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1 Introduction

The problem that has motivated the investigations in this paper comes from denotational semantics of programming
languages. Every program has a type; with every typeσ one associates a semantic domainDσ; programs of typeσ are
interpreted by elements ofDσ. If one adds a feature to a programming languages, it has to be modelled by an adequate
construction on the semantic domains. This construction has to be free in a certain sense so that the model does not have
properties not intended in the language. It has turned out that the category theoretical notion of amonadcaptures well
this requirement of freeness (see [2]). But having a free construction, one would like to know the structures for which the
construction is free, that is, one would like to characterize the(Eilenberg-Moore) algebrasof the monad.

We are concerned with languages having probabilistic features. Adding probabilistic choice to a deterministic lan-
guage requires the construction of aprobabilistic powerdomainPD over every semantic domainD. This powerdomain
may consist of some kind of probability measures onD, but more often of subprobabilities, i.e., positive measuresµ with
total massµ(D) ≤ 1 the difference1− µ(D) expressing the probability of nontermination of the program denoted byµ.
We denote byM≤1D thesubprobabilistic powerdomain.

Most categories used in denotational semantics are of a topological nature. One of them is the category of stably
compact spaces and continuous maps. In [5], Cohen, Escardo and the author began with the investigation of the Eilenberg-
Moore algebras of the extended probabilistic powerdomain monad over this category. The problem turned out to be
difficult.

As a first step, in [11], the author attacked a simpler more classical problem. He considered the category of or-
dered compact spacesX and order-preserving continuous maps in the sense of Nachbin [15]. ThenPX is the space of
probability measures with the vague topology and thestochastic orderintroduced by Edwards [6]. The algebras were
characterized to be the compact convex subsets of ordered locally convex topological vector spaces. This extends an old
result by Swirszcz [21] on the algebras of the monad of probability measures over compact Hausdorff spaces (without or-
der). The proof in [10] was inspired by a proof for Swirszcz’s result reproduced by Semadeni [20] and this proof required
quite some functional analytic tools.

In this paper we achieve the following: 1 - We reprove the above result from [10] and extend it to the subprobabilistic
case (see Section 8). 2 - We develop topological tools which avoid the use of functional analysis (see Section 2. For this,
we build on previous results by Lawson and Madison [12, 13] in the unordered case. We hope that the more topological
approach may be useful for the stably compact case, as in the non-Hausdorff case functional analytic methods do not apply
readily. 3 - The algebras of the (sub)probabilistic powerdomain monad inherit the barycentric operations that satisfy the
same equational laws as those in vector spaces. We show that it is convenient first to embed these abstract convex sets in
abstract cones which are easier to handle. 4 - Our embedding theorems for abstract ordered locally compact cones and
compact convex sets in ordered topological vector spaces are of interest in themselves (see Section 6).

For the connection between the problem for stably compact spaces and the more classical problem discussed here we
refer to the concluding section in [11]. Stably compact spaces and their relation to ordered compact spaces are discussed
in detail in [7].

The category theoretic notions of a monad and its Eilenberg-Moore algebras are used without further explanation. The
relevant background information can be found in standard books on category theory as, for example, [14].

R, R+ andI denote the reals, the nonnegative reals and the unit interval[0, 1], respectively, with their usual order and
topology. Our vector spaces are always meant to be vector spaces over the reals.
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2 A topological Lemma

It is a classical question in general topology under which conditions the quotient spaceX/∼= of a topological spaceX
modulo an equivalence relation∼= satisfies the Hausdorff separation axiom. As a spaceY is Hausdorff if and only if the
diagonal∆ is closed in the product spaceY ×Y , a necessary condition is that the graphG∼= = {(x, y) ∈ X×X | x ∼= y}
of the equivalence relation is closed. IfX is a compact Hausdorff space, this condition is also sufficient. In Bourbaki [3,
§10, Exercise 19] one finds the following nontrivial generalisation:

Lemma 2.1. LetX be a locally compact,σ-compact Hausdorff space. If∼= is an equivalence relation the graph of which
is closed inX ×X, then the quotient spaceX/∼= satisfies the Hausdorff separation axiom.

Bourbaki also provides a hint to a counterexample that shows that the lemma becomes wrong if the hypothesis of
σ-compactness is omitted. We will prove a variant of Bourbaki’s Lemma below.

We consider a topological spaceX with a preorder ., that is, a reflexive transitive relation. If the graphG. =
{(x, y) | x . y} is closed inX × X, we say thatX is a preordered topological spaceaccording to Nachbin [15].
Associated with the preorder. is the equivalence relationx ∼= y iff x . y andy . x. If the graph of the preorder is
closed inX ×X, the same holds for the graphG∼= of the associated equivalence relation. The quotientX/∼= is partially
ordered bỹx ≤ ỹ iff x . y, wherex̃ denotes the equivalence class ofx. Recall that a partial order is an antisymmetric
preorder. We ask the question whether the quotient spaceX/∼= with the quotient order≤ is an ordered topological
space, i.e., whether the graphG≤ of the partial order is closed inX/∼= ×X/∼=. Before giving an answer we need some
preparations.

The following lemma has been proved by Nachbin for spaces with a closed partial order [15, Proposition 4 and
Theorem 4]. His proof carries over to arbitrary closed binary relations:

Lemma 2.2. LetX be a topological space with a binary relation the graphG of which is closed.
(a) For any compact subsetK, thelower setand theupper set

↓K =def {x ∈ X | (x, b) ∈ G for someb ∈ K}

↑K =def {x ∈ X | (b, x) ∈ G for someb ∈ K}
generated byK are closed inX.

(b) If X is a compact Hausdorff space and ifA andB are closed subsets ofX such that(A×B)∩G = ∅, then there
are closed neighbourhoodsU andV ofA andB, respectively, such that(U × V ) ∩G = ∅.

Proof. (a) Supposea 6∈ ↓K. Then, (a, b) 6∈ G for all b ∈ K. As G is closed, for everyb ∈ K, there are open
neighbourhoodsUb andVb for a andb, respectively, such thatUb × Vb ∩ G = ∅. As the compact setK is contained in
the union of the open setsVb, b ∈ K, there is a finite subsetF of K such thatK is contained in the unionV of theVb,
b ∈ F . The intersectionU of the finitely many open setsUb, b ∈ F , is an open neighbourhood ofa again. Moreover,
U × V ∩G = ∅ which impliesU ×K ∩G = ∅. We have found an open neighborhoodU of a disjoint from↓K. As this
can be done for alla 6∈ ↓K, we have shown that↓K is closed.

(b) Suppose that, for every closed neighbourhoodU ofA and every closed neighborhoodV ofB, one hasU×V ∩G 6=
∅, then the sets of this form constitute a filter basis of nonempty closed sets which, in the compact spaceX × X, has a
nonempty intersection. Let(x, y) be an element in this intersection. Thenx belongs to every closed neighbourhoodU
of A. AsA is the intersection of its closed neighbourhoods, we inferx ∈ A. Similarly one shows thaty ∈ B whence
(x, y) ∈ A×B ∩G which contradicts the hypothesis.

The conclusion in the preceding lemma can be strengthened if the relationG is a preorder:

Corollary 2.3. LetX be a compact Hausdorff space with a preorder. the graph of which is closed inX × X. LetA
andB be closed subsets ofX such thata 6. b for all a ∈ A and allb ∈ B. Then there are disjoint closed neighbourhoods
U andV ofA andB, respectively, whereU is an upper andV a lower set.

Proof. From Lemma 2.2(b) we obtain closed neighborhoodsU andV of A andB, respectively, such thatu 6. v for all
u ∈ U and allv ∈ V . By reflexivity,U ⊆ ↑U andV ⊆ ↓V . The sets↑U and↓V are closed by Lemma 2.2(a). Using
transitivity we obtain that↑U and↓V are disjoint.

We now are prepared to prove the crucial generalisation of Bourbaki’s lemma 2.1 above:

Main Lemma 2.4. LetX be a locally compact,σ-compact Hausdorff space with a preorder. the graph of which is
closed inX ×X. Let∼= be the equivalence relation associated with the preorder., i.e.,a ∼= b iff a . b andb . a. Then
the graph of the quotient order≤ on the quotient spaceX/∼= is closed.
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Proof. It suffices to consider arbitrary elementsa, b in X with a 6. b and to show that there are disjoint open neighbor-
hoodsV,W of a, b, respectively, withV = ↑V andW = ↓W .

Thus, leta 6. b in X. Using the hypotheses of local compactness andσ-compactness we may find a sequence(Un)n

of relatively compact open set coveringX such thatUn ⊆ Un+1 (see [3,§9, Proposition 15]). We may suppose that
a, b ∈ U0. By Corollary 2.3 applied to the compact Hausdorff spaceU0, we may find insideU0 disjoint closed relative
neighbourhoodsV0,W0 of a, b, respectively, whereV0 is an upper andW0 a lower subset ofU0. We now form the upper
set↑V0 and the lower set↓W0 inX, and we consider the sets↑V0∩U1 and↓W0∩U1. Again by Corollary 2.3 now applied
to the compact Hausdorff spaceU1, we may find insideU1 disjoint closed relative neighbourhoodsV1,W1 of ↑V0 ∩ U1

and↓W0 ∩ U1, respectively, whereV1 is an upper andW1 a lower subset ofU1. Recursively, we may find

setsVn,Wn ⊆ Un which are closed and disjoint,
Vn is an upper andWn a lower set inUn,
insideUn+1, Vn+1 is a relative neighbourhood of↑Vn ∩ Un+1 andWn+1 a neighbourhood of↓Wn ∩ Un+1.

From the construction it follows that the sequences(Vn) and(Wn) are increasing. We now form the setsV =
⋃

n ↑Vn

andW =
⋃

n ↓Wn. Clearly,V is an upper set andW a lower set disjoint fromV . It remains to show thatV andW are
open. Indeed, letx ∈ V . We can find ann such that bothx ∈ Un andx ∈ ↑Vn. By construction,Vn+1 is a neighbourhood
of ↑Vn ∩Un+1 relative toUn+1. Asx belongs toUn which is open inX, Vn+1 is a neighbourhood ofx in X. This shows
thatV is a neighbourhood of each of its points.

3 Cones and convex sets

In a real vector spaceV a subsetC is understood to be acone, if x + y ∈ C andra ∈ C for all a, b ∈ C and every
nonnegative real numberr. A subsetA is convex, if (1 − p)a + pb ∈ A for all a, b ∈ A and every real numberp with
0 ≤ p ≤ 1. We generalise to an abstract notion of a cone:

Definition . An abstract coneis a setC with an addition(x, y) 7→ x + y : C × C → C, which is commutative and
associative and admits a neutral element0, and a multiplication by nonnegative real numbers(r, x) 7→ r ·x : R+×C → C
satisfying the same equational laws as vector spaces (see, e.g., [10]), i.e., for allx, y, z ∈ C and allr, s ∈ R+:

x+ (y + z) = (x+ y) + z
x+ y = y + x
x+ 0 = x

r · (x+ y) = r · x+ r · y
(r + s) · x = r · x+ s · x

(rs) · x = r · (s · x)
1 · x = x
0 · x = 0

A mapf : C → D between cones is said to belinear if for all x, y ∈ C and allr ∈ R+:

f(x+ y) = f(x) + f(y)
f(r · x) = r · f(x)

A subsetA of a vector space or, more generally, of an abstract cone isconvex, if (1 − p)a + pb ∈ A for all a, b ∈ A
and every real numberp with 0 ≤ p ≤ 1. They are abstract convex sets in the following sense:

Definition . An abstract convex setor barycentric algebrais a setA endowed with a binary operationa+p b for everyp
in the unit intervalI = [0, 1] such that the following equational laws hold, wherep′ = 1− p:

a+1 b = b
a+p a = a
a+p b = b+p′ a

(a+q b) +p c = a+(p′q′)′ (b+ p
(p′q′)′

c)

A mapf : A→ B between barycentric algebras isaffineif for all a, b ∈ A and0 ≤ p ≤ 1:

f(a+p b) = f(a) +p f(b)

3



Cones and convex sets in vector spaces satisfy these laws witha+p b = (1− p)a+ pb, as one easily verifies. Not all
abstract cones are embeddable in vector spaces. For example, any∨-semilatticeC with a smallest element0 becomes a
cone if we definea+ b =def a∨ b andra =def a, if r > 0, andra =def 0, if r = 0. Similarly, every∨-semilattice can be
viewed as a barycentric algebra witha+p b = a ∨ b for 0 < p < 1.

An abstract coneC is embeddable in a real vector spaceV if and only if it satisfies the followingcancellation property:

(C) a+ b = a+ c =⇒ b = c

Clearly a cone in a vector space satisfies this property. For the converse one uses the following:

Standard construction 3.1. We define a relation∼= onC × C by

(a, b) ∼= (a′, b′) ⇐⇒ a+ b′ = a′ + b

The relation∼= is an equivalence relation, if we suppose the cancellation axiom (C) to hold (which is needed for transi-
tivity). Moreover,∼= is a congruence relation, i.e., compatible with addition and scalar multiplication, and the quotient
V =def C × C/∼= is a vector space. We have a natural linear embeddingη : C → V given byη(a) = ã, the congruence
class of(a, 0) mod∼=.

W. Neumann [16] has shown that a barycentric algebraA is embeddable in a real vector space as a convex set in such
a way thata+p b becomes(1− p)a+ pb if and only if the following cancellation axiom holds inA:

(C′) For everyp with 0 < p < 1, a+p b = a+p c =⇒ b = c

Calculations in barycentric algebras are tedious. We show that every barycentric algebraA is embeddable as a convex
subset in an abstract coneCA by the following:

Standard construction 3.2. For a given barycentric algebraA, let

CA =def {0} ∪ {(r, a) | 0 < r ∈ R, a ∈ A} = {0} ∪ (]0,+∞[×A)

Define addition and multiplication with scalarsr > 0 by:

(r, a) + (s, b) =def (r + s, a+ s
r+s

b), r(s, a) =def (rs, a)

For r = 0, one putsr(s, a) = 0 and addition with0 is defined in the obvious way. Simple calculations show:
CA becomes a cone and the mape = a 7→ (1, a) is an injection ofA into CA in such a way thate(a +r b) =

(1− r)a+ rb. The cancellation axiom (C) holds inCA if and only if (C’) holds inA.
Thus the question of embeddability of barycentric algebras in vector spaces is reduced to the embedding of cones in

vector spaces. We will identify the elementsa ∈ A with the elements(1, a) ∈ CA thus identifyingA with the convex
subset1 × A of CA. In this wayA becomes abaseof the coneCA in the sense thatA is convex and that every element
x = (r, a) 6= 0 in CA can be written in the formx = ra, wherer anda are uniquely determined byx.

4 Ordered cones and ordered convex sets

Definition . (a) Anordered abstract coneis an abstract coneC with a partial order≤ the graph of which is a subcone of
C × C which is equivalent to the axioma ≤ b =⇒ a+ c ≤ b+ c andra ≤ rb for all r ∈ R+.

(b) An ordered barycentric algebrais a barycentric algebraA with a partial order≤ such that the barycentric opera-
tionsa+p b are order preserving for everyp ∈ I.

As every vector space is a cone, the above definition of an ordered cone yields a notion of an ordered vector space
which is the usual one (see [19, Ch. V.1]). Every subcone and every convex subset of an ordered vector space becomes
an ordered cone and an ordered barycentric algebra, respectively, with respect to the induced order.

An ordered abstract cone can be embedded in an ordered vector space if and only if its satisfies the followingorder
cancellation axiom:

(OC) a+ b ≤ a+ c =⇒ b ≤ c

This axiom is cleary satisfied in subcones of ordered cones. For the converse we continue with the standard construction
for cones from Section 2:
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Standard construction 4.1. For an ordered abstract cone we define a relation. onC × C by:

(a, b) . (a′, b′) ⇐⇒ a+ b′ ≤ a′ + b

Supposing order cancellation, the relation. onC ×C is a preorder compatible with addition and scalar multiplication.
The associated equivalence relation is the relation∼= from 3.1. On the vector spaceV = C × C/∼= the quotient order

(̃a, b) ≤V (̃a′, b′) iff (a, b) . (a′, b′) is a partial order such thatV becomes an ordered vector space. The canonical
injectionη : C → V is not only linear but also an order embedding.

An ordered barycentric algebraA can be embedded in an ordered abstract cone:

Standard construction 4.2. We use the embedding ofA in the abstract coneCA as in 3.2 and we extend the order onA
by defining an order≤ onCA by 0 ≤ 0 and:

ra ≤ sb ⇐⇒ r = s anda ≤ b in A

With this order,CA becomes an ordered abstract cone. The order cancellation axiom (OC) holds in the coneCA if and
only if the following order cancellation axiom holds inA for everyp > 0:

(OC′) a+p b ≤ a+p c =⇒ b ≤ c

Thus, an ordered barycentric algebra can be embedded in an ordered vector space if and only if it satisfies order cancel-
lation.

5 Topological cones and convex sets

Definition . (a) A topological abstract coneis an abstract coneC with a topology such that addition(x, y) → x+y : C×
C → C and scalar multiplication(r, x) → rx : R+ × C → C are continuous.

(b) A topological barycentric algebrais a barycentric algebraA with a topology such that the map(r, a, b) 7→
a+r b : I×A×A→ A is continuous.

Cones and convex sets in topological vector spaces are topological cones and topological barycentric algebras, re-
spectively, for the induced topology. The embeddability of topological abstract cones into topological vector spaces is a
difficult question that cannot be answered in general. We will heavily rely on results due to Lawson and Madison [13].

The following lemma follows from [11, Corollary 4.2]; alternatively, it also follows from Lemma 6.1 for which we
give a simple proof below:

Lemma 5.1. Every Hausdorff topological abstract cone satisfies the cancellation axiom (C).

The following Theorem is a slight strengthening of results due to Lawson and Madison [13, Corollary 2.4, Theorem
3.1 and Theorem 3.2] in as far as, by Lemma 5.1, we can drop their hypothesis that the cone satisfies the cancellation
axiom:

Theorem 5.2. LetC be a locally compact Hausdorff topological abstract cone. ThenC is σ-compact and satisfies the
cancellation property(C). The vector spaceV = C × C/∼= with the quotient topology is a topological vector space and
the canonical mapη : C → V is a linear topological embedding.

Of course, one wants to know under which conditions an ordered locally compact cone can be embedded in a locally
convex topological vector space. For topological cones and barycentric algebras there are various notions of local con-
vexity. They have been proved to be equivalent for locally compact Hausdorff topological cones by Lawson [12]. Thus,
we choose the formally weakest among them:

Definition . A topological abstract cone [barycentric algebra]C is calledweakly locally convexif each of its points has a
basis of convex neighbourhoods.

A result due to Lawson [12, Theorem 5.3] tells us:

Theorem 5.3. For every weakly locally convex, locally compact Hausdorff topological coneC, the vector spaceV =
C × C/∼= with the quotient topology is a locally convex topological vector space.
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In fact, Lawson supposed his cone to satisfy the cancellation axiom, a hypotheis which we may drop because of
Lemma 5.1.

Standard construction 5.4. The standard embedding of a barycentric algebraA into a coneCA (see 3.2) can be extended
to a topological embedding of a topological barycentric algebraA into a topological cone by defining the following
topology onCA: On the points ofCA different from0 we take the product topology of]0,+∞[×A and as a neighborhood
basis of0 we take the sets of the form0 ∪ (]0, ε[×A) = 0 ∪ {ra | 0 < r < ε, a ∈ A}. Note thatA is embedded inC as a
closed subset. IfA is compact Hausdorff, thenCA is locally compact Hausdorff, and ifA is weakly locally convex, then
CA also is (compare [12, Proposition 2.1]). From the above Theorems 5.2 and 5.3 one immediately deduces:

Corollary 5.5. Every compact Hausdorff topological barycentric algebraA is affinely and topologically embeddable in
a topological vector spaceV which is locally convex, ifA is weakly locally convex.

This is just a slight generalisation of Lawson’s [12, Corollary 4.2], as we can omit the hypothesis that cancellation
holds inA.

6 Ordered topological cones and convex sets

We now mix order and topology. It is our aim to generalise the results of the previous section to ordered topological cones
and ordered topological barycentric algebras:

Definition . An ordered topological abstract cone[ordered topological barycentric algebra] is an abstract cone [a
barycentric algebra]C with an order≤ and a topology such that the graph

G≤ = {(a, b) | a ≤ b}

of the order is closed inC × C and such thatC is both an ordered and a topological abstract cone [barycentric algebra,
respectively].

The above definition applied in the special case of vector spaces yields the usual notion of an ordered topological
vector space (see [19, Ch. V.4]). As in any ordered topological space, the topology of an ordered topological cone and
of an ordered topological barycentric algebra is Hausdorff (see Nachbin [15]). The following is a consequence of [11,
Proposition 4.1]; here we give a simpler independent proof:

Lemma 6.1. Every ordered topological abstract cone satisfies the order cancellation axiom (OC).

Proof. Let indeeda + b ≤ a + c. Then 1
2 (a + b) ≤ 1

2 (a + b), whence1
2a + b = 1

2 (a + b) + 1
2b ≤

1
2 (a + c) + 1

2b =
1
2 (a + b) + 1

2c ≤
1
2 (a + c) + 1

2c = 1
2a + c. Repeating this argument we obtain12n a + b ≤ 1

2n a + c for every natural
numbern. Forn → +∞ we deduceb ≤ c using the continuity of addition and scalar multiplication and the closedness
of the graph of the order.

We now consider an ordered locally compact abstract coneC. By Lemma 6.1 the order cancellation axiom holds in
C. Therefore we may consider the preorder. onC × C as in 4.1 and the associated equivalence relation∼=:

Theorem 6.2. For an ordered locally compact topological abstract coneC, the vector spaceV = C × C/∼= with the
quotient topology and the quotient order≤V is an ordered topological vector space and the canonical mapη : C → V is
a linear topological order embedding. IfC is weakly locally convex,V is locally convex.

Proof. From Theorem 5.2 we know thatV is a topological vector space which by 5.3 is locally convex, ifC is weakly
locally convex. In order to prove thatV is an ordered topological vector space, it suffices to show that the graph of the
quotient order≤V is closed inV × V .

We first remark that the graph of the preorder. onC × C is closed, as it is the preimage of the graph of the order≤
onC under the continuous map

(
(a, b), (a′, b′)

)
7→ (a + b′, a′ + b) : (C × C) × (C × C) → C × C and as the graph

of the order onC is closed inC × C. It follows that the graph of the equivalence relation∼= is also closed. We form the
quotientV = C ×C/∼=. AsC ×C is a locally compact Hausdorff topological cone, it isσ-compact (see 5.2). We apply
the Main Lemma 2.4 toX = C × C with the preorder. and we conclude that the graph of the quotient order≤V on
V = C × C/∼= is closed. Thus,V is an ordered topological vector space.
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Note that in the above proof also shows that the quotient topology onV is Hausdorff, a fact that was a major step in
the proof of Theorem 5.2 by Lawson and Madison.

We now turn to an ordered topological barycentric algebraA. Using the standard construction 4.2,A can be embedded
in an abstract coneCA which is also an ordered and a topological cone. As the graph of the order onCA is easily seen
to be closed,CA is an ordered topological cone. IfA is compact, thenCA is locally compact by Corollary 5.5 and we
conclude:

Lemma 6.3. Every ordered compact barycentric algebraA is embeddable as a base in an ordered locally compact
topological coneCA.

We may embed the ordered locally compact coneCA in an ordered topological vector space by Theorem 6.2. Com-
bining this embedding with the embedding ofA in CA, we have:

Corollary 6.4. Every ordered compact barycentric algebraA admits an affine topological order embedding in an ordered
topological vector spaceV . The vector spaceV can be chosen to be locally compact, ifA is weakly locally convex.

We turn to a slight modification of the previous considerations. We consider the equational characterisation of convex
subsets containing the origin0 in vector spaces:

Definition . A pointedbarycentric algebra is a barycentric algebraB together with a distinguished element0. A map
f : B → B′ between pointed barycentric algebras is called0-affine, if it is affine and iff(0) = 0.

It should be clear what we mean by pointed ordered, topological, ordered topological barycentric algebras, respec-
tively. Our embedding theorem is as follows:

Corollary 6.5. For every pointed ordered compact barycentric algebraB there is a 0-affine topological order embedding
in a topological vector spaceV , which can be chosen to be locally convex, ifB is weakly locally convex.

Proof. By Corollary 6.4, there is an affine, topological order embedding ofB into an ordered topological vector space
V , which can be chosen to be locally convex, ifB is weakly locally convex. If the distinguished element0 of B is not
mapped to zero but to an elementz ∈ V , we apply the shiftx 7→ x− z in V and we obtain the desired result.

7 The monad of [sub-]probability measures over compact Hausdorff spaces

In this section we develop the monad of subprobability measures along the same lines as the monad of probability mea-
sures in [11, Section 5]. Omitting the items between square brackets yields the previous results.

For compact Hausdorff spacesX, we shall use the following notations:

CX the Banach space of all real valued continuous functions onX with the topology of uniform convergence,
C+X the positive cone of all nonnegative functionsf ∈ CX,
MX the vector space of all signed regular Borel measures onX,
M+X the cone of positive regular Borel measures,
PX the set of probability measures, i.e., the positive regular Borel measuresϕ of total mass1,
sPX the set ofsubprobability measures, i.e., the positive regular Borel measuresϕ of total mass≤ 1.

By ≤ we denote onCX the usual pointwise defined order withC+X as positive cone and onMX the usual order of
measures withM+X as positive cone. Via the Riesz Representation Theorem we will identifyMX with the dual vector
space(CX)∗ of all bounded linear functionalsϕ onCX. Forϕ ∈ MX andf ∈ CX, we will write

〈ϕ, f〉 =
∫
fdϕ

for the natural bilinear mapMX × CX → R.
MX is a locally convex topological vector space with respect to theweak∗ topologyalso called thevague topology.

This is the coarsest topology onMX for which the linear mapsϕ 7→ 〈ϕ, f〉 are continuous for allf ∈ CX. On
MX,M+X,PX, sPX we will always consider the weak∗ topology.

Lemma 7.1. M+X is a locally compact cone inMX. The[sub-]probability measures form a[pointed] compact convex
subset[s]PX .
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The compactness of[s]PX follows from the weak∗ compactness of the dual unit ball inMX in which it is closed.
The local compactness ofM+X follows from the fact that with respect to the relative topologysPX = {ϕ ∈ M+X |
〈ϕ,1〉 ≤ 1} is a compact neighbourhood of everyϕ with 〈ϕ,1〉 < 1 . (Here1 denotes the constant function onX with
value 1).

Assigning the Dirac measureεX(x) to everyx ∈ X yields a continuous embedding

εX : X → PX ⊆ sPX ⊆ MX

Let us specialise and choose forX a [pointed] compact Hausdorff topological barycentric algebraK. By Corollaries
6.4 and 6.5 we can suppose thatK is a compact convex set [containing0] in a topological vector space. The continuous
[0-]affine real-valued functions onK form a uniformly closed linear subspaceA[◦]K of CK. Restricting everyϕ ∈ MK
to A[◦]K yields a surjective linear map

β
[◦]
K =def (ϕ 7→ ϕ|A[◦]K) : MK → (A[◦]K)∗

where(A[◦]K)∗ is the dual vector spaces of all bounded linear functionals onA[◦]K. The mapβ[◦]
K is continuous and

even a quotient maps for the respective weak∗ topologies.
ComposingεK with β

[◦]
K yields a continuous map fromK into (A[◦]K)∗. A point x ∈ K is mapped to the point

evaluationf 7→ f(x) : A[◦]K → R. We denote this point evaluation inx by x̃. The composed mapβ[◦]
K ◦ εK is [0-]affine

as〈εK(x +p y), f〉 = f(x +p y) = f(x) +p f(y) = 〈εK(x), f〉 +p 〈εK(y), f〉 [and 〈εK(0), f〉 = f(0) = 0] for all
f ∈ A[◦]K.

Suppose now thatK is a compact convex set [containing0] in a locally convex topological vector spaceV . Then the
continuous linear functionalsg : V → R separate the points ofK. Their restrictions toK are [0-]affine. This implies
that the mapβ[◦]

K ◦ εK : K → (A[◦]K)∗ is injective. Thus,K is topologically and [0-]affinely embedded into(A[◦]K)∗.
Hence-forward, we will identifyK with its imageK̃ in (A[◦]K)∗; i.e.,x ∈ K is identified withx̃ = β

[◦]
K (εK(x)).

We now use that every probability measure onK has a barycenter:

Theorem 7.2. [1, (2.13)]LetK be a compact convex set in a locally convex topological vector space. Then, for every
probability measureϕ ∈ PK, there is a uniquely determinedx ∈ K such that

〈ϕ, f〉 = f(x) for all f ∈ AK

The elementx is called thebarycenterofϕ.

As a corollary we get:

Corollary 7.3. LetK be a compact convex set containing0 in a locally convex topological vector space. Then, for every
subprobability measureϕ ∈ sPK, there is a uniquely determinedx ∈ K such that

〈ϕ, f〉 = f(x) for all f ∈ A◦K

The elementx is called themomentofϕ.

Proof. If ϕ = 0, then choosex = 0. If 0 6= ϕ ∈ sPK, let r = 〈ϕ,1〉. Then0 < r ≤ 1 andr−1ϕ is a probability
measure. By Theorem 7.2, there is a uniquey ∈ K such that〈r−1ϕ, f〉 = f(y) for all f ∈ AK. As the convex setK
contains0 and asr ≤ 1, the elementx = ry = (1 − r) · 0 + ry belongs toK and, for allf ∈ A◦K, we have indeed
〈ϕ, f〉 = rf(y) = f(ry) = f(x).

This theorem and its corollary tell us thatβ[◦]
K (ϕ) = x̃, wheneverϕ is a [sub-]probability measure andx its [moment]

barycenter. This implies thatβ[◦]
K maps[s]PK onto the imageK̃ of K. Thus, when restricted to[s]PK, β[◦]

K assigns its
[moment] barycenter to every [sub-]probability measure onK.

We can apply the preceding developments to the [pointed] compact convex setK = [s]PX of [sub-]probability
measures on a compact Hausdorff spaceX. We then obtain a surjective continuous0-affine map

µ◦X =def β
◦
sPX : sP sPX → sPX

and a surjective affine continuous map
µX =def βPX : PPX → PX

It is standard to deduce from the above:

8



Proposition 7.4. (sP, µ◦, ε) and (P, µ, ε) define monads over the categoryComp of compact Hausdorff spaces and
continuous maps.

The unitεX assigns the Dirac measureεX(x) to everyx ∈ X. The multiplicationµ◦X : sP sPX → sPX assigns
to each subprobability measureΦ on sPX its momentµX(Φ) ∈ sPX and similarly for the probabilistic case. From the
above, compact convex setsK [containing0] in locally convex topological vector spaces are easily seen to be Eilenberg-
Moore algebras of these respective monads with the [moment] barycentric mapβ

[◦]
K as structure map.

The following theorem is due to Swirszcz [21] in the probabilistic case. His proof as well as the proof of Semadeni
[20, Section 7] use functional analytic tools. In the next section we prove a generalisation (Theorem 8.5) based on the
topological methods developed in this paper.

Theorem 7.5. The Eilenberg-Moore algebras of the monad[s]P over the categoryComp of compact Hausdorff spaces
are the compact convex setsK [containing0] in locally convex topological vector spaces together with the[moment]
barycentric mapsβ[◦]

K as structure maps.

8 The [sub-]probabilistic powerdomain monad on compact ordered spaces

We now consider ordered compact spacesX in the sense of Nachbin [15], that is, setsX with a compact topology and a
partial order4 the graph of which is closed inX ×X. Recall that the topology of a compact ordered space satisfies the
Hausdorff separation axiom. We will denote byCompOrd the category of compact ordered spaces and order preserving
continuous maps. Forgetting the order yields a forgetful functor from the categoryCompOrd to the categoryComp of
compact Hausdorff spaces. On the other hand,Comp may be considered to be a full subcategory ofCompOrd by putting
the trivial order= on each compact Hausdorff space.

We denote byCmX the cone of all order preserving continuous functionsf : X → R. Clearly,CmX is uniformly
closed inCX. Using the Stone–Weierstraß Theorem, D. E. Edwards [6] (see also [4, Lemma 19]) has shown:

Lemma 8.1. The linear subspace ofCX generated by the coneCmX is uniformly dense inCX.

Following Edwards [6], we consider onMX thestochastic order4, a second order which is weaker than the the usual
order≤, the positive cone of which is the dual of the coneCmX:

0 4 ϕ if and only if 0 ≤ 〈ϕ, f〉 for all f ∈ CmX , i.e.,
ϕ 4 ψ if and only if 〈ϕ, f〉 ≤ 〈ψ, f〉 for all f ∈ CmX .

By its definition the positive cone for the order4 is weak∗-closed. As the linear subspace generated byCmX is
uniformly dense inCX by 8.1, this positive cone is indeed pointed. Thus,MX with the stochastic order is an ordered
locally convex topological vector space. Restricting the stochastic order to the compact convex sets[s]PX of [sub-
]probability measures yields a [pointed] ordered compact convex set.

In this section,sPX andPX will always be endowed with the stochastic order, although we do not express this by a
new notation.

We now consider two compact ordered spacesX andY and an order preserving continuous mapg : X → Y . It
induces a positive linear mapCg : CY → CX defined by(Cg)(f) = f ◦ g. If f is order preserving, thenf ◦ g is order
preserving, too. Thus,CmY is mapped intoCmX. The adjointMg : MX → MY , defined by(Mg)(ϕ) = ϕ ◦ Cg, is
linear and it preserves the orders≤ and4. As (Cg)(1) = 1 ◦ g = 1, Mg mapsM≤1X into M≤1Y andPX into PY .
Moreover,Mg is continuous for the respective weak∗ topologies.

Thus, for every ordered compact spaceX, the set[s]PX of [sub-]probability measures with the weak∗ topology
and the stochastic order4 is a [pointed] ordered compact barycentric algebra. Every order preserving continuous map
g : X → Y of compact ordered spaces induces a4-preserving continuous [0-]affine mapsPg =def Mg|sPX : sPX →
sPY andPg =def Mg|PX : PX → PY , respectively, and we have functorssP andP from the categoryCompOrd
of compact ordered spaces to the categories of [pointed] ordered compact barycentric algebras and order preserving
continuous [0-]affine functions.

In [11, Section 6] we have shown that(P, ε, µ) defines a monad over the categoryCompOrd. We extend this result
to sP now:

Lemma 8.2. [11, Lemma 6.2]The mapεX : X → [s]PX is not only a topological but also an order embedding.

The proof of the following lemma can be copied from [11, Lemma 6.3], only change affine to0-affine:
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Lemma 8.3. If K is a compact convex set [containing0] in an ordered locally convex topological vector space, then the
[moment] barycentric mapβ[◦]

K : [s]PK → K preserves the order4 .

We apply the preceding lemma to the [pointed] ordered compact convex setK = [s]PX of [sub-]probability
measures with the stochastic order over a compact ordered spaceX and we obtain that the multiplicationµ[

X◦] =
β

[◦]
[s]PX : [s]P [s]PX → sPX is also4-preserving. We summarize:

Proposition 8.4. ([s]P, ε, µ[◦]) is a monad over the category of compact ordered spaces and continuous order preserving
maps.

From the preceding we can infer that every compact convex setK containing0 in a locally convex ordered topological
vector space is an algebra of the monadsP with the moment mapβ◦K : sPK → K as structure map. Similarly, arbitrary
compact convex sets in a locally convex ordered topological vector spaces are algebras of the monadP. The converse also
holds:

Theorem 8.5. (a) The Eilenberg-Moore algebras of the subprobabilistic monad(sP, ε, µ◦) over the categoryCompOrd
of ordered compact spaces and continuous order preserving maps are the ordered compact convex sets containing0 in
locally convex ordered topological vector spaces.

(b) The Eilenberg-Moore algebras of the probabilistic monad(P, ε, µ) over the categoryCompOrd are the ordered
compact convex sets in ordered locally convex topological vector spaces.

Proof. (a) Let α : sPK → K be an algebra for the monadsP over the categoryCompOrd. Thenα is continuous,
4-preserving and it satisfies

(1) α ◦ sPα = α ◦ µ◦K (2) α ◦ εK = id K

In K we choose0 =def α(0) as a distinguished point and we define a barycentric structure(p, a, b) 7→ a +p b : [0, 1] ×
K × K → K by a +p b =def α

(
(1 − p)εK(a) + pεK(b)

)
which is continuous and4-preserving, asα andεK are.

Equation (1) above implies thatα is 0-affine, i.e., it preserves0 and satisfiesα((1 − p)ϕ + pψ) = α(ϕ) +p α(ψ) for all
ϕ,ψ ∈ PK and0 ≤ p ≤ 1. It follows that the equational laws of a pointed barycentric algebra, which hold insPK, are
inherited byK; soK becomes a pointed ordered compact topological barycentric algebra.

We now show thatK is weakly locally convex. Letx be any element ofK andU an arbitrary neighborhood ofx in
K. By equantion (2) above,x = α(εK(x)). Thus, by the continuity ofα, the preimageα−1(U) is a neighbourhood of
εK(x) in sPK. As sPK is locally convex, there is a convex neighborhoodV of εK(x) contained inα−1(U). The image
α(V ) is convex and contained inU . Again by equation (2) above,α(V ) containsε−1

X (V ) which is a neighborhood ofx.
Thusα(V ) is a convex neighborhood ofx contained inU .

We now can apply Corollary 6.5 which tells us thatK admits an0-affine topological order embedding in a locally
convex ordered topological vector space.

(b) is proved along the same lines using Corollary 6.4 instead of 6.5

Theorem 8.5 with its topological proof is the main result of this paper. Part (b) has already been proved in [11] with
functional analytic tools.
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