ON CONTINUITY IN SEMILATTICES (SCS)
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The traditional mathematical model in the theory of
measurement is the unit inferval I = [0,1] with its natural
orderm - % If a set of physical objects D 1s given , then
a process of measurement 1s a function 0——> I which, in nmxa
in general will respect some structure of D,e.g. a (partiall.qua
order .} If ,to produce a concrete example, D is the set of
all penecils in the department,we can compare itkg of them
in relation to their magnitude by placing one next to another.
This gives a pariiaixfrder quaslorder and any process of
measurement respectlng thlis mode of comparison qualifies fo
be called measurement of length. Objects with the same m value
would have to be declared of egual length. Each assignment
df——>Xg of a real number;é e I to an object d € D is a
measurement.

The crux is that no accurate measurements exist. Each
object 4 € D glves rise to a rather fuzzy plece of information
as what value in I should be assigned to it. In x®ia reality,
what we assigne to an object d is a random variable X with
values in I. Recall that a random wvariable is given by a
regular probabllity measure on I; egquivalently, cne may characte
rize Hs probabilistie behavior by its distribution funetion F
= F., . The r&;aticn between the d%ﬁgrlbuticn function and the
asscciated ‘measure is glven in z2¥= of

&

(1) F(r) = palr)

We recall that distribution functions are monotone,continuous

from the right and satisfy X 1lim F(x) = 0 , lim Fl(z)= 1.
X—>—00 I—=->00

For random varlable taking values in I this reduces to Fl(x) = ©

forx <0, F(x) =1 for 1 <x.

In the light of our model for the theory of measurement we

define a ¥ quasiorder on the class of random variables
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(2) ¥zx< Y iff Fy2=Fy

This says,if you conslder the definition for a moment, that ¥ 1is
more likely to have larger values than X. Evidently we have

(3) X <Y = E(X) < E(Y) ( with B(X) = expectation of X
= [x dF (x) )

which is guite reasonable. In the embellished model , 1f the
measurement X is assoclated to d,we still end up obta ning a
rezl number E(X) which represent the most probable value of the
measurement. The assignment dp——> Xp—> E(X) will still reflect
order structures.

The following definition now introduces the random unit interval:

DEFINITION. The random unit interval m I is the set of
all femxitmm distribution functions F: R —>[0,1] = I with
F(x) = ¢ for x < 0 and F(x) =1 for 1 < X, equipred with the
partial order of fse=ianse g glven by G E iff

F <G iff F(x) < G(x) for all x e R ;

and squipped with the weak topology: 1lim F, = F i jde. —> JSra:
for all continuous f (on R or,1f one wisheg, on 1}). [J d

Most texts in probability will tell you that we have the
following

FACT. If F_ 1s a seguence in I , then F = 1lim Fn (in the
weak topology irt

Eixiiimx!m
(&) F(x) = lim Pn{x} for all points x of continuity of F.[]
Notice that II is separable metric as the space of probability

measures of & the compact separable mettic space I (wlth the
weak topology); thus sequences suffice fo describe the topology.

The purpose of this memo is to point out the following observation

THEOREM. Both the random unit interval II and its apposite oF

are CL — objects and I 1is a topological lattice in the weak topology
In particular, the CL — topologies of II and T°F agree with the

weak Topology

liore information will be given afterwards; the proof of the

theorem is divided into smaller steps. For any monotone functlon
f: R—>[0,1] we write fy(x) = 1im £(y) , y—>X , ¥ < X; ok £ la=o.




_T;{z A, L 1s a topologleal zenlilatilice relstive to the polininise
min cperatlion.

froof. We set(FAG)(x) = F(x)A G(x). Sinee L4 is compact, by
lawson's theorem on the joint contlinuity of compact semitopological
semilattices,we only need to show separate continuity. It suffices
to operate with sequénces. So let F = 1lim Fn; we must show

FAG = 1im F A G. For this purpose we take x € R and assume that

x is a point of continulty of FA G; by the FACT we must verify
(FAG)(x) = 1im(F AG)(x). Let H € {F,G} be such that H(x)=F(x)A G(x
We c¢laim that H 1is continuous in x: Indeed (using that FA G is
continuous in x and H is nondecreasing) (FAG)(x) = (FA G)=(x)

< Hu(x) < H(x) § = (FAG)(x). Thus He(x) = H(x), which proves the
claim since H ls continuous from the right. We proceed by case
distinction: Case 1: H = F. Then F(x)} = lim Fn[xj by FACT, and

so (FAG)(x) = F(x)AG(x) = 1lim Fn{x}}\{;[x} = 1lim {Fn,ﬂ G)(x).

Case 11: H = G. Let r < G(x) = F(x)A G(x). Since G is continuous in
X by the claim there is an a < x such that a < y < X implies r < G(y.
and all but =X countably many of these y must be points of continuit:
of F, whence F(y) = 1lim F_(y) for these y by FACT. Thus

(FAG)(y) = lim (F oA G)(¥) for all such y. Since FAG is continuous
é? écﬁg%gﬁiggﬁg,hﬁia{ro nt Gf go%:inuity of F with a <y <x

such that 1im Fnﬁ\G}{y] } r.fBut 1im {Fnﬁ\G (x) < G(x) = (FAG)(x).
Since r was arbitrary with r < G(x) we conclude 1im (F A G)(x)
(F/G) (x).[

LEMMA A'. II is a topological semilattice relative to the pointwise

max operatlion.

Froof.Analogous. []

This shows that II is a topological lattice relative to the weak
topology. We now turn to the lattice theoretical zspects.

LEMMA B. The function fj—> T defined by I(x) = 1 — fx(l=x)

gives a lattice isomorphism II——> II°F which 1s its own inverse.

Eroof- If f € I , then fe I (stralghtforward verification); also

e
-~

T =1 (immedlate). If f < g in I , then g < T (clear).[]




Lrilih C. Let F,6 & II . Then the following statements are egquivalsn

(1) For all x < 1 with O < Gu(xX) one has F(x) < Gu(x).

(2) PP << G.
Proof. (1) =>(2) : Let H, be an ascending sequence in II with
H = sup Hn » Then also H = lim.Hn by Lemma A. Suppose that G < H.
Let 0 < x < 1. Since F(x) < Gx(x) we find an r, ® F(x) and

real numbers ux, v with u, <X < vx such that ¥y = [ux’vx] implies

M

Fly) < r. < Gl{y). Let T, Sy

continuity of H. Then H[cxj =1lim H (e_) > G cx] > r_ :mEimii .

> r_ . Then for zll ye[cx,q

[ux,x [ be an arbitrary point of

Let n, be a natural number with ]-IY1 (e

we have H (Y) & >H_ (c_ ) >r_ > F(y). We cover I by finitely
n, = X X

many intervals ]cx 3V [s3=1lssee,m and set n = max{ny yeees O }.

j J "1 m

Then J-i?,1 > F. (HNote: This works with any up—directed net just as

X

well as with a2 seguence.)
not (1) => not (2): Subpose that we have an x < 1 with O<Ga(X)<F(x
Let N be a natural number with N & 1/ Gw(x). For all n > N we
define
1
(cly) — E]?’D for y < x

H {i] = Gu(x) — L for x <y < (x + i]h Al
n n - - n

G(¥) for {x+%1 Al <y .

Then G = 1lim H, in I and H 18 increasing. But Ho (x) < G«(x) < F(x)
Thus F < H, Talls for all n > N ; thus F << ¢ fails.[]

The zero element O of II is way below every element in IT »in
particular it is way below F with F(x) = 0 for X< 1/2 and = 1
for 1/2 < x, but F is not way atove O im ( whers way above means
way below in EDP}. However, if F and G are such that o < Flx),G{x)

<lfor0<x<1l, then? << ¢ iff G is way above F,




LEIMA D. For ® G e Il define G = sup § G in I . The

G=sup { Fe II | F < Gw }-

Proof. Since F << G implies F < G« by Lemma C we have G <

sup {F| F < Gw} . Howsver, if F < Ga then (F — %} Y 0 << G by
Lemma C. Hence (F \f%} Yoo g G by definition of G. But

F = sup, {kaﬂ} V 0 , whence F < G. Thus sup{F|F <Gs } <G -0

LEMMA E. For a2ll ¢ = I we have G = G.

Froof. Suppose not, then there is an x with G(x) < G(x). Let

r be an arbitrary element in ]G(x),G(x)[ Define Hr e I by

4] L for y < ¥ + E

H(y) = 7 By A |
r claé :
rﬁ+%g ,

where d = d(r) is determined so that x < y < ¥ + d implies

d .
G(¥) < r. Then we note that Hr{y} < Guly) for ¥ < x + 5 trivially;

since G(x) < Gu(y) for all x < y we Cknﬂlude?ﬁﬁxﬁﬁﬁxﬁiﬁ;?

H.(y) = r < G(x) < Gely) for x +5 <7, 50 Hy < Gue Thus Bz

Hr[y} and this is a contradiction.

[}

yel=,df , then @ G(y) <

ST

LEMMA E is precisely the assertion I € CL . Since Lemma B
= as a lattice

says that I°P = I{ then also °P e CL . By the unigueness
of the CL — topology,Lemma A allows us to conclude that the % CL
topologles of II and n*P agree with the weak topology.

The proof of the THEOREM is finished.

PROPOSITION, Every non—degensrate interval in II contains an
ineerval [A,B] = II.

Froof. Every non—isgenerate interval contains an interval [FsG]
with F(x) < G(g) for some x. Fix r,d so that F(x) < r < G(x) and

F(y) <srfor x<y<itx+d, 0 <d. Define

F(y) for y < x, F(y)

Aly) = r for x <y < x +4/2, B(x) = B(y) U
G{x) forx¥d/2 <y <d + x, ) - '
G(y) for x +d < X, Gly)




Ls 5 conseguencs of Tnis Proposition, we know that II ig gertainly
a = ’

not i1secmorphic to IX for any ¥, since Ix contains intervals which

are isomorphiec to I.

In fact we indicate that the following 1is true ,too:
F

PROBOSITION. Every element/af II has, arbitrarily small nelighbor-

hoods which are isomorphic to I, provided that ® F << 1.

Indication of proof. F has small neighborhoods of the form [A,B]

With A << F << B. By the interpolation property there are A,

With A << A' << F <<B'<<B. Every ¢ in II 1is the sup in II

3!
of

the set of all continuous He I with H < IL . Hence there is

a continuous A" with A < A™ < A' ; make sure that 0 < B(x) < 1

for C<x<l; =m likewise for B'; so F << B' <<B are alsg way
Tjw relations,and the dual arguments apply to glve a continuous

with B' < B" < B. Show that [A" , B" ] = I. []
Probably F << 1 has little to do with this, so that in fact

small
elements of II very likely have neighborhoods isomorphic to
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l PROPOSITION. II contains the cube IE'.

Y3 by " I v 2300 5 T NG L TS O

mapping zero to zero.[]

. }-'slf}f"?J M“f—’? "‘Lf r:*;f?“-" Imi" Lo H"?'ilf

above

E"

all

Proof. The functlion g: III———ﬁ O given by m{al,az,...]{x}

Ef{a IE : 1 - % <X 4 N=l,24...} f x <1, = 1 if x =1
is a mﬁmﬁxnﬂhxsxEEE%Egﬁyxaaxﬁggﬂ continuous lattice embedding

|
Tgﬁ The coproduct in CL DNI is not separable metric (since 1t contalns
rﬁ[%l the coﬁrﬂduct :mz = space of closed subsets of jﬁm under U. Hence
< I * . There do not seem to be aii_ga;gjcularly concrete morphisms
T —=> 1; the memo on strict chaiwsASnows how to produce such

mopphisms,since via Lemma A it is not hard to recognize sirict

chains in II.




Sne other remark: The function fl—> § {4, maps the/r
continuous funciions bljectlvely and under oreservation of the
order onto the set of left continuous ones. Recall that according
to Bcott we denote the set of all left continuous functions
I ———> I by [I->I] . Hence
REMARK. The function fjp—>fg: IT———>[I—>I] 1s an isomorphism
onto the kXEXKE CL-¥kkobject B® [I—>1], = {f €[I—>1]: £(0) = 0}

¥2 In using the result that [I—>I] € CL first proved by Scott

in LNM 274 and then by different methods by Hofmis 3CS 7-7-764

and azain by Scott in SC5 58-23-76 we could have used the Ramark

in a poption of the pfoof of the Theorem,namely, that portion whic

establishes that I is a ,CL-object.

It appears,perhaps from hindsight, that an eguivalent approach

to II would have been more compatible with semilattice theory,
even thought it would be less compatible with classical probabili-
ty theory.Indeed we based our discussion on the classical cumulati
distrivution functions F which are right continuous non-decreasin
with F(1l)= 1, F(x)= 0 for x < Q. They were introduced from the
probabllity measures H via Ejsj = Up{%r] { see (1) on p.l).

A completely eguivalent theory (for the unit interval) results if
we assoclate with eachiﬁ exF¥{I¥ the function s[——p-f{fr}.

We make the general observation:

OUBSERVATION. Let S be a compact semilattice (S e cs ). If st-}s
1s a convergent net ,up—directed, then

n TS‘} = TS-
Hence, if S5 is firg&icountabla and M a probability measure,
the function s}——mﬁﬁn[Tsj preserves up directed limits.
Let us denote the space of all probability measures of S in the
weak (= vague) topology by E(3), where 3 is any compact semilattice
For # e ' P(S) set ?ﬁ{S}—jP(TSJ‘ We have observed:

PROPOSITION . Let 5 € CS ©be first countable. Then the assignment
Joadt— P > D h*gf} gives a function ﬁ(a] j&ﬁ} [3__}51

where f ra~~;ﬂ is in [q——ﬂﬁj iff £(0) =
ale




Froof; bferselelair—ixe If the measures u and v aﬁrﬂe on all princips

filters s then they agree on the Borel alg ﬂbrafﬁf sets generated hy
the fs. If U is an open filter and u = min U , then there is a seguer
u, € U which decreases and converges to Uf first countability is

used herelj.EEEEEEEEEKExgx$ﬁ§x3xxﬁﬁﬁizﬁgigﬁg . Suppose now that
U=int fu = {v: u<<v}. Then U =y Tun, and in this case we have

UErm € BE + We know that the CL-topology has a basis of open sets

of the form int fs n (5 \ ft;) n ...n(s \ft_). It follows that
these sets are in 3. Now every compact set has a countahle neighbor—
hood basis consisting of a finite union of basic open sets,and it

is in fact the intersection of this neighborhood basis. Thus every
comgact set belognzgs to B and thus B contains all Borel sets.This

proves the claim.[]

Our entire discussion involved about the following result, ﬁhlch

is only rephrasing our theorem

THEQREM. ¢I: P(I) > [S=——>I], 1s 2 mig=ziignxxand homeomorphism.
This allows us to transport the CL-structure of [S——~}I’Oback to P )

giving us the Random iinit Interval (up to isomorphism). This iz, so
to speak, the link between Scott's function space theory and the
analysis we discussed earlier.

Let us write P(I) -1II from here on out.




o

LZWA. Let A,B,C € CL and let D c fEZz&E. Then the functilon
gh—> (0 o dly 2 p ¢ [A,C]—> [B,C] is a CL-morphism.

Proof. We must show that g}—> p o d: [A,C] > [B,C] is a CL~
morphism for each d. The functlon is clearly Scott continuous

(i.e. preserves up—directed supsp [pardon, Scott says we don't have

to say'up—directed supd; indeed'directed sups'is fine]). If (A,C
denotes the CL-object of all monotone functions under poinswise
operations, then ol——> p o d: B (A,C)—>(B,C) 1is clearly a CL-
morphism. There is, however, a natural transformation of functors CL
{E;DHPP—-} CL given by k:( —,C)—>[ - ,C where k,(f)(a)

o

= sup f( ] a). The surjectivity of k in view of the commuting

v
- (d,C)
dizgram (4,6) —————5(B,C)
Ky b bk
[A,C] —~————*—+[E,C}
[d,c]

shows that [4,C] = (o}—>9 o d) is a CL -morphism.

[REMARK. For a discussieon of ky (exclusive of the asserted naturality)
seem SCS Hofmis ?—?—?6} and SCS Scott &-23-76.The naturality is a
matter of verification using the following Lemma: If d4d:B——>B is

a cL°P —morphism then ,aguhpdirected setg, F d(b) is cofinalfff in
d{#b} y ¥REXEEXXEHEY (Use preservation of << by 4 and preservation of
sups by d together with the definition of <<.) From the Lemma it
follows that sup mftﬂb}} = sup mﬂfihﬁ for every Scott continuous g,

which is precisely the commuting of the diagram above,i.e. naturality.}

I
COROLLARY . Let S & CL . Then ol—>(p 0 d),_ ¢ [S—>8, —¥FH

cL®P(1,s)

I -—-}I]Oﬂ~ is an injective CL—morphism.

froof. After the previous Lemma, only injectivity is left. Now ¢ andy
P"O?FT

have the same image 1ff they agree on all d4(t) , te I, d € CL °(1,58)
) ) . (e—18-75) )
But this set is denss (lemo Hofmann on Strict Chains.) [J .
CL(S, 1) cLtP(1,s)

Now we define a function h: P(I) —_ [I—}I]G

as follows: Let d be the left ad joint of =z g;ﬂp -map d:Ii-—>5; then
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[ 1]
[

s
= o8 '_:.__..IIS,,E}"l .
is an ilsomorphism by what ws 2w earllier. Wow we recall that every

[EE¥TREism continuous function f:S——>T) induces a2 contlnuous map
P(f) : P(S) —>P(T) defined by P(£)(um)(X) = )&[f”l{x}}..

This allows us to define a map m: P(S5) = P{I}IQ-T“-J':S"I:1 by
LElMA. The following diagram is commutative:
bs i
F(3) > [S- }IJD
m l l oF>(9 0 d)3 £01oP(1,5)
-0p o
P{I}E_L_ES!'I} }fI-}IJG CL {I!S}
h
T

and  pg(p) (2)TE (1s)

Froof. hn{}A} = {mP{E]EP)} q e QLDP{I,S}
=0 we have to show that for each d € Q&DP{I,S} we have
i' ~—
EF’P{E}{ 1{5}':1-}“ {Td{S}:I - for all s. But mP{E}Eﬂ }(5:"?(’-;(&}(}{ }':’ITS}:'
i_.}L(E; (ts)). However, a dl({s] = fd{sj by the theory of Galels
connections (ATLAS)..[]
411 maps with the possible exceptlion of ¢S are contlnuous, all
are injective; it follows that ¢ has to be continuous (compaciness

argument:};alymaps thus are topological embeddings. We record:

PROPOSITION . If 3 is a separable metric CL —object, then

¢E:P{S} > [5—>I], is a topological embedding. (]

Here comes the problem: o
FPROBLEM. What do wes know about ¢3{P{S}}.

Is it a semilattice relative to the induced order or its oppositef
Simple experimenting with point masses and their finite convex
combinations shows that im ¢ will not in general be closed under
the formation of finite infs or sups in [S——>I] . Note that im §
might still have 1ts own infs or sups. This would allow to equp
P(3) with a semilatiice or lattice -structure viz ¢_.. For the moment
it has only the structure given by a closed partial order.




