Dear Jimmie:

Many thanks for your Tuesday observations. There is a really interesting example of a CL-objett! No wonder that it was so hard to prompt prove the elusive THEOREM 11 on GENERATION. What remains is $(1)\langle = \rangle(2)\langle = \rangle(3)\langle = \rangle(4) = \rangle(5)\langle = \rangle(5) \rangle \langle = \rangle(6)$; your example shaws the failure of the missing implication.

In some further efforts to clear up the various steps involved in my ill fafed proofs, I made some observations which may be useful.

Elet T be a CL -object and L C T a complete inf-subsemilattice of T, i.e. $X \subseteq L$ implies inf $X \subseteq L$. (Thus L is a complete lattice in its own right.) Then the following statements are equivalent; for $x \in T$:

- (1) $x \in \mathbb{L}$.
- (2) $x = \lim x_j$ with an up-directed net x_j in L
- (3) $x = \sup D$ with an up-directed set $D \subseteq LX$.
- (4) $x = \sup J \text{ with } J \subseteq Id L$.
- (5) $x = \sup ((|x|_0 \cap L), (|x|_0 \text{ smallest ideal of } \mathbb{Z} \text{ with } x \text{ as sup.}$

Proof, $\{x\}$ We agree on (1) <=>(2) <=>(3). Note that for any updirected set $D \subseteq L$ we have $\int D \cap L \subseteq Id L$, whence (3) <=>(4).

(4) => (5). Let $x = \sup J$, $J \in \operatorname{Id} L$. Then $J \in \operatorname{Id} T$ with $x = \sup J$, whence $(Jx)_0 = (J)_0 \subseteq J$ by ATLAS, whence $(Jx)_0 \cap L \subseteq J$. Now let a << x, $a \in A(t)$. Find any u with

a << \underline{u} << \underline{x} . By (4) **Exx*** there is a/J $\mathbf{f} \in \mathbf{k}$ with \mathbf{u} << $\mathbf{f} \leq \mathbf{x}$.

Months and completely work in $\mathbb{Z}[\underline{x}]$. $\mathbb{Z}[\underline{x}]$ By $(1) < > \dots (4)$ we know that \overline{L} is a CL -object. \underline{x} $\underline{u} \subseteq \overline{L}$, then there is a $\underline{k} \in L$ with a $<< \underline{k} \le \underline{u}$. From $\underline{k} \le \underline{j}$ we conclude $\underline{k} \in J$. Since $\underline{a} \in A(\overline{k})$ we have $\underline{a} = \inf\{\underline{u}: \underline{a} < \underline{u}\}$. Hence $\underline{a} = \inf\{\underline{k}: \underline{a} < \underline{k} \in J\}$. Thus $\underline{a} \in L$ since \underline{L} is inf-complete. Thus $\underline{a} \in J$ because of $\underline{a} \le \underline{j}$. Thus $(\underline{j}\underline{x})_0 \cap A(\overline{L}) \subseteq J$, i.e. $(\underline{j}\underline{x})_0 \cap A(\overline{L}) \subseteq (\underline{j}\underline{x})_0 \cap J$. But $\underline{x} = \sup((\underline{j}\underline{x})_0 \cap A(\overline{L}))$, whence $\underline{x} = \sup((\underline{j}\underline{x})_0 \cap J) = \sup((\underline{j}\underline{x})_0 \cap L)$.

Now let $a,b \in (\downarrow x)_0 \cap J$. Then $a \lor b << x$ and for any u with $a \lor b << u << x$ there is a $j \in J$ with $u << j \leq x$; again for $a \lor b << k \leq u$ and observe $k \in (\downarrow x)_0 \cap J$. This shows that $(\downarrow x)_0 \cap J$ is up-directed. Recall that $(\downarrow x)_0 \cap L \subseteq J$, whence $(\downarrow x)_0 \cap J = (\downarrow x)_0 \cap L$. Since for up-directed sets in a CL-object we have $(5) \Rightarrow (4)$ strictal. In $D \Rightarrow \lim_{h \to 0} D$, we conclude $\sup_{h \to 0} C(h)_0 \cap J$

Of course, the only new information I get from this is the following Proposition:

PROPOSITION. Let $T \in \underline{\mathcal{C}L}$ and let $L \subseteq T$ be a complete inf-subsemilattice. Then

- (a) $x \in \overline{L}$ iff $x = \sup((\sqrt{x})_0 \cap L)$
- (b) sup: Id L \longrightarrow \overline{L} is left adjoint to $x \longmapsto (\frac{1}{V}x)_0 \cap L$ (hence preserves arbitrary www infs). It also preserves sups of up-directed sets.(" sup is algebraically continuous")

Proof. (a) was just shown. (b) We saw $(\downarrow x)_0 \cap L \in Id \ L$ for $x \in \overline{L}$. For $J \in Id \ L$ and $t \in \overline{L}$ we clearly have $\sup J \geq t$ iff $J \supseteq (\downarrow t)_0 \cap L$. This shows that \sup is left adjoint tx as asserted. By ATLAS, it then preserves arbitrary infx. Since \sup of up-directed collections in $Id \ L$ are just set theoretical unions, the rest is clear.

Consequence: If, by happenstance, L is a continuous lattice, then sup is a <u>CL</u> -morphism.

Let us return to PRIME T for a moment. Let $T \in CL$, $L = \{x \in T: x = \inf(\{x \cap PRIME T\}\}\}$. For a,b $\in L$ we note a $\leq b$ iff $b \cap PRIME T$ $\subseteq \{a \cap PRIME T\}$. Since $a \lor_L b = \inf\{\{c \in L: a,b \leq c\}\}$ we note $a \lor_L b = \inf(\{a \cap b \cap PRIME T\}) = \inf\{\{a \lor_L b \cap PRIME T\}\}\}$ provided that PRIME T order generates L, which is the case iff L is distributive. On the other hand, if L is a sublattice of L, then sup: L is a lattice morphism, since L sup L sup L is a lattice morphism, since L sup L sup L (L sup L is L sup L sup L sup L (L sup L sup

- (1) L is distributive.
- (2) L is a sublattice of \overline{L} .
- (3) sup : Id L --> L is a lattice morphism.
- (4) L is closed.

Your examples shows that (1)-(4) are not automatic. I also observe that in your example $Irr = IRR = \overline{IRR} = \overline{IRR} = \overline{IRR}$ which shows that it would not suffice for distributivity to have \overline{PRIME} order generating.