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Abstract

The probability measures on compact Hausdorff spaces K form a compact convex subset PK of the
space of measures with the vague topology. Every continuous map f : K → L of compact Hausdorff spaces
induces a continuous affine map Pf : PK → PL extending P. Together with the canonical embedding
ε : K → PK associating to every point its Dirac measure and the barycentric map β associating to every
probability measure on PK its barycenter, we obtain a monad (P, ε, β). The Eilenberg-Moore algebras of
this monad have been characterised to be the compact convex sets embeddable in locally convex topological
vector spaces by Swirszcz [31].

We generalise this result to compact ordered spaces in the sense of Nachbin [23]. The probability
measures form again a compact ordered space when endowed with the stochastic order. The maps ε and β
are shown to preserve the stochastic orders. Thus, we obtain a monad over the category of compact ordered
spaces and order preserving continuous maps. The algebras of this monad are shown to be the compact
convex ordered sets embeddable in locally convex ordered topological vector spaces.

This result can be seen as a step towards the characterisation of the algebras of the monad of probability
measures on the category of stably compact spaces (see [12, Section VI-6]).
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algebras
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1 Introduction

In order to reason about programs and programming languages in computer science mathematical models have
been developed. Topological structures combined with order theoretical ones have proved to be useful for these
purposes. Every feature of the language has to be modelled by a construction on the spaces under consideration.
This construction has to be free in the sense that the model does not become more restrictive than required by
the language and its operational structure.

Free constructions for equational theories are well known in algebra, for example, free monoids, free
groups, etc. Category theory provides an abstract pattern for free constructions: the notion of a monad (see,
e.g., [21]). This approach that has proved to be extremely useful in semantics (see, e.g., [22]), as it allows to
go beyond equational theories. Having a monad, one wants to know the structures or theories that it is free
for: These are the Eilenberg-Moore algebras of the monad. Their concrete characterisation turns out to be
non-obvious for some straightforward monads. For example, the algebras of the ultra-filter monad (= Stone-
Cech compactification of discrete spaces) are the compact Hausdorff spaces (cf. [21]), the algebras of the filter
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monad (space of all filters on a set) turn out to be the continuous lattices (cf. A. Day [6]) introduced by Dana
Scott in [29] precisely for the purpose of constructing models for untyped λ-calculus.

The background for this paper is the modelling of nondeterminism. Depending on the type of nondeter-
minism various powerdomain constructions have been introduced. As we are interested in probabilistic choice,
we consider probabilistic powerdomain constructions. Over compact Hausdorff spaces the natural construction
is the classical space of probability measures with the vague topology. The algebras of this monad have been
shown to be the compact convex sets in locally convex topological vector spaces by Swirzcz [31]. Turning to
Polish spaces, the algebras of the same monad have only recently been characterised by Doberkat [7, 8]. The
algebraic theory of these algebras is that of convex combinations (= barycentric operations).

Typically, spaces used in semantics are far from being Hausdorff spaces, for example, dcpos (= directed
complete partially ordered sets) with the Scott topology (see [12]), stably compact spaces (see [16]), qcb-spaces
(see [4, 28]). Probabilistic power domains have been proposed for all of these spaces. In a few cases only the
algebras of the respective monads are known as, for example, for the subprobabilistic powerdomain monad
over continuous domains (see [15]).

Stably compact spaces have a mediating role between compact Hausdorff spaces and continuous domains.
In fact, all compact Hausdorff spaces and most continuous domains are stably compact. One would hope to
be able to combine the results known from both sides for a unifying characterisation of the algebras of the
probabilistic powerdomain monad over stably compact spaces, thus reconciling the classical with the non-
classical theory.

In this paper we make a step towards an answer. Every stably compact space has an intrinsic order and a
refined topology making it into a compact ordered space in the sense of Nachbin [23]. We characterise the
algebras of the probabilistic powerdomain monad over compact ordered spaces: These are the compact ordered
convex spaces embeddable in locally convex ordered topological vector spaces. This result does not yet solve
the problem for stably compact spaces although, at the level of objects, there is no substantial difference
between compact ordered and stably compact spaces. But there are a lot more continuous maps between stably
compact spaces than between their associated compact ordered spaces with their refined topologies.

Notations. We will denote the set of nonnegative real numbers by R+, and p, q, r, s, t will always stand for
nonnegative reals.

2 Barycentric algebras

In a real vector space a convex subset C is characterised by the property that for all r with 0 ≤ r ≤ 1:

a, b ∈ C =⇒ (1− r)a+ rb ∈ C

There is an extended literature on the axiomatisation of convex subsets of vector spaces by axioms for the
barycentric operations a +r b =def (1 − r)a + rb. As far as I know the first axiomatisation is due to Kneser
[17]. He has an axiom system close to the second axiom system below including the cancellation property. It is
remarkable that his setting is quite general in the sense that he deals with convex subsets of vector spaces over
totally ordered skew fields.

W. Neumann [24] seems to be the first to have looked at the equational theory of the barycentric operations.
He defines an abstract convex set to be a set A endowed with a binary operation +r for every real number r
with 0 ≤ r ≤ 1 obeying the following three equational laws:

(B1) a+0 b = a, a+1 b = b,

(B2) a+r a = a
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Whenever 0 < r < 1 and 0 ≤ p, q ≤ 1,

(B3) (a+p b) +r (a+q c) = a+s (b+t c)

where s = p+r q and ts = rq. Swirscz [31] has given a simpler but equivalent axiomatisation which has been
reproduced by Romanowska and Smith in their book [26, Section 5.8]. They use the term barycentric algebra
instead of abstract convex set which they characterise by the following equational laws for the barycentric
operations +r for 0 ≤ r ≤ 1:

(B1) a+1 b = b

(B2) a+r a = a

(SC) a+r b = b+r′ a

(SA) a+r (b+p c) = (a+ rp′
(rp)′

b) +rp c for 0 < r, p < 1

where r′ = 1− r for every r with 0 ≤ r ≤ 1. SC stands for skew commutativity and SA for skew associativity.
These axioms were also used by Graham [13] and by Jones and Plotkin [14, 15] when they introduced the
notion of an abstract probabilistic powerdomain.1

The axiom (SA) can be replaced by the equivalent one:

(SA′) (a+s b) +q c = a+(s′q′)′ (b+ q
(q′s′)′

c) for 0 < s, q < 1

The above laws are easily seen to hold for the barycentric operations a+r b =def (1− r)a+ rb in convex
subsets of vector spaces. But barycentric algebras may be very different from convex sets in vector spaces:

Example 2.1. Every ∨-semilatticeA becomes a barycentric algebra if one defines a+r b = a∨b for 0 < r < 1
and a+1 b = b, a+0 b = a. W. Neumann has shown that the ∨-semilattices form the only proper nontrivial
equationally definable subclass of the class of all barycentric algebras.

A map α : A→ B of barycentric algebras is said to be affine if α(a+r b) = α(a) +r α(b) for all a, b ∈ A
and 0 ≤ r ≤ 1.

The question of embeddabilty in a vector space has been answered by W. Neumann:

Lemma 2.2. A barycentric algebra can be affinely embedded in a real vector space if and only if it satisfies the
following cancellation axiom:

(C1) For every r with 0 < r < 1, a+r c = b+r c =⇒ a = b

The following surprising lemma is due to W. Neumann [24, Lemma 2]. It has inspired an order theoretical
generalisation which we present and prove in the next section (see Lemma 3.4).

Lemma 2.3. If a+r b = a+r c holds in a barycentric algebra for some r with 0 < r < 1, then a+r b = a+r c
holds for all such r.

1Axiom (SA) is quite hard to use for somebody not working with it all the time. For this reason it is useful to notice that every
barycentric algebra is embeddable in a cone in the following sense: A cone is understood to be a set C together with an addition
(x, y) 7→ x + y which is commutative, associative and has a neutral element 0 and a scalar multiplication (r, x) 7→ rx for nonnegative
real numbers r which satisfies the same laws as in vector spaces, namely 0 · x = 0, 1 · x = x, r(sx) = (rs)x, (r + s)x =
rx + sx, r(x + y) = rx + ry. Thus, in a cone one can argue as in a vector space, as long as one does not use negative scalars or
subtraction. This helps a lot in order to verify the claims in the sequel of this paper.

One way to embed a barycentric algebra A in a cone is as follows: Let C =def {0}∪ {(r, a) | 0 < r ∈ R, a ∈ A}. Define addition
by (r, a) + (s, b) =def (r + s, a + s

r+s
b) and scalar multiplication by r(s, a) =def (rs, a). (For r = 0, one puts r(s, a) = 0 and

addition with 0 is defined in the obvious way.) Then C becomes a cone and the map e = (a 7→ (1, a)) is an injection of A into C in
such a way that e(a +r b) = (1− r)a + rb.
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3 Ordered barycentric algebras

An ordered barycentric algebra is defined to be a barycentric algebra with a partial order ≤ such that the
barycentric operations x+r y are monotone in x and y, that is, if

(B4) a ≤ b, a′ ≤ b′ ⇒ a+r a
′ ≤ b+r b

′

holds for all r.
We ask the question under which additional hypothesis an ordered barycentric algebra A is embeddable

into an ordered (real) vector space V with respect to its order and barycentric structure.
Let us start with an ordered barycentric algebra A. We may embed it affinely into a real vector space V iff

it satisfies the cancellation axiom (C1). If this is the case, we want to endow V with an order which extends
the given order on A such that V becomes an ordered vector space. An ordered vector space is a real vector
space with a partial order such that addition and multiplication with nonnegative reals are order preserving. In
an ordered vector space, one has a ≤ b iff 0 ≤ b − a, that is, the order is characterised by its positive cone P ,
that is, a subset of V which is a cone, that is:

P + P ⊆ P and rP ⊆ P for all r ∈ R+

and pointed, that is:
P ∩ −P = {0}

Thus, we want to find a positive cone P in V such that, for elements x, y ∈ A, one has x ≤ y iff y − x ∈ P .
For this, let P be the set of all elements in V which can be represented in the form r(y − x) with r ≥ 0 and
x ≤ y in A. We then have indeed:

Lemma 3.1. P is a positive cone in V .

Proof. Let a, b ∈ P . Clearly ra ∈ P for all r ≥ 0. For proving that a+ b ∈ P it suffices to consider the case
that a, b are both different from 0. Then a = r(y − x) and b = s(y′ − x′) for some r, s > 0 and x ≤ y, x′ ≤ y′

in A. Let p = s
r+s . Then a + b = r(y − x) + s(y′ − x′) = (r + s)

(
(1 − p)(y − x) + p(y′ − x′)

)
=

(r + s)
(
(1 − p)y + py′ − ((1 − p)x + px′)

)
. As (1 − p)y + py′ ∈ A and (1 − p)x + px′ ∈ A and as

(1− p)x+ px′ ≤ (1− p)y + py′ by (B4), we conclude a+ b ∈ A. Thus, P + P ⊆ P .
Suppose that 0 6= a ∈ P ∩−P . Then a = r(y− x) = −s(y′ − x′) for some r, s > 0 and x < y, x′ < y′ in

A. Let p = s
r+s as above. Then x+px

′ ≤ y+px
′ ≤ y+py

′ holds inA by (B4). If we suppose cancellation (C1),
equality cannot hold in either case. Hence, x+p x

′ < y+p y
′. We conclude that ry+ sy′ = (r+ s)(y+p y

′) 6=
(r + s)(x+p x

′) = rx+ sx′, i.e., r(y − x) 6= −s(y′ − x′), a contradiction.

If we endow V with the order defined by the positive cone P , the embedding ofA into V is order preserving.
The following example shows that A need not be order-embedded in V :

Example 3.2. On the unit square [0, 1]2 take the coordinatewise order except that the point (1, 1) dominates
only the points (r, r) on the diagonal. We have an ordered barycentric algebra. It is naturally embedded into
R2. The above construction yields the coordinatewise ordering on R2 the positive cone of which is R2

+. In this
ordering of R2, the point (1, 1) becomes the greatest element of A, which is not the case for the original order.
The natural injection is not an order embedding. The problem is that the order on A is not translation invariant
in V : For a = (0, 1), b = (1, 1), c = (1, 0), d = (0, 0) we have indeed d ≤ a, but d + c = c 6≤ b = a + c.
Internally in A, we can reformulate this fact in the following form: Whenever 0 < r < 1, then a +r c =
(1− r, r) ≤ (1, r) = b+r c, but a 6≤ b. Thus A does not satisfy the following order cancellation property:

For a, b, c ∈ A:

(C2) For all r with 0 < r < 1, a+r c ≤ b+r c =⇒ a ≤ b
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The cancellation property (C1) is a consequence of this order cancellation property (C2).
IfA is embeddable in an ordered vector space, then (C2) holds. Indeed, in an ordered vector space a+r c ≤

b +r c is equivalent to (1 − r)a + rc ≤ (1 − r)b + rc. By adding −rc we obtain (1 − r)a ≤ (1 − r)b which
implies a ≤ b as 1− r 6= 0. Thus, (C2) is a necessary property for A to be embeddable into an ordered vector
space. It also is sufficient:

Proposition 3.3. An ordered barycentric algebra A is embeddable (for its barycentric and its order structure)
in an ordered vector space if and only if it satisfies the order cancellation axiom (C2).

Proof. As (C2) implies (C1), an ordered barycentric algebra satisfying (C2) is embeddable in a real vector space
V with respect to its barycentric structure. We consider the positive cone P in V as in Lemma 3.1. It remains
to show: If x, y are elements of A such that y − x ∈ P , then x ≤ y in A. Indeed if x, y ∈ A and y − x ∈ P ,
then there are elements x′ ≤ y′ in A and r ≥ 0 such that y − x = r(y′ − x′). Then x + ry′ = y + rx′. With
p = r

1+r we obtain x +p y
′ = y +p x

′ internally in A. Using x′ ≤ y′ and the monotonicity of the barycentric
operations in A, we conclude that

(x+p y
′) +q x

′ ≤ (y +p x
′) +q y

′

Choosing q = p
1+p and using the axiom (SA’) this inequality can be rewritten as

x+s (y′ + 1
2
x′) ≤ y +s (x′ + 1

2
y′)

As y′ + 1
2
x′ = x′ + 1

2
y′ by axiom (SC), the order cancellation axiom (C2) yields x ≤ y in A.

We now come to the order theoretical generalisation of Neumann’s Lemma 2.3. One should notice that the
statement is closely related to the order cancellation axiom (C2). The proof is quite technical. The reason is that
one is not used to calculate in barycentic algebras. But the proof is guided by natural geometric constructions.
Neumann’s Lemma 2.3 is a special case thereof, if one replaces all inequalities ≤ by equality:

Lemma 3.4. 2 Let a, b, c be elements of an ordered barycentric algebra A. If

(∗) a+r c ≤ b+r c

holds for some r with 0 < r < 1, then it holds for all such r.

Proof. We first notice: If (*) holds for some r with 0 < r < 1, then it holds for all t with r < t < 1. Indeed,
with u = t−r

1−r we have a+t c = a+u (a+t c) ≤ (b+r c) +u c = b+t c, where we have used axiom (SA’) and
the monotonicity of the barycentric operations.

In order to prove our claim, it suffices now to show that there is a sequence rn in the unit interval decreasing
to 0 such that (*) holds for all rn.

2Added November 10, 2008: In the previous footnote we have given a definition of a notion of abstract cones, and we have indicated
how to embed any barycentric algebra in a cone. If we have an ordered barycentric algebra A we can extend its order to an order of the
cone C in which it is embedded as a basis: Define (r, a) ≤ (s, b) iff r = s and a ≤ b in A. This order has the proporty that addition
and multiplication with nonegative scalars is order preserving.
In an ordered cone C we have: If a + b ≤ a + c then ra + b ≤ ra + c for every r > 0.
Let indeed a + b ≤ a + c. Then 1

2
(a + b) ≤ 1

2
(a + b), whence 1

2
a + b = 1

2
(a + b) + 1

2
b ≤ 1

2
(a + c) + 1

2
b = 1

2
(a + b) + 1

2
c ≤

1
2
(a + c) + 1

2
c = 1

2
a + c. Repeating this argument we obtain 1

2n a + b ≤ 1
2n a + c for every natural number n. Given r > 0 there is

an n such that 1
2n < r. Hence ra + b = 1

2n a + b + (r − 1
2n )a ≤ 1

2n a + c + (r − 1
2n )a = ra + c.

From this result the Lemma can easily be deduced: Let a+r b ≤ a+r c for 0 < r < 1. In the cone C we then have sa+ rb ≤ sa+ rc
for every s > 0. For a given q with 0 < q < 1 apply the last inequality for s = r(1−q)

q
and one obtains a+q b ≤ a+q c. This illustrates

again that it is easier to prove things about barycentric algebras after embedding them into cones.
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We have supposed that (*) holds for some r with 0 < r < 1. We let r0 = r. Let u0 = 1
2−r0

and r1 = r0
2−r0

.
Then:

a+r1 c = a+u0 (a+r0 c) using (SA)
≤ a+u0 (b+r0 c) using (*) and (B4)
= b+u0 (a+r0 c) using (SA) and (SC)
≤ b+u0 (b+r0 c) using (*) and (B4)
= b+r1 c using (SA)

We may continue recursively by defining rn+1 = rn
2−rn

and we find that a +rn c ≤ b +rn c for all n. It is an
elementary exercise to verify that the sequence rn is decreasing to 0.

4 Topological barycentric algebras

A topological barycentric algebra is a barycentric algebra A together with a topology such that the map

(r, x, y) → x+r y : [0, 1]×A×A→ A

is continuous where the unit interval [0, 1] is endowed with the usual Hausdorff interval topology. Note that we
not only ask each operation +r to be continuous but that the operations depend continuously on r.

An ordered topological barycentric algebraA is defined to be both a topological and an ordered barycentric
algebra for which the graph of the order is closed in A × A. Thus, it is an ordered topological space in the
sense of Nachbin [23]. The closedness of the order implies that the topology is Hausdorff. With respect to the
trivial order =, a topological barycentric algebra is an ordered topological barycentric algebra if and only if it
is Hausdorff. Indeed, a topological space X is a Hausdorff space if and only if the diagonal in X×X is closed.

The generalised Neumann Lemma 3.4 implies the order cancellation property (C2) in a slightly more gen-
eralised form:

Proposition 4.1. Every ordered topological barycentric algebra satisfies the order cancellation axiom:

(C2) For every r with 0 < r < 1, a+r c ≤ b+r c =⇒ a ≤ b

Proof. By 3.4 the hypothesis ba +r c ≤ b +r c for some r with 0 < r < 1 implies a +r c ≤ b +r c for
all r with 0 < r < 1. As r 7→ a +r c : [0, 1] → A is continuous and as the toplogy of A is Hausdorff,
limr→0 a+r c = a+0 c = a and similarly limr→0 b+r c = b. As the graph of the order is closed, we conclude
a ≤ b.

In particular:

Corollary 4.2. Any Hausdorff topological barycentric algebra A satisfies the cancellation axiom

(C1) For every r with 0 < r < 1, a+r c = a+r d =⇒ c = d

Thus, any Hausdorff topological barycentric algebra is algebraically embeddable in a vector space and
any ordered topological barycentric algebra is algebraically and order theoretically embeddable in an ordered
vector space.

Problem. 1. Under which hypotheses is a Hausdorff topological barycentric algebra (topologically and
algebraically) embeddable in a topological vector space, or even in a locally convex topological vector space?

2. Under which hypotheses is an ordered topological barycentric algebra embeddable in an ordered
topological vector space, or even in a locally convex one?

There is the following partial answer to Problem 1: Using our result that a Hausdorff topological barycentric
algebra is algebraically embeddable in a vector space (see 2.2, 4.2), we can restate results due to J.D. Lawson
[18], Lawson and Madison [20] and independently to Roberts [25]:
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Proposition 4.3. Every compact Hausdorff topological barycentric algebra A can be embedded (algebraically
and topologically) in a topological vector space V . If, in addition, A is locally convex in the weak sense, that
is, if every neighborhood of an a ∈ A contains a convex neighborhood of a, then V can be chosen to be locally
convex.

5 The monad of probability measures over compact Hausdorff spaces

For compact Hausdorff spaces X , we shall use the following notations:

CX the Banach space of all real valued continuous functions on X with the sup-norm,
C+X the positive cone of all nonnegative functions f ∈ CX ,
MX the vector space of all signed regular Borel measures on X
M+X the positive cone of nonnegative regular Borel measures.
PX the set of regular probability measures.

By ≤ we denote on CX the usual pointwise defined order with C+X as positive cone and also on MX the
usual order of measures with M+X as positive cone. Via the Riesz Representation Theorem we will identify
MX with the dual space of all bounded linear functionals ϕ on CX . For ϕ ∈ MX and f ∈ CX , we will write

〈ϕ, f〉 =
∫
fdϕ

for the natural bilinear map MX × CX → R.
On MX and its subsets we will consider the weak∗ topology, also called the vague topology. It is the

coarsest topology on MX for which the linear maps ϕ 7→ 〈ϕ, f〉 are continuous for all f ∈ CX . PX is the
subset of all ϕ ∈ M+X with 〈ϕ,1〉 = 1. (Here 1 denotes the constant function on X with value 1). Thus PX
is a convex subset which is compact Hausdorff in the weak∗ topology.

Occasionally we will use that MX is a Banach space. But when we talk about topology on MX , we always
mean the weak∗ topology.

Assigning the Dirac measure εX(x) to every x ∈ X yields a continuous embedding

εX : X → PX ⊆ MX

Let us specialise now to a Hausdorff compact topological barycentric algebra K. The continuous affine
real-valued functions form a uniformly closed linear subspace AK of CK which contains the constant function
1. Restricting every ϕ ∈ MK to AK yields a linear map

βK = (ϕ 7→ ϕ|AK) : MK → (AK)∗

where (AK)∗ is the topological dual of AK. The map βK is continuous and even a quotient map for the
respective weak∗ topologies.

Composing εK with βK yields a continuous map from K into (AK)∗. A point x ∈ K is mapped to the
point evaluation f 7→ f(x) : AK → R. This composed map βK ◦ εK is affine as, for all f ∈ AK, we have
〈εK(x+r y), f〉 = f(x+r y) = f(x) +r f(y) = 〈εK(x), f〉+r 〈εK(y), f〉.

Suppose now that K is embeddable in a locally convex topological vector space. Then the continuous real-
valued affine functions separate the points of K. This implies that the map βK ◦ εK : K → (AK)∗ is injective.
Thus, K is topologically and algebraically embedded into (AK)∗. Henceforward, we will identify K with its
image in (AK)∗; i.e., x ∈ K is identified with βK(εK(x)) and, thus:

βK ◦ εK = idK

We now use that every probability measure on K has a barycenter:
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Theorem 5.1. [1, (2.13)] Let K be a compact convex set embeddable in a locally convex topological vector
space. Then, for every probability measure ϕ ∈ PK, there is a uniquely determined x ∈ K such that

〈ϕ, f〉 = f(x) for all f ∈ AK

The element x is called the barycenter of ϕ.

This theorem tells us that βK(ϕ) = βK(εK(x)), whenever ϕ is a probability measure and x its barycenter.
This implies that βK maps PK onto (the image of) K. Having identified x ∈ K with βK(εK(x)), βK(ϕ)
becomes the barycenter of ϕ. Thus, when restricted to PK, βK : PK → K assigns its barycenter to every
probability measure on K.

We can apply the preceding to the compact convex set K = PX of probability measures on a compact
Hausdorff space X . We then obtain a continuous affine map

µX =def βPX : PPX → PX

It is well-known (see [31, 30] and can be easily proved from the above) that:

Proposition 5.2. (P, µ, ε) defines a monad over the category Comp of compact Hausdorff spaces and contin-
uous maps.

The unit εX : X → PX assigns the Dirac measure εX(x) to every x ∈ X . The multiplication µX : PPX →
PX assigns to each probability measure Φ on PX its barycenter µX(Φ) ∈ PX which is characterised by the
property that 〈

Φ, ϕ 7→ ϕ(f)
〉

= 〈µX(Φ), f〉 for every f ∈ CX

Compact convex setsK in locally convex topological vector spaces are easily seen to be algebras of this monad
with βK : PK → K as structure map.

E.E. Doberkat has indicated to me that Fedorchuk in his survey article [11, p. 56] cites the following
Theorem due to Swirszcz [31]:

Theorem 5.3. The algebras of the monad P over the category of compact Hausdorff spaces are precisely the
compact convex sets K embeddable in locally convex topological vector spaces together with the barycenter
maps βK : PK → K as structure maps.

In his proof Swirszcz [31] uses a slight generalisation of a theorem by Linton on monadic functors and
tools from functional analysis like the Krein-Šmulian Theorem. A proof avoiding category theory is due to
Peter Taylor. His proof is presented by Z. Semadeni in [30, Section 7].

Let me outline an alternative proof for this theorem: Let α : PK → K be an algebra for the monad P.
We may define a continuous barycentric structure (p, a, b) 7→ a +p b : [0, 1] × K × K → K by a +p b =
α((1− p)εK(a) + pεK(b)). Then α is affine, i.e., α((1− p)ϕ+ pψ) = α(ϕ) +p α(ψ) for all ϕ,ψ ∈ PK and
0 ≤ p ≤ 1 which implies that the equational laws of a barycentric algebra, which hold in PK, are inherited by
K; so K becomes a compact Hausdorff topological barycentric algebra.

In order to show that K is embeddable into a locally convex topological vector space we use Proposition
4.3. It only remains to verify the local convexity hypothesis: Choose an a ∈ K and any neighborhood U of a.
As α(εK(a)) = a, there is a neighborhood V of εK(a) in PK such that α(V ) ⊆ U . As PK is locally convex,
we may suppose V to be convex. As the map α is affine, α(V ) is convex. Moreover, α(V ) is a neighborhood
of a; indeed as εK is a topological embedding of K into PK, the set W = ε−1(V ) is a neighborhood of a and
W ⊆ α(V ). Thus α(V ) is a convex neighborhood of a contained in U .
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6 The subprobabilistic powerdomain monad on compact ordered spaces

We consider compact ordered spaces X in the sense of Nachbin [23], that is, sets together with a compact
topology and a partial order 4 the graph of which is closed in X ×X . Recall that the topology of a compact
ordered space satisfies the Hausdorff separation axiom. We will denote by CompOrd the category of compact
ordered spaces and order preserving continuous maps. Forgetting the order yields a forgetful functor from
the category CompOrd to the category Comp of compact ordered spaces. On the other hand, Comp may be
considered to be a full subcategory of CompOrd by putting the trivial order = on each compact Hausdorff
space.

We are going to generalise the results of the previous section to compact ordered spaces. We would have
liked to prove Theorem 6.5 along the lines of the proof of 5.3 outlined at the end of the previous section. As we
did not succeed, we adapt Peter Taylor’s proof as presented by Semadeni to the ordered situation and we fill a
gap in that proof.

We denote by CmX the cone of all order preserving continuous functions f : X → R. Clearly, CmX is
uniformly closed in CX . But applying the Stone–Weierstraß Theorem, D. E. Edwards [10] (see also [2, Lemma
19]) has shown:

Lemma 6.1. The linear subspace of CX generated by the cone CmX is uniformly dense in CX .

Besides the usual order ≤ we consider the stochastic order 4 on MX – a notion going back to Edwards
[10] – the positive cone of which is the dual of the cone CmX:

0 4 ϕ if and only if 0 ≤ 〈ϕ, f〉 for all f ∈ CmX ,
ϕ 4 ψ if and only if 〈ϕ, f〉 ≤ 〈ψ, f〉 for all f ∈ CmX .

By its definition the positive cone for the order 4 is weak∗-closed. As the linear subspace generated by
CmX is uniformly closed in CX by 6.1, this positive cone is indeed pointed. Thus, MX with the stochastic
order is a locally convex ordered topological vector space. (Recall that an ordered topological vector space is
at the same time a topological and an ordered vector space such that the graph of the order or, equivalently, the
positive cone is closed.) Restricting the stochastic order to the compact convex set PX of probability measures
yields an order with a closed graph.

We now consider two compact ordered spaces X and Y and an order preserving continuous map g : X →
Y . This map induces a positive linear map Cg : CY → CX defined by (Cg)(f) = f ◦ g which preserves the
constant functions Cg(1) = 1. Moreover CmY is mapped into CmX; for if f is order preserving, then f ◦ g
is order preserving, too. The adjoint Mg : MX → MY , defined by Mg(ϕ) = ϕ ◦ Cg, is linear, it preserves
the orders ≤ and 4 and the norm. In particular, Mg maps PX into PY . Moreover, Mg is continuous for the
respective weak∗ topologies.

Thus, for every compact ordered space X , the set PX of probability measures with the weak∗ topology
and the stochastic order 4 is a compact ordered convex set (see also [2, Theorem 31]). Every order preserving
continuous map g : X → Y of compact ordered spaces induces an order preserving continuous affine map
Pg = Mg|PX : PX → PY , and we have a functor P from the category CompOrd of compact ordered spaces
to the category of compact ordered convex sets and order preserving continuous affine functions.

We are going to show that P defines a monad:

Lemma 6.2. [2, Proposition 32] The map εX : X → PX is not only a topological but also an order embedding.

Proof. Let x, y be elements of X . If x 4 y then, for every f ∈ CmX , we have f(x) ≤ f(y), that is,
εX(x)(f) ≤ εX(y)(f), whence, εX(x) 4 εX(y). If x 64 y then, by [23, Theorem 1 and Corollary of Theorem
4], there is an f ∈ CmX such that f(x) 6≤ f(y), that is εX(x) 64 εX(y).

Consider now the special case of a compact ordered convex set K.
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Lemma 6.3. If K is embeddable in an ordered locally convex topological vector space, then the barycenter
map βK : PK → K preserves the order 4 .

Proof. Let ϕ,ψ ∈ PK with ϕ 4 ψ. For all f ∈ CmK we have 〈ϕ, f〉 ≤ 〈ψ, f〉. This then holds in particular
for all continuous order preserving affine functions f : K → R. But for all such functions f one has 〈ϕ, f〉 =
f(βK(ϕ)) and 〈ψ, f〉 = f(βK(ψ)), whence f(βK(ϕ)) ≤ f(βK(ψ)). And this implies βK(ϕ) 4 βK(ψ), as
we are going to show.

We claim: if x, y be elements of K such that x 64 y, then there is a continuous order preserving affine
function on K with f(y) < f(x). For the proof we use that K is embeddable in a locally convex ordered
topological vector space V . Let C be the positive cone of V which is closed and convex. As x 64 y, we have
y − x 6∈ C. By the Hahn-Banach Separation theorems, there is a continuous linear functional f on V such that
f(y − x) < f(c) for all c ∈ C. This implies f(y)− f(x) = f(y − x) < 0 and f(c) ≥ 0 for all c ∈ C. Thus f
is order preserving and f(y) < f(x). The restriction of f to K is affine.

We apply the preceding lemma to the the compact ordered convex setK = PX of probability measures with
the stochastic order over a compact ordered spaceX and we obtain that the multiplication µX = βPX : PPX →
PX is also order preserving. We summarize:

Proposition 6.4. (P, ε, µ) is a monad over the category of compact ordered spaces and continuous order
preserving maps.

From the preceding we may conclude that every compact ordered convex set K which is embeddable
in a locally convex ordered topological vector space is an algebra of the monad P with the barycenter map
βK : PK → K as structure map. The converse also holds:

Theorem 6.5. The algebras of the monad (P, ε, µ) over the category of compact ordered spaces and continuous
order preserving maps are precisely the compact ordered convex sets embeddable in locally convex ordered
topological vector spaces.

The remainder of this section is devoted to the proof of this theorem. We adapt the proof presented by
Semadeni [30] to the ordered situation.3 Consider an algebra of the monad P, that is, a compact ordered space
K together with a continuous order preserving map

α : PK → K

such that

(A1) α ◦ εK = id K

and

(A2) α ◦ P(α) = α ◦ µK

i.e., the following diagram commutes

PPK
Pα

- PK �
εK

K

PK

µK

?

α
- K

α

?�

idK

3It seems that Semadeni’s proof has a gap, as he uses the cancellation property for algebras of his monad without justification. We
deduce it from corollary 4.2. In fact, the sections 2, 3 and 4 are mainly written for the purpose of proving 4.2.
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We define a convex structure on K by:

x+r y =def α((1− r)εK(x) + rεK(y))

for x, y ∈ K and 0 ≤ r ≤ 1. As all maps involved in the definition of x +r y are continuous and order
preserving, the operation x+r y is continuous and order preserving in x, y and r simultaneously.

Lemma 6.6. α is an affine map, i.e., for ϕ,ψ ∈ PK and 0 ≤ r ≤ 1 we have:

α((1− r)ϕ+ rψ) = α(ϕ) +r α(ψ)

Proof. Consider ν = rεPK(ϕ)+(1−r)εPK(ψ) which is an element of PPK. Then α((Pα)(ν)) = α(µPK(ν))
by (A2). On the left hand side we have α((Pα)(ν)) = α((1−r)εK(α(ϕ))+rεK(α(ψ))) = α(ϕ)+rα(ψ)) by
the definition of Pα and of the convex structure onK, and on the right hand side α(µPK(ν)) = α((1−r)ϕ+rψ)
as µPK is an affine map and as (A1) holds.

By the previous lemma, K becomes a compact ordered convex set. Let us consider the following relation
G on PK :

G = {(ϕ,ψ) ∈ PK × PK | α(ϕ) 4 α(ψ)}

As the order 4 onK is closed and as α is continuous,G is weak∗-closed in PK×PK. As α is order preserving,
the relation G is reflexive and transitive. As the barycentric operations are order preserving and as α is affine,
G is convex. The associated equivalence relation

Q = {(ϕ,ψ) ∈ PK × PK | α(ϕ) = α(ψ)}

is a weak∗-closed convex subset of PK × PK. As the map (x, y) 7→ x− y is affine and continuous, the sets

B = {ψ − ϕ | (ϕ,ψ) ∈ G}

P = {ψ − ϕ | (ϕ,ψ) ∈ Q}

are weak∗-compact convex subset of MK, both contain 0, and P is symmetric (i.e., P = −P ).

Lemma 6.7. Let ϕ and ψ be elements in PK with α(ϕ) 4 α(ψ). If ϕ′ and ψ′ are elements of PK such that
ψ′ − ϕ′ = r(ψ − ϕ) for some real number r ≥ 0, then α(ϕ′) 4 α(ψ′).

Proof. In the case r = 0 there is nothing to prove. Thus we may suppose that r > 0. From the hypothesis we
have ψ′+rϕ = ϕ′+rψ. We multiply this equation with 1

r+1 and we obtain an equality of convex combinations
(1−p)ϕ′+pψ = (1−p)ψ′+pϕwith p = 1− 1

r+1 = r
r+1 . Applying α yields α(ϕ′)+pα(ψ) = α(ψ′)+pα(ϕ).

Using α(ϕ) 4 α(ψ) and the monotonicity of the barycentric operations, we conclude that

(α(ϕ′) +p α(ψ)) +q α(ϕ) 4 (α(ψ′) +p α(ϕ)) +q α(ψ)

Choosing q = p
1+p and using the axiom (SA) this inequality can be rewritten as

α(ϕ′) +s (α(ψ) + 1
2
α(ϕ)) 4 α(ψ′) +s (α(ϕ)) + 1

2
α(ψ))

As α(ψ) + 1
2
α(ϕ) = α(ϕ)) + 1

2
α(ψ) by axiom (SC), the the last inequality allows to conclude α(ϕ′) 4 α(ψ′)

with the help of Proposition 4.1.

Consider the following two subsets of MK:

C =def

⋃
r≥1

rB, L =def

⋃
r≥1

rP
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Lemma 6.8. C is a cone and L is a linear subspace such that L = C ∩ −C.

Proof. Clearly C is a cone and L a linear subspace in MK. As L is contained in C, we have L ⊆ C ∩ −C.
Conversely, let λ ∈ C ∩ −C. Then λ = r(ψ − ϕ) = −s(ψ′ − ϕ′) = s(ϕ′ − ψ′) for some ϕ,ψ, ϕ′, ψ′ ∈ PK
with α(ϕ) 4 α(ψ) and α(ϕ′) 4 α(ψ′) and some r, s ≥ 1. Lemma 6.7 allows to conclude that α(ϕ) = α(ψ)
and α(ϕ′) = α(ψ′), whence λ ∈ L.

Recall that MK also is a Banach space with the norm ||ϕ|| = sup−1≤f≤1 |〈ϕ, f〉||. For ϕ ≥ 0 one simply
has ||ϕ|| = 〈ϕ,1〉 which implies that the norm is additive on the positive cone M+K. Also MK is a lattice-
ordered vector space. We use the notations ϕ+ = ϕ ∨ 0, ϕ− = −ϕ ∨ 0, |ϕ| = ϕ+ + ϕ− for the positive part,
the negative part and the absolute value of ϕ, respectively. Then one has ϕ = ϕ+ − ϕ− and ϕ+ ∧ ϕ− = 0. A
measure ϕ and its absolute value have the same norm which by the additivity of the norm on the positive cone
implies that ||ϕ|| = ||ϕ+||+ ||ϕ−|| = 〈ϕ+,1〉+ 〈ϕ−,1〉.

Lemma 6.9. If λ ∈ C and ||λ|| ≤ 2, then λ ∈ B. If λ ∈ L and ||λ|| ≤ 2, then λ ∈ P .

Proof. As the second claim follows from the first, let us prove the first claim. Let λ ∈ C with ||λ|| = 2. There
are ϕ,ψ and r ≥ 1 such that λ = r(ψ − ϕ) with ϕ,ψ ∈ PK and α(ϕ) 4 α(ψ).

In every lattice-ordered vector space, one has ψ− (ψ ∧ϕ) = ψ+ (−ψ ∨−ϕ) = 0∨ (ψ−ϕ) = (ψ−ϕ)+,
whence r(ψ − ψ ∧ ϕ) = λ+. We conclude that

||λ+|| = r(||ψ|| − ||ψ ∧ ϕ||) = r(1− ||ψ ∧ ϕ||)

by the additivity of the norm on the positive cone. In the same way one shows that also

||λ−|| = r(1− ||ϕ ∧ ψ||)

Thus, λ+ and λ− have the same norm. As

||λ+||+ ||λ−|| = ||λ|| = 2

we conclude that ||λ+|| = ||λ−|| = 1, i.e., λ+ and λ− belong to PK. As λ+ − λ− = λ = r(ψ − ϕ), Lemma
6.7 allows to conclude that α(λ+) 4 α(λ−). Hence, λ = λ+ − λ− ∈ B.

Now consider the general case of a λ ∈ C with ||λ|| ≤ 2. Then λ′ = 2λ
||λ|| is an element in C of norm 2. By

the above, λ′ ∈ B. As B is convex and contains 0, we conclude that λ ∈ B.

Corollary 6.10. C and L are weak∗-closed in MK.

Proof. This is a consequence of the previous Lemma: By a theorem of Krein-Šmulian (see e.g. [9, p. 429,
Theorem 7]), a convex subset in the dual of a Banach space is weak∗-closed if and only if its intersection with
each multiple of the dual unit ball is weak∗-closed.

The following lemma proves half of our Theorem 6.5:

Lemma 6.11. The vector space MK/L with the quotient topology of the weak∗ topology is a locally convex
ordered topological vector space with C/L as a closed positive cone. The map εK : K → MK composed with
the quotient map q : MK → MK/L is a topological and an order embedding.

Proof. As L is a closed linear subspace by 6.10, MK/L with the quotient topology of the weak∗ topology on
MK is locally convex. The image cone C/L of the cone C is closed, as C is weak∗-closed by 6.10 and L ⊆ C.
As L = C ∩ −C by 6.8, the cone C/L is pointed. Endowed with the order 4 with C/L as positive cone, we
obtain a locally convex ordered topological vector space. For ϕ,ψ ∈ PK we have q(ϕ) 4 q(ψ) if and only if
ψ − ϕ ∈ C iff α(ϕ) 4 α(ψ). We conclude that the map q ◦ εK : K → MK/L is an order embedding. As this
map is continuous on the compact Hausdorff space K, it is also a topological embedding.
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For the Theorem 6.5, it remains to prove that the map q ◦ εK : K → MK/L is affine. For this, we will
represent the quotient space MK/L in a more concrete form: As in Section 5, let AK be the set of all affine
continuous functions f : K → R. The following lemma tells us that α(ϕ) is the barycenter of the probability
measure ϕ on K:

Lemma 6.12. AK is the set of all f ∈ CK such that 〈ϕ, f〉 = f(α(ϕ)) for all ϕ ∈ PK.

Proof. Let us consider the equation 〈ϕ, f〉 = f(α(ϕ)) in the special case were ϕ is the convex combination
εK(x) +r εK(y) of two Dirac measures. It then tells us that 〈εK(x) +r εK(y), f〉 = f(α(εK(x) +r εK(y))).
Using the definition of the barycentric operations on K, this equation can be rewritten as f(x) +r f(y) =
f(x+r y).

Thus, if f ∈ CK satisfies 〈ϕ, f〉 = f(α(ϕ)) for all ϕ ∈ PK, then f is affine. Conversely, let f ∈
AK, that is, f(x +r y) = f(x) +r f(y). By the considerations above, f(α(ϕ)) = 〈ϕ, f〉 then holds for all
convex combinations ϕ of two Dirac measures. By a similar argument this equation holds for all finite convex
combinations ϕ of Dirac measures. As these are dense in PK for the weak∗ topology and as α and f are
continuous, this equation holds for all ϕ ∈ PK.

Let us denote by AmK the set of all order preserving continuous affine functions f : K → R. Clearly,
AmK is a uniformly closed cone in AK (although not pointed).

Lemma 6.13.

C = (AmK)⊥ =def {ϕ ∈ MK | 〈ϕ, f〉 ≥ 0 for all f ∈ AmK}
L = (AK)⊥ =def {ϕ ∈ MX | 〈ϕ, f〉 = 0 for all f ∈ AK}

Proof. We first prove that AmK = C⊥ =def {f ∈ CK | 〈ϕ, f〉 ≥ 0 for all ϕ ∈ C} and AK = L⊥ =def

{f ∈ CK | 〈ϕ, f〉 = 0 for all ϕ ∈ L}
C⊥ ⊆ AmK and L⊥ ⊆ AK: Let f ∈ L⊥. Choose any ϕ ∈ PK. As α(ϕ) = α(εK(α(ϕ))) by (A1), we

have ϕ − εK(α(ϕ)) ∈ P ⊆ L. Hence 〈ϕ − εK(α(ϕ)), f〉 = 0, that is, 〈ϕ, f〉 = 〈εK(α(ϕ)), f〉 = f(α(ϕ))
which shows that f ∈ AK by 6.12. If f ∈ C⊥ ⊆ L⊥, it remains to show that f is order preserving. Take
any x, y ∈ K such that x 4 y. Then εK(x) 4 εK(y) in PK which implies that εK(y) − εK(x) ∈ C. By
hypothesis, 〈εK(y)− εK(x), f〉 ≥ 0, that is, f(y)− f(x) ≥ 0 or, equivalently, f(x) ≤ f(y).

AmK ⊆ C⊥ and AK ⊆ L⊥: Any λ ∈ C can be written in the form λ = r(ψ − ϕ) for some r ≥ 0 and
some ϕ,ψ ∈ PK such that α(ϕ) ≤ α(ψ). For f ∈ AmK we then have

〈λ, f〉 = r(〈ψ, f〉 − 〈ϕ, f〉)
= r(f(α(ψ))− f(α(ϕ))) by 6.12
≥ 0 as f is order preserving

Hence f ∈ C⊥. If λ ∈ L, then λ = r(ψ − ϕ) for some r ≥ 0 and some ϕ,ψ ∈ PK such that α(ϕ) = α(ψ)
and the inequality above can be replaced by an equality.

We have shown that AmK = C⊥ and AK = L⊥. As C and L are weak∗-closed convex subset of MK,
the bipolar theorem yields C = C⊥⊥ = (AmK)⊥ and L = L⊥⊥ = (AK)⊥.

As in Section 5, let βK denote the linear map from MK to the dual (AK)∗ of the Banach space AK defined
by restriction: βK(ϕ) = ϕ|AK .

Proposition 6.14. Composing the maps εK : K → MK and βK : MK → (AK)∗ yields an affine topological
order embedding of K into the dual (AK)∗ of the Banach space AK with the weak∗ topology and the order
defined by the positive cone C ′ consisting of all ϕ ∈ (AK)∗ such that 〈ϕ, f〉 ≥ 0 for all f ∈ AmK.
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Proof. By Lemma 6.13, L is the kernel of the map βK and C is mapped onto C ′ by βK . Thus MK/L and
(AK)∗ are canonically isomorphic ordered topological vector spaces. Thus, Lemma 6.11 implies that the map
βK ◦ εK : K → (AK)∗ is a topological and an order embedding. We have already seen in Section 5 that this
map is affine.

The previous proposition terminates the proof of Theorem 6.5 and gives some more detailed information.

7 An open problem

We would like to use the results of the preceding section to characterise the algebras of the probabilistic power-
domain monad over the category StabComp of stably compact spaces and continuous maps. There is indeed a
close relation between stably compact spaces and compact ordered spaces and between measures and valuations
on such spaces as exposed in [2].

Let us start with a T0-spaceX . It carries an intrinsic order, the specialisation order 4 which is characterised
by the property that x 4 y iff x is contained in the closure of the singleton y. A subset A of X is said to be an
upper set or also saturated, if x ∈ A implies y ∈ A for all y with x 4 y.

Recall that a T0-space is stably compact if it is sober, compact and locally compact and if the intersection
of any two of its compact upper subsets is compact. We denote by StabComp the category of stably compact
spaces and continuous maps. There is a one-to-one correspondence between compact ordered spaces and stably
compact spaces:

If X = (X,4, τ) is a compact ordered space, the collection τ↑ of all open upper sets is a topology such
that the space X↑ =def (X, τ↑) is stably compact. Conversely, let (X,σ) be a stably compact space with
its specialisation order 4. One defines its patch topology σp to be the topology generated by σ and the the
complements of the compact upper sets. Then Xp =def (X,4, σp) is a compact ordered space. These two
constructions are mutually inverse to another, more precisely, τ↑p = τ and σp↑ = σ (see [12, Theorem VI-6.18],
[2]).

Thus the objects of the categories CompOrd of compact ordered spaces and StabComp of stably compact
spaces are essentially the same. The morphisms in CompOrd are the continuous order preserving maps. For
such a map the preimage of an open upper set is an open upper set, too. Thus such maps remain continuous
for the associated stably compact topologies. But in general, there more morphisms in the second category
than in the first. For example, the unit interval with its usual total order and compact Hausdorff topology is a
compact ordered space. Its endomorphism in the category CompOrd are the continuous monotone increasing
maps. As a stably compact space with the topology of open upper sets, the endomorphisms in the category
StabComp are the lower semicontinuous monotone increasing maps. Those continuous maps between stably
compact spaces that are also continuous with respect to the respective patch topologies are called proper.

Let (X,σ) be a topological space, not necessarily Hausdorff. A bounded valuation is a function ψ : σ →
R+ with the following properties:

ψ is strict: ψ(∅) = 0 ,
ψ is modular: ψ(U) + ψ(V ) = ψ(U ∪ V ) + ψ(U ∩ V ) ,
ψ is monotone increasing: U ⊆ V ⇒ ψ(U) ⊆ ψ(V ) .

A valuation is called (Scott-) continuous, if

ψ(
⋃
i∈I

Ui) = sup
i∈I

ψ(Ui) for every directed family of open sets Ui ∈ G .

We denote by VX the set of all bounded continuous valuations on σ and by V1X the subset of all probability
valuations, that is, those that satisfy ψ(X) = 1. A natural order between valuations is given by

ψ 4 ψ′ :⇐⇒ ψ(U) ≤ ψ′(U) for all U ∈ σ ,
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which we call the stochastic order again.
On the set VX and on V1X we consider the weak∗upper topology which is the coarsest topology such that

the maps ψ 7→ ψ(U) are lower semicontinuous (i.e., {ψ | ψ(U) > r} is open for every r ∈ R+) for all open
sets U in X .

The following theorem combines results obtained in [19, 3, 2]:

Theorem 7.1. Let X be a stably compact space.
(a) Every bounded continuous valuation ψ on X extends uniquely to a regular Borel measure ψ̂ on Xp.
(b) The map ψ 7→ ψ̂ : VX → M+X

p is an order isomorphism with respect to the stochastic orders.
(c) This map restricts to an order isomorphism from the the set V1X of probability valuations on X to

the set PXp of probability measures on Xp. Moreover, the weak∗upper open sets of V1X are in one-to-one
correspondence with the weak∗-open upper sets of PXp.

These results allow us to identify continuous probability valuations on a stably compact space X and
probability measures on Xp. As the category of stably compact spaces and proper maps is equivalent to the
category CompOrd we obtain the following variant of Theorem 6.5:

Corollary 7.2. The monad (P, µ, ε) on the category CompOrd of compact ordered spaces and order preserving
continuous maps yields a monad (V1, µ, ε) with the same unit and multiplication on the the category of stably
compact spaces and proper maps. The algebras of this monad are the compact convex sets in locally convex
ordered topological vector spaces endowed with the topology of open upper sets.

Of course, (V1, µ, ε) is also a monad on the larger category StabComp of stably compact spaces and all
continuous mpas. The following example shows that there are more algebras in this larger category StabComp
than in the category restricted to proper maps:

Example 7.3. Let Σ = {0,+∞} denote the two element ∨-semilattice considered as a barycentric algebra as in
Example 2.1, that is, 0+r∞ = +∞ for 0 < r ≤ 1. With the singleton {+∞} as the only nonempty proper open
subset, Σ becomes a stably compact topological barycentric algebra. Indeed, the operation (r, x, y) → x+r y
becomes continuous although it would not be continuous for the discrete topology on Σ. We are going to show
that Σ is an algebra of the monad (V1, µ, ε).

The stably compact convex set V1Σ of probabilty valuations on Σ can be identified with the unit interval
[0, 1] with its usual convex structure and the upper topology with the upper intervals ]r, 1], 0 ≤ r ≤ 1 as only
open sets. The embedding εΣ : Σ → [0, 1] maps 0 to 0 and +∞ to 1. The map β : [0, 1] → Σ mapping 0 to 0
and all r > 1 to +∞ is continuous and affine. In fact, β is the only continuous affine map from [0, 1] to Σ such
that β ◦ εΣ = idΣ.

We want to show that Σ with the structure map β is an algebra of the monad (V1, µ, ε). The identity β◦εΣ =
idΣ is clear. We have to prove the identity β ◦ µΣ = β ◦ V1β. Note that V1V1Σ = V1[0, 1]. The barycenter
map µΣ : V1[0, 1] → [0, 1] is given by µΣ(Φ) =

∫
x dΦ. Thus, β(µΣ(Φ)) = +∞ iff µΣ(Φ) =

∫
x dΦ > 0,

and this is the case iff Φ(]0, 1]) > 0. For the right hand side we have β((V1β)(Φ)) = +∞ iff (V1β)(Φ) > 0
iff (V1β)(Φ)({+∞}) = Φ(β−1({+∞})) = Φ(]0, 1]) > 0 as before.

Problem. Characterise the algebras of the monad (V1, µ, ε) over the category StabComp of stably
compact spaces and continuous maps.

The example above is an algebra without cancellation. Even the algebras satisfying cancellation are not
known.
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[4] I. Battenfeld, M. Schröder and A. Simpson. Compactly Generated Domain Theory. Mathematical
Structures in Computer Science 16 (2006), pages 141–161.
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