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NOTES ON NOTES BY JpL (gorcerning vhet Te galls 'f."_-:r’sPrsa.d‘Jéua K.H. Hoﬁ«-cau ¥

] - 5 - -
25 on Gisrz and Keimel "Tapolegische Earstel-

-5 - S gmem 1 T S : [ T i T
=re app2ars to be a nav-trivial sE@Esip overlap hetwesn JDL

and GH althouzh the oblectives appear to be differsnt.
I recall a few things from WITES GH:
=

i A set X € %(1in a semilattice S) is order gen

8 = iéf ({= n X} for all s e s.

If S iz a topological sexmilstiics wze say that X is zanspat
I S is the smallest closed subsenilattice contalning X.
% ORDER GENERATING I3 STRONGER THAN S-WiRarnryg, )
ﬁkiEZH f' | The set of all completely meet irreducible elements in ; litiine

.i%??i | L Fill be dénoted Irr L , the set of all meest lrrsduclbles will
3§.called IRR L , and the set of all primes is PRIME L l{I Zuess
if they played a role, I would denaté.the set of complete primes
by E"r'ire L.) The cicaure of Irr T in a fooological semlilatiice T

will be written Irr T etec. We obsarved in IR 5%

I

] PROPOSITION 1. Let T= Z and X< T . Then these sre sgulvalent:
(1) X is order gensrailns.

i {i1) Irr 7 c X.

| (ii1) ¥ fsn X =14 n X => s=t for all s,t € T.

4

The followlng are aslo equivalent and fIxpizxizz follow
fram the precading:
{1}y ¥ X is genszrating

' (z) An X = M n X > n-u for 211 b,k & X{7)

! (3} k= Inf{lk 0 X) for all ¥ = (7).
i
' if,in addition, T iz alzao dlisitributive, Thsn (1),{2),{3)

are also eguivalent to

i t#) X is order gsneraiing {(i.e. Irr Tc X )
(5) FRINZ (T) € % .

In particular, in the last cass, Irr T = FRLLE T i3 the unigue

smallesy ;lﬂhed generating set and unigue smallest closed order ganz-
rating set. '
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NOTES GE &.1 “hrough 2.4. I no

For these matiers sea ! te, i2veT,
that the =xzizslszrezyzfxfii relations (i)e=>{1i1) =>({11) hold in
In order to expand the theory from Z %o CZL {2z sverybody doss +hess

days) it iz clear that Irr iz no lonzsr sufficisnt,as the examnle
E ¥ -

iRR .
RENARK 2. Let 3 =3, x = 3.
i - - i Y s
a) x® RR 3 iff Mz \ {x] is a semigroup iff Tx \ [z} is a

filter. f xe Fimp Tx ..

b} If U is a fillter of S and x is maximal in S\U , then ==

X & IRR 5.
Froof'. a) is ilmmediate from the definition.
b) If x is maximal in S\U, then ¢x \{x} < U, thus
T\ {x} =0Un Tx 1s a Tilter, and the assertion follows from a.

) be a compact semilattice,
LEMMA 3. Let T &xg8%/, t € T and U an epen filter with t- & U.

Then there iz an x € IRR T with xxxx t < x and x & U.
Proof. Tne set Tt n {Th\U) is a compact poset, hence has a maximal

element x. By 2.b , x = IRR T
SO
PROFOSITION ¥. For T & I% CL IRRXTXIRxEREXEREanE s Rattest

IRR T 15 a gensratlng set,i.e.

t = inf(ft n IRR T) for all t e T,

Proof. Let t € T and set s = inf {tn IRR T .(Recall inf ¢ = 11).
Clearly © = s. Assums t < =. Since T e CL there is an opesn filter
u wlfh t4¢Uand se U. By Lemma 3, there is an xns A 38 MR
xe Tt n IRR T with x ¢ U. Theﬁ E_EIx by definition of s, whance

¥ e Usince s &€ Uand U is a filter. Contraricticn.[]

LEFMA S. Zet X be an order ze2nerating set in a CL -objzet T. Then

froof. NOTES GK 2.3: BY "“PHE LEMMA"(c= 1t is new called Ty GH,

if p e Fxim FRIKE T and b= inf {1 N X) then p e

PROPOSITION 6. Let Te CL , X < T. Then (nl==(nyl):

== (§) RR7c yx {2) X is order geweratin
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froaf. Put thre preceding results together with the Tact that

for distributive lattices IRR = FRINE.[]

Triz Ve

OFFINIPION

turn to the question of generation.

T Zet Jl:l._l:‘j-_‘} = '[ﬁ = T: 2 = inl int Ta }_t f.&TEﬁ.S_}-

If TeCL , then % = 5up{$t N1 A(T)) for all t € T since
inf U e A(T) for every open filter U of T.
LEMMA B. Iet Te= CL and A ¢ T. Then the following are

zquivalent:

{1) a =

(T) 423 a -

o]
{(2) (an x

{2} s

|}t where F ois flﬂlu 1n {Ta} i K o

CSUGQ{GJ

‘ﬂf"TBJI’IX} for all & a & A(T).
infﬁf@oﬁ X) for all a e A(T).

(2]
={THﬂX => &=hb for all a,b e A(T).

ame as (2) but with ¥ replacine Xx.

wﬁnbuhﬁ

(1} => (2) trivial;

{not 1) == (mnot izﬂ

a = b = inf

f{fh}gﬂ X) «But a < b implies {Tb}

and the definition of b impliss fixk ["i‘a}D i

We have proved (not 2).

(1) ==(3)
(3} == (1)

iz triviel since A(T) is dense in T.

. Let a s af

o}

a_fs approxlimated from above by =lomoas

(not 1) thers is an a £(T) with

nxec (fa)rx

L C ffh}j M.

P}e Let U b2 & nelghborhoad of a.

+ § by the definition of A{P). By (3) therse iz a

wite AFE [T a (Ta)?, Teeea (1) fotonss

=i
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i Lewa 9 « Let PecP, sand let k=X c 7.

j Define XM X = {m t <€ T: ¢ = inf 4& ft 4 } Tnan X is elozed.
i p

20w e e

Froof. Let s &(X)” . For each entougage U of the uniform

] structure of T we pick a tU s %4 with iu = U(s).
Then thers 1s a finite sst F; ¢ X with F, c Ix, and
i f
fﬁﬂa FxFu} € Us Iy compaciness, there is a coffnal funciion
i FxZrsesvi¥iveneknikat jl===U({j) on a direct=2d set J with
i
i values in the uniform stracture of T such that ¥ Gj = Fufi}
t converges {9 & closed subset ¢ in the compact space X
relative to the Hausdorrr topology on X. ¥@risachize % Tach

g € % 1s the limlt of a net gj = Gj « From KU(]] < gj we coneluds

s = lim tU(j]_E 1im SJ = g, l.e. G fE X
DrExaxy For any CP-object T, the function Al B re (T)-> T

iz continuous (in faet this is characteristic for CFP).Hen

A G =1Htﬁn - But [”,ﬂﬁﬂ = U{j) , whence
(s.A3) = Hm( u{a}’ﬂﬁ } € U(5) for all j. Sinee j|l—>U(j)

is ca\giﬁgl we have (s, ﬁﬂ e N{U{1):) == J] = diag i

¥

= AG". Since ¢ ¢ s N X we conclude s = inf(fs n X))

THECREA. wad XeT g <
EROERSIEEE 10, et T e cﬁ’."féu,x is generating, e X is

. T i o a
enerating. G poticatdar, & e d sof Yo ettt off it e oo

G T
s ) d

Proot':~Ey LﬂﬂhAfi above (¥} is a closad subzet which rontains

order

A(T) by LEMIA & .Since 4(T) is dense, +then T e {£) ,which by
the definition of ()} means that ¥ 1s order generating in 7.5
) If T is order gererating, then ¥ is

(Loctenna )
F iz generating.[]

COROLLARY 11.

PROPOSITION 12. Every CP object has minlmal closed arder

sats,

Froof.(Indlcatlon.) Let X, b= a tower of chEei erder generating

sets. Use the method of prfoof of LEIDA 9 to show that X, is still
o
order generatinzg.[]




by THEORLF 10,
} ana I:‘Zfle}{l} Attt 2,

ZUSATZ 17, If Te Z is distributive and X < T, (1),(2),(3)

. of X 9 are also eguivalent to
(4) Irr Tc ¥.
?raof.Prnp.i.lj

distritutive - )
COROLLARY 13 . In any/T & CL the sat 183 T = CRiAE T is

the unlgue smallest closed @1‘:15311) generating set B mex
—'PP.'V’?{J"?_—.

i !e\'-c -r‘-s-c-c.-m"f{-crl‘ S‘:&_-;-i’m'lr?e’-‘?f- frd"“:-e*.&{ ?ﬂi@-ff‘ﬁgy} f—,_":-r:' ':F T Z i o LS s TS A
2.8 TRB(T) =T (1) = PRI/ (7). 1 4

Does anyone know whether the relation IRR = Irr hoelds in 2

PRt bl et et et A g o] If evw= T = Z then ZEFEEd TrF T,

cven withsut distributivi‘t;ﬁ'

This agsertion is equivalent o th
if o RIMET, T=2Z , thenp e I
Any prod?d.;? Ccunterexazn;les%‘
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VaTiatlons of a +theme bv QK 2 JiL

Let Te CL . Let Sub{T) the cornact pozorilziiicm samlliattioe
of all closed subsemilattlces of T under the rualTinlication

(£,8) |o—> 4B. Notice that A < 3 in Sub(?)} iff 3 C 4 . Wenote
M’fﬂjzj E.J} = N_ A In Sub(T). a3 8 corrazusnce, A <= B

Iff for every family
finite set F € J with N.C, € 4. This 15 satisfied if

B € int 4; but since T & CL , then B hes a basis of semilattics
nelizhbhorhoods, and in #akiﬁg {cj:j & J} to be = the family of
&ll compact semilatiice neizhborhcods of B we ses that this
conditioh is also necessary. Thus 4 << 3 iff B < int A. -

By what we just observed (namely, that 3 has a basis of

semllattice relghborheods) we knww that 3 - sup f4a: A<<B) .

Accordlng to ATIAS , this makes Sub(?) a CL —oLjact. We have:

FROPOSITION 1 . Let T & CL , then Sub(T) = CL , amd A << B

in Sub(T) iff B < int A .

Let us note in passing that the functlon xl—->{%:T——>Sun(T)
algebralcally
15 RXEIRRANBIRXLASASIGABRAABILTNLE & morpism 17 4 Dy ¢ (F) (D)
iFax for all x,y e T {for the convers in elusion is always true).
If T 1s distributive, then thils condition is satisfied:Indzed

A zy =2, then z = (=¥ z)(yV¥ 2) ={f=)}(Ty). Thus:

ZUSATZ 2. If T is disiributive, then x|——>f%:Tee>Sub(7) is

an embedding IKXEEXY algebraically. Il

FROPOSITION 3. The mapping /4 : T———>3ub(7T) is a morphism in
ER :Epp y hence preserves arbitrary sups, recsects <<

continuous from below and lowsr semicontinuous.¥® It is rizht

adjolut to *the map min: Sub(7) ——-> T which ithersfore is a
Cl=morpnism.

Froof. We have 4 > fx irf 4 c Tx M min A > x whla shows
that T 1s right adjoint to min (ATIAS). TasY% rerainder follows

from ATL4F.

EXANPLE 4, Zet T = [(x,y) & IxI: x=y = I/mn=1,2,404, T=¥y=0 oTF

X=0,¥ = 1}. Then (1/n,1/n)—>(0,0) ,but f{lfﬁ,lfﬂ] e {{ﬂ,ﬂl ad
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not preserve infs ,hence does not have & rizht adjolint and
iz not contlnuous.

buch of what has hedn said applies immediately to the

ote that in fact ¢(T) also has a Cleoparation U and
(e(T)y, U ,.) 1is a compact semiring.

By ATLAS duality, each 4 = 5ub(T) corresponds bijectively

o
to a CL pﬂcangruenca on T,namely the kernel congruence ol the

right adjoint dﬂtT ----- ->4 of the incluslon map gﬂ:ﬁ—"m}?;

In order to link} this observation with NOTES 6K ,I note that

if Te Z then there is a bijsction beifween the EINXIHENIEE

cp°P

—Ccongruences on T and the congruences on K(T) (= f‘}
obtaines simply by restriction Rf-m—} ROUE(TIxE(T)) (since
f(d,): K{T)———> K(A) is simply Xf2 K{dﬁj = dAiK[T}}.

we
I wish to dewll for a moment ona coproducts in CP .

Lé%"{Tj:J € J} be a family in 2 . We let | | T, derote ins

L.

caproduet and we conzidaer T, =zx2 as embadded into T as the

1~-th cofactor,i.e. the caprajqc%ian'gj:fj

inecluslon. ILet dj: T—_—}Tj b2 the rizht adjoint given by

ﬁj{tj = inf(ft n ?j; {s2e (DIMEWSIONAL CAPACITY HMS)}. Then

=z T iz just an

T 1s the product of the T, in cpP’P with d. as product proje

J

et X = T. The X T e whar > T,
Let X = UyTy € T }hpn X c Q?JLQ T , e 2

g
tha algebreilc coproduct {in 3) with the eolimlt topology in

category of topoleogical semitatiices (Eperhaps in the catsgo

of k-semilattices—I am undecided}. Mot

Wl

bl-products, l.e. that & x B = 48 E in the obvious fa=shion.

Thus -_JTj is the ascaending (up-dirscted union)of the famil

Ll
]

of all T"Tij = l—lETJ » FCJ finita, Every slemant Df£§:

1s a finite inf of elements in ¥, in particular, ¥ is order

generating in ;T&Tj*
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I now want %o set

question whather of not &

For this purpose I corsider thes

have two elements.

% The fellowing Lermma halps us +to understard coproducts of

Z-objects in CL , zince ws know coproducts in Z resmscrnably well
=) J el >

by HMS DUALITY.

objects,then the Z—copraduet ¥ 5 of the T'1I

T of the T;|

agres.

EXKER  FROPOSITION 5. IT {Tj:j € J} is a family of E¥X fin

Froof. We must show that 35 has the universal propsrty of the

to prove the followlngz: For

b=

]

coproduct in CP . Since I is a co-generator of CL , 1t suifles

family fj:'3

Qﬁ—mnrphisms thers is a unigue CE wmorplhlsm f:5%—> T such

fj= fsj ,where sj;Tj ——=-> 5 are the caprajectiaﬁs_ =zt

POt r L DX A N E X E AN B R X XD P PR B e e X UL NS IDNXRRIS LN XX KKE

“['I--r.

xmr;kimexxxixffﬁﬁﬁixxixxmingiaxj1xTkzhyxziﬁzxxgxixxﬁxgzx:x

FER IR AR EREF AN X KX BRI LA YE

It suffices to produce a Z-ohject

tgethef wlth a Tamlly of morphisms

fj= ghj; for then by the univ

be a unigue h:S——=Z with
- g -
sj{Tj] gensrate 3

with fs, = ghs, = ghj = fj

.j‘
Now Let

DLENSION RAISING). Then

exizt as desired.f]

 for all j,

giZ———>1 2.2. Bz the Cantor map (DUALITY

the finitaness of T

4 and a morphlsm gid-——>

h,:T,w=—= & such that
170
property of 5 there would

¥laelding = zh

would be unigus since the

37 the h

and the CP-poproduct

=

e moreeenonical

I

HHMS IV = 2 or

[I would 1like {o know whather or not in gsneral d—caproducis

are CF —gxra coproducts. [ can sae how the shove methed would

still work for a countable family of stable § —4 —ob

Djects. ]



This propasitlan anyhow allows me to treat copowers of 2,

J
i1.2. free Cl-objects over Set. In orther words, if X is a set,
then the fres Z-object F(I) = 32 iz the free CF-object generated
J - with identity &
by ¥. How I(J) is_ c(pJ) under @ I and J 1s_embedded in F(J)
Zet J b2 the image, l.2. write jn [il.
via Fp——> {3}.7/1et G e c{f J) be an arbitrary element.

- PR L ~ . :
yThen @ nJg = {Fe C{P J) : Pc qgand e J) = £fxdx {{j}:

oy s g

S ——

-y

and jeal = (Iana) (where we identify J with its irage in j?ni}.

Tow let .,7@5 ::.{;_'}.J}. Then :'r.n_f‘ﬂ = (ufa: A E-ﬁL].}_ «» Thus

inf(fa N ) = txf inf(J N Q) =(5na) in pJ .

1

o have shown:

'EXAMPLER 6. The set U.T, in the coproduct 1_1JTJ need not be order

generating, In fact let

SRR

= & fideriifiediwiiixiizxizzzs where J is idﬂnhified wilth 1ts

[
-

=2 for all j, then [_l T = F(J) =
L{I'Ej
image in F(J). In general we have x = < inf(Tx N (Jufi}).

Indeed 1f x is ldentified with Q under the isomorphlsm PlJ)-=cf PJ],

then equallty holds iff QNJ is dense in -Q o %J « If' x corresponds
to g € Eﬁ?f____r}fwg;] RIN T, then  inf (fx n (Juf1}) =1 .Q

It is in~stractive to olssrve for an arbitrary compact space

— —-__

¥in the Cleohject F(E) =(c{H), U} :rm fu irr:iuclble:l F(E) 1s
Irr F({E)=

distributive,/[RR F(E) = PRIME F(E) = E c F(E), I8 eaioessTr

XXUSMTHXBAXINXEFX  This shows, in particular, that m Irr is

always order gsnerating in Z-objects,but that this not characeristic

or Z-objects: F.g. Z F{I) is not a Z—object , but Irr F(I) is

We have obsarved a counterexampls to guite a few possible
conjecltures aboutl order generation in coproducts. (In ny notes oncK
1 had not yet understood theze this situation.) We retura to
the case of a family {Tj:j&J} In CP . Now we assume that ikt

all TJ ars subobjects of one and the same T s CD.



/0

Ll 7. Let Ty e T AnCE, § & J. lat m:jﬂiJTj o [
be the canonical coproduct map in CPamd ™ @ T ———> 1 IJFJ
LR ] 1 '_.G _—

1ts &djolny in Oz b (recall Tu“i.c_-pcp = ! JSP 1.

Define ¥ = U, T, <« T. Then the following statements are

{1) m 1s surjective. (2] o is injective. (3) X 1ls generating.

(%) Z is generating. (5) a = inf ((12)°n x) for all a & A(T).
() K ie evcler goerems o .

If T is distributive, these conditions are eguivalent io
A=y s msnsinsing) .(7) IAR Tc X .

It Te 2, (1}—(4) are equivalent % .
{8) Irr Te X . {ggl K{ﬁJ:K{T] i XJ KETJ} is an embedding.
If J is Tinite, (1)-={4) are esguivalont to

(#) X is order gencratine.

Proof. £ The egquivalence.of % {3},[4],(5},{5} and {under ths
approrpiate hypotheses) of (7),(8) was shown in Seection 1.
If J is fTinite , tQEH X=X i .hence LE] {&}[6} The'
sgquivalentce of (1) and (2) follnws from ¥M ATLAS duality.
2% If we let % e ileTj be the uniaﬂ of the images of Tj in

the coproduct, then m{i} = X. Now & X is generatlng in the

S
canﬂnduct,hence 4 1s generating in im m. Thus (1)==(3).

o
(1} ==> (20) by HMS DUALITY [resp. {2}{_>(£%1 by ATLAS].

GK have observed that X = U {T,: j e T} wherse the

i
set of all Tj » 1 & J 1is the closure in Sub(?) of =¥t the
set of all T_j’ je J. Mt ot #. &E«QVL‘?(‘? 2P G Fany

o ﬁ.ﬁ'ﬁﬁ "
Up to this poini, The investigation of Gi{ and of JDL
can be trested on the same background. In both cases one

. X:UP
produces & closed generathng set/of“a £ CP —object T (in fact

both more or lsss restriet their attention o 4} whieh
iz smzll in some sense. GK do this by Tinding a smart

_ D T ez,
dsgtributive closed sublat®ice/of Sub(T)./and by letting

{-1" tjed}l = Irr D. JDL says.let us try to pick & small



2§ € 7} of chalins if we can. 2 4 cardinal nsasurs

zallest aunber of chains doing the trick is what he

calls the spread . I wodify his definition somewhat:
DEFINITION 8. Let T = CP . The fhix spread 3F(T) of T is

the smallest cardinal a such that there is a Tamily T.e Sub @

J

J&J of CHAIHS EJ such that card J = &, and that
the squivalent conditions of Lemma 7 are satisiied.[]
For Z-objeets this means tkaix (by Lemma 7 , (8) and(lo))

_ a collectloa of & chalns
that Irr T is coverad by the closure of the unicn of thxx1§ 100
equivalently, that the{discrete) character semilattice is a

product ofa
subzemilattice of afeollection of chains of cardinality a,

and that a is minimal w.r.t. this property. If 3F(T) is finite
then uniETH?hﬁSﬂ ;ircum%tancas (i.2. T £) 5P(T) = n means

by Lemma 7, [%} that Irr T is covered by n chains in Sun(T)
and that n is minimal w.r.t. this property. (This is more or
less JDL's origiral def'inltion.) Fruﬁ Lemma ? We have

immediately:

: a
RELARK. 9. If the soread of a CP-object T is finite number n,

then n 1s the smallest natural number such that T is a

quotlent of a product of n— chains 1n CP and also the smallest

number such that T can be embedded into a product of n chains

FROPOSITION 10. If f:S->>= T in CP , then 3P(T) < SF(S).
Froof. Let X¥XLx¥xx . X = uﬂTj:j eJ}, Ty< Sup S a chain

with card J minimal and X generatlng. Then f(X) = U{f{?j}:j eJ}
i1z generating and f{?J} & Sub T is a chain.Hence the agsertionm,

EEANPLE 11, Let T = fo,1,27

ey

= TN {(1,2)}. Then S2(T) = 2

SF(S) = 3, Sc Tand T is a nroduct of chains.[]

One observes immediataly that SE( Jsj] < £E Q?JSPfgj}
from Lemma 7. From my experience with dimenslonal capacity I

venture fto =zay that 2quality holds. A proof may be difficult

(it was with dimsnsional capacity).



tZ

Zzotlon 3, Rreadth and spredd {JDL}
I {(Soundz llke Lrezad and buiter.) .
i
i TROFCSITION 1 . Let T& CL o Then br T < SP{T),if SF(T) 1o #i=l+:
4| finite. -
[

here iz an epie e:iﬂﬁ&cj ———x> T Tor card J =

14 3 Fr

55(1) chains C, & 3ub(7). Now br T g br | | €, = EKEEXHXEXEE ()X
i

{i = SP(T) , since breadth 1s logarithmic.(i.e. br TATJ = ZfJbr Yol

If J is finlte, then br | | Cy = or T"TJCJ =2 gbr €, = cardJ

Let J be a sét, and let F(J) be the free object in Z hence in
CP by Sectlon 2 Frop. 5. We have r(J) = c(pJ) and c{}?J}

contalins the free discrete semilattice on the set jﬂj hence
: J

br F{T) Z card J = 22 » but 5P F(J) = J. 1 suspect that
25P T

br T < 2 remalns correct in general.

Lidia 2. (JDL). Let S5 & § amd suppose that P € Prime 3

consists of mutually'1ncomparable'eiﬂment5 {i.e. F 1is an

rartlcular, card P < br 3.

“roof. We consider IF(f) as the U-semilattice of all finite

subsets of P. Let X,Y € F(F) and suppose § AX = AY.If y € ¥,
then AX < y ; since y is prime, there is an x & ¥ with x < ¥ .
Sinece P is an antichain, we have y = x € X. Theun Y L

By symmetry X < Y.[]

b 2
LXLFROFOSITIONE (JDL). Let T e CL =and SE(T) finite.

A e i

AT T 1z dlstrivutive , then SP{T) = br T.
Froof.{Indication! I do not guite undersiand Jimmie's proaf. )
i Oy frop. 1, we must show SP(T) < br T. we know 18R = fRIYE

Mence FRIGE T = Glu...u Un for n chains C

e
-

(See Sact.2 Lemma 7, % condition (7)).
It appears to me that JDL concludes-from thls containment and
Rinlmality, that kB PRIME T contains an s%ichain P of

n elements., If this is 5o, then Lemma 2 shows n o < br T.f]




