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1 Introduction

We consider a basic imperative programming language £, whose syntax is
given (in BNF-form) by

P:=a| P;P|cond(b, P, P)| while(b, P) | P,& P | PP

where b ranges over a set BExp of boolean expressions, a ranges over a set Act
of basic actions and p is a real number with 0 < p < 1. We write cond (b, P, Q)
for the conditional usually denoted as if b then P else () fi and while(b, P)
for the while loop usually denoted as while b do P od The program P[Q
nondeterministically executes either P or (). The program P,® () executes P
with probability p and () with probability 1—p.

A variant of this language has been considered by A. Mclver and C. Mor-
gan in [MMa,MMb,MM] together with a state transformer and a predicate
transformer semantics associating with every program P a state transformer
[P] : S — PyV(S) and a predicate transformer wp(P) : I° — 1% respectively,
where I is the unit interval [0,1], S is a set of states and Py is a kind of
powerdomain suitable for total correctness over the space V(S) of subprob-
ability distributions over S. Moreover, these two semantics are related by a
function Wp : {S — PUV(S)} — {]IS — HS] such that wp(P) = Wp([[P]]) for
all programs P.

In their work, Mclver and Morgan considered mainly finite, occasionally count-
ably infinite, sets S of states and the result sketched in the previous paragraph
cannot be found, stated and proved completely in one single paper but is
scattered over various of their publications. Besides treating the problem over
arbitrary infinite sets of states, we consider as the main achievement of this

Preprint submitted to Elsevier Science 22 December 2008



paper the identification of a Minkowksi type duality between PyV(S) and a
class G(S) of “good” functionals G : I¥ — T where Q € Py V(9) is represented
by its “Minkowski functional”

Py :1° -1 in{u,
QT — Ly minu,7)

and from such a functional G the set ) may be reconstructed as

Ve ={pneV(S) |V eI°. G(7) < {u.7)}
where (u, ) stands for Y- .cg u(s)y(s), the integral of v w.r.t. p.

We show that ® : Py V(S) — G(S) is a bijection preserving all relevant struc-
ture and exploit this fact for showing that wp(P) = Wp([P]). Thus Minkowski
duality is the mathematical principle from which the correspondence between
state and predicate transformer semantics follows for nondeterministic prob-
abilistic languages like £,

The Minkowski duality has been worked out in [KP] for the general framework
of dcpo-cones. As V(95) is not a cone but only a kind of a truncated cone, we
cannot apply those results directly.

We slightly deviate from Mclver and Morgan’s approach in restricting values
of predicates to I instead of R for systematic reasons and in a different, but
equivalent, formulation of the healthiness conditions adapting their terminol-
ogy to a well-established one in mathematics.

In state transformer semantics, a crucial point is the correct definition of the
semantics of the composition of programs. Mclver and Morgan are guessing
the correct formula from a good intuition. We derive this formula in a natural
way with the help of the Minkowski duality.

2 Preliminaries

We denote by R, R, and I the reals, the nonnegative reals, and the unit
interval [0, 1], respectively, endowed with their usual topology and linear order.

For an arbitrary set S, the spaces R, ]Rfr and I° of all functions 7 from S
into R, R, and I, respectively, are endowed with the pointwise defined order

v< B <= v(s) <P(s) forall s € S

and the topology of pointwise convergence, also called the product topology.
The sets

Uns={7]7(s) >r}and L, = {7y | (s) <t}



where s ranges over S and r, t over real numbers, form a subbasis for the open
sets of the product topology. Note that I° is a compact space by Tychonoff’s
theorem. With respect to the order, we have a pointwise defined meet opera-
tion in all of our three function spaces

(v A B)(s) = min(y(s), 5(s))

Also, R® is a real vector space for pointwise defined addition and scalar mul-
tiplication and I® is a convex subset. More generally, a subconvex combination
of v and ( is an element of the form ry + ¢4 with r,t € T and r +t < 1. If
t =1 —r, then we have a conver combination. The space I° is closed under
subconvex and, in particular, under convex combinations. For A C I%, we
write conv(A) for its convex hull, the smallest convex set containing A, which
can be obtained from A by closing up under convex combinations.

We need two basic concepts from domain theory. (For an extensive treatment
of domain theory one may consult [GHK™].)

A bounded directed complete partially ordered set (a bdcpo, for short) is a
partially ordered set L in which every directed family (d;);, which has an
upper bound, has a least upper bound sup, d;. If every directed family in L
has a least upper bound, then L is called directed complete (or a depo, for
short). We also suppose that our dcpos always have a smallest element. An
upper set in a (b)dcpo is a subset A with the property that © > a € A implies
x € A. Lower sets are defined dually. Upper subsets are also called saturated;
for any subset A, its saturation is

TA={b|a<bforsomeac A}

A map f from a (b)dcpo L to another (b)depo M is said to be Scott-continuous
if it preserves the order (ie., a < b = f(a) < f(b)) and suprema of
(bounded) directed sets (i.e., f(sup;d;) = sup, f(d;) for every (bounded) di-
rected family (d;); in L). The set [L — M] of all Scott-continuous maps from
L to M with the pointwise defined order is again a (b)dcpo with directed
suprema being defined pointwise.

R and R, and the function spaces R® and Ri are examples of bdcpos, and I
and I are dcpos. Addition (v, 8) — v+ 3 and the meet operation (v, 3) — YA
3 is continuous as well as Scott-continuous on R and R?; scalar multiplication
(r,7) +— r -~y is continuous, but Scott-continuous only if we restrict to r > 0
and v > 0. It follows that subconvex combinations (r,t,7,5) — rvy + t3
depend continuously on all of their arguments simultaneously, and that Scott
continuity is guaranteed, when ~, 5 > 0.

Let us stress that topological notions, like closed set, continuous function al-



ways refer to the Hausdorff topologies considered at the beginning of these
preliminaries, whilst the term Scott-continuous refers to the order theoretical
notion of preservation of directed suprema.

Notice, moreover, that dcpos form a cartesian closed category (with exponen-
tial objects [L — M| as described above) and thus provides a model for typed
A-calculus (see e.g. [Plo,Str]). This has the consequence that every A-definable
function is automatically Scott-continuous. This fact will be used later on in
a crucial way for simplifying arguments. Occasionally we will informally use
the notation of A-calculus, where Az.E(x) stands for z — E(z).

3 State transformer semantics for £,

Let S be some unspecified (countable) set of states. Basic actions are inter-
preted as (and identified with) certain functions a: S — S. We now have to
build our powerdomain.

The set V() of subprobability distributions on S consists of all  : S — T with
Ssegi(s) < 1. We may put pu(L) =1 — 3 ,cqu(s) giving rise to a probability
measure pon S; = SU{L} with pu(A) = Y,cau(s) for arbitrary A C 5.
Note that V(S) is a closed lower subset of I, also closed under subconvex
combinations. In particular, V(S) is a compact convex ordered space.

There is a canonical inclusion
n: S, — V(9)

sending L to the constant map with value 0 and s € S to the Dirac measure
n(s) defined by n(s)(t) =1 if s =t and n(s)(t) = 0 otherwise.

The upper powerdomain Py V(S) consists of all subsets @ of V(S) which are
nonempty, compact, convex and saturated and is ordered by reverse in-
clusion @ C Q9 iff Q1 O Q2. For a directed family (Q;)ic; in PyV(S) its
intersection N;c; @; is again in PyV(S) whence (PUV(S), E) is a dcpo with
Ll; @i = Nier @i- There is a canonical inclusion

i=(u— Tu): V(S)— PyV(S)

which is easily seen to be Scott-continuous. Composing the two canonical maps
we obtain a canonical map

e=ion= (3|—> Tn(s)):S—ﬂDUV(S)

The semantics we will define for £, will associate with every program P a



function [P] : S — PyV(S). For interpreting probabilistic choice ,& we need
the following lemma.

Lemma 1 For Q,Qs € Py(V(S)) and 0 < p < 1, the convex combination

Q1 p® Q2 =pQ1+ (1 —p)Q2 = {pp1 + (1 —p)pz | 1 € Q1,2 € Q2}

is again a member of PyV(S).

PROOF. ! Being the image of the compact convex set Q1 X @, under the
continuous affine map (1, p2) — puy +(1—p) e, the set pQ1 +(1—p)Q2 is also
compact and convex. In order to prove that it is saturated, let pu;+(1—p)us <
w € V(S) for some py € Q1, pz € Q2. Let 7y = pm(s)ﬁ(ls—)p)uz(s) whenever the
denominator is not 0. Clearly r(s) > 1. Define p(s) = rsui(s) and ph(s) =
rsio(s) for all s € S for which ry was defined, and let ) (s) = pbh(s) = u(s)
for all other s € S. Then Y cq pi(s) < Segpu(s) < 1, whence i) € V(9),
and similarly p € V(S). Further, py < p) and ps < pfy, whence pf € Q1 and

Hy € Qo, and g1 = pph + (1 — p)uy € pQ1 + (1 — p)Qa.

For interpreting M we need the existence of binary infima in Py V(S) as guar-
anteed by the following lemma.

Lemma 2 For any two members Q1,Q2 of PyV(S), the conver hull

Q1M Q2 = conv(Q1 U Q2)

18 again compact, convexr and saturated and, hence, the smallest member of
PuV(S) containing Q1 and Qs.

PROOF. The convex hull of Q; U Q> is equal to U,er pQ1 + (1 — p)Qs. Being

the union of sets that are saturated by the previous lemma, conv(Q; U Q2)

1 Added November 23, 2008: This proof is completely wrong. The mistake occurs
where we claim that > _ o pi(s) < Y cgp(s) < 1, whence py € V(S). But the
lemma is true. For proving that pQi + (1 — p)Q2 is saturated, it suffices to prove
this in the case where Q1 = Tp1 and Q2 = Tpg. In this case p- Tpur + (1 —p) - p2 =
T(ppa + (1 = p)u2).

PROOF. We first note that r-V(S)+s-V(S) = (r+s)-V(S). Secondly we note that
T = p+ (1 —|[|pl[1)V(S), where [[u1][1 = >, pa(s). Hence, p- Tpi+(1—p)- Tpz =
ppa +p(1 = |[pal[1)V(S) + (1 = p)uz + (1 — p)(L = [[u2][1)V(S) = pp1 + (1 — p)u2 +
(P = 1) + (A = p) (A = [lu2l[1))V(S) = ppa + (1 = p)pz + (1 = (pllpallr + (1 -
P|p2l1))V(S) = ppa+1—p)p2+ (1—|pp1+(1—p)u2l|1) V(S) = T(pp1+(1—p)u2).



is saturated, too. It also is compact and convex, as it is the image of the
compact set [0, 1] X Q1 X Q2 under under the continuous affine map (p, p1, po) —

pi1 + (1 = p)pe.

In order to define the semantics of composition we have to be able to lift
a function f: S — PyV(S) to a Scott-continuous function f1: PyV(S) —
PuV(S) because then we may define [Pr: P5] as [P]" o [P]. Moreover, in
order to define the semantics of recursive programs it is necessary that the
lifting operation

(=) [S = PuV(S)] = [PuV(S) — PuV(S)]

itself is Scott-continuous. For this purpose it is helpful to exploit the fact that
PuV(S) is isomorphic to a certain set G(S) of Scott-continuous functions from
I to I (see Appendix A for details).

Let G(S) be the set of all Scott-continuous G: 19 — T such that for all v, 3 € I°
and r,t € [ with r +¢ < 1 it holds that

G(ry+1t38) = rG(y) +tG(B)
G(ry+11) <rG(y) +t

where 1 denotes the constant function with value 1. For ¢t = 0, these two
equations imply that G(ry) = rG(y) for all » € I; this means that G is
superlinear and satisfies condition (*) in the terminology of Appendix A. Due
to lack of a better name we will refer to the functionals in G(S) as “good”
functionals.

By definition, G(S) is a subset of the set I'° of all functions G: IS — L.
From our preliminaries, replacing there S by I°, we know that " is a dcpo
with a Scott-continuous meet operation and subconvex combinations which
are Scott-continuous in each argument, where the order relation, directed
suprema, binary meets and subconvex combinations are defined pointwise. It
is straightforward to verify that G(.S) is closed under all of these operations:

Lemma 3

(a) For every directed family (G;); in G(S), the (pointwise) supremum G(7y) =
sup; G;(7y) is again a member of G(S).

(b) For Gy and Gy in G(S), the (pointwise) meet Gy A\ Go is again a member
of G(S).

(¢) For Gy and Gy in G(S), the (pointwise defined) subconver combination
rGy + tGy is again a member of G(S), where r,t € I with r +t < 1.



Thus G(5) is a dcpo with Scott-continuous binary meets and Scott-continuous
subconvex combinations.

By Proposition 20 in the Appendix there is an order isomorphism ®: Py V(S) —
G(S). Using the notation (u,7y) = >, u(s)y(s), it is given by

do(y) = min{u,y) for all y € I®
neq

the inverse being the map V: G(S) — Py V(S) given by

Vo ={neV(S)| () > G(y) for all y € I°}

Next we show that ® and ¥ preserve all relevant structure.

Lemma 4

(a) ® and ¥ are Scott-continuous.

(b) @ and U preserve binary meets, i.e. o,n0, = Po, A Pg, and Yo, aq, =
Ve, MY, .

(c) @ and ¥ preserve convex combinations, i.e. g, & g, = pPq, +(1—p)Pq,
and \ijG1+(1—p)G2 = ‘I/Gl pEB \I/GQ.

PROOF. (a) and (b) are just consequences of the order isomorphism prop-
erty. Claim (c) is shown by the following calculation

pPq, (7) + (1 = p)Pq, (v) = pming, e, (11, 7) + (1 — p) minp,eq, (p2,7)
= ming, eq, (Pp1,7) + miny,eq, (1 — p)uz,7)
= ming,, epg, (H1,7) + MmN, e (1-p)Qs (k2,7)
= My, epQy ue(1-p)Q2 ((H1,7) + (12,7))
= My, epQy e (1-p)Qa (M1 T Hay )
= MiNuepQ,+(1-p)Qs (1Y)

= (I)PQ1+(1—P)Q2 (7)

where v € I¥ and p € L.

As the meet operation and subconvex combinations are Scott-continuous in
G(S), the preceding lemma allows us to conclude:

Corollary 5 The operations N and ,& are Scott-continuous on PyV(S).



Recall that in continuation semantics (see e.g. [BHM]) a function f : S — I
is lifted to the function

1= (G M.GOs.f(s)(7)): [I¥ = 1) — [I¥ = 1]

which is Scott-continuous since it is A-definable. The so defined lifting opera-
tion (—)# validates the laws

fron=1f gt o fF = (g o f)F
where 7 = As.Ay.y(s): S — I, These laws guarantee that [S — I''] is a
monoid w.r.t. (Kleisli) composition f;g = ¢g* o f with unit 1. The next lemma
tells us that this lifting restricts to G(S) in the following sense.
Lemma 6 For f: S — G(S) its lifting f* restricts to a Scott-continuous

endomap on G(S) which preserves subconvexr combinations and binary meets.
Moreover, the restricted lifting map

fe [P0 — G(S)] = [6(5) — G(9))]

15 itself Scott-continuous.

PROOF. For f:S — G(S) C [I° — 1] its lifting f# is A-definable and thus
Scott-continuous. Moreover, the map

(=)* (S = [I° = 1] - [[I° = 1] — [I¥ — T]
itself is also A-definable and thus Scott-continuous.
Since f#(G)(y) = G(As.f(s)(v)) it validates all inequalities holding for G.

Thus f# sends elements of G(S) to elements of G(S) and preserves the oper-
ations A and ,@® since they are defined pointwise.

Using the isomorphism ®: PyV(S) — G(S) of Proposition 20 we can define
the lifting of maps S — PyV(S) as follows

Definition 7 For f: S — PyV(S) let

fl=To(dof)¥ od®: PyV(S) — PyV(S)



as illustrated by

f (®o f)* f1

where n(s) = Ay.y(s).

The so defined f1 is Scott-continuous and preserves ,& and M. Moreover, this
lifting operation (—) is again Scott-continuous and satisfies the laws

flon=f gloff=(g"of)f

for all f,g:S — PyV(9).

Now we are ready to give the clauses for the direct semantics for £,.

Definition 8 Let Act be some set of endofunctions on S and BExp be some
set of functions from S to {0,1}. The direct semantics associating to every
L, program P a function

[P]: S — PyV(S)
1s defined inductively by the following semantic clauses

[a] =noa

[Pi; B] = [P]" o [P1]

[Pip® P2](s) = p - [PA](s) + (1=p) - [P2](s)

[P P0(s) = [P (s) T [P2](s)

[cond(b, Py, P2)[(s) = b(s) - [P1](s) + =b(s) - [P](s)

[while(b, P)] = Minfixf.As. b(s) - fT([P](s)) + —b(s) - £(s))
where s ranges over S, b over BExp and —=b(s) = 1—b(s). Further, MinfixX.E(X)
denotes the least fized point of the map X — E(X) which is well defined, if

X ranges over a dcpo with a smallest element and if the map X — E(X) is
Scott-continuous, which is the case in our setting.

Next we give an explicit construction of fT: PyV(S) — PyV(S) from f: S —
Py V(S) which has an immediate intuitive operational reading.

Lemma 9 For f : S — PyV(S) its lifting f1: PuV(S) — PyV(S)) is given



by

Q) = H;u@h(s) e T £(s) and € @}

ses
for Q € PyV(S). In particular, we have

(1) = HZ w(s)h(s) | he I f<s>}

seS

for w e V(S).

PROOF. Let Q € PyV(S5). The set

My = { S utn(s) 1€ TLA) and € @)

is convex and nonempty and, moreover, compact since it arises as image under
a continuous function of the compact set @ x [] f(s). Thus its upward closure
is an element of Py V(S). Thus, for showing the desired equality by Definition 7
it suffices to show that

(@ o /)7 (D) = Py,

For this purpose for v € I¥ we calculate as follows

(@ o f)*(2q(7) = Po(As. (P o f)(s)(7)) = Po(As. Py(s)(7))
= minueq X 1(s) - Prs)(7)
= minyeq X 4(8) - minyep(s) (¥, 7)
o min,eq minper, f(s) Xs 4(8) - (A
= Ming,eq Milper, f(s) (s 1(5)h(s
= min,enr, (¥,7) = minyeia, (v, 7)
= (I)TMf (7)

where (x) follows from the fact that for every s € S we may choose an h(s) €

f(s) with (h(s),7) = min,e s (v, 7).
The particular case follows from the fact that >, u(s)h(s) < S,v(s)h(s)
whenever p < v.

Thus, according to this lemma u' € f7(Q) iff its is above some subconvex
combination Y u(s) - h(s) of possible results h(s) € f(s) where the weights
are given by some p € Q.

10



An immediate consequence of Lemma 9 is the following explicitation of the
semantics of sequential compositions of programs

1P Pil(s) = [P (IPD(s)) = qu@h(s) we[Al(s)h e H[[Pz]](s>}

which is taken as a defining clause of the state transformer semantics presented
in [MM] (Def. 5.4.7 on p. 140).

4 From state to predicate transformer semantics

The idea of predicate transformer semantics is to consider instead of f : S — .S
(thought of as the meaning of a total deterministic program) the function
¥/ 85 — B where ¥ = {0, 1} is the Sierpinski space of truth values. The
advantage of such a view is that it is closer to reasoning about programs than
its direct semantics because A C X/ (B) iff for all s € A the result f(s) € B,
usually denoted as {A} f{B}. Thus ¥/(B) is the weakest precondition guaran-
teeing that the execution of the program denoting f results in a state which is
an element of B. Predicate transformers 7' : ¥° — ¥ with T = %/ for some
f:S — S can be characterised as those maps ¥° — ¥ such that ® preserves
arbitrary suprema and finite infima.

The intention of this section is to study predicate transformer semantics for
programs in the language £, and how to derive it from its direct semantics.
Recall from the previous section that the interpretation of an £, program is
a function S — PyV(S) which by Proposition 20 may be identified with a
function f : S — G(S) C [I¥ — 1] which uniquely corresponds to a Scott-
continuous function Wp(f) : I° — I as described in the following theorem.

Theorem 10 The function Wp : [S — G(S)] — [I° — I°] with Wp(f)(7)(s) =
f(s)(7y) is Scott-continuous and one-to-one. The image of Wp consists precisely
of those Scott-continuous functions T : I — I satisfying the conditions

(1) T(ry+1t8) > rT(y) +tT(3)
(2) T(ry+t1) <rT(y)+t1

for ally,3 €1° and r,t € 1 withr+t < 1. We write PT for the image of Wp.

PROOF. The function Wp(f) is Scott-continuous since it is A-definable and
for the same reason the function Wp itself is Scott-continuous, too.

A function T : I¥ — I is in the image of Wp iff for all s € S the function
M. T(7)(s) € G(S) which is equivalent to the conditions (1) and (2) which

11



express precisely this requirement.

For f : S — PyV(S) the associated predicate transformer Wp(® o f) is also
denoted as Wp(f) and can be described explicitly as follows.

Corollary 11 For f: S — PyV(S) we have

Wp(f)(7)(s) = Wp(® 0 /)(7)(s) = Dro(7) = inf (u,7)

for ally €1° and s € S.

In [MM] the elements of 19 are called expectations. We do not follow this
terminology because they have nothing to do with expectation values in the
sense of probability theory. Nor should elements of I° be thought of as prob-
ability distributions since in general they do not sum up to a number less or
equal 1. In our opinion only elements of the form Wp(f)(b) with b € {0,1}°
have an intuitive meaning? whereas the more general Wp(f)(3) with g € I°
have a merely auxiliary status because they arise as intermediate steps when
computing Wp([P; Q]) as in the subsequent Theorem 13.

The following Theorem 13 gives rise to a definition of a predicate transformer
semantics for £, which fully avoids any kind of powerdomains and thus makes
it easier to reason about £, programs and was introduced for this purpose in
[IMM] (for a variant of £ — p called pGCL). We think that the following Theo-
rem 13 gives a kind of “rational reconstruction” of this predicate transformer
semantics because it shows how it can be derived from the direct semantics
and the function Wp which are both well-motivated.

Definition 12 For an L, program P let wp(P) = Wp([P]) be the predicate
transformer associated with P.

Theorem 13 The following equations hold for wp and characterise it uniquely

<

p(a)(7) =voa

P(Ph Py ) = WP<P1) OWP(P2>

p(Pip® P2)(v) = p-wp(Py)(7) + (1—p) - wp(P2)(7)

P(PL]P2)(7) = wp(Pr)(7) Awp(FP)(7)
(
(

S

=

3

wp(cond(b, P, ,))(7) = (b Awp(P1)(7)) V (=b A wp(F,)(7))
wp(while(b, P))() = Minfix 5. (b Awp(P)(5)) V (=b A7)

2 namely as the probability that the program with direct semantics f terminates

with final state in b when started in state s

12



where A\ and \V stand for the pointwise infimum and supremum on I°, respec-
tively, (—b)(s) =1 —b(s) and MinfixX.E[X] stands for the least fixed point of
the Scott-continuous function A\X.E[X].

PROOF. The crucial cases are composition and the while-loop whereas all
other cases are straightforward and left to the reader. For sake of simplicity
we work rather on the side of G(S) than on the side of the more complicated
PuV(S) which does not do any damage since they are isomorphic by our
crucial Proposition 20.

For £,-programs P, and P» we have

wp(Pi; P2)(7)(s) = Wp([Pr; P2])(7)(s) = Wp([Po]* o [P])(7)(s)
= ([P]7 o [P)(s)(7) = [P]*([Pa] () (%)
= [Pl(s)(As. [ P2 (5) (7)) (by def. of (—)#)
= Wp([P])(Wp([2])(7))(s)
= (Wp([21]) o Wp([22]))) (7)(s)

Next we consider the case of while-loops. For v € I¥ we define the auxiliary
functions

hy(f) = Wp(f)(7)
K(f) = As:S.b(s) - FH(IPY(s)) + ~b(s) - n(s)
9(8) == (b Awp(P)(B)) V (=b A7)

One easily checks that h. is strict (i.e. preserves the least element) and the
diagram
h
g(S)S 47» ]IS
|
S S _ HS
G(5)° -

v

commutes from which it follows by Plotkin’s Lemma on least fixed point op-
erators (see [Plo] or [GHK™] I1-2.4) that

wp(while(b, P)) = h,(u(k)) = pu(g) = puB. (b Awp(P)(B)) V (=b A )

as desired.

13



A  Appendix: The Minkowski duality

Although for semantics the case of a countable set of states is the most relevant
one, the following developments hold for any set .S considered as a discrete set
without any topology or order.

We consider the linear subspace /> of the vector space RS consisting of all
bounded functions v: S — R. We equip this linear subspace with the topol-
ogy of pointwise convergence, that is, the topology induced from the product
topology on R® as in the preliminary section 2, and with the pointwise defined
order # < v iff 5(s) < 7(s) for all s € S. The graph of this order is closed.
The positive cone, i.e. the set of all nonnegative functions v € £, is denoted
by £°.

As before, we use the notation 1 for the constant function with value 1. Then
I¥ = {y € £ | v < 1} is a compact convex subset of the vector space (>
which is also closed under subconvex combinations.

In /> we consider the linear subspace ¢! of all functions p: S — R such that
Sses lp(s)] < 400 with the norm |u|; = Y .cq|p(s)|. However, we will not
consider the norm topology but instead the topology of pointwise convergence
as above. The positive cone, i.e. the set of all nonnegative functions v € ¢!, is
denoted by ¢} .

The set V(S) of subprobability distributions on S consists of all u € ¢} with
luh < 1.

Lemma 14 If A C (* is convez (resp. compact) then its saturation TA =
{yel>®]|~y>a for some a € A} is also convex (resp. closed).

PROOF. First consider a convex set A. If 71,75 € TA, then there are 3, 35 €
A with v > 1 and 5 > (. For 0 < p < 1, we then have py; + (1 — p)ye >
pBi+ (1 —p)By € A, whence py; + (1 — p)ye € TA.

When A is compact, consider a generalised sequence ; in TA (indexed by
some directed set I) converging to some . There are 3; € A with 3; < ; for
every . In the compact set A, the §; have a subsequence f3;; converging to
some 3 € A. As 3;; <, and as the graph of the order is closed, we conclude
that 8 = lim; 3;; <lim;~;, =+, whence v € TA.

Recall that a function f from a topological space X into R (or into a subset of
R) is lower semicontinuous if the set of all x € X such that f(z) > r is open
in X for every r € R. Next we show that, in our setting, lower semicontinuity
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is equivalent to Scott continuity, a fact that will be used subsequently without
further mention.

Lemma 15 An function f from (5 (E}H I, V(S), respectively) to R, is order
preserving and lower semicontinuous if and only if it s Scott-continuous.

PROOF. For the forward direction it suffices to notice that, if v is the
pointwise supremum of a directed family v; and if U is a basic open neigh-
borhood of 7, then +; € U for some i. For the reverse direction fix v and
consider an arbitrary r < f(v). For every finite subset F' of S of cardinal-
ity n define yp(s) = max(y(s) — £,0), whenever s € F, and yr(s) = 0,
else. Then v = supp yp. Since f is assumed to be Scott-continuous we have
f(v) = supp f(7F). Thus, there is an F' such that f(yg) > r. For all § > ~p,
we then have f((3) > r, as f is supposed to be order preserving, and the set
of all these (3 is a neighborhood of ~.

Let V. be any of the positive cones R, £, ¢} . Recall that a function f: V} —
R, is called

homogeneous if f(ry) =rf(vy) for all r € Ry,
superadditive if (v + 8) > f(7) + £(8),

superlinear if it is homogeneous and superadditive,
linear if f(ry +t8) =rf(vy) 4+ tf(B) whenever r,t € R,.

In V., consider the subset K = I, 1%, V(S), respectively, which is a closed lower
set also closed under subconvex combinations.

We want to apply the above terminology to functions g: K — I. As addition
and scalar multiplication lead out of K, we have to modify the definition in
the following way: A function ¢g: K — I is called

homogeneous if g(rvy) = rg(v) for all r € I,

0-concave if g(ry +t5) > rg(vy) + tg(3) whenever r,t € land r +¢ < 1,
superlinear if it is 0-concave and homogeneous,

linear if g(ry +tB) = rg(y) + tg(5) whenever r,t € I and r +t < 1.

Each homogeneous functional ¢g: K — I has a unique extension to a homoge-
neous functional g: V, — R,: for g € V. there is a v € K such that § = rvy
for some r € Ry, and if we set §(3) = rg(vy) this value is independent of the
choice of v in K because of homogeneity.

The extension g: V, — R, of a homogeneous functional g: K — I is super-
linear, linear, and Scott-continuous, respectively, if g is.
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Note that any superlinear functional f: V. — R, is order preserving. Indeed,
if 8<yin Vi, theny— 8 € Vi and f(8) < f(8) + /(v — B) < f(B+ (7 —
B3)) = f(7) by superlinearity. We conclude that every superlinear functional
g: K — I is order preserving, too, as such a g can be extended to a superlinear
functional on V.. All of this applies in particular to linear functionals.

Although being defined as a subspace of ¢5°, the cone ¢} should rather be
considered as the dual of /° and vice versa as described in Lemma 16. In
order to formulate this duality for every u € ¢} and every v € (3 consider

(1, 7) =D p(s)y(s)

which converges (absolutely) since |u(s)y(s)| < wu(s) and Y-, u(s) converges
by definition.

Lemma 16

(a) The mapping
(1, ) = (g y) s 5 X LT — Ry,
18 bilinear and Scott-continuous.

(b) For every Scott-continuous linear functional f: (5> — Ry there is a
(unique) € €' such that f(vy) = (u,v) and |u|; = f(1), and for ev-
ery Scott-continuous linear functional g: (1 — Ry there is a (unique)
v € 050 such that g(p) = (1, ).

PROOF. (a) Bilinearity is straightforward. For v € ¢5° and every finite sub-
set F© C S, we define v|p(s) = ~(s), whenever s € F, and v|r(s) = 0,
else. Similarly, we define u|r for p € £1. The function (u, ) — (u|r,v|r) =
Seer ii(s) - v(s) is continuous on £} x €. As (u,7) = Yeesu(s)v(s) =
sUpp Yoser p(s) - v(s) = supp{u|r, v|r), where F' ranges over all finite subsets
of S, the map (u,v) — (u,7): €4 x {2 — Ry is the (pointwise) supremum
of a directed family of continuous functions and hence lower semicontinuous,
whence Scott-continuous by Lemma 15.

(b) For every s € S, we denote by 7(s) the Dirac measure 7(s)(s) = 1 and
n(s)(t) = 0 for all t # s. Every v € {3 can be written in the form v =
supp Yoser 7(s)n(s), where F' ranges over all finite subsets of .S, and similarly
for every p € (1

Let f be a Scott-continuous linear functional on ¢5°. We define p(s) = f(n(s)).

Then f(7) = f(supp Xser 1(s)n(s)) = supp Xser v(s)ils) = Xoes V(s)u(s) =
(i, v), where we have used the Scott-continuity and the linearity of f. If we

choose v = 1, then |ul; = S,equ(s) = (u,1) = f(1) < 400, which shows
that p € €.
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Now let g be any Scott-continuous linear functional on ¢1. We define y(s) =
g(n(s)). Then y(s) > 0 and, for all 1 € €1, we have g(u) = g(supp Yoep 1(s)n(s)) =
t-

SUPg aer 1(5)11(5) = Sues #(3)7(5) = (1,7), where we have used the Seot
continuity and the linearity of g. Note that v € £*°. Indeed, if we had sup, v(s) =

+00, we could choose a sequence s, in S such that y(s,) > 22" and, for u
with u(s,) = 27" and u(s) = 0 for s different from all s,, we would have
g(p) = X, pw(sn)v(sn) > 32,277+ 22" > 400, a contradiction.

;From Lemma 16 we deduce a duality between I° and V(S) as follows.

Corollary 17

(a) The function
(11, 7) = () V(S) x I° — 1
15 bilinear and Scott-continuous.
(b) For every Scott-continuous linear functional f: 1° — 1, there is a (unique)
w € V(S) such that f(y) = (u,7) for all v € 1% and for every Scott-
continuous linear functional g: V(S) — 1 there is a (unique) v € I° such

that g(p) = (u,7y) for all u € V(S).

Note. Every Scott-continuous linear functional f: I° — I is not only lower
semicontinuous by Lemma 15, but also upper semicontinuous and hence con-
tinuous.

Indeed, let f: I — T be linear. If f(1) = 0 then f = 0 and there is nothing
to be shown. If f(1) > 0 we replace f by ﬁ - f and thus may suppose
w.l.o.g. that f(1) = 1. We then have f(y) = 1 — f(1 — v) by linearity for
all v € I. Let 7; be any downdirected family in I° and v = inf;¥;. Then
1 — ~; is an updirected family with supremum 1 — 7. Since f is assumed
as Scott-continuous we conclude f(1 — ) = sup,; f(1 — 7;). Hence f(v) =
1 - f(1—7~)=infi(1 - f(1 — 1)) = inf; f(73). Thus lower semicontinuity
implies upper semicontinuity.

There are discontinuous linear functionals f: I° — I, whenever S is infi-
nite. Indeed, if ¢ is a non-principal ultrafilter on S, then every v € I°
has a limit along U and v +— limy 7y is a linear functional which is not
lower semicontinuous; indeed, limy, 1|z = 0 for every finite subset F', whence
0 = supyp limy 1|p # limy supp 1|p = limy, 1 = 1.

In contrast most Scott-continuous linear functionals on V(S) are not upper
semicontinuous.

We now consider the powerdomain Py V(S) of all subsets of V(S) which are
nonempty, compact, convex and saturated (i.e. upper sets in V(5)).
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We want to extend the correspondence between elements of V(S) and Scott-
continuous linear functionals f: 1% — T (see corollary 17) to a Minkowski
type correspondence between the sets Q € PyV(S) and certain functionals
G: ¥ — L. In his seminal paper [Min], H. Minkowski has established a one-
to-one correspondence between compact convex sets in R? and superlinear
functionals on R3. There are many generalisations of Minkowski’s duality to
much more general situations (see e.g. [Tol]). But we could not find the result
that we need in the literature. In the following we proceed quite along the
same lines as Minkowski’s original result.

To every Q € PyV(S) we associate the functional &g =: I° — I defined by

®o(v) = Inf {u,7)

As pu — () is lower semicontinuous this function attains its minimum on
the compact set () so that we can write

d — mj
o(7) ggg(u, v)

Being the (pointwise) infimum of linear functionals, @ is superlinear and,
hence, order preserving. Moreover it has the following property:

(*) Gry+t1) <rG(y)+t forall B,y €1 and r,t € I withr+t <1
since ®q(ry+t1) = mingeq(r{y, p) +1(1, 1)) < minueq (v, p) +t = Po(y)+1.

Lemma 18 The functional ®¢ is Scott-continuous.

PROOF. We show that ® is lower semicontinuous. Fix v and consider any
r such that ®o(y) > r. Then, (u,v) > r for every p € Q. As (i,7y) — (1,7)
is lower semicontinuous, for every pu € @, there are neighborhoods U, of «
and V, of p such that (v,5) > r for all 5 € U, and all v € V. As Q is
compact, it is covered by finitely many V, ,...,V, . For the neighborhood
U=U, N---NU,, of v we then have (i, 5) > r for all 5 € U and all u € Q,
whence @ (f) = min,eq(p, 3) > r for all 5 € U.

Conversely, for a Scott-continuous superlinear functional G: I¥ — I satisfying
(*) let

Ve ={peV(S)| (1) = G(y) for all v € I°}
Lemma 19 V¢ is a compact, convex and saturated subset of V(.5).

PROOF. Clearly, ¥ is saturated. As G is superlinear, WU is convex. For the
compactness, it suffices to prove that W is closed in V(). Thus, take a net y;
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in U which converges to some p € V(S), that is, p(s) = lim; p;(s) for every s.
We want to show that (i, ) > G(¢) for all ¢ € I¥. Consider first elements ¢
with finite support, i.e., ¢ = > ,cp7sn(s) for a finite subset F of S and 7, € L.
Then (p, ) = Yeep p(s)rs = limy Xoep pi(s)rs = limi{ui, ) > G(p). An
arbitrary element ¢ € I° can be represented as the pointwise supremum of the
directed family ¢|r of its restrictions to finite subsets: ¢|r = Y .cp @(s)n(s).
As the functions G and ¢ — (u, @) are Scott-continuous, we obtain (u, p) =

(1, supp @|r) = supp(u, p|r) > supp G(¢|r) = G(supp ¢|r) = G(p).

We are now ready for the main result of this Appendix. In its proof we will use
the following two standard Hahn-Banach separation theorems (a convenient
reference is e.g. [DS, Theorem V.2.8 ff.]):

(a) If A is a closed convex and B an open convex subset disjoint from A in a
topological vector space V' then there exists a continuous linear functional
f:V — R and a real number r such that f(a) < r for all a € A and
r < f(b) for all b € B.

(b) If A is a closed convex subset of a locally convex topological vector space
V then for every b € V'\ A there is a continuous linear functional f: V' —
R such that f(b) < f(a) for all a € A.

Proposition 20 @) — ®o and G — V¢ are mutually inverse order isomor-
phisms between the collection PyV(S) of all nonempty compact convex upper
subsets of V(S) and the set G(S) of all Scott-continuous superlinear functionals
G: 1° — 1 satisfying condition ().

PROOF. We first prove that Q = ¥ (D) for every Q € PyV(S). Clearly,
Q) C U(dg). For the converse inclusion suppose that v ¢ ). The upper set
1Q generated by @ in ¢! is closed and convex by Lemma 14. By the above
mentioned Hahn-Banach separation theorem (b), there is a continuous linear
functional f on ¢ such that f(v) < f(u) for all 4 € 1Q.

We now show that f maps ¢} to R;. We choose a fixed y € Q. For every
s € S we have p + rn(s) € TQ and consequently f(v) < f(u+ rn(s)) =
f(p) + rf(n(s)) for all » > 0 which implies f(n(s)) > 0. By linearity it
follows that f(ZSGF rsn(s)) > 0 for every finite subset F' of S and ry > 0
for s € F. By continuity of f we conclude that f(px) > 0 for all p € ¢}.
As every continuous linear functional on ¢ is order preserving and lower
semicontinuous, hence Scott-continuous, Lemma 16 tells us that there is a
v € (3 such that f(p) = (u,~) for all p € ¢%. Replacing v by ~v (for a
sufficiently big m € N) we may suppose that v € I¥ and we have (v,v) < (i, 7)
for all p € @ and thus v & ¥(®g) as desired.
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Now suppose G': I¥ — T is a Scott-continuous superlinear functional satisfying
condition (x). We will show that G = ®(Vs), i.e. G(v) = inf,eu, (1, 7) =
inf{(11,7) | © € V(S),G < {u, =) on 19} for all v € I°. This obviously holds
if GG is constantly 0. Thus, let us assume w.l.o.g. that G is not constantly 0.
As by Corollary 17 the elements p € V(.S) are in a one-to-one correspondence
with the Scott-continuous linear functionals f: I¥ — I, we have to show that,
for all v € I°

G(y) = inf{f(v) | f: I¥ — I linear, Scott-continuous, and G' < f on I°}

For the proof we fix a v € I¥. We will show that every real number » > 0 with
G(y) < r < 1 there is a Scott-continuous linear functional f: 19 — I such
that G < f on 1% and f(y) <.

For this purpose we consider the unique homogeneous extension G: (2 — Ry
of G. The extended functional G is Scott-continuous, superlinear and satisfies
the inequality (x). We search for a linear functional f: ¢ — R, such that
G < f, f(y) < r and f(I°) C L. Replacing v by 17, we may suppose that
r=1.

We now form the line segment A = {(1 —t)y +t1 | t € [} connecting v
and 1, which is closed and convex, and the set U = {3 € (° | G(5) > 1}

~

which is nonempty since G and thus G is not constantly 0. As G is lower
semicontinuous, superlinear and, hence, order preserving U is a nonempty
open convex upper set. Furthermore, the set U is disjoint from A : indeed, if
B € Athen = (1 —t)y+t1 for some t € I for which it holds that

G(B) =G(1—tyy+t-1)

~

(1-t)G(y) +t by condition (x)
1

IN

~

as G(y) <1

IN

whence 3 € U. In (> we may apply the Hahn-Banach separation theorem (a)
cited above for disjoint open and closed convex sets and separation theorem (a)
cited above for disjoint open and closed convex sets and obtain a continuous
linear functional f on ¢ and a real number s such that f(3) < sforall 5 € A
and f() > s for all 5 € U. As in the first part of this proof one shows that
f(B) = 0 for every 8 > 0. Thus, the functional f is also monotonic on 3.
For 8 € I° we have 3 <1 € A, whence f(3) < f(1) < s. Since 0 < f(1) < s
we have 0 < s. If s were 0 then f would be constantly 0 on I® and thus also
constantly 0 on £5° which is impossible since U is nonempty. Thus, we have
shown that s > 0 and w.l.o.g. we may assume that s = 1. Finally we show
that G(3) < f(B3) for all 3 € I°. We proceed by showing something stronger,
namely that é(ﬁ) < f(B) for all § € ¢5°. Indeed, whenever @(ﬂ) > e > 0 then
G(2) > 1, whence 5 € U and consequently f(£) > 1, that is f(8) > e.

)
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Thus, we have also shown the existence of a linear f : I° — I with G < f from
which it follows that W is nonempty. For G constantly 0 we have that g =
V(S) and thus nonempty. From this observation together with Lemma 19 it
follows that V¢ € PyV(S) whenever G € G(.5).

Note. As for linear functionals, we have for superlinear functionals G: I¥ — 1
satisfying condition (x): If G is Scott-continuous then G is also upper semi-
continuous, hence continuous.

Indeed, for a Scott-continuous superlinear functional G': I¥ — I satisfying con-
dition (*) we have by Proposition 20 that G(vy) = inf ey, (i, 7). Thus G is the
(pointwise) infimum of the set of linear functionals v — (u,~) where u € Ug.
As these functionals are continuous their infimum is upper semicontinuous.

Note. For understanding condition (*) it might be helpful to notice that it is
equivalent to

(%) G(ry+1t8) <rG(v) +t8l

where |3l = sup, ((s) is the sup-norm of 3; for r = 0,¢ = 1 this implies
G(B) < |f|w, that is, G is dominated by the sup-norm functional. (Indeed, ()
implies (%) by considering the special case = 1. Conversely, as § < |G]1,
we have G(ry +10) < G(ry + t|8le1) < 7G(7) + 1]B]o by (¥).)
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