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I. Compact Convex Sets

Let. V be a Hausdorff topological vector space and let X
be a compact convex subset of K . As is.well—knoﬁn the space
of'all compact suﬁsets of K, T'(K) , 1is. a compact space with
respect to the Vietoris t0pology. |

Let . c(K) denote the‘subspace ef f{K) of all cempecé
_coﬁvex‘eﬁbeets. It is noﬁ‘difficﬁlt to verify that c(Kj is
ciosed and hence compact; c¢{K) is a semilattice with respect
_telthe operation A A B = closed convex hull of AU B . With
respect to this operation <(K) 1is a topological eémilattice.
(To see this, note that the‘functioﬁ F F(Kj X F(K) X'F(I) ~ T{K)
'defiqed by F(A.B.T) = {ta +-(l—t)b : a€ A, beB, t & T} |
-‘cohtinuoﬁs, and that for A,B € c¢(K) , then A A B = F(A,B,I).
ﬁOW if the empty set is joined discretelyﬂthen S = (K)‘U.{ﬁ}
_ls a compact topologlcal semilattice with ldentlty.
Theorem l. TAE
(1) s is a continuous lattice.
(2) K can be affinely and homeomorphically embedded in a

lecally convex topological vector space.
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(3} Each point in K has a basis of (not necessarily open)
neighborhoods in K which are convex.
Proof. The equivalence of (2) and (3) is the principai
result of my "Embeddings of compact convex sets and locally .
compact cones", to appear Pac. J. Math.
Not (3) = Not (1) is straight-forward since S fails
to have sméll semilattices_at any point {p} for whichl D

fails to have a basis of convex neighborhoods in K .

(2) = (1) Let Aec(RK), A#£g, where K

sits in a locally convex space V . Then A =) { (a0 K s

U a convex neighborhood of 0} and for each such U '

Y

(A+UY T K << A . Hence 8 1s a continuous lattice.

Until recently it was an open question whether there
existedrdompact convex sets which failed to satisfy the
conditions of Theorem 1. I have been interested in the
problem for several years for two reasons:

(1) Such an example would give rise to a non-continuogs.
compact topological semilattice.

(2) Such an example would form the base for a locally
compact cone that could not be embedded in a locally
convex topological vector space.

Last year J. W. Roberts, University of South Carolina,
constructed an example of a compact convex set with no

extreme points - in particular not embeddable in a locally
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convex space. ("A compact convex set with no extreme points").

I don’t believe it has appeared yet, but I have a preprint
of the paper. More recently he has shown something to the
effect that for LP e 0K P 1 . most compact convex
sets are not embeddable (most meaning with respect to Baire
'category I think). I don’t have this paper and am not sure
of the exact formulation.

As a historiéal note, R. E. Jamison also discovered
the equivalence of (1) and (2) in work on his dissertation
at the University of Washington. We discussed the problem

at the San Francisco AMS meeting some three years ago.
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II; Schreier — Redei Extensions

Let 8 and T be commutative semigroups with identity.

Let f£f: T X T~ 8 satisfy
A. The identity condition

£(x,1) = 1 = £(1,x)
B. The associativity condition

f(y,z)-£(v,yz) = £(x,y) £(xy.,z)
C. The commutativity condition

£(x,y) = £{y.x) .
Then we may form S o T = § X T with multiplication
(sl,tl)(sz.t2) = (5152 f(tl'tz)’tltz) .

The groupoid § o T 1is actually a commutative semi-

group with identity (1,1), and we have an exact sequence of

a

semigroups
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where i(s) = (s,1) and w(s,t) =t . A much more general
treatment of these matters appears in I . Redei’s "Die

Verallgemeinerung der Schreierscher Erweiterungstheorie®,

Acta. Sci. Math. Szeged., 1952, pp. 252-273. John Ganci

wrote his dissertation under my direction on the topological
version of fhese results.

For semilattices S and T we wish to modify the
construction sligﬁtly by no longer requiring that
£: TX T~ s satisfy the identity condition. 1In this
case 8 o T is still aAcommutative semigroup, but (1,1)
need not be an identity. Also in this case (s.,t) € S o T
is idempotent ® g = f(t,t) . For&ing S ¢ T and taking
E(8eT) , the idempotents, provides a useful construction
for building examples of semilattices.

Suppose g : T -~ S is order preserving. Then
'fl: T X T= 58 defined by £(x,y) = g(xAy) satisfies the
associativity and commutativity condition. 1In this case
E(SoT) = {(s,t): s < g(t)}). If S5 and T are continuous
lattices and g is continuous, then it can‘be shown ;hat
E(SoT) is a continuous lattice (with the subspace topology
of 5 X T) with identity (g(1l), 1).

The amazing thing is that E(S oT) may be a compact
topological semilattice with the subspace topology even
though £ is not continuous. My example in "Lattices with
no interval homomoréhisms" can be viewed in this light.

Let S denote [0,»] and T = ¥, Then a function
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- [0,»] is constructed where © = Aci such that

for f£(x.,y) = 0{xAy) , E(%}XfT) is a compact topological
semilattice with identity (w,(l)) , but such that

E(SoT) is nof continuous. For the construction to work

it appears that g musﬁ be "sufficiently” but not
"excessively" discontinuous. Perhaps viewing the construc— -
tion from thié vantage point of Schreier extensions might

be helpful for thé construction of other examples, I'm

not sure.

III. Conditions which imply a lattice is continuous.
We have four classes of lattices c¢L < compact semi-
lattices w . 1 C meet-continuous complete lattices
< complete lattices, where a lattice is meet-continuocus
if x Ax implies x, A vAx Ay (xaﬂx‘ if x, 1is an
increasing set with sup xa'= x) .
Interesting problems arise by studying what sufficient '
conditions on a lattice in one class puts it in a smaller |
class. (E.g., 1f we cail the classes A,B,C and D, B+

finite~dimengional Peano continuum = A, D + V x,

x =sup{y : y<< x} ®A.) _
Let N2 denote the semilattice of all finite subsets
of N under union. A set P in a semilattice is an

irredundant set if for any two finite subsets Fl' F, &P,

inf F; = inf F, implies Fi =Fy » The singletong in Ny

= .
form an irredundant set, and it is easily seen that a
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semilattice has a countable irredundant set if and only if

it has a semilattice isomorphic to. Ny . If neither of

these conditions exist, we say 8 has weak finite breadth.

Finite breadth implies weak finite breadth, but not
conversely.

Theorem 2. If 8§ is a complete meet-continuous lattice,

x Xy, and z << x implies z = v . then x\by
contains a countaﬁle irredundant set.

Proof. First of all note that as a result of meet continuify
a<< b ® sup D=b for some up-directed set implies a < 4 :

for some d e D.

Since not % << x, there eé&sts a directed set D
_with X =supD, but x#d4d Va e_D. Pick X, € D such
that Xy # YV .

Suppose Ay = {xl,...,xK} has been chosen satisfying’
{i) AK is irredundant, an (ii).the subsemilattice SK
generated by AK is a subset of J’x \¢y » Let =z = KyXpe ooy -
Since not z << x , there exists a directed set D with
®x = sup D, but z_# d Vde D. For each s ¢ §

k' S D

is a directed set converging up to s . Since S is finite,
3 beD sd#td if s £t for all s,t € SK » for all
d>b . Since supzD=2z and z §y, there exists
p>b, p € D + such that p z $ Y.  Let Xppl = P -

Then it is easily verified that {Xl""’xK+l} is irredun-

dant and the subsemilattice this set generates is a subset

of \Lx \J’y » Hence by recursion there exists a set with

N o . - oo L . e = e e e e e ._..._.‘,AWW“ s
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the desired properties. d

Corollary 3. If S 1is a complete meet-continuocus lattice
of weak finite breadth, then S is a continuous lattice.
Proof. Tet x e 8 . Let y=sup{z: z<x} . If y< x.,
then by Theorem 2, there exists a countable irredundant

set in ‘l’x \‘L’ - This is impossible since S has weak
finite breadth. Hence x.= vy, and tjh.us S 1s a continuvous

lattice. ([



