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General framework

Adapt methods of measure theory and functional analysis

- to continuous domains in the sense of D. S. Scott

- to a non Hausdorff setting

Slogan:

asymmetric topology → asymmetric functional analysis
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Why?
Domains as introduced by D.S. Scott for semantics of pro-
gramming languages can be viewed alternatively as order or
as topological structures. This point of view has been ex-
tended to more general topologies: Stably compact spaces
(A. Jung et al.), qcb-spaces (A. Simpson et al.)

All these spaces are far from being Hausdorff: They sub-
sume order through the specialisation order (x ≤ y iff
x ∈ cl({y}) which is to be viewed as an order of increasing
information (which introduces ’asymmetry’).

A sematics for systems comprising nondeterministic and
probabilistic features requires the development of power-
domain constructions (hyperspaces, probabilistic powerdo-
mains) for these spaces and to prove that they have the
desired properties.
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Some Philosophy
Continuous domains ∼=
an order theoretical abstraction of a situation where all
objects can be approximated from below by their relatively
compact (finitary) parts.

Scott-continuous functions ∼=
functions preserving approximation from below.

Effectivisation through an enumeration of a countable ’ba-
sis’ which allows to approximate ’computable’ objects by a
recursively enumerable set of their relatively compact parts
belonging to the basis.

Methods of topology and analysis based mainly on com-
pactness arguments are likely to carry over to the non-
Hausdorff situation, but not methods being based on com-
pleteness arguments.
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Distribution functions

Fact: For a (positive bounded Borel) measure µ on R its

distribution function F : R→ R+ defined by:

F (x) = µ(]−∞, x[)

has the following properties:

(i) F is strict: infx∈R F (x) = 0
(ii) F is bounded: supx∈R F (x) < +∞
(iii) F is monotone: x ≤ y ⇒ F (x) ≤ F (y)
(iv) F is lower semicontinuous: xi ↗ x⇒ F (xi)↗ F (x)

And every function with (i), (ii), (iii), (iv) is the distribution

of a unique measure on R.
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Choquet’s Theorem 1954
X a locally compact Hausdorff space,
O(X) the lattice of all open subsets U ,
K(X) the space of all nonempty compact subsets K with

the Vietoris topology generated by

�U = {K | K ⊆ U} and ♦U = {K | K ∩ U 6= ∅}

For a measure µ on the hyperspace K(X) its distribution
function F : O(X)→ R defined by F (U) = µ(�U)
has the following properties:

(i) F is strict: F (∅) = 0
(iii) F totally monotone: .....
(iv) F lower semicontinuous: Ui ↗ U ⇒ F (Ui)↗ F (U)

And every such function is the distribution of a uniquely
determined measure on K(X).
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Problem

For which spaces L can we characterize measures by their

distribution functions?

There is a long paper by A. Revuz in the Annales de

l’Institut Fourier 1956 dealing with this problem. The

spaces that Revuz is coming up with look very much like

continuous lattices.

Claim The setting of continuous lattices is appropriate to

deal with the above problem.
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Dcpo
= directed complete partially ordered set

= partially ordered set X in which every directed family xi
has a least upper bound x = supi xi; write xi ↗ x.

A map g : X → Y of dcpos is Scott-continuous if it is

(i) monotone: x ≤ y ⇒ f(x) ≤ f(y)
(ii) lower semicontinuous: xi ↗ x⇒ f(xi)↗ f(x)

This notion of continuity is equivalent to continuity with

respect to the Scott topology:

A subset C of a dcpo X is Scott-closed if

(i) x ≤ y, y ∈ C ⇒ x ∈ C
(ii) ∀i. xi ∈ C and xi ↗ x ⇒ x ∈ C.
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Continuous dcpos
For elements u and v of a dcpo we say

u� v (u is way-below v or u is relatively compact in v)

if xi ↗ x ≥ v implies u ≤ xi for some i.

A dcpo is said to be continuous if for every v, there is a

directed family ui � v such that ui ↗ v.

Example: R = R ∪ {+∞} is a continuous dcpo;

r � s iff r < s;

the Scott-open sets are the intervals ]r,+∞].

Example: For a locally compact space X,

O(X), the lattice of open subsets, is a continuous dcpo,

U � V iff there is a compact set K such that U ⊆ K ⊆ V .
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Measures and Valuations
Measure: m : B → R+
defined on a Boolean algebra B (of subsets of a set X)
finitely additive: A ∩B = ∅ ⇒ m(A ∪B) = m(A) +m(B)
countably additive: An ↗ A⇒ m(An)↗ m(A)
in addition to finite additivity provided B is a σ-algebra.

Valuation: m : L → R+
defined on a lattice L (of subsets of a set X or more gen-
erally a distributive lattice with a least element)

strict: m(∅) = 0
monotone: A ⊆ B ⇒ m(A) ≤ m(B)
modular: m(A ∪B) +m(A ∩B) = m(A) +m(B)

m is Scott-continuous if Ai ↗ A⇒ m(Ai)↗ m(A).
provided L is directed complete.
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Measures and Valuations (ctd)

For Boolean algebras, finitely additive measures and valu-

ations agree.

The notion of a valuation goes back to G. Birkhoff (1939)

for arbitrary lattices. Valuations and their relation to mea-

sures have been considered by G. Choquet (1955). As a

substitute for measures they are a standard tool in Ge-

ometric Probability Theory (Schneider, McMullen, Klain,

Rota).
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Valuations and Borel Measures
For a topological space X, let O(X) denote the lattice of

open subsets. The restriction of a Borel measure on X

to the open sets is a valuation on O(X), but not neces-

sarily Scott-continuous, only countably continuous (which

is equivalent to Scott-continuity if O(X) has a countable

basis).

Conversely, one may ask, whether a given Scott-continuous

valuation on O(X) can be extended to a Borel mesure.

For example, on a locally compact Hausdorff space every

regular Borel measure restricts to a Scott-continuous valu-

ation and, on a locally compact sober space, every Scott-

continuous valuation can be extended to a Borel measure

(Keimel-Lawson 2005).
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Choquet Domain Theoretically

Let L be a continuous dcpo which is a ∧-semilattice, H(L)

the lattice of Scott-closed subsets. For every Scott-continuous

valuation m on H(L), its distribution function

F : L→ R+ defined by F (x) = m(cl({x}))

has the following properties:

(i) F is strict: infx∈L F (x) = 0
(ii) F is bounded: supx∈L F (x) < +∞
(iii) F is totally monotone: ....
(iv) F is Scott-continuous: xi ↗ x⇒ F (xi)↗ F (x)

And every F with these properties is the distribution of a

uniquely defined Scott-continuous valuation on H(X).
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Proof: Discrete step

The closures of finite subsets E ⊆ L form a lattice B:

cl(E) ∪ cl(E′) = cl(E ∪ E′), cl(E) ∩ cl(E′) = cl(E ∧ E′)

Define m
(
cl({u})

)
= F (u)

m
(
cl({u1, . . . .un})

)
=∑

i F (ui) −
∑
i<j F (ui∧uj) +

∑
i<j<k F (ui∧uj∧uk) −+ . . .

Then m is a strict modular map on B. It is monotone,

hence, a valuation if and only if F is totally monotone,

that is, iff

u ≥ u1, . . . , un =⇒ F (u) ≥ m
(
cl({u1, . . . , un})

)
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Proof of Modularity

Let Xcl(E) denote the characteristic function of cl(E),

V the real vector space generated by the characteristic

functions Xcl({x}), x ∈ L. These characteristic functions are

linearly independent, hence a basis of the vector space V .

The function cl({x}) 7→ F (x) has a unique linear extension

F ∗ : V → R.

cl({u1, . . . , un}) =
⋃
i cl({ui}) = X \

⋂
i(X \ cl({ui}), so

Xcl(F ) = 1−
∏
i(1−Xcl({ui}))

=
∑
iXcl({ui}) −

∑
i<j Xcl({ui∧uj}) +− . . .

Thus, Xcl(E) ∈ V . Define m(cl(E)) = F ∗(Xcl(E)). Then m

is a valuation on the lattice B (because F ∗ is linear), and

m(cl(E)) = F ∗(Xcl(E)) =
∑
i F (ui)−

∑
i<j F (ui ∧ uj) +− . . . .
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Proof: Continuous extension
Basis of a continuous dcpo L: a subset B such that, for

every v ∈ L, there is a directed family (ui)i in B such that

ui � v for all i and ui ↗ v.

(Note. Such a family (ui)i is a ’Meister’: If wj ↗ v then,

for every j, there is an i such that ui ≤ vj.)

Basis Lemma For any monotone map m : B → R, the map

m∗ : L→ R defined by

m∗(v) = sup
i
m(ui) where ui ∈ B, ui � v, ui ↗ v

is Scott-continuous, and it is the greatest Scott-continuous

map ≤ m. If m∗(u) = m(u) for all u ∈ B, then m∗ is the

unique Scott-continuous extension of m.
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Proof: Continuous extension (ctd)
Lemma For a continuous dcpo L the set H(L) of all closed

subsets is a continuous lattice, the closures of finite subsets

E form a basis B and

cl(E)� C iff for each u ∈ E there is a v ∈ C with u� v.

Applying the Basis Lemma we obtain a Scott-continuous

m∗ : H(L)→ R by putting

m∗(C) = sup{m(cl(E)) | E ⊆ L finite , cl(E)� C}.
A continuitity argument shows that m∗ is a valuation.

Technical Lemma If F : L → R is Scott-continuous, then

m(cl(E)) = m∗(cl(E)) for every finite subset E of L.

This finishes the proof.
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Back to Choquet

We may choose for L the lattice O(X) of open subsets of

a locally compact space X. Our theorem yields a bijection

between

strict, totally monotone Scott-continuous F : O(X) → R
and

Scott-continuous valuations on H(O(X)) ∼= O(K(X)) as is

not difficult to see.

But our result includes locally compact spaces that need

not be Hausdorff provided one chooses the appropriate def-

inition of local compactness (every point has a neighbor-

hood basis of compact neighborhoods) and the appropriate

class of compact sets (compact saturated sets).
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Conclusion
I must have convinced you that domain theoretical ideas
are useful to deal with classical arguments in analysis as
far as they are based on compactness arguments and to
extend them to non Hausdorff asituations.

We are just writing down the Choquet type theorems for
the usual powerdomains in semantics: demonic, angelic,
erratic.

The construction contains more potential to be exploited:

- The continuous domains need not be directed complete.

- Integrals of lower semicontinuous functions should be di-
rectly definable by a completion of the vector space V gen-
erated by the characteristic functions.
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Lower SemiContinuous Functions

A Scott-continuous valuation m on O(X) will simply be

called a valuation on X. We denote by V (X) the set of all

valuations on X.

f : X → R+ is lower semicontinuous (lsc, for short) if

[f(x) > r] = {x ∈ X|f(x) > r} is open for all r. Denote by

LSC(X) the set of all these lsc functions.

f, f ′ ∈ LSC(X)⇒ f +f ′ ∈ LSC(X), rf ∈ LSC(X) for r ≥ 0,

m,m′ ∈ V (X)⇒ m+m′ ∈ V (X), rm ∈ V (X) for r ≥ 0.

We say the V(X) and LSC(X) are cones. With respect to

the pointwise defined orders LSC(X) and V (X) are dcpos.
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The Choquet Integral
For ∈ LSC(X) and m ∈ V (X), the function r 7→ m([f(x) >

r]) : R+ → R+ is monotione decreasing and, hence, has an

(improper) Rieman integral and we define∫
fdm =

∫ ∞
0

m([f(x) > r])dr

Riesz Representation Theorem For every fixed m ∈ V (X),

the map f 7→
∫
fdm : LSC(X) → R+ is linear and Scott-

continuous. For every linear Scott-continuous map M :

LSC(X) → R+, there is an m ∈ V (X) such that M(f) =∫
fdm for all f ∈ LSC(X).

Theorem For every fixed f ∈ LSC(X), the map f 7→∫
fdm : V (X) → R+ is linear and Scott-continuous. For

every linear Scott-continuous map F : V (X)→ R+, there is
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The Choquet Integral
an f ∈ LSC(X) such that F (m) =

∫
fdm for all m ∈ V (X),

provided that X is a continuous dcpo with the Scott topol-

ogy.

The second partof the previous theorem is not true for ar-

bitrary spaces. We have to endow V (X) with a coarser

topology, the weak∗topology, which is the coarsest topol-

ogy such that the maps m 7→
∫
fdm : V (X) → R+ are

continuous for every f ∈ LSC(X):

Schröder-Simpson-Theorem For any topological space

X endow V (X) with the weak∗topology. Then, for every

lower semicontinuous linear functional F : V (X) → R+,

there is an f ∈ LSC(X) such that F (m) =
∫
fdm for all

m ∈ V (X).
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