets of V(S) and the set G(S) of all Scott-continuous superlinear functionals
G : IS → I satisfying condition (∗).

PROOF. We first prove that Q = Ψ(ΦQ) for every Q ∈ PUV(S). Clearly,
Q ⊆ Ψ(ΦQ). For the converse inclusion suppose that ν /∈ Q. The upper set
↑Q generated by Q in `1 is closed and convex by Lemma 14. By the above
mentioned Hahn-Banach separation theorem (b), there is a continuous linear
functional f on `1 such that f(ν) < f(µ) for all µ ∈ ↑Q.

We now show that f maps `1
+ to R+. We choose a fixed µ ∈ Q. For every

s ∈ S we have µ + rη(s) ∈ ↑Q and consequently f(ν) < f(µ + rη(s)) =
f(µ) + rf(η(s)) for all r ≥ 0 which implies f(η(s)) ≥ 0. By linearity it

follows that f
(∑

s∈F rsη(s)
)
≥ 0 for every finite subset F of S and rs ≥ 0

for s ∈ F . By continuity of f we conclude that f(µ) ≥ 0 for all µ ∈ `1
+.

As every continuous linear functional on `1
+ is order preserving and lower

semicontinuous, hence Scott-continuous, Lemma 16 tells us that there is a
γ ∈ `∞+ such that f(µ) = 〈µ, γ〉 for all µ ∈ `1

+. Replacing γ by 1
m

γ (for a
sufficiently big m ∈ N) we may suppose that γ ∈ IS and we have 〈ν, γ〉 < 〈µ, γ〉
for all µ ∈ Q and thus ν 6∈ Ψ(ΦQ) as desired.
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Now suppose G : IS → I is a Scott-continuous superlinear functional satisfying
condition (∗). We will show that G = Φ(ΨG), i.e. G(γ) = infµ∈ΨG

〈µ, γ〉 =
inf{〈µ, γ〉 | µ ∈ V(S), G ≤ 〈µ,−〉 on IS} for all γ ∈ IS. This obviously holds
if G is constantly 0. Thus, let us assume w.l.o.g. that G is not constantly 0.
As by Corollary 17 the elements µ ∈ V(S) are in a one-to-one correspondence
with the Scott-continuous linear functionals f : IS → I, we have to show that,
for all γ ∈ IS

G(γ) = inf{f(γ) | f : IS → I linear, Scott-continuous, and G ≤ f on IS}

For the proof we fix a γ ∈ IS. We will show that every real number r > 0 with
G(γ) ≤ r ≤ 1 there is a Scott-continuous linear functional f : IS → I such
that G ≤ f on IS and f(γ) ≤ r.

For this purpose we consider the unique homogeneous extension Ĝ : `∞+ → R+

of G. The extended functional Ĝ is Scott-continuous, superlinear and satisfies
the inequality (∗). We search for a linear functional f : `∞+ → R+ such that

Ĝ ≤ f , f(γ) ≤ r and f(IS) ⊆ I. Replacing γ by 1
r
γ, we may suppose that

r = 1.

We now form the line segment A = {(1 − t)γ + t1 | t ∈ I} connecting γ
and 1, which is closed and convex, and the set U = {β ∈ `∞+ | Ĝ(β) > 1}
which is nonempty since G and thus Ĝ is not constantly 0. As Ĝ is lower
semicontinuous, superlinear and, hence, order preserving U is a nonempty
open convex upper set. Furthermore, the set U is disjoint from A : indeed, if
β ∈ A then β = (1− t)γ + t1 for some t ∈ I for which it holds that

Ĝ(β) = Ĝ
(
(1− t)γ + t · 1

)
≤ (1− t)Ĝ(γ) + t by condition (∗)

≤ 1 as Ĝ(γ) ≤ 1

whence β 6∈ U . In `∞ we may apply the Hahn-Banach separation theorem (a)
cited above for disjoint open and closed convex sets and separation theorem (a)
cited above for disjoint open and closed convex sets and obtain a continuous
linear functional f on `∞ and a real number s such that f(β) ≤ s for all β ∈ A
and f(β) > s for all β ∈ U . As in the first part of this proof one shows that
f(β) ≥ 0 for every β ≥ 0. Thus, the functional f is also monotonic on `∞+ .
For β ∈ IS we have β ≤ 1 ∈ A, whence f(β) ≤ f(1) ≤ s. Since 0 ≤ f(1) ≤ s
we have 0 ≤ s. If s were 0 then f would be constantly 0 on IS and thus also
constantly 0 on `∞+ which is impossible since U is nonempty. Thus, we have
shown that s > 0 and w.l.o.g. we may assume that s = 1. Finally we show
that G(β) ≤ f(β) for all β ∈ IS. We proceed by showing something stronger,
namely that Ĝ(β) ≤ f(β) for all β ∈ `∞+ . Indeed, whenever Ĝ(β) > ε > 0 then

Ĝ(β
ε
) > 1, whence β

ε
∈ U and consequently f(β

ε
) > 1, that is f(β) > ε.
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Thus, we have also shown the existence of a linear f : IS → I with G ≤ f from
which it follows that ΨG is nonempty. For G constantly 0 we have that ΨG =
V(S) and thus nonempty. From this observation together with Lemma 19 it
follows that ΨG ∈ PUV(S) whenever G ∈ G(S).

Note. As for linear functionals, we have for superlinear functionals G : IS → I
satisfying condition (∗): If G is Scott-continuous then G is also upper semi-
continuous, hence continuous.

Indeed, for a Scott-continuous superlinear functional G : IS → I satisfying con-
dition (∗) we have by Proposition 20 that G(γ) = infµ∈ΨG

〈µ, γ〉. Thus G is the
(pointwise) infimum of the set of linear functionals γ 7→ 〈µ, γ〉 where µ ∈ ΨG.
As these functionals are continuous their infimum is upper semicontinuous.

Note. For understanding condition (*) it might be helpful to notice that it is
equivalent to

(∗∗) G(rγ + tβ) ≤ rG(γ) + t|β|∞

where |β|∞ = sups β(s) is the sup-norm of β; for r = 0, t = 1 this implies
G(β) ≤ |β|∞, that is, G is dominated by the sup-norm functional. (Indeed, (∗∗)
implies (∗) by considering the special case β = 1. Conversely, as β ≤ |β|∞1,
we have G(rγ + tβ) ≤ G(rγ + t|β|∞1) ≤ rG(γ) + t|β|∞ by (∗).)
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