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1 Introduction

The problem that has motivated the investigations in this paper comes from denotational semantics of programming
languages. Every program has a type; with every tymme associates a semantic domaip;, programs of typer are
interpreted by elements db,,. If one adds a feature to a programming languages, it has to be modelled by an adequate
construction on the semantic domains. This construction has to be free in a certain sense so that the model does not ha
properties not intended in the language. It has turned out that the category theoretical notrooradcaptures well

this requirement of freeness (see [2]). But having a free construction, one would like to know the structures for which the
construction is free, that is, one would like to characterizgHilenberg-Moore) algebrasf the monad.

We are concerned with languages having probabilistic features. Adding probabilistic choice to a deterministic lan-
guage requires the construction op@babilistic powerdomai? D over every semantic domaif. This powerdomain
may consist of some kind of probability measuresarbut more often of subprobabilities, i.e., positive measpresth
total masg(D) < 1 the differencel — p(D) expressing the probability of nontermination of the program denoted by
We denote byM <, D thesubprobabilistic powerdomain

Most categories used in denotational semantics are of a topological nature. One of them is the category of stably
compact spaces and continuous maps. In [5], Cohen, Escardo and the author began with the investigation of the Eilenber
Moore algebras of the extended probabilistic powerdomain monad over this category. The problem turned out to be
difficult.

As a first step, in [11], the author attacked a simpler more classical problem. He considered the category of or-
dered compact spaces and order-preserving continuous maps in the sense of Nachbin [15]. TKeis the space of
probability measures with the vague topology andgteehastic ordetintroduced by Edwards [6]. The algebras were
characterized to be the compact convex subsets of ordered locally convex topological vector spaces. This extends an o
result by Swirszcz [21] on the algebras of the monad of probability measures over compact Hausdorff spaces (without or-
der). The proofin [10] was inspired by a proof for Swirszcz's result reproduced by Semadeni [20] and this proof required
quite some functional analytic tools.

In this paper we achieve the following: 1 - We reprove the above result from [10] and extend it to the subprobabilistic
case (see Section 8). 2 - We develop topological tools which avoid the use of functional analysis (see Section 2. For this
we build on previous results by Lawson and Madison [12, 13] in the unordered case. We hope that the more topologica
approach may be useful for the stably compact case, as in the non-Hausdorff case functional analytic methods do not app
readily. 3 - The algebras of the (sub)probabilistic powerdomain monad inherit the barycentric operations that satisfy the
same equational laws as those in vector spaces. We show that it is convenient first to embed these abstract convex sets
abstract cones which are easier to handle. 4 - Our embedding theorems for abstract ordered locally compact cones al
compact convex sets in ordered topological vector spaces are of interest in themselves (see Section 6).

For the connection between the problem for stably compact spaces and the more classical problem discussed here v
refer to the concluding section in [11]. Stably compact spaces and their relation to ordered compact spaces are discusst
in detail in [7].

The category theoretic notions of a monad and its Eilenberg-Moore algebras are used without further explanation. The
relevant background information can be found in standard books on category theory as, for example, [14].

R, R, andl denote the reals, the nonnegative reals and the unit intérid| respectively, with their usual order and
topology. Our vector spaces are always meant to be vector spaces over the reals.
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2 Atopological Lemma

It is a classical question in general topology under which conditions the quotient Zpae®f a topological spac&’
modulo an equivalence relaticn satisfies the Hausdorff separation axiom. As a spaée Hausdorff if and only if the
diagonalA is closed in the product spatex Y, a necessary condition is that the graph = {(z,y) € X x X |z 2 y}

of the equivalence relation is closed.Xfis a compact Hausdorff space, this condition is also sufficient. In Bourbaki [3,
§10, Exercise 19] one finds the following nontrivial generalisation:

Lemma 2.1. Let X be a locally compacty-compact Hausdorff space. 3 is an equivalence relation the graph of which
is closed inX x X, then the quotient spacE/= satisfies the Hausdorff separation axiom.

Bourbaki also provides a hint to a counterexample that shows that the lemma becomes wrong if the hypothesis of
o-compactness is omitted. We will prove a variant of Bourbaki’s Lemma below.

We consider a topological space with a preorder 5, that is, a reflexive transitive relation. If the graph. =
{(z,y) | < y} is closed inX x X, we say thatX is a preordered topological spacaccording to Nachbin [15].
Associated with the preordet is the equivalence relatian = y iff + < y andy < x. If the graph of the preorder is
closed inX x X, the same holds for the grajgh of the associated equivalence relation. The quotléfi is partially
ordered by < 7 iff x < y, wherez denotes the equivalence classrofRecall that a partial order is an antisymmetric
preorder. We ask the question whether the quotient spgce with the quotient ordeK is anordered topological
spacei.e., whether the grap&'< of the partial order is closed iX/~ x X/=. Before giving an answer we need some
preparations.

The following lemma has been proved by Nachbin for spaces with a closed partial order [15, Proposition 4 and
Theorem 4]. His proof carries over to arbitrary closed binary relations:

Lemma 2.2. Let X be a topological space with a binary relation the gra@tof which is closed.
(a) For any compact subséf, thelower setand theupper set

LK =4er {z € X | (x,b) € G for someb € K}

1K =ger {x € X | (b,z) € G for someb € K}

generated byK are closed inX.
(b) If X is a compact Hausdorff space anddfand B are closed subsets &f such thaf{ A x B) NG = 0, then there
are closed neighbourhood$ and V' of A and B, respectively, such that/ x V)N G = (.

Proof. (a) Supposer ¢ |K. Then,(a,b) ¢ G forallb € K. As G is closed, for evenp € K, there are open
neighbourhood#/, andV}, for a andb, respectively, such thdf, x 7, N G = (). As the compact sek is contained in
the union of the open seis,, b € K, there is a finite subsdt of K such thatK is contained in the unioi of the V3,
b € F. The intersectiorl/ of the finitely many open sefs,, b € F', is an open neighbourhood afagain. Moreover,
U x VNG = @ which impliesU x K NG = (). We have found an open neighborhddaf « disjoint from | K. As this
can be done for alt ¢ | K, we have shown thagtK is closed.

(b) Suppose that, for every closed neighbourhbaaf A and every closed neighborhobdof B, one had/ x VNG #
(), then the sets of this form constitute a filter basis of nonempty closed sets which, in the compact spatehas a
nonempty intersection. Létr,y) be an element in this intersection. Therbelongs to every closed neighbourhddgd
of A. As A is the intersection of its closed neighbourhoods, we infer A. Similarly one shows thaj € B whence
(z,y) € A x BN G which contradicts the hypothesis. O

The conclusion in the preceding lemma can be strengthened if the refat®a preorder:

Corollary 2.3. Let X be a compact Hausdorff space with a preordethe graph of which is closed i x X. Let A
and B be closed subsets &f such thats £ bforall a € A and allb € B. Then there are disjoint closed neighbourhoods
U andV of A and B, respectively, wher& is an upper and’ a lower set.

Proof. From Lemma 2.2(b) we obtain closed neighborhotidandV of A and B, respectively, such that £ v for all
u € U and allv € V. By reflexivity, U C 1U andV C |V. The setsfU and |V are closed by Lemma 2.2(a). Using
transitivity we obtain thatU and |V are disjoint. O

We now are prepared to prove the crucial generalisation of Bourbaki's lemma 2.1 above:

Main Lemma 2.4. Let X be a locally compacty-compact Hausdorff space with a preord€rthe graph of which is
closed inX x X. Let= be the equivalence relation associated with the preordere.,a = b iff a < bandb < a. Then
the graph of the quotient ordet on the quotient spac& /= is closed.



Proof. It suffices to consider arbitrary elementd in X with « £ b and to show that there are disjoint open neighbor-
hoodsV, W of a, b, respectively, with/ = 1V andW = |WV.

Thus, leta £ bin X. Using the hypotheses of local compactness@mdmpactness we may find a sequeficg),,
of relatively compact open set coveridg such thatl/,, C U, (see [3,§9, Proposition 15]). We may suppose that
a,b € Uy. By Corollary 2.3 applied to the compact Hausdorff spaigewe may find insidd/, disjoint closed relative
neighbourhood¥;, W, of a, b, respectively, wher&, is an upper andi, a lower subset of/y. We now form the upper
set1V, and the lower seflV; in X, and we consider the seit¥;, NU; and| W, NU;. Again by Corollary 2.3 now applied
to the compact Hausdorff spatg, we may find insidd’/; disjoint closed relative neighbourhoolls, W, of 1V, N Uy
and W, N U, respectively, wher&; is an upper andll’; a lower subset of/;. Recursively, we may find

setsV,,, W,, C U,, which are closed and disjoint,
V., is an upper andV,, a lower setin’,,
insideU,,; 1, V,,41 IS a relative neighbourhood 6V,, N U,,..; andW,,, 1 a neighbourhood of W,, N U, ;1.

From the construction it follows that the sequen¢gs) and (1,,) are increasing. We now form the séts= | J,, TV,
andW = J,, |W,,. Clearly,V is an upper set and’ a lower set disjoint fron”. It remains to show that” and1V are
open. Indeed, let € V. We can find am such that both: € U,, andx € 1V,,. By construction}/, ., is a neighbourhood
of 1V,, NU, 41 relative toU,, 1. As x belongs tdJ,, which is open inX, V,, 1 is a neighbourhood aof in X. This shows
thatV is a neighbourhood of each of its points. O

3 Cones and convex sets

In a real vector spac¥ a subset is understood to be eone if x +y € C andra € C for all a,b € C and every
nonnegative real number A subsetA is convexif (1 — p)a + pb € Aforall a,b € A and every real number with
0 < p < 1. We generalise to an abstract notion of a cone:

Definition . An abstract cones a setC with an addition(z,y) — « + y: C x C — C, which is commutative and
associative and admits a neutral elem&rnd a multiplication by nonnegative real numbets:) — r-z: Ry xC — C
satisfying the same equational laws as vector spaces (see, e.g., [10]), i.e.zfor, ale C and allr, s € R,

r+y+z) = (@+y+=
r+y = y+x
z+0 = =
re(ety) = roztrey
(r+s)-z = r-ax+s-zx
(rs)-x = r-(s-x)
l-z = =«
0z = 0

Amapf: C — D between cones is said to beear if forall z,y € C and allr € R,:

flx+y) = fl@)+f(y)
fr-x) = 7 f(v)

A subsetA of a vector space or, more generally, of an abstract cooerigexif (1 — p)a + pb € Aforalla,b € A
and every real numberwith 0 < p < 1. They are abstract convex sets in the following sense:

Definition . An abstract convex setr barycentric algebras a setd endowed with a binary operatian+-, b for everyp
in the unit intervall = [0, 1] such that the following equational laws hold, whefe= 1 — p:

a+1 b = b
atpa = a
a+pb = b4pa
(a+gb)+pc = at@gy (b+_z, ¢

(»"q")’

Amapf: A — B between barycentric algebrasaffineif for all a,b € Aand0 < p < 1:

fla+yb) = fla) +p f(b)



Cones and convex sets in vector spaces satisfy these laws witlh = (1 — p)a + pb, as one easily verifies. Not all
abstract cones are embeddable in vector spaces. For example;samyilatticeC' with a smallest elemertt becomes a
cone if we definet + b =qor a Vb andra =qef a, if 7 > 0, andra =q4¢¢ 0, if » = 0. Similarly, everyv-semilattice can be
viewed as a barycentric algebra witht-, b =a vV b for 0 < p < 1.

An abstract con€’ is embeddable in a real vector spacé and only if it satisfies the followingancellation property

(€) at+b=a+c = b=c
Clearly a cone in a vector space satisfies this property. For the converse one uses the following:
Standard construction 3.1. We define a relatiog2 on C x C' by

(a,b) 2 (a',b) <= a+V =d +0b

The relation= is an equivalence relation, if we suppose the cancellation axiom (C) to hold (which is needed for transi-
tivity). Moreover,~ is a congruence relation, i.e., compatible with addition and scalar multiplication, and the quotient
V =4et C x C'/~ is a vector space. We have a natural linear embedding’ — V given byn(a) = a, the congruence
class of(a, 0) mod=.

W. Neumann [16] has shown that a barycentric algebrsembeddable in a real vector space as a convex set in such
away thata +, b becomeg1 — p)a + pb if and only if the following cancellation axiom holds i:

(@) Foreverypwith0 <p <1, a+pb=a+,c = b=c

Calculations in barycentric algebras are tedious. We show that every barycentric adgisbeanbeddable as a convex
subset in an abstract coig, by the following:

Standard construction 3.2. For a given barycentric algebrd let
Ca =aet {0} U{(r,a) |0 <reR,aec A} = {0} U(]0,+o0[xA)
Define addition and multiplication with scalars> 0 by:

(r,a) + (5,0) =der (r+s,a+_+b), r(s,a) =get (18, 0)

T+s

Forr = 0, one puts-(s,a) = 0 and addition with) is defined in the obvious way. Simple calculations show:
C4 becomes a cone and the map= a — (1,a) is an injection ofA into C4 in such a way that(a +, b) =
(1 = r)a + rb. The cancellation axiom (C) holds @4 if and only if (C’) holds inA.
Thus the question of embeddability of barycentric algebras in vector spaces is reduced to the embedding of cones i
vector spaces. We will identify the elementss A with the element$1,a) € C4 thus identifyingA with the convex
subsetl x A of C'4. In this way A becomes daseof the coneC'4 in the sense thad is convex and that every element
x = (r,a) # 0in C4 can be written in the form = ra, wherer anda are uniquely determined by

4 Ordered cones and ordered convex sets

Definition . (a) Anordered abstract conis an abstract con€ with a partial ordex the graph of which is a subcone of
C x C'which is equivalentto the axiom< b = a+c<b+candra <rbforallr € R,.

(b) An ordered barycentric algebr& a barycentric algebrd with a partial ordex such that the barycentric opera-
tionsa +, b are order preserving for evepye L.

As every vector space is a cone, the above definition of an ordered cone yields a notion of an ordered vector spac
which is the usual one (see [19, Ch. V.1]). Every subcone and every convex subset of an ordered vector space becom
an ordered cone and an ordered barycentric algebra, respectively, with respect to the induced order.

An ordered abstract cone can be embedded in an ordered vector space if and only if its satisfies the foiitmring
cancellation axiom

(0C) at+b<a+t+c = b<c

This axiom is cleary satisfied in subcones of ordered cones. For the converse we continue with the standard constructio
for cones from Section 2:



Standard construction 4.1. For an ordered abstract cone we define a relgfian C x C by:
(a,b) S (a'\b) <= a+b <d +0b

Supposing order cancellation, the relatighon C x C'is a preorder compatible with addition and scalar multiplication.
The associated equivalence relation is the relattofrom 3.1. On the vector spadé = C x C/ = the quotient order

—_—

(a,b) <y (a',V) iff (a,b) < (a',V') is a partial order such thal” becomes an ordered vector space. The canonical
injectionn: C' — V is not only linear but also an order embedding.

An ordered barycentric algebriican be embedded in an ordered abstract cone:

Standard construction 4.2. We use the embedding &f in the abstract con€'4 as in 3.2 and we extend the order an
by defining an ordex onC 4 by 0 < 0 and:

ra<sb < r=sanda <bin A

With this order,C' 4 becomes an ordered abstract cone. The order cancellation axiom (OC) holds in th€’gahand
only if the following order cancellation axiom holds ifor everyp > 0:

(0C) a+p,b<a+p,c = b<c

Thus, an ordered barycentric algebra can be embedded in an ordered vector space if and only if it satisfies order cancel-
lation.

5 Topological cones and convex sets

Definition . (a) Atopological abstract conis an abstract con@ with a topology such that additiqa:, y) — z+y: C x
C — (C and scalar multiplicatiolr, ) — rz: Ry x C — C are continuous.

(b) A topological barycentric algebras a barycentric algebral with a topology such that the map, a,b) —
a+,b:1Tx Ax A— Aiscontinuous.

Cones and convex sets in topological vector spaces are topological cones and topological barycentric algebras, re
spectively, for the induced topology. The embeddability of topological abstract cones into topological vector spaces is a
difficult question that cannot be answered in general. We will heavily rely on results due to Lawson and Madison [13].

The following lemma follows from [11, Corollary 4.2]; alternatively, it also follows from Lemma 6.1 for which we
give a simple proof below:

Lemma 5.1. Every Hausdorff topological abstract cone satisfies the cancellation axiom (C).

The following Theorem is a slight strengthening of results due to Lawson and Madison [13, Corollary 2.4, Theorem
3.1 and Theorem 3.2] in as far as, by Lemma 5.1, we can drop their hypothesis that the cone satisfies the cancellatio
axiom:

Theorem 5.2. Let C be a locally compact Hausdorff topological abstract cone. Téeis o-compact and satisfies the
cancellation property(C). The vector spac¥ = C x C'/ = with the quotient topology is a topological vector space and
the canonical map: C' — V is a linear topological embedding.

Of course, one wants to know under which conditions an ordered locally compact cone can be embedded in a locally
convex topological vector space. For topological cones and barycentric algebras there are various notions of local con
vexity. They have been proved to be equivalent for locally compact Hausdorff topological cones by Lawson [12]. Thus,
we choose the formally weakest among them:

Definition . A topological abstract cone [barycentric algelfails calledweakly locally conveif each of its points has a
basis of convex neighbourhoods.

A result due to Lawson [12, Theorem 5.3] tells us:

Theorem 5.3. For every weakly locally convex, locally compact Hausdorff topological cdnthe vector spac® =
C x C/= with the quotient topology is a locally convex topological vector space.



In fact, Lawson supposed his cone to satisfy the cancellation axiom, a hypotheis which we may drop because of
Lemmab5.1.

Standard construction 5.4. The standard embedding of a barycentric algebnato a cone’ 4 (see 3.2) can be extended
to a topological embedding of a topological barycentric algebrimto a topological cone by defining the following
topology onC'4: On the points of”4 different from0 we take the product topology #f, +oo[x A and as a neighborhood
basis of0 we take the sets of the formuU (]0,e[xA) =0U {ra | 0 < r < e,a € A}. Note thatd is embedded it as a
closed subset. Il is compact Hausdorff, thefi4 is locally compact Hausdorff, and i is weakly locally convex, then
C 4 also is (compare [12, Proposition 2.1]). From the above Theorems 5.2 and 5.3 one immediately deduces:

Corollary 5.5. Every compact Hausdorff topological barycentric algebtas affinely and topologically embeddable in
a topological vector spac& which is locally convex, ifl is weakly locally convex.

This is just a slight generalisation of Lawson’s [12, Corollary 4.2], as we can omit the hypothesis that cancellation
holds inA.

6 Ordered topological cones and convex sets

We now mix order and topology. Itis our aim to generalise the results of the previous section to ordered topological cones
and ordered topological barycentric algebras:

Definition . An ordered topological abstract congordered topological barycentric algebfas an abstract cone [a
barycentric algebrad’ with an order< and a topology such that the graph

G<={(a,b) |a <0}

of the order is closed i’ x C' and such tha€’ is both an ordered and a topological abstract cone [barycentric algebra,
respectively].

The above definition applied in the special case of vector spaces yields the usual notion of an ordered topologica
vector space (see [19, Ch. V.4]). As in any ordered topological space, the topology of an ordered topological cone anc
of an ordered topological barycentric algebra is Hausdorff (see Nachbin [15]). The following is a consequence of [11,
Proposition 4.1]; here we give a simpler independent proof:

Lemma 6.1. Every ordered topological abstract cone satisfies the order cancellation axiom (OC).

Proof. Letindeeda + b < a + c. Thenj(a +b) < £(a +b), whencela +b = F(a+b)+ 1b < L(a+c) + 3b =
La+0b)+ic < I(a+e)+ e = La+ c Repeating this argument we obtajaa + b < z-a + c for every natural
numbern. Forn — +o0o we deducé < c¢ using the continuity of addition and scalar multiplication and the closedness

of the graph of the order. O

We now consider an ordered locally compact abstract ¢dnBy Lemma 6.1 the order cancellation axiom holds in
C. Therefore we may consider the preorgeon C' x C as in 4.1 and the associated equivalence rel&tion

Theorem 6.2. For an ordered locally compact topological abstract cafiethe vector spac® = C x C/ = with the
guotient topology and the quotient ord€s, is an ordered topological vector space and the canonical mag' — V' is
a linear topological order embedding. @ is weakly locally conveX/ is locally convex.

Proof. From Theorem 5.2 we know th&t is a topological vector space which by 5.3 is locally convex; ifs weakly
locally convex. In order to prove thdf is an ordered topological vector space, it suffices to show that the graph of the
guotient ordeKy, is closed inV x V.

We first remark that the graph of the preorgeon C' x C'is closed, as it is the preimage of the graph of the ogder
on C' under the continuous mafga, b), (a’,b')) — (a +V,a’ +b): (C x C) x (C x C) — C x C and as the graph
of the order orC' is closed inC' x C. It follows that the graph of the equivalence relatisns also closed. We form the
quotientV = C x C/=. AsC x C'is a locally compact Hausdorff topological cone, iti€ompact (see 5.2). We apply
the Main Lemma 2.4 toY = C x C with the preorder< and we conclude that the graph of the quotient ordgron
V =C x C/=is closed. ThusV is an ordered topological vector space. O



Note that in the above proof also shows that the quotient topolody mnHausdorff, a fact that was a major step in
the proof of Theorem 5.2 by Lawson and Madison.

We now turn to an ordered topological barycentric algebrésing the standard construction 42¢an be embedded
in an abstract con€'4 which is also an ordered and a topological cone. As the graph of the ordgéj émeasily seen
to be closed( 4 is an ordered topological cone. f is compact, ther®' 4 is locally compact by Corollary 5.5 and we
conclude:

Lemma 6.3. Every ordered compact barycentric algebrais embeddable as a base in an ordered locally compact
topological cone’ 4.

We may embed the ordered locally compact c6hein an ordered topological vector space by Theorem 6.2. Com-
bining this embedding with the embedding4in C 4, we have:

Corollary 6.4. Every ordered compact barycentric algebdaadmits an affine topological order embedding in an ordered
topological vector spac®. The vector spack can be chosen to be locally compactdifs weakly locally convex.

We turn to a slight modification of the previous considerations. We consider the equational characterisation of convex
subsets containing the originin vector spaces:

Definition . A pointedbarycentric algebra is a barycentric algelitdogether with a distinguished elemédnt A map
f: B — B’ between pointed barycentric algebras is calleffine, if it is affine and iff (0) = 0.

It should be clear what we mean by pointed ordered, topological, ordered topological barycentric algebras, respec
tively. Our embedding theorem is as follows:

Corollary 6.5. For every pointed ordered compact barycentric algeBréhere is a 0-affine topological order embedding
in a topological vector spac¥, which can be chosen to be locally convexiifs weakly locally convex.

Proof. By Corollary 6.4, there is an affine, topological order embedding d@fito an ordered topological vector space
V, which can be chosen to be locally convexpifis weakly locally convex. If the distinguished eleméntf B is not
mapped to zero but to an element V', we apply the shift — = — z in V and we obtain the desired result. O

7 The monad of [sub-]probability measures over compact Hausdorff spaces

In this section we develop the monad of subprobability measures along the same lines as the monad of probability mea
sures in [11, Section 5]. Omitting the items between square brackets yields the previous results.
For compact Hausdorff spacés we shall use the following notations:

CX the Banach space of all real valued continuous function& avith the topology of uniform convergence,
€+ X  the positive cone of all nonnegative functiohs CX,

MX the vector space of all signed regular Borel measureX pn

M4X the cone of positive regular Borel measures,

PX the set of probability measures, i.e., the positive regular Borel meaguwktotal masg,

sPX  the set olsubprobability measurese., the positive regular Borel measutesf total mass< 1.

By < we denote or£ X the usual pointwise defined order with X as positive cone and di( X the usual order of
measures witt(; X as positive cone. Via the Riesz Representation Theorem we will idévitXywith the dual vector
spaceg(CX)* of all bounded linear functionals on CX. Forp € MX andf € CX, we will write

(p, f) = /fdtp

for the natural bilinear maptX x CX — R.

MX is a locally convex topological vector space with respect tonbak topologyalso called thevague topology
This is the coarsest topology oW X for which the linear maps — (p, f) are continuous for alf € CX. On
MX, M, X, PX, sPX we will always consider the we&kopology.

Lemma 7.1. M X is a locally compact cone iVl .X. The[sub]probability measures form gpointed compact convex
subsefs]PX .



The compactness ¢§]PX follows from the weak compactness of the dual unit ball X in which it is closed.
The local compactness off ; X follows from the fact that with respect to the relative topole@X = {¢ € M X |
(p,1) < 1} is a compact neighbourhood of evepywith (p, 1) < 1. (Herel denotes the constant function ghwith
value 1).

Assigning the Dirac measurg (x) to everyz € X yields a continuous embedding

ex: X - PX CsPX CMX

Let us specialise and choose fidra [pointed] compact Hausdorff topological barycentric algekreBy Corollaries
6.4 and 6.5 we can suppose tliatis a compact convex set [containifijin a topological vector space. The continuous
[0-]affine real-valued functions oA’ form a uniformly closed linear subspadé’! K of CK. Restricting every € MK
to Al K yields a surjective linear map

B =gt (e plamr): MK — (APIK)*

where (Al°/ K)* is the dual vector spaces of all bounded linear functionalsl6h. The maps!Y is continuous and
even a quotient maps for the respective wepologies.

Composings ¢ with ﬁ}? yields a continuous map from into (A°/K)*. A pointz € K is mapped to the point
evaluationf — f(z): APJK — R. We denote this point evaluation inby . The composed ma@l[;] o ek is [0-]affine
?S<€;l<[(~]"vK+p Y, ) = fle+py) = f(@) +p fy) = (ex(@), ) +p (ex (), /) [and (ex (0), f) = f(0) = 0] for all

€ AFK.

Suppose now thak is a compact convex set [containifipin a locally convex topological vector spate Then the
continuous linear functionalg: V' — R separate the points df. Their restrictions td are p-]affine. This implies
that the mapsle) o e« K — (ALVK)* is injective. Thus K is topologically and (-]affinely embedded int@A[! K )*.
Hence-forward, we will identifyi’ with its imageK in (AP K)*;i.e.,z € K is identified with = l[,?] (ex(x)).

We now use that every probability measurefdrnas a barycenter:

Theorem 7.2. [1, (2.13)]Let K be a compact convex set in a locally convex topological vector space. Then, for every
probability measure» € PK, there is a uniquely determinede K such that

(o, f) = f(z) forall f € AK
The element: is called thebarycenteof .
As a corollary we get:

Corollary 7.3. Let K be a compact convex set containihin a locally convex topological vector space. Then, for every
subprobability measure € sPK, there is a uniquely determinede K such that

(o, f) = f(x) forall f e A°K
The element: is called themomentof .

Proof. If ¢ = 0, then chooser = 0. If 0 # ¢ € sPK, letr = (p,1). Then0 < r < 1 andr~!¢ is a probability
measure. By Theorem 7.2, there is a unigue K such thatr—1o, f) = f(y) forall f € AK. As the convex sek
contains0 and asr < 1, the element: = ry = (1 — r) - 0 + ry belongs toKX and, for allf € A°K, we have indeed

(p, ) =rfly) = f(ry) = f(z). O

This theorem and its corollary tell us tt‘@ﬁﬁ] (¢) = &, wheneverp is a [sub-]probability measure andts [moment]

barycenter. This implies thﬁtﬁ] maps[s|PK onto the imagek of K. Thus, when restricted ta]PK, ﬁﬁ] assigns its
[moment] barycenter to every [sub-]probability measurdsan

We can apply the preceding developments to the [pointed] compact convék set[s]PX of [sub-]probability
measures on a compact Hausdorff spAcaNe then obtain a surjective continucusffine map

1 =def Pepx: $P sPX — sPX

and a surjective affine continuous map
px =det Bpx: PPX — PX

It is standard to deduce from the above:



Proposition 7.4. (s®,u°,¢) and (P, u,e) define monads over the categd@®pmp of compact Hausdorff spaces and
continuous maps.

The unite x assigns the Dirac measw& (x) to everyz € X. The multiplicationu$ : sP sPX — sPX assigns
to each subprobability measufeon sPX its momentux () € sPX and similarly for the probabilistic case. From the
above, compact convex séis[containing0] in locally convex topological vector spaces are easily seen to be Eilenberg-
Moore algebras of these respective monads with the [moment] barycentriﬁ%ap structure map.

The following theorem is due to Swirszcz [21] in the probabilistic case. His proof as well as the proof of Semadeni
[20, Section 7] use functional analytic tools. In the next section we prove a generalisation (Theorem 8.5) based on the
topological methods developed in this paper.

Theorem 7.5. The Eilenberg-Moore algebras of the monatl® over the categor{Comp of compact Hausdorff spaces
are the compact convex seks [containing0] in locally convex topological vector spaces together with [thhemerit

barycentric map$3£§] as structure maps.

8 The [sub-]probabilistic powerdomain monad on compact ordered spaces

We now consider ordered compact spa&es the sense of Nachbin [15], that is, séfswith a compact topology and a
partial order< the graph of which is closed iX x X. Recall that the topology of a compact ordered space satisfies the
Hausdorff separation axiom. We will denote 8pmpOrd the category of compact ordered spaces and order preserving
continuous maps. Forgetting the order yields a forgetful functor from the cat€mnpOrd to the categoryComp of
compact Hausdorff spaces. On the other h&aimp may be considered to be a full subcategor€ompOrd by putting
the trivial order= on each compact Hausdorff space.

We denote by X the cone of all order preserving continuous functighsX — R. Clearly, €™ X is uniformly
closed inCX. Using the Stone—Weierstrall Theorem, D. E. Edwards [6] (see also [4, Lemma 19]) has shown:

Lemma 8.1. The linear subspace X generated by the cor@” X is uniformly dense i®.X.

Following Edwards [6], we consider oy X thestochastic ordek, a second order which is weaker than the the usual
order<, the positive cone of which is the dual of the catie X :

0<¢ ifandonlyif 0<{p, f)forall feCmX, ie,
p=<v ifandonlyif (o, f) < (¢, f)forall feCmX.

By its definition the positive cone for the orderis weak-closed. As the linear subspace generated®®®iy is
uniformly dense inCX by 8.1, this positive cone is indeed pointed. Th&X with the stochastic order is an ordered
locally convex topological vector space. Restricting the stochastic order to the compact convigkPsétef [sub-
]probability measures yields a [pointed] ordered compact convex set.

In this sectionsP X andPX will always be endowed with the stochastic order, although we do not express this by a
new notation.

We now consider two compact ordered spageandY and an order preserving continuous magpX — Y. It
induces a positive linear mafy: CY — CX defined by(Cg)(f) = f o g. If f is order preserving, thefio g is order
preserving, too. Thu£™Y is mapped intd®™ X . The adjointMg: MX — MY, defined by(Mg)(¢) = ¢ o Cg, is
linear and it preserves the ordefsand<. As (Cg)(1) = 1o g = 1, Mg mapsM<; X into M<;Y andPX into PY.
Moreover,Myg is continuous for the respective wéabpologies.

Thus, for every ordered compact spake the set[s]PX of [sub-]probability measures with the weatopology
and the stochastic ordet is a [pointed] ordered compact barycentric algebra. Every order preserving continuous map
g: X — Y of compact ordered spaces induceg-preserving continuou$){laffine mapsPg =qer Myg|spx: sPX —
sPY andPg =qer Mylpx: PX — PY, respectively, and we have functar® and P from the categoryCompOrd
of compact ordered spaces to the categories of [pointed] ordered compact barycentric algebras and order preservir
continuous ()-]affine functions.

In [11, Section 6] we have shown th@®, ¢, 1) defines a monad over the categ@ympOrd. We extend this result
to sP now:

Lemma 8.2. [11, Lemma 6.2]The map x : X — [s]PX is not only a topological but also an order embedding.

The proof of the following lemma can be copied from [11, Lemma 6.3], only change affiraffome:



Lemma 8.3. If K is a compact convex set [containifyjin an ordered locally convex topological vector space, then the
[moment] barycentric maﬁgﬁ}: [s]PK — K preserves the ordeg .

We apply the preceding lemma to the [pointed] ordered compact convek set [s]PX of [sub-]probability
measures with the stochastic order over a compact ordered spauel we obtain that the multiplicatio,n[xo] =

5[[;)]]?)(: [s]P [s]PX — sPX is alsox-preserving. We summarize:
Proposition 8.4. ([s]P, ¢, u!°!) is a monad over the category of compact ordered spaces and continuous order preserving
maps.

From the preceding we can infer that every compact conveX seintaining0 in a locally convex ordered topological
vector space is an algebra of the mon&dwith the moment mapy, : sPK — K as structure map. Similarly, arbitrary
compact convex sets in a locally convex ordered topological vector spaces are algebras of th@.nidweacbnverse also
holds:

Theorem 8.5. (a) The Eilenberg-Moore algebras of the subprobabilistic mots&] <, .°) over the categorompOrd
of ordered compact spaces and continuous order preserving maps are the ordered compact convex sets dbimtaining
locally convex ordered topological vector spaces.

(b) The Eilenberg-Moore algebras of the probabilistic mori&de, 1) over the categorCompOrd are the ordered
compact convex sets in ordered locally convex topological vector spaces.

Proof. (a) Leta: sPK — K be an algebra for the monad® over the categorfCompOrd. Thena is continuous,
<-preserving and it satisfies
(1) aosPa=aopuy (2) aoeg =id g

In K we choosd) =4.r (0) as a distinguished point and we define a barycentric struétureb) — a +, b: [0,1] x
KxK — Kbya-+,b =qet a((l —plek(a) + peK(b)) which is continuous ane-preserving, asx andey are.
Equation (1) above implies thatis 0-affine, i.e., it preserve§ and satisfies.((1 — p)p + py) = a(y¢) +p a(y) for all
v, € PK and0 < p < 1. It follows that the equational laws of a pointed barycentric algebra, which hal@ 6, are
inherited byK’; so K becomes a pointed ordered compact topological barycentric algebra.

We now show thais is weakly locally convex. Let be any element oK andU an arbitrary neighborhood aof in
K. By equantion (2) above; = a(sx(z)). Thus, by the continuity ofr, the preimager—!(U) is a neighbourhood of
ex(z) in sPK. As sPK is locally convex, there is a convex neighborhddaf ¢ i (z) contained im=1(U). The image
(V) is convex and contained iii. Again by equation (2) abovey(V') containszy! (V) which is a neighborhood af.
Thusa(V) is a convex neighborhood afcontained inJ.

We now can apply Corollary 6.5 which tells us thdtadmits an0-affine topological order embedding in a locally
convex ordered topological vector space.

(b) is proved along the same lines using Corollary 6.4 instead of 6.5 O

Theorem 8.5 with its topological proof is the main result of this paper. Part (b) has already been proved in [11] with
functional analytic tools.
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