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SEMINAR ON CONTINUITY IN SEMILATTICES (SCS)
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TOPIC‘. On the‘shloop

For Keimel only. On handwrltten nétes from the Darmstadt seminar,
REFERENCE Keimel to elaborate oFurther reference: Scott 3-30-76 ,ppb,T

DEPINTHION 1 . Let S be a sup-semilattice. A 'shloop- < is a transitive,
antisymmetric relation on S satlsfylng the following axioms:
AXIOM 0. 0= 0. '

- AXION 1, (\/a,b) a@-(bu> a < b.

AxIoM 2. (¥a,b) (a{b~c or a,{b(c) => ak¢ o

ML RIS (Marhyx) —adb > a Vx|

AXIOM 4. (INTERPOL) (W e,b) a < b => & x) a~ X< .
NOTATION 2, For X< S write 4«Xa{e eS: there isanx e X with 8=f x} Write

TEMA 3.5)AXTON 3 ie ‘abivatent—o each of the following ’[+x = drfx?.
axton 3¢ (Ya,byxy) (< v and x<y) => aVx< bV 5.

 AXTIOM- 3H (Va) Ya is a cofilter .
(If S is a lattice, then a ‘cofilte# is a 1att10e ideal. ) .

“‘Kamw!?(_ S i;s - 3‘1‘:00[0 T :
LEMMA 4 (Expanded Glerz-Kelmel} Let L e CL- .and k:L—-?L

a kernel functlon, i, eo a functlon satlsfylng S ~
(1) (Y x,y) x < y => k(x) < k(y) ,(11X Vx) k(x) < x, {i.ea k < 1).
(11i) ﬁmmmmﬁ K. e T _ L .
':Then _;,‘ | __.,,Aye~':ﬁu._‘ L V:. L e
(I) T o= k(L) is a complete 1attlce and k is left adgoint to ‘the
inclusion function T G—-} L o'_‘“. =

(II) The follow1ng condltlons are equivalent{ |
VD) D upd:.rec‘ted in L ._>_ supy k(D) = k(supLD)

(2) (V)h’ ,m’r-; T % t = supL{s £ 'I‘ =,s.<< t] = sup_L",};,tnT).
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(5) The inclusion T —pL is in c1oP .

{6) k & CL.

DEFINITSON 5. For a sup-semilatticd S E¥® and a shloop ~ set

Py 8 = JI€8: Iis a cofilter such that (Va)ae I>Tb)(b eI
and a< b)

Write P< 8 = PS5,

Note PS = (SOP)/\ by HMS-Duality,hence is a Z - and thus a CL-object.

PROPOSITION.6. Fore ach Shloogj 2< S5 e CL, and I$9v¥1= PS-—&-E{ S5 is

a kernel operator.

Note. In PS we have I << J iff (FJaed) IS HJ,a W [EFG’&‘T) T }a
(Observe J n[}f4ﬁs ae J} for Je PS)

We now introduce the shloop category

DEFINITION 7. We define a category INE. as follews:
(a) Objects: Pairs (L_,ﬂ() of a complete lattice together with a shleop.
(b) Morphisms: ?:(L,ﬂ{) —=>(L', = ') are INF-morphisms giLe—=>L'
whose right adjoint d:L! ~==3>L satisfies

(W xy) x<g'y=> dax) =< dly).

-
REMARK 8. There WEr forgetful functorg

| l:gL —— 1P, given by St—> (8,¢<) .

(We use the foliowing Lemma: Let g:S—~>T be in INF and d the right
adjoint.Then (1) below implies (2):
(1) g preserves sups of updirected sets.

2) (¥xy) =x< => dlx) << aly).

If,however, T £ CL , then (1) and (2) ave eguivalent.
Remark. ATLAS contains a parallel statement with CS in place of INF and
v e int Tx in place of x << y (see ATLAS 1.19))

THEOREM 9. The assignment (L,~' )+ B L: INF, ~—>CL is functorial

and is in fact the left adjoint of } | :iCL --->INE, . The front adjunctioﬁ
is sp—sdhst (L, < )—> (B, ngf gt (Lyg J—>(8,<<) , 8 & CL is
aqﬁ‘INE( -morphism, then kkmmkyme the unique g's Eg L —w>S3 g determined

by the adjunction is given by g'(I) = sup &(I).

w7 Proof. It suffices to verify the universal property If the fill-in g'

Amlhﬂﬁfﬁumexists,it must have the gggg‘gffggikfgmzﬁiiggmtheorggzand that function

P s .
dan o indeed satisfies g(x) = g*( x). Ope must show that g' e CL .




We show a sublemma
SUBLEMMA. For I € P§ and g: (L, <) ~—>(5,<<) , Se CL one has
sup g(I) = sup g(,LI). (Ghez )
Proof. > clear. { : Show (Wt) & << sup g(I) = t < su ({,1). put if
t << sup g(I) then there is an s & 1 with ¢ ﬂ<§(s) ,whence d(t) & de(s)
{se I, and 80 a(t) e o, I,whence % < gd(t) e g( 4o I).Thus t £ sup glI) .

. . . o

Show that g' preserves infs: Let 79 P, 5. Show g (ini'g }> int g'(y).
Let t << inf g'(?),then kmexzxxe for all I € g we have t<< g'(I)=
sup g(I).Hence there is an s; € I with t £ g(sI) ,whence a(t) £ 81 € I.

Thus d(t) € gﬂ?,whence t < gd{t) € g(nZ).So t £ sup g mZ)

= sup €(+Og)= g' (inf L ). A

Show that g' preserves sups of updirected sets: Let s P_AS be up-
directed. Then sup J= sz . Now g‘(sup ) = g'(U,ZS) = SuI/Jé( w)
= sup g({J {I: Ie 13}) - sup {J {g(I):IaQS} = supl,a‘%) sup g(I) =

t
dupIsZ)g (D)
- @ First we must show that sl——.:‘»#:(L,e‘() ——> (P'{ §5<<) is in ;;_N_E« .

We first note that this map has the right adjoint I sup I.Then we
recall I<&J iff I<.a for some a € J which implies sup I £ a.

By the definition of E,S we find a b & J with a < b, whence a-{ b < sup Jy
and so sup I~ sup J. ﬂ . '

(The following is new; Darmstadt check! )

PHEOREM 10. Let L be a complete lattice. The assignment which assigne

$0 each shloop ¢ on L the kernel operator I —-_-b,,‘,,l o,& PL onto By L
an order 18070rph1sm

is & bijeedton/from the set of all shloops on L onto the get of all
kernel operators en PL satisfying the equivalent conditiens of Lemma 4.
The shloep belonging to a kernel operator k is given by X < ¥ iff
X € k(J,y) Moreover, if x'{zy =2 x»{,ly , then there is a kernel

morphism P,_<1L =3Py 5L given by IH-L-ZI . |
Proof. If X L,y => X<L,¥ then I & Pg L by definition implies I € P.<4[;f

Moreover, the identity map (L, = 1) — (T, £ 2) is a morphism in g\@‘( ,
hence there ilg a ungfue NZ CL-morphism f3 P g 1L.——-‘> Pe 2L such that
£(4ny8) = dupse Use I U fdsis e I} for I e Be L and the fact thas
f preserves up-dir ected gups to show that £(I) -=4—21 . "Order isomor-
phism inte" should not pose any problems. If k is a kernel operator on
PL satisfying the conditions of Lemma 4, then define x& y iff x € k(& y)
Verify the Axioms in Definition 1. E.g.INTERPOL: Let a € k(}b).By 4(11)(2)
we have k({b) =(J {Isim k:JIelx, x¢€ k@)}for some x . Hence

a e I= k(I) € x{{x) for some I and x. H‘j

b




R

b 4

We should now pe prepared to inspect for a CL-object S the totality
ker (8) of kernel operators satisfying the equivalent conditiens of Lemma 4 .
If k £ ker (S), then 4-(II)-(1) means that k is continuous in the sense of
Scott. If Cont denotes the category of =mampimke continuous lattices with
Scott continuous functions, then ker(S) & Cont (S,8) = Is->81 [where we
use Scott's terminology). We know from Scott that (5-> s} e CL .Further-
more we observe that the inclusion ker(S) © [S-)S] preserves sups
where supfs of functions are calculated pointwise. (To check e.g. mxf¥
£ 4 -(iii) 1let A & ker(S), k = sup A. Then k(k(s)) = supg f(supgaAg(s))
2 supp_, df (£(s)) = sup 4.y £(s) = k(s) > k{k(s)).)The inclusion map

ker(S) =w=» $->8 thus has a left adjoint

x fi->g] s ker(s) , ) = sup jxexer(s): k¢ £l

It is my impression that this function is not generally in Cont so that

it is not likely that one could show ker(S) € CL via Lemma 4. Judging

from Scott p.103,1line 1 and p.111 ,Definition 3 I think that £<<{g in

[5-58] iff there is a finite set ¥ ¢ S sucht that f(s)= 0 for s ¢ ¥ ank

£(

s) << g(s) for s € F. This seems to be rare for anything having

not the induced one (snd indeed if ker(S) is not in CL ,this must be the

case) Typical samples of clements in ker (8) are the following:
(a) For s € S set k(t) = st. (b) P ce K(S) set k(o) = {7, 1k (1(c))={0}.

(e)

Fitzxjedaxiengexdizgw For every collection

of disjoint intervals on the interval

one may fabricate an element of ker (I).
(Use'e.g. the o mponents of the complement
of the Cantor set.) One may also read the
pictﬁre as the graph of an element in

—— e ker (C). Notice that k{(C) = I in tha& case.
It seems impossible to approximate this example from below by type (b)
kernel operators.




)

In any case ker(S) is a complete lattice and is sup-closed in [B->

COROLLARY 11 . The shlcoops on a complete lattice form themselves a
complete lattice.[] |

It remains open whether or under what circumstances this lattice is

continuous.

Now let L be a complete lattice and { a relation satisfying
AXTOMS o-ff 2.

DEFINITION 12, Define -<'VLP B as follows: TFor x,y ¢ L we have x-("k'y
iff there is a subset C< L with the following properties:
(i) € is =~ totally ordered.
(i1) ¢ is £~ ormder dense (£ Q<& in Q/} Hcre w0 213 8 C 109 ‘é-(x‘(@-
(iii) min C = x , max C =y . I}

LEMMA 13. Suppose that < satisfies AXIOMS & O -2 . Then the following

are equivvalent
(1) X f-<'*’ Y o
(2) There is a function f{(:),‘l:]n@ —>L such that p < g implies

£{p) < £(q) and £(0) = x and £(1) =y . [J
Poruers Ik bove o =2 ¥ (= Sotipes TNTERPOL.
PROPOSITION 14. Let L be a complete lattice and « a relation satisfying
AX';EOMS 0,1,2. Then <* also satisfies these axic{;nsAp‘ZaLﬂngAXIOM 4 (INTERPOL).
Further, p=ft==zmmd <* satisfip AXIOMS 3,37,%y 3" & 4, respectively.

In particular,if < satisfies 0,1,2,3, then <*is a shleop. [J
[¥wl Noch ne Kategorier

RIPIPMxTax] DEFINITION 15 . Let Compl be the category GERW of

complete lattices with inf-morphisms (arbitrary infs!) presez/'vl/ng sups

o updirected sets.
Note Compl = INF.

PROPOSITION 16, There is a functor Ws Compl ——3 INF , given by
w(L) = (1, <<¥).

Proof. In each L & Compl the relation << satisfies AXIOMS 0-3,hence
«* isa shloop. If g:L~«->L' is in Compl then =<y in L' implies
d(x) << d(y) in L ,where d is the right adjoint of g( BHER we recall the
Lemma mentioned in REMARK 8!) Thus «<*@ y means the existence of

a function £3 [0,1}n @ ~=> L' as in 13-(2).Then fd: [0, 1Ja @m>L

is a function as in 13-(2), hence d(x) <<* d(y) . Thue £ is an INF ¢
morphism (L,<<%~)-—->(L',<<*)n [{

THEOREM 17. P, o W: Compl 3> CL is the left adjoint of the
grgunding functor U 3 0L ~——» Compl.

Proof. 3By the Lemms in REMARK 8 ,for 8 ¢ CL and ¥ L &€ Compl we have



Compl( L, U(S)) = INF, (w(1),18]). By Theorem 9 we knyfow
INF, (w(1), isl) ¥ CL (p_(w(L)) ,58)( naturally). Hence Compl ( L,U(5})

et

Yo (2 (W(L)), §) ynaturally.[]

NOW to CS the category of compact semilsttices. There is an obvious
grounding functor J:C8 —> Compl . If we reeald CL € CS and note
gs ( T,8) = Compl (J(T) ,U(8)) for T &€ C8 , S e CL ,and if we recall
Compl (J(T),U(8)) ¥ QE(E((W(J(T))) ,S) from Theorem 17 we mote

COMOLLARY 18. B, o Wo J : C8 ~-=>CL is the left reflections L

But on a CS object T we have the relation ¢ given by x<.y iff
v & int Tx. This relation satisfies AXIOMS 0,1,2,3",3",

(Proof of 3': if b e intT& , ¥ E in‘tTn then bVy & int Ta Q‘int fx
ami € int (Tan fx) = int T(a vx). Proof of 3" If a e int Tx and
a ¢ int Ty , then a € int & a intTy c int flxvy).)

T ecannot prove AXIOM 3 for ¢+ PERHAPS AXIOM 3 IS TQO STRONG FOR OUR
THEORY AND SHOULD BE REPLACED BY AXIOM 3'+3" . '

If that is the case then we can claim that <-’k{ is a shloop (in this
more general sense).

For the remainder I prodeed under this -assumption.

PRUPOSITION 17. There is a functor V: CB —> INF, given by V(L)= |
(T, <%). ' |
Proof. As Proposition 16,use ATLAS 1.19 .17

COROLLARY
gEEeREN 18, Bgo V: L8 —>(L is the left reflectiion .

Proof. By ATIAS 1.19,if T e CS and 8 ¢ CL then nF _ (v(1), {8[)
= 08{ T, S).Then proceed as in Theorem 17.0]

If T & €S , then both BWJI(T) =P (1,<%) and EY(T) -P(T, <
are left reflection into CL with front sdjunctions th> ¥kt and tr \L-,*t
respectively. Since X ¢+ y implies x<{{y ,whence X <-* y implies x<<*y
tnere is a unige map £ E. (T,((ak) — P<(T,<-%) , (1) =\‘I/*I
which is the £ill in in the universal property since f(%es): 4’*%%3 = &s.i -
By the uniquenes of left adpoints, £ is an jgomorpnism. But f is a kernel
operater, and a kernel operator which is an isomorphism must be the identi-
ty. Hence :

THEOREM 19, If S & €8 , then <* ¥ and <<'¥“ agree 011____8.]3
e Tresp <<75_)
Hote that < = <+ (resp (¥ o« ) iff <.Yysatisfies INTERPOL .
COROLLARY 20. If <+ and <K both satisfy the interpolatien axiom on
a compact semilattice/tnen they agree.|] ?
(Vonversel,if one could find an example where one of the two has the '

interpolation property whereas the other not,one would know that the |
two relations disagree. |




Furthe? remarks.

There is some evidence that the interpolation axiom should be strengthened

as follows
AXTOM 4 .(Va,b) a<o =>(Jx) a~ x< b and afx . [J

In any CL -object the relation <K satisfies this stronger interpoiation.

. chain
DEFINITION 21. Let (L,—< ) & INF » A mhzir C in L 1s/strlct? if

..<
x,y € C implies that x<gy or x =y or y=< x .

By Zorn's Lemma, eabh strict chain is contained in a maximal one.
Examples of strict chains are {0} ,{0 ,%}. .

THEOREM 22. Let (L,~< ) e INE_.  and suppose that < satisfies

AXIOM 4' .(We do not need AXIOM 3,or 3' or v ) If C < L is a maximal
strict chain, then C is complete (hence in CL ) and there is a surjective
INF , morphism ’yﬂ( < ) ———>(C, <) whose ®m rignt adjoint is

=<
glven by ¢i—s supy {de ¢+ a4 ¢} . For ¢ e C we have ’!{» cl= ¢yi.ee

Proof. Memo Hofmann 4-19-76 {on chains ...) and memo Carruth 5-28-76 U
This applies in particular to any S £ C8 with <« = <F - <<*provided
this relation satisfies AXIOM 47,

AXIOM 5. ‘7/}(, ...,8, ) x-\la . Va =>(Ha,},...,a1:l) x$ a{v..,va;l
and, 3,3~<a. ,J-- 1,...,n.|:]
PROPOSITION 23. Let (ﬂ,.<) e INEy .Let fl,< ) —(8,<)

be the left reflection into CL . Then £ x—y implies f(x)<K £{y),
f

and if B (Y xny) x<y=>x K yﬁ,ighzen' gfisw

and kag thus is a lattice mOI‘Phlst its ls‘a‘ft adJOlnt 7 is an

T b

INF., -morphism. Thus, AT f is sur;]ectlve, then A% is a rc{a{tractlon in

INE . o e e
Proof. We may assume that S = P (L ) and £(s) = ,1,,8 Let xﬁ( ¥ in L.

Then there is an a € ,.[_‘y namely,a— x) such that ,Lx g_\l,m .This means
£{x) = Ax < rLy f(y) in E{,(L,»—f{ ). Now suppose that < is stronger

Aot foai AR oAy B holes N
than <. let X2 'L be arbitrary, x = sup X in L. Trivially sup £{X) <£(x);

we must show the converse. For this purpose we take an arbitrary I<K £(x)

= Jx; we must show I << sup £(X). But I 4 x means the existence of
some aef x with I € Jia. By hypothesis, a<x implies a <{ x = sup X
Hence there mx® is a finite set F <€ X with a < sup F. Now take any u+ a.
Then U’ =up a1v...\/a , = »@1,...,%% +By AXIOM 5 there are @EL

Spiph Fhegf
] [ ] 1
a,j..{ 2, ane- ug_a,]v...van yl.ee u € ,;,a1v...\,4~ang sup, .y

whence =z IC ,.La < gup f£(X). i

Remark. AXIOM 5 is satisfied in CL .




