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1. The closed subsemilattices of a continuous lattice form a

continuous lattice.

Let L be a continuous lattice endowed with the Lawson topology.
Let Sub(L) denote the set of all closed subsemilattices of L
ordered opposite to inclusion. The closed subsets of L form

a continous lattice and we have the operator that associates

the generated closed subsemilattice with every closed subset of
L. . By lemma 1.43in [411 , '
' ‘ Sub(L) will be a continuous lattice

if we can show that every closed subsemilattice S5 of L has

a neighborhood basis of closed subsemilattices. This might be
known, but I do not remember having seen it. By compactness it
will suffice to prove the following:

Claim: Let S be a closed subsemilattice of L and s an element
of L not in S . Then there is a closed subsemilattice T which
is a neighborhood of S and does not contain s

Proof. Let t = inf {ths |s < x} . Choose an
element a<xt with ¢.$ 38 . The compact set
S‘\#H, is covered by the updirected union of
the sets L \fp with b <<s. Thus there is

a b« s such that L~ ?b contains S‘\%a.

Let T be the union of the closed filter

}a and the closure of th& ideal L\%b

Then T has the desired property.
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2. When do the prime elements of a distributive continuous lattice
form a closed subset.

In section 3 of [2] it was proved that a continuous distributive
lattice L is isomorphic to the lattice of 211 open decreasing
subsets of its set P(L) of prime elements, provided that DP(L)
is closed in L . Here and in the sequel, . will be endowed with
its Lawson topology.

Here we want to give an internal criterion for the set P(L)
of prime elements of a ditributive continuous lattice to be closed,

2.1, PROPOSITION. In a distributive continuous lattice L the
set P(L) of prime elements is closed, if and only if the follo-

ing condifion (C) is satisfied:

(C) For all a,c,d in L , a <<c and _a<¥d imply a<Kcad.

Proof. If P(L) is closed, then L is isomorphic to the
lattice D(P(L)) - of all decreasing open subsets of P(L) by
[2], Theorem 3.9.In this lattice one has U<V iff T9c< V ,
where ﬁ_d denotes tle decreasing subset of P(L) genereted by
the closure of vy , Clearly, if gd V and < w , then
U< VAW . Thus (C) is satisfied.

For the converse, we first note that the set P(J(L)) of
all prime ideals of L is closed in the algebraic lattice J(L)
of all (lattice) ideals of L . Indeed, P(J(L)) with the induced
Lawson topology is homeomorphic to the space of all lattice homo-
mérphisms f:L —> 2 endowed with the topology of pointwise con-
Vergencé, and this latter space is compact. The map I }—>sup I
from J(L) onto L is continuous (see [3]). Consequently, the
image of P(J(L)) is closed. Thus, P(L) will be clogéd, if we
can show that sup I is a prime element of 1L whenever I is
a prime ideal.

So, let I be a prime ideal pf L and p = sup I , Let
a,b be elements of L such that aAb £ p . Suppose that a £ p
and b $ P . Then there are elements c<«<< a and d<¥b such
that c;$ p and di& p . From condition (C).. we conclude that
cAd<<aAb , AS apab <p=sup I , we conclude that cAd@@
belongs to the ideal I , As I is prime, ce&l or de I,
whence ¢ £ p or d< p, a contradiction.

2.2, CO%OLLARY. In a distributibe algebraic lattice the set of

——

prime ideals is closed for the Lawson topology, if and only if

the meet of any two compact elements is compact.




2.5, EXAMPLE, Let 1 ©be the following subset of the square [0,1]2
ordered coordinatewise:

L = {[0,%]“X[O,‘I__\) v ([1,'133‘[%,‘1])

Then L 1is a distributive continuous lattice. The set of prime
elements P(L) = ([0,1]x {1}) u ({1§x[—-;-,ﬂ) U ({%gx[o,:‘.[)
is not closed. In fact, the point

b = (— —) is not prime, although a limit of prlmss. In order to
se that condltlon (C) fails, consider a = (O, —) , C = ( »1)

a= (1, —) . Then a<kc and a<€d . But a<kcAd =D does
not hol o

2.4, One can show more generally that in a distributive continuous
lattice L +the closure of the set P(L) of all prime elements

is exactly the set of all elements which are suprema of prime
ideals of L .

2.5, QUESTION, What does condition (C) mean for arbittrary
continuous lattices.




3. Remarks on lower semicontinuous function Spaces.

Let X be a compact Hausdorff space and L a continuous
lattice. We use the terminology and notation of [2]. Wg propose
a proof of Theorem 1.1o in [2] which is based”on proving first
1.15 of [2]. L 1is endowed with its Lawson topology.

2.1. DEFINITION. An upper graph is a subset G< XXL which is
closed and which has the property that for all x in X +the set
E§X¥XXKXXKXXXXXXXKXXXXXX
G, = {acl ; (x,a) € G

is a filter of L and nonempty.
2.2, NOTE: If £:X —> 1L 1is lower semicontinuous, the set
G(£) = {(x,a) ; £(x) < a}

is an upper Graph in the sense of 2.1, Conversely, if G is an
upper graph, the function f:X —> L defined by

f(x) = inf Gx for all x in X

is lower semicontinuous. We conclude that the lattice LC(X,L)
is isomorphic to the lattice G(X,L) of all upper graphs
ordered by the opposite of inclusion.

2.3. NOTE: The intersection of ahy family of upper graphs is
still an upper graph. Consequently, on the continuous lattice

i (Xx L) of ai}igi?i%gvigPsets of. XxL (Qrdered by the opposite
of inclusion)which associates with each closed subset the
smallest upper graph containing it. By lemma (1.13) in [1], the
following will immediately imply the non-trivial part of Theorem

1.1o and 1.15 in [27]:

2.4. LEMMA. Every upper graph hés a neighborhood basis of upper
graphs.

Proof. By compactness, it suffices to show the following: Let

G be an upper graph. Let (x,a) ¢ XxL NG . Then there is an
upper graph H which is a neighborhood of G but does not
contain (x,a). If (x,a) does not belong té ¢ , then

inf GX #_a‘. Choose’an elemént. b -in 'L with b<< inf Gg but
b £ a .. By condition (3') of lemma 1.1 in [2] there is a
neighborhood V of x such that b<< f{u) for all u in U .
Let W be a neighborhood of x the closure of which is still
in U . Then H =(Wx o) v ((X\;W) x L) 1is an upper graph

with the desired properties.




4.

Congruences on a CL-object

I. Let S ¢ CL, and let Cong(S) denote the family of all closed congru-
ences onS We first determine sufficient conditions on § under which
(Cong(S),v) is a CL-object, where.p\/'e is the closed congruence genepr-
ated by the éongruences p and 8. Since v 1s our-principal operation,
it follows that p < 8 iff 8 € p.

Lemma 1. For p, 8¢ Cong(S), we have p <« 8 if 8 & p"

Procof. 1If 6 ¢ p% then given D + £Cong(S) with 8 < sup D, we note that
sup D = N D, and so p is a neighborhood of N D. As each & e D is ' a com-
pact subset of S x S, it then follows that there is some & e D with &

S pil.e., p <38 . O

Now, if S ¢ Z, then S = lim S/pi’ where S/pi is finite for each i. Thus

%

Py is a neighborhood of A(S), the diagonal of 8§ x S, sc that Py A(S)
for each i, by the Lemma. Moreover, S = lim S/pi imp;ies that A(S) =

M P and so A(S) = sup iA(S). Finally, if_S/p e Z for some congruence
p on S, the same argument--this time applied to S/p——shows that p =

sup i o. It is then clear that for a stable Z-cbject S(i.e., one for -
which all guotients are also g—objecté), we have (Cong(SD,\/l.e'gg.

Note also that, for an S e CL which-is not a stable Z-object, there is
some congruence p on S with S/b = I, the unit interval. Now, i1f (Cong(S).
v) e CL, then (Cong(I), v ) = A p is also a CL-object. fBut,'the only
closed congruence on I which 1s also a neighborhood of the diagonal is
the universal congruence, and it then follows that for some 8 ¢ Cong(S3)
with 8 « p, it is not true that p & 6° Thus, if 8 is a CL object which
is not a stable Z-object, and if (Cong(S8), V) -« QL, then there are con-
gruences -p and 8 on S with 8 « p but p $ 8% As ié shown in sz, it turns

, out that (Cong(S),v) e CL iff S is a stable Z-object, and, in this case,

Cong(S) is itself a stable Z-object. However, we do not see how to obtair
this result in full from these methods. ] see. ADDENDUM P ¥

IT. We now turn our attention to the;other obvious operation on Cong(S):
intersection. From an algebraic point of view, this i usually thought

of as the principal .operation on the congruence lattice; however, since
intersection is never a continuousloperatioh on the closed subsets of a
topological space--well, almost never, and since union is a continuous
operation, intersection is not the most appealing operation from the top-
ological viewpoint. However,ocur results here are not much better than

those obtained for the case of union given above.
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Again, let S € CL, and let Cong(S) denote the lattice of all closed
congruences on S. Then, for congruences p and 8 on S, since M is
our principal operation this time, we have p < ¢ iff p & g . We first
consider the case of the unit interval I.

Lemma 2. Qgt w be the universal congruence on JI,”and suppose that s

is another congruence on I which is not the diagonal on I. Then
e'HIw

Proof. Recall that, for any congruence o on I, the congruence clesses
decompose I into a disjoint family of subintervals. Since & .1s not

- the identity congruence, there are a;b'e I with & < b and [a,ﬁ) a é-
class. Moreover, since ¢ is not the universal congruence on I, either
O < &g or b« li' Choose sequences &, < br with a < a, < b < b and
a-= lima_and b = 1im b n’ define a seqguence of closed congruences e
on I by 6 = (io a) x (o, a‘J)\J([a b3 x la bﬂU([b 1) x (b, 11)UA(S)
Then clearly 8 g;e for each n, but one readlly sees that sup e is the

universal congruence, since ©,a), (a, b), and (b,1) must be in sup e'.D

Now, if S8 ¢ CL, and Cong(S), N\) e CL, then for any congruence p on 3,

it is clear that (Cong(S/p), N ) = +p, and so (Cong(S/p), N ) is also

a CL-object.  Since any CL-object which is not a stable Z-object admits

the unit interval as a quotient, the Lemma then -implies that any S ¢ CL
ngith (Cong(S),N) also in CL must itself be a stable Z-object.

There are some examples of S € CL for which (Cong(S), n) ¢ CL:
Trivially finite lattices will do. But'also_the.one-point compac-
tification of 1IN has nhis property. One may‘conjecture that all

examples have to be almost discrete as the preceeding example.

ADENDUM to part I. In order to show that a non-stable Z-object has
its congruence lattice not in CL , it suffices to show that
{Cong(1), v) é'gg . For this let ¢ be any congruence (closed)

on I different from the all-congruence, It is easily seen, that
there is a closed intervall [a,b] with ‘a # b, such that all o -classes
of elements in [a,b] ere singleton. Let a) be a seguence de-
creasing to a and b a sequence increasing to b  with ay = b1 .
Let @, be tﬁg congruence which has the intervall [a b 1as the
'only non 51ng1eten class. Then the ¢n form a seqdhce decrea51ng
to the dlagonal, but no ?n contains ? . Hence _f‘#f‘ﬂ for all.

? different from the universal congruence.




