TOPIC Errata and corrigenda to memo "Commentary on Scott's function spaces"

1. Memo Hofmis 7-7-76

REFERENCES 2. Memo Keimel 8-1-76

The expansion of the GK-Lemma cited as Lemma A in reference 1 contains an error. Conditions (2) and (3) of Part II of Lemma A should be combined to read as follows:

(2) $T \in CL$ and $C \subset T = C \subset T$ ($T \times T$).

As a consequence, we ask that the following changes be made in the memo, in addition to the one above:

page 5a(CH.III) in the last line above condition (§) replace "iff" by "if", and after condition (§), add the phrase:

"and that (\S) is in fact equivalent to the assertion that $\ker(S)$ is a continuous lat - tice and that the "way below relation" of $\{S \to S\}$ induces that of $\ker(S)$."

pages 6,7, and notably Corollary 24: The 'way below relation' referred to on these pages is always that of $[S \rightarrow S]$, and not that of $\ker(S)$ (if such a relation on $\ker(S)$ should exist).

page 8, Theorem I: replace condition (1) by:

(1) $\ker(S) \in \underline{CL}$, and for f,g $\in \ker(S)$, one has $f <<_{\ker(S)} g \text{ iff } f <<_{S \to S}$

The upshot of this is that the previous memo only gives a sufficient condition for $\ker(S)$ to be a <u>CL</u>-object. We shall see shortly that Theorem I remains valid as first stated, but this relies on the particular nature of the kernel map from $[S \longrightarrow S]$ to $\ker(S)$. The following examples show that neither of the conditions (2) or(3) of the original Lemma A are equivalent to the other conditions:

Example 1. Let $S = I \times I$, the unit square, and define $f \in (S \longrightarrow S)$ by f(x,y) = (x,y) if x = I or y = I, and f(x,y) = (0,0) otherwise. Then, it is readily verified that f satisfies (i), (ii), and (iii) of Lemma A, but clearly f does not satisfy (iv). However, if T = f(S), then it is true that $<<_{\pi} = <<_{S} \setminus (T \times T)$. The problem here is that $T \not\in CL$, since multiplication on T is not separately continuous. This example shows that condition (2) of the old Lemma A does not imply condition (iv) of the old Lemma A.

Example 2. This time, let S = [0,1], the unit interval, and $f \in (S \rightarrow S)$ by f(x) = 1 if x = 1, and f(x) = 0 otherwise. Then, it is clear that f satisfies (i), (ii), and (iii) of Lemma A, but, again, f does not satisfy (iv); however, $f(S) = \{0,1\} \in CL$. As a general principle, in a CL-object S, choose an open prime ideal J, and a closed subsemilattice T of S which is a retract of J, and define $f \in (S \rightarrow S)$ to be the iden-

West Germany:

TH Darmstadt (Gierz, Keimel)

U. Tübingen (Mislove, Visit.)

England:

U. Oxford (Scott)

USA:

U. California, Riverside (Stralka)

LSU Baton Rouge (Lawson)

Tulane U., New Orleans (Hofmann, Mislove)
U. Tennessee, Knoxville (Carruth, Crawley)

tity on $S\setminus J$, and the retraction of J onto T on J. For instance, let $S = I \times I$, $J = \{(x,y) : x < 1\}$, and $T = \{(x,0) : x < 1\}$. Then define $k \in (S \rightarrow S)$ by k(x,y) = (x,y) if x = 1, and k(x,y) = (x,0) if x < 1. This example shows that the condition (3) does not imply the other conditions of part II in the old Lemma A.

A proof of the new Lemma A(i.e. with the conditions (2) and (3) combined) is in ref.[2]. We now return to the situation of $S \in CL$ and the study of ker(S).

Definition 1. If $x \le y \in S$, define $[x \leftarrow y] : S \longrightarrow S$ by $[x \leftarrow y](z) = z$ if $z \notin y$, and $[x \leftarrow y](z) = zx$ if zy = z.

Lemma 2. For $x \le y \in S$, $[x \leftarrow y] \in \ker(S)$.

proof. Let $a \leq b \in S$. If $a \not\in \forall y$, then $[x \leftarrow y](a) = a \leq b = [x \leftarrow y](b)$, while, ay = a implies $[x \leftarrow y](a) = ax \leq bx \leq [x \leftarrow y](b)$. It is clear that $[x \leftarrow y] \leq 1_S$, and that $[x \leftarrow y]^2 = [x \leftarrow y]$. Finally, if $\mathcal{D} \wedge \subseteq S$ and $z = \sup \mathcal{O}$, then zy = z implies $\mathcal{O} \subseteq \exists y$, so that $[x \leftarrow y](z) = zx \neq (\sup \mathcal{O})x = (\lim \mathcal{D})x = \lim dx = \sup dx$. $= \sup [x \leftarrow y](\mathcal{O})$.

Proposition 3. If k,h \in ker(S) and k< \in h, then k(x)< \in h(x) for each x \in S.

Proof. Suppose that $x_0 \in S$ with $k(x_0) \not = h(x_0)$, and assume that $k \not = h$. Then, $k(S) \subseteq h(S)$ (see Proposition 25 of reference), and $h(S) \not \in CL$. Thus there is $\mathcal{D} \cap \mathcal{C} \cap h(S)$ with $h(x_0) = \sup \mathcal{D}$ but $k(x_0) \not \in d$ for all $d \in \mathcal{D}$. Now, Lemma 1 implies $[d \leftrightarrow h(x_0)] \in \ker(h(S))$ for all $d \in \mathcal{D}$. Moreover, if $x \in h(S)$ and $x \not = h(x_0)$, then $[d \leftrightarrow h(x_0)](x) = x$ for all $d \in \mathcal{D}$, while, if $xh(x_0) = x$, then $h(x_0) = \sup \mathcal{D}$ implies $\sup [d \leftrightarrow h(x_0)](x) = \sup xd = x$ as h(S) is lower continuous. Thus, we have $\sup [d \leftrightarrow h(x_0)] = h_{h(S)}$, and we can conclude that $\sup ([d \leftrightarrow h(x_0)] \circ h) = h$ in $\ker(S)$. Finally, for all $d \in \mathcal{D}$, $([d \leftrightarrow h(x_0)] \circ h)(x_0) = [d \leftrightarrow h(x_0)](h(x_0)) = dh(x_0) = d$, while $k(x_0) \not \in d$, and so $k \not \in [d \leftrightarrow h(x_0)] \circ h$. This shows that $k \not \in h$, and the desired result follows by contraposition. \square

Corollary 4. For $k \in \ker(S)$, k <<1 implies that $k(S) \subseteq K(S)$. Consequently, $k \in K(\ker(S))$ implies $k(S) \subseteq K(S)$.

Proof. k << 1 implies k(x) << 1(x) = x for all x in S. In particular, if $x \in k(S)$, then k'(x) << x = k(x) as $k^2 = k$. Thus $k(S) \subseteq K(S)$, and the result follows. \square Lemma 5. If $k \in \ker(S)$, then $h \mapsto hk : \ker(S) \longrightarrow \ker(k(S))$ is a surmorphism.

Moreover, $\ker(S) \subseteq CL$ implies this map is continuous, so that $\ker(k(S)) \subseteq CL$.

Proof. Clearly, all we need show is that the image of the translation map is in fact $\ker(k(S))$, since the rest is well-known. Now, the map is a surmorphism onto $\ker(S)k = \{h \in \ker(S) : h \le k\}$. However, $h \le k$ iff $h(S) \subseteq k(S)$ (again see Proposition 25 of the reference), and elearly then, $h \le k$ implies that

the desired result follows by contraposition. \square Corollary 4. For $k \in \ker(S)$, k < 1 implies that $k(S) \subseteq K(S)$. Consequently, $k \in K(\ker(S))$ implies $k(S) \subseteq K(S)$.

Proof. k < 1 implies $k(S) \subseteq K(S)$.

Proof. k < 1 implies $k(S) \subseteq K(S)$.

Thus $k(S) \subseteq K(S)$, and the result follows. \square Lemma 7. If $k \in \ker(S)$, then $k \mapsto k$; $\ker(S) \longrightarrow \ker(k(S))$ is a surmorphism.

Moreover, $\ker(S) \in CL$ implies this map is continuous, so that $\ker(K(S)) \in CL$.

Proof. Clearly, all we need show is that the image of the translation map is in fact $\ker(K(S))$, since the rest is well-known. Now, the map is a surmorphism onto $\ker(K(S))$, since the rest is well-known. Now, the map is a surmorphism onto $\ker(K(S))$, since the reference), and elearly then, $k \in K(S)$ (again see Proposition 25 of the reference), and elearly then, $k \in K(S)$ implies that $k \in K(S)$. Conversely, if $k \in \ker(K(S))$, then it follows routinely that $k \in K(S)$, and for $k \in K(S)$ in $k \in K(S)$.

Theorem II. Let $S \in CL$. If $ker(S) \in CL$, then S is a dimensionally stable Z-object.

Proof. Let $g:S \longrightarrow S'$ be a surmorphism of S onto an S' in CS. If $d:S' \longrightarrow S$ is the right adjoint of g, then $f = dg \in \ker(S)$ as in the proof of (1') implies $C \ker(f(S))$.

(2) of Theorem I of the reference. Hence $\ker(S') \not \in CL$ by Lemma 5, and so $CS = \sup \left\{ h \in \ker(S') : h < l_{S'} \right\}$. But, $h < l_{S'}$ implies $h(S') \subseteq K(S')$, and so, if $x \in S'$, then $x = l_{S'}(x) = \sup h(x) \le \sup \left(\int_{X} x \cap K(S') \right) \le x$. Thus K(S') is dense in S', whence $S' \in Z$. Thus, every surmorphic image of S is in Z, and this shows that S is a stable Z-object.

Corollary. For S & CL, the following are equivalent:

- 1. $ker(S) \in CL$.
- 2. S is a dimensionally stable Z- object.

Proof. Theorem II shows 1. implies 2, while Theorem I of the reference shows the converse.

Note further that Proposition 29 remains valid to show that if $ker(S) \in CL$, then ker(S) is itself a dimensionally stable Z-object.