Keinel

Commentary on the preprint by Gierz and Keimel, Corrigenda.

Quiquid id est timeo Danaos et dona ferentes

Vergil

GK point out that my proof of 3.17 on p.20 $\frac{\lambda}{\lambda}$ Erroreous. They insist that one has to use ERER more decisively that all λ are lattice congruences. Their illustration is the semilattice T=0

 $\in \underline{Z}_{\underline{I}}$

Suppose we take $T[\lambda_1] = \int_0^{\infty} T[\lambda_2] = \int_0^{\infty} T[\lambda_3] = \int_0^{\infty} T[\lambda_3$

hence $X = U_k T[\lambda_k] =$

The functor $G = \bigcirc$ on \overline{ZP} reads this partial semilattice as the upper cap of the cube and makes the cube from it:

and the morphism GX—>T will collapse the bottom ideal of the cube which is in contradiction to my proof.

I would also like to take this opportunity to redify a mix-up in termonology and notation in my earlier notes. In 1.1 on p.2/I talk about left adjoints of Z -morphisms when I should have talked about right adjoints. The maps g should have better been called d in according to XKIKKI ATLAS. (Everything said about their properties standa, but reald right when I say left.) Think according to ELECTION on p.19 as REMARK 3.16 and replace the entire old page 20 by the attached page 20.

(20)

the SP-situation. However, GK have the following clever situate the sly use of all hypotheses?

3.16. PROPOSITION. Let $T \subseteq L$ and let $X = \overline{X} \subseteq T$ be a union of a collection $T[\lambda]$ of subobjects in $Sub_L(T)$. Let $\varphi:X\longrightarrow 2$ be a continuous function. Then the following statements are equivalent

- (1) φ is a character of $(X,D_X,.)$.
- (2) $g|T[\lambda]$ is a character for all $\lambda \in \Lambda$, and g is monotone

Indeed let k,h \in A. Then $d_{\lambda}(kh) = d_{\lambda}(k) d_{\lambda}(h)$ since d_{λ} is a lattice morphism by 1.1 (Fecall notational correction!) and the hypothesis that $\text{Exempx} T[\lambda] \in \text{Sub}_L(T)$. Since $\text{FoT}[\lambda]$ is a filter of $T[\lambda]$ and $d_{\lambda}(k),d_{\lambda}(h) \in \text{FoT}[\lambda]$ (because of k,h \in A) then $d_{\lambda}(kh) \in \text{F}$, showing kh \in A, and proving claim (1). Claim (2) $\text{F} \subseteq \uparrow$ A.

Indeed if $x \in F$, then, since F is open in X there is an open neighborhood U of x in T with U \cap X \subseteq F. Since $T \in Z$, we may assum that U is also closed and that min U exists. Then $\{k \cap X \subseteq \{U \cap X \subseteq \{F \cap X = F \cap X\}, \text{ showing } k \subseteq A. \text{ Since } k \le x$, (2) is proved. Now (2) shows that $E \subseteq \bigcup \{\{k : k \in A\}; \text{ since } F \text{ is compact there is a finite set } E \subseteq A \text{ with } F \subseteq \bigcup \{\{k : k \in E\}\} = \{\{A\}\} \cap A \text{ E. But } k = A \text{ by (1)}.$ Now $A \subseteq \{\{A\}\} \cap A \text{ is character with } \phi^{-1}(1) = \{A\}\} \cap A \text{ is character with } \phi^{-1}(1) = \{A\}\} \cap A \text{ is character with } \phi^{-1}(1) = \{A\}\} \cap A \text{ is character with } \phi^{-1}(1) = \{A\}\} \cap A \text{ is character with } \phi^{-1}(1) = \{A\}\} \cap A \text{ is character with } \phi^{-1}(1) = \{A\}\} \cap A \text{ is character with } \phi^{-1}(1) = \{A\}\} \cap A \text{ is character with } \phi^{-1}(1) = \{A\}\} \cap A \text{ is character with } \phi^{-1}(1) = \{A\}\} \cap A \text{ is character with } \phi^{-1}(1) = \{A\}\} \cap A \text{ is character with } \phi^{-1}(1) = \{A\}\} \cap A \text{ is character with } \phi^{-1}(1) = \{A\}\} \cap A \text{ is character with } \phi^{-1}(1) = \{A\}\} \cap A \text{ is character with } \phi^{-1}(1) = \{A\}\} \cap A \text{ is character with } \phi^{-1}(1) = \{A\}\} \cap A \text{ is character with$

3.17. COROLLARY. Let $T \in \mathbb{Z}_+$, $X = \overline{X} = \mathbb{Z}_+$ $\{T[\lambda]: \lambda \in \Lambda\}$ for some separating collection $\Lambda \subseteq \operatorname{Cong}_L(S)$ ($S = \operatorname{dial} \operatorname{of} T$). Then $GX \longrightarrow T$ is an isomorphism.

Proof.By 2.5, X is generating, so GX->T is surjective 3.15..By 3.16, and 3.16, .GX->T is injective in view of 1.6.[]