J——

SEMINAR ON CONTINUITY IN SEMILATTICES (SCS)

DATE M D Y ©
8 | 4 | 6. .

‘;"NAMI;(S) Hofmann and Mislove

TOPIC Errata and corrigenda to memo "Commehtary on Scott's function spaces"

1. HMemo Hofmis T-7-T76
REFERENCEs 2. Memo Keimel 8-1-76

The expansion of the.GKALemma cited as Lemﬁa A in reference 1 contains an'error.
Conditions (2) and (3) of Part II of Lemma A should be combined to read as follows:

(2) T & CL and <, = ‘(TXT)

As a consequence, we ask that the following changes be made in the memo, in addmtlon
to the one above: ‘ .

page 5a{CH.III) in the last line above condition (§) replace "1ff“ by nifv, ‘and after -
condition (§), add the phrase: o

Wand that (§) is in fact equivalent to the assertion that ker(S) is a continuous lat -’
tice and that the "way below relation"'of [S e S] induces that of ker(s)."

pages 6,7, and notably Corollary 24t The ‘Way. below relatlon" referred to on these pages
is always that of [S —3 s], and not tha% of ker(S)(:Lf such a rela‘blon on ker(S) should
exist).

page 8,Theorem I3 replace condition (l)_hy:
(1) ker(S) € CL, and for f,g € ker(S), one has f &<, r(8) g iff f‘<<[ 5] &

The upshot of this is that the- prevxous memo only nges a sufficient condition for
ker(S) td be a CL—obJect. We shall see shortly that Theorem I remains valid as first .
_ stated, but this relies on the particular nature of the kernel map from [S—S] to
ker(S)., The following examples show that neither of the conditions (2) or(3) of the
original Lemma A are equivalent to the other condltlons-

Example 1. Let S = Ix I, the unit square, and define £ & G%—rﬁ) by f(x,y) = (x,y)

if x =l ory=1, and f(x,y) = (0,0) otherwise,  Then, it is reéadily verified that

f satisfies (i), (ii), and (iii) of Lemma A, but c¢learly f does not satisfy (iv).
However, if T = f(S), then it is true that €< < = (.(S | (T x T). ' The problem here _
is that T ¢ CL, since multiplication on T is no¥ separately continucus, This example .
shows that condition (2) of the.old Lemma A does not imply condition (iv) of the old
Lemma A. . ‘ . o

Example 2. This time, let § = [0, 1], the unit 1nterva1, and £ € (S=am3) by £{x) =

if x = 1, and £{x) = O otherwise, Then, it is clear that f satisfies (i), %11 s and
(iii) of Lemma A, but, again, f doés not satisfy (iv); however, £(8) =1{0,1% e CL.
As a general principle, in a CL-obJect S, choose an open prime ideal J, and a closed

subsemilattice T of S which is a retract of J, and deflne fe (s-—»s) to be the iden-
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tlty on 8\J, and the retraction of J onte T on J.. Por instance, let 8§ = I x 1,_'J., =
{(xy) s €1}, and 7 = {(x,0) : x ¢ 1} . Then define k ¢ (S—=8) by k(x,y) =
(x,¥) if x = 1, and k(x,y) = (x,0) if x < 1. This example shows that the condition
(3) does not imply the other conditions of part II in the old Lemma A.

A proof of the new Lemma A(i.e. with the conditions (2) and (3) combined) is in ref.[2}
We now return to the situation of 5 & CL and the study of ker(S).

-“Defini‘h:-i.on l. If x &y € S, define [x—(—y] 'S —3= 5 by [x4—y](2) = 2 lif. z & ¥y,

*
;?:)g and [x+y](z) = zx if zy = z.
8 Lemma 2. For x &y & B, [x-ﬂ.-y] e ker(S).
A& proof. Let a £ be S. If af ¥y, then [x4y](a) = 2 ¢ b = [x4y](b), while,
VA . : S . |
o~ ay = & implies [x¢-y](a) = ax ¢ bx £ [x<y](b). I¥ is clear that [xé=y] % Lo
»

and that [x-i-—y]a = [x=y]. F:Lna.lly, if B4 ¢S and 3 = sup <&, then zy = 2

- implies o € )y, s0 'I:ha.'l: [x-t—y] z) 2 (sup)x = (LimB)x = ];ém ax = %p 4x-

= sup [x<y](0). [

R

Proposition 3. If k,he ker(S) and k<i‘;h then k(x)(« h(x) for each x & S.
L — —— r(§
/’?go’i".-’&mpose that x, & 8 with k(x s h(xo), and assume that k & h. Then,

i

k(S) € h(8) (see Proposition 25 of reference), and h(S) & CL. Thus there is
L1 cn(s) with h(x,) = sup & but k(x,) £ d for all d&<J, Wow, Lemma 1 implies
[a<h(x,)] 6 ker(n(S)) for all 4 & O, Horeover, if x & h(S).and x ¢ n(xy),

then [d<eh(xy)](x) = x for all a0 , while, if xh(x,) = x, then h(x,) = supd

(s)—=r% is the adjoint of h, we have k(

implies sup [d-ﬁ-h(xo)](x): = sup xd = x as h(S) is lower contimious. Thus, we
have sup [d-«z-h(xé)):[ = lh(s),,.,and. we can conclude that sup ([d<h(xy)]eh) = b in
dn(x,)

= d, while k(x;) £ 4 , and so k £ [_'di&-h(xo_)joh. This shows that k £ #h, and

i

ker(8). IFinally, for all d €3, ([d—<—h(x0)joh)(xo) = [d—{-_-h(xo)](h(xo))

the desired result follows by con‘bra.posn.'tlon. . D

Corollary 4., For k & ker(S), k<< l{s:.mpl:l.es that k(8) € kK(S). Consequently,
> Co : _

" Since the inclusion h

k & K(ker(s)) implies k(8) & K(S) | |
Proof. k<41 implies k{x) dcl(x) - x for all x in S. In particular, if :'c‘ e k(®), -
then ﬁ(x) &< x = k(x) as k% = k. Thus k(8) ¢ K(S), and the ;ésult follows. [ ]
| Lemma 5. - If k& ker(S), then h v hk : ker(S) —+ ker(k(s)) is a surmorphism.
Moreover, ker(S) ¢ CL 1mp11es this map is oon‘b:.nuous, so thet ker(k(s)) & OL.
Proof. Clearly, 511" we need show is that the image of the translation map is
 in fact ker(k(S)), since the rest is well-—known. Now, the iﬁap is a surmorphism
hon‘to ker{S)k = {h € ker(S) : h & k] . However, h ¢ k iff h( )& k(8) (again

see Proposition 25 of the reference), and elearly then, h & k implies that
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the desiwed resul‘h follows by contrapg s:.'t on.‘D
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Corollary 4. \For ¥ & ker(S), k<< [:melles that k(8) & ( ). GConsequéntly,
) } . ) . ‘

k & K{ker(S)) iplies k(8) € K(&).

—

Proof. k<<f implies k(x)4%1(x) = x for all x4n S.\JIn particulgs, if z e ki§)

Then k(x)/K< x = k(x) as k" =k, Thus k(5) & K(S), and Yhe reslli follows. [

Proof. Clearl ', biif we need show/is that 'the am . ¢f the translationfap 1s
in fact kerfk(s)), singe the zest is well-known. /Now; the map is a Aurmorphism
= {heker(d; h ¢ K} . Howevgh, b 4 k iff Ws) Zk(s) (again

ion 25 of the referduce), and elearly then, h 4 k implies that

see Propos
hlk(s) & ker(k(8)). Conversely, if h' & ker(k(8)), then it follows routinely
that h'ek & ke;J(s), and for x in S, h'(k(xﬁ)k(x) = hﬁ'(k(x)).rasfx‘l‘;é ].k(s). ]
Theorem II. Let S ¢ CL. If ker(S) € L, then S .is a dimensionally stable
Z-object. ‘l

Proof. Let g:8 ~3 5' be a surmorphism of § onto an S' in CS. If 418" —=» 5

is the .right adjoint of g, then f = dge ker(S) as in the proof of (1') implies

& e (£L8Y)
(2) of Theorem I of the reference. Hence xer(S')¥e CL by Lemma 5, and 0

lg, = sup ih ¢ ker(8') : hésly,{. But, ‘h<zejl;Sii implies k(8') € X(S'), and so,
£s') t5)

if x € §', then x = 13,( x) =hsuplh(x) < sup ($x NK(S')) € =x. Thus X($?) is
(R4

dense in S', whence S' & Z. Thus, every surmorphic image of 8 is in Z, angé this
shows that S is a stable Z-object. []
Corollary. For 8 & CL, the following are equivalents
1. ker(s)e CL. |
2, Sis a dimensionally stable Z- object.
Proof., Theorem II shows 1. implies 2, while Thebrem I of the reference sho;qs

the converse, D _

‘Note further that Proposition 29 remains valid to show that if ker(S)e CL, then

ker(8) is itself a dimensionally stable Z-object.




