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"$illy ol' bear!" said Christopher Robin,

"What are you doing? First you went around the

" tree twice by yourself, and then piglet ran
after you, and you.both went around togethér.
And now, you were just about to go 'round a
fourth time,..."

"Wait a minute!" said Poohlbear, -

"Ahh, I see. Yes. I've been foolish and de-

luded, and I'm a bear of no brain at all!"

Winnie the Pooh

The reason for the quote is that it seemed particularly appropriate, since
I'm now about to discuss closure operators and kernel operators once again. As of
now, there have been no less than 3 memos on this squect; that'sla fourth of the total
number according to Hofmann's couhting. Well, I guess there's no help for it. Here
we go again!

I should perhaps comment that I have been giving a series of lectures in
Salzmann's seminar here at TﬁBingen, which are coﬁcerned, naturally énough, with
continuous lattices. The process of writing up what I am to talk about in each
session has lead me to discover what I think is a unified way to approach these
operators, and while the results about kernel operators are net new, the ones about
closure operators are (at least to my knowledge). I was prompted to write this memo
after reading the questions Ql and Q2 of tﬂe reference, and I trust this will shed
some light on that subject.

Having just received Scott's response to Hofmann's editorial, and not wishing

to offend anyone, I guess I should comment that I view this memo as a prepreprint. This

does bring up the fact that T would welcome commen®sabout this with an eye toward improvin:

West Germany: TH Darmstadt (Gierz, Keimel) ' the content and/or presentacion

U. Tubingen (Mislove, Visit.)

I will begin by quoting som:

England: U. Oxforq (Scott) salient facts from ATLAS.

USA: U. California, Riverside (Stralka)
' LSU Baton Rouge (Lawson)
Tulane U., New Orleans (Hofmann, Mislove)
U. Tennessee, Knoxville (Carruth, Crawley)

Note: After December 30, I will once again be back at Tulane. Thus all mail to me after

this is received should be sent there. Thank you!



Definition 1. Let § and T be semilattices. A pair of order—preservirng functions

g:S8>Tandd : T+ 8 is called a Galois connectlon between S and T if d(g(s)) < s

and g(d{t)) > t for each s € S and each t € T. Given such a pair, g is called the

left adjoint of d; and d the right adjoint of g.

Proposition 2. Let S and T be semilattices, and let (g,d) be a Galois connection
between S and T. Then g(s) = sup d_1(+s) for each s € S, and d(t) = inf g-1(¢t)
for each t ¢ T. Thus g and d determine each other uniquely. Morecver, g preserves
all existinf infima, and d preserves all exisfing suprema.

If S*and T are complete lattices, and if g : S * T is an inf-preserving
function, then the function d : T + S defined as above preserves all sups, and the
pair (g,d) is a Galois connection between S and T, Dually, if d': T * S preserves
all sﬁps, then the function g : S + T defined as above preserves all infs, and (gd)
is a Galois connection between $ and T. ‘

Finally, if S and T are semilattices and (g,d) is a Galois connection be-
tween S and T, then the following are equivalent:

1. g is onto (one-to=-one),

2. 4 is one-to-one {onto).

This, as indicated above, can be found in ATLAS; in any event, it's all quite straight-

forward to prove.

Proposition 3. Let S and T be compact Lawson semilattices, and (g,d) a Galois
connection between $S and T. The following are equivalent:
1. g is continuous. ‘

2, Fort < t' in T, we have d(t) <« 4(t') in S§.

This is also from ATLAS; it's basically a corollary to Proposition 1.19, when one
realizes that x € int *y iff v « x in a Lawson semilattice. Finally, we quote

Proposition 1.26 (or a portion thereof).

Proposition 4. Let S and T be continuous lattices, and let g : §7 T be a Scott
continuous function. The following are then equlvalent

1. g preserves arbltrary infima.

2, g: 8+ 7T 1is a homomorphism of compact Lawson semilattices, if S and T

are endowed with the Lawson tepology.

Definiticn 5. Let CL denote the category whose objects are continuous lattices, and
whose morphisms are Scott continuous functions which preserve arbitrary infima. Let

CS denote the category of compact Lawson semilattices and continuous semilattices homo-



morphisms.

Theorem 6. Let F : CS + CL be the functor which assigns to each cc:péﬁ: ~awson
semilattice § the underlying continuous lattice, and to each CS-merpiisz I the CL-
morphism £, and let G : CL + CS be the functor which assigns to each coziinuous
lattice L the compact Lawson semilattice gotten by equipping L wich the awson topo=
logy, and to each CS-morphism £, the CL-morphism £. Then CS and CL are Isomorphic

under the functors F and G.

Finally, we come to something which is not in ATLAS (at least I dom't tzizx it is).

- Proposition 7. Let L be a continuous.lattice,.and L' L an inf—subse:ilattice-oéi .
L which contains the identity.. The following are'equivalent: -  “”€&{:
1. L' is a continuous lattice, and the matural injection i : ' -+ L is{Fg&éﬁw“?
a CL-morphism. . ‘ //
2. L' is closed in L under arbitrary infs and up-directed suzs.
 Proof. Clearly | implies 2 by the definition of a CL-morphism. Coaversely, sup-
pose that L' is closed in L under all infs and up-directed sups. We fizsc show
that L' is a continuous lattice. Indeed, since L' has arbitrary infs zz< contalns
the identity, for each X € L', we define sup X = inf {y e L’ : x <y for each x £ X} ,

and note that this is well-defined, and so L' is a complete lattice. Lez x ¢ L',

and let y ¢ L with y <, x in L. Let y' = inf (+4y NAL'). We claimy' <« x in L':

Let D € L' be up-directed with x < sup D. Then since L' is closed under up-directed
sups, sup D is the same in L and L'. Hence, y < x implies that there Is some d € D
with y i:d. Since d € D € L', it then follows that y' < d. This establishes the
claim. Now, each .x ¢ L' is the sup of those y ¢ L with y <« x in L, and we have

just shown that for each x € L' and each y ¢ L with y « x in L, there Is some y' € L'
with y < y'" and y' « x in 1", It Ehen follows that x = sup {y" 2 L' : #' « x in L'}.
Thus L' is a continuous lattice. The fact that L' 'is closed in L under arbitrary infs

and up-directed sups then implies that the natural map i : L' + L is a l-morphism.

Definition 8. Let L be a complete lattice. An order-preserving functicz ¢ ¢ L =+ L

is a closure operator on L if x < ¢(x) = cz(x) for each x ¢ L. Dually, za order-

preserving function k + L -~ L is a kernel operator on L if kz(x) = x{x} < x for

<
e
\

each x ¢ L. If L is a continuous lattice, then by a continuous closure {zernel)

operator on L we shall mean one that is Scott continuous.
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Proposition 9. Let L be a complete lattice, ¢ a closure operator on L, and k a
kernel operator on L. Then c¢(L) and k(L) are complete lattices, c preserves all
sups, and k preserves all infs. Moreover, ¢ : L + ¢(L) is right adjoiﬁt to the
-inclusion map 1 :'c(L) +L, and k : L - k(L) is left adjoint to the inclusion
maﬁ‘i : k(L) - L. Hence c{(L) is closed in L-under arbitrary infs, and k(L) is
closed in L under arbitrary sups. : .
Conversely, suppose that L is a complete lattice, and L' € L is a subset

containing the identity which is also a complete lattice, and such that infL,X =
infL X for each subset X ©L'. Then the function ¢ : L - L given by c(x) =

inf (+x /IL') is a closure operator on L with image L', and is therefore right
adjoint to the inclusion map i : L' + L. Dually, if L" € L is a subset containing

the zero which is also a complete lattice, and if supL"X = supLX for each subset

X &L", then the map k : L + L defined by k(x) = sup (+x NL") is a kernel operator

on L with image L", and so k is left adjoint to the inclusion i : L" - L.

Proof. Suppose that ¢ : L ; L is a closure operator on the completé lattice L, and
let X €L with s = sup X. Then, since c preserves the order, sup c(X) <c(s). On
the other hand, suppose that y e c(L) is an upper bound in c(L) for c(¥). Then,
for each x e X, we have x < c(x) <y, and so y is an upper bound for X in L. Hence
s <y, and so ¢(s) <c(y) = y. Thus c(sup X) = sup c(X), so ¢ preserves all sups.
Since c(L) is then a complete sd?-semilattice and ¢(0) is a zero for ¢(L), it follows
that F(L) is a complete lattice., Since ¢ : L + ¢(L) preserves arbitrary sups, 1ts
right adjoint j : ¢(L) + L preserves all infs, by Proposition 2. We show that 7 is
the inclusion map: Indeed, the defidaiion of j (Proposition 2) yields that j(y) =
sup c_](y) for each y € c¢(L), since ¢ is onto. Since c(y) =y, it follows that

y £ 3(y). On the other hand, ¢(j(y)) = y as c preserves arbitrary sups, and so
iy) =c(Gly)) = y, the incquality following from the fact that ¢ is a closure
operator. -Thus y = j(y), and we have our claim. It then followé that c(L) is
closed in L under arbitrary infs since j preserves all infs.

A dual argument shows that k preserves all infs, and that k is left adjoint
to the inclusion map i : k(L) + L, so that k(L) is closed in L under arbitrary sups,
for each kernel operator k on L.

Now, suppose that IN.EEI.contains the identity, is a complete lattice whose
infs agree with those in L. . It is then clear that the map ¢ : L + L given by c(x) =
inf (#x ML'") 1s a well-defined order—preserving function which also satisfies x <
c(x) = cz(x) for each x ¢ L, whence ¢ is a closure operator. - It is also clear that
c(L) = L', and that ¢(x) = x for each x £ L'. Heuce ¢ is right édjoint to the inclu-

sion by the first part of the Proposition. The argument for the sup-semilattice L"

follows dually.



We should note that, since closure operators preserve all sups, they are
always Scott continuous if they are defined on a continuous lattice. This Proposi-
tion then shows that, in order to consider a closure operator, it is eﬁuivalent to
consider a subset L' of the lattice which contains the identity and is a complete
lattice whose infs agree with those in the containing lattice. The folloﬁing then

completes the picture (to some extent) for continuous lattices.

Propositiqn 10. Let L be a continuous lattice, and ¢ : L - L a closure operator orn L.
The following are equivalent:

I. e(L) is a continuous lattice and the natural injection i:c(l) - L
is a CL-morphism. '

2. For x,y e L, if x « y, then c(x) <« e(y).

Proof. First note that, in any case, ¢ is the right adjoint of i by Proposition 9.
Now, if | holds, then 1 is a ﬁomomorphism of compact semilattice by Propoéition 4,
and so ¢ satisfies 2 by Proposition 3.

Conversely, suppose that 2 is satisfied. Then, since c preserves arbitrary
sups, it follows that c(L) isa continuous lattice. Moreover, Proposition 3 shows

that i is a homomorphism of compact semilattices, and so i is a CL-morphism by Theorem 6.

Example 11. We now give some examples that seem to have a bearing on this situation.
2

c{x,y) = (x,y) if x = 0 and y < 1/2, and c(x,y) = (1, max(y,1/2)) otherwise. It is

a. Consider the closure operator c 12 + I” (I theunit interval) given by
readily verified that ¢ is a closure operator, and that c(Iz) is isomorphic to .the
unit interval. However, since c doesn't satisfy 2 above, c(iz) is not a géfsubobjecf
of I2.

b. Again we pick on 12. This time we define ¢ : 12 -+ I2 by c(x,y) = (x,y)
if x = 0.and y < 1/2, and c(x,y) = (1,y) othgrwise. Again we leave it to whoever
wants to to show that c is a closure opérator. However, c(Iz) is not a continuous
lattice. Indeed, suppose that y < 1/2, and that =z < y. We show that (1,z) # (1,y):
If ¥ = {(O,w) : w < 1/2} ,‘theﬁ ¥ is an up—directed subset of c(IZ) with sup X = (1,1/2)
{this sup is in c(Iz)). Hence (1,y) < -sup X, but (l,z) £ (O,w) for any w < 1/2.

It is then clear that each element (l,y) in c(12) witﬁ y < 1/2 is not the sup of the
points of c(IZ) whicﬁ are way-below it in C(Iz). Hence c(Iz) is not a continuous
_laftice. | '

It should be noticed that c(Iz) is not lower continuous in this second

example, where, recall that a complete lattice is lower continuous 1f for each up-

directed set X and each point x with x < sup X, we have X = sup xX. This motivates

the following:



Conjecture: Let L be a continuous lattice and ¢ : L + L a closure operator on L.
The following are equivalent: ‘
I. ¢(L) is a continuous lattice.

2. ¢(L) is a lower continuous complete lattice.

0f course the direction | implies 2 is true, since any continuous lattice is

lower continuous, and so it is the converse that is unsettled.

For completeness sake, we record the following lemma; it was first formu-—
lated in "A lemma on primes appearing in algebra and analysis’, Gierz and Keimel

(to appear in Houston Journal), and later reformulated in reference 1.

Lemma 12. Let L be a continuous lattice, and k¥ : L +~ L a_kernel operator. The
following are then equivalent:
I. k(L) is a continuous lattice and k : L + k(L) is a CL-morphism.
2. k preserves sups of up-directed sets.
3. k(L) is a continuous lattice and the natural injection i : k(L) - L

preserves up—directed suprema.

Example 13. We here repeat two examples from Hofmis SCS memo 8-4-76 which are analo=
‘gous to those presented above for closure operators.

a. Let I = EO,]] be the unit interval under min multiplication, and
define k : I + I by k(0) =0, and k(x) = 1 for x # 0. Then k is a kernel operator
on L, and k(L) is a continuous lattice. However, k is not a CL-morphism.

b. This time we let k : 12 - 12 be defined by k(x,y) = (x,y) if max{x,y}
= ], and k(x,y) = O otherwise. Then k is a kernel operator on 12, Hovever, k

. 2, . . .
does not preserve sups of up-dirvected sets, and k{(I") is not a continuous lattice.

Given  our conjecture about when c(L) is a continuous lattice for a closure
operator on the continuous lattice‘L, and in light of these two examples, one might
be lead to conjecture that k(L) is a continuous lattice if and only if k(L) is lower .
continucus for a kernel operator on a continuous lattice L. The following shows

that this 1s not the case:

Example 14.- This is taken from a yet to be writften SCS memo (dated [2-32-76 ?)
by Klaus Keimel and myself about the complete lattice of open subsets of a topologi~
cal space. » |

Let D be the open unit disk in the complex plane together with one point

on the boundary, say (1,0). Then, as we all know, D is a Hausdorff space in the

relative topology which is not locally compact. There is a Theorem due to Isbell



that says that the open sets of a Hausdorff space form a continuous lattice if and
only if the space is locally compact, and so we know that O(D) is not a continuous
lattice. Now, the lattice 2D of all subsets of D is an algebraic lattice, and the

map k : ZD - 2D given by k(X) = int X, the interior of the set X, for each X 1D, is

a kernel operator on 2D with image O0(D). Moreover, since sups in O0(D) are just unions
it is clear that O0(D) is lower continuous, being a sublattice of 2D which is closed
under arbitrary suprema. Howevér, as we remarked above, 0(D} is not a continucus
lattice. '

We can record the following partial result in this direction:

Lemma. Let L be a continuous lattice, and k : L - L a kernel operator on L. If

k(L) is closed in L under arbitrary infs, then k(L) is a continuous lattice.

Proof.  Since k is a kernel operator, POgposition 9 shows that k(L) is closed in L
under arbitrary sups; if k(L) is also closed in L under arbitrary infs, then Proposi-

tion 7 shows that k(L) is a CL-subobject of L.-

Note that the example O(D) shows that we cannot weaken the hypothesis of

the lemma to k(L) being closed in L under finite infs.
The. following corolléry to Lemma 12 shows that CL is closed under qﬁotients.

Proposition 15. Let L be a continuous lattice, L' a complete lattice, and f : L - L'
a function which preserves all infs and all up-directed sups. Then f(L) is a contin-

uous 1atticé,;and £ :L > £(L) is a CL-surmorphism.

Proof. Let f : L - L' be as hypothesised. Then f is an inf-preserving morﬁhism be-
tween complete lattices, and so f has a sup-preserving right adjoint j : L' = L.
Moreovér, Proposition 2 shows that j(y) = inf f-1(+y), and so j(y) = inf f_](y) for
each y e £(L). Let k j*f + L ~L. Then clearly k(x) < x for each x ¢ L; moreover,
k(%) = JEGEED JUE®)) = k(x), since £(j(£(x))) = £(inf £ ' (£(x))) =

inf f(fut(f(x))) = f{x),the second equality following from the inf-preservation of £.

Thus k is a kernel operator on L. Moreover, f preserves ﬁp—directed sups by hypo-
thesis, and j preserves all sups, being a right adjoint; it ,therefore follows that

k preserves sups of up—-directed sets, and so k(L) is a coatinuous lattice by Lemma
12. Now, wé have already shown that £(j(£(x))) = f(x) for each x ¢ L. It then fol-
lows that f£+j is the identity on £(L) and j-f is the identity on k(L). Since £ and
j are both order-preserviag, it follows.that k(L) and £(L) are lattice isomorphic
under the pair of isowmorphisms f and j (or2 more correctly, their restrictions and

corestrictions to £(L) and k(L)). Finaily, since f preserves all infs and -~



up-directed sups, the map f : L »~ £(L) is a CL-surmorphism,

We note that a corollary of this is that the category C§ is closed under

quotients.

Propositigg 16. Let L be a complete lattice, énd ¢ : L *L aclosure operator on L.
The following are equivalent: |

1. c preserves all infs.

2. The complete lattice c(L) is a complete 1nf~subsemllatt1ce of L and the
map ¢ : L » c(L) is a quotient in the category of complete lattices and complete lat-—
tice homomorphisms (i.e., ones which preserve all infs and sups).

3. Themap k : L + L given by k(x) = inf c-l(é(x)) is a kernel operator cn
L which preserves all sups, the maps k-c . k(L) * k(L) and c*k : (L) —+ c(L) are both
the identity map; whence k(L) and ¢(L) are lattice isomorphic, and c(x) = sup k_z(k(x))
for each x & L, | )

Dually, if k : L >~ L is a kernel operator on L, then the following are equi~
valent: '

a. k preserves all sups.

b. The complete lattice k(L) is a compléte sup-subsemilattice of L and the
map k : L + k(L} is a quotient in the category of compete lattices and complete homo-
morphisms. _

¢. Themap e : L =L given'by c(x) = sub k_](k(x)) is a closure operator oh
L which preserves all infs, the maps c<k : c(L) = c(L) and k¢ : k(L) - k(L) are
both the identity map, whence k(L) and c(L) are lattiée isomorphic, and k(x) =
inf c—](c(x)) for each x € L.

Finally, if L' is a complete lattice and f : L * L' a homomorphism presérving
all infs and sups, then the map ¢ : L >~ L given by c(x) = sup f—](f(x)) is a closure
operator on L which preserves all ianfs, the map k : L ~ 1L given by k(x) = inf f-i(f(x))
is a kernel operator on L which preserves all sups, the operators ¢ and k are relaced

- as above, and the lattices ¢(L), k(L), and f(L) are all isomorphic.

Procf. We shall first show that | thru 3 are equivalent; the equivalence of a thru

¢ follows by dual arguments. Since closure operators preserve all sups, [ and 2 are
equivalent in light of Proposition 9. We show that ! and 3 are also equivalent, Let
¢ be a closure operator on the complete lattice L which preserves all infs, and define
k + L +L by k(x) = inf ¢ (c(x)) Then k(x) £ x is clear; since c preserves all
infs, we have c(k(x)) = c(x) for each x €L, and so kz(x) = inf c_l(c(ktx)) =

inf cul(c(x)) = k(x), so that k is indeed a kernel operator on L. ‘If we let-j :.L *L
be the right adjoint of ¢ (which exists as ¢ preserves all 1nrs), then Pr03031tlon 9

shows that j(y) = inf ¢ (+y) for each y € L, and so k = j*c. Wow. j preserves all



sups since it is a right adjoint, and ¢ does also for the same reason. Hence k also
preserves all-sups. We have already seen that c(k(x)j = c(x) for each x e L; also,
k(c{x)) = inf c-l(c(c(x))) = inf cul(c(x)) = k(x) for each x ¢ L, since ¢ is idem~
potent. Thus clk(c(x))) = cz(x) = ¢(x) and k{(c(k{x))) = k?(x) = k(x) for each x ¢ L,
and so we have that k-c : k(L) -+ k(L) and c-k : c(L) ~ c(L) are both the identity.
Since ¢ and k are both order-preserving, it follows that the restrictions and core-
strictions of ¢ and k to k(L) and c (L) give lattice isomorphisms between theﬁ.
Finally, let x ¢ L. If y ¢ kTI(k(x)), then k(y) = k(x), and so c(y) = c(k(y)) =

c(k(x)) = c(x). Hence, c(sup k—](k(x))) = sup c(kul(k(x))) = sup c(x) = c(x).

This shows that for s = sup k_l(k(x)), we have c(s) = c(x). But, s < c(s), and

k(c(s)) = k(s) = k(x), whence s = c(s) by the definition of s. Therefore.c(x) =

sup k_i(k(x)) as claimed.

Now, we suppose that L' is a complete lattice, and £ : L -+ L' a complete
lattice homomorphism. Definec : L - L by c{x) = sup f-i(f(x)). Then x < e(x) is
clear, and since f preserves all sups, we have f(c(x)) = f(x) for each x, whence it
follows that cz(x) = c(x) for each x ¢ L. Thus c is a closure operator on L. If
j + L' >~ L is the left adjoint of f (which exists as f preserves all sups), then we
see that c = j-f,.and so ¢ preserves all infs, A dual argument shows that k : L - L
given by k(x) = inf f_l(f(x)) is an inf-preserving kernel operator on L. Let x ¢ L.
then, v ¢ cnl(c(x)) if and only if c(y) = c(x) iff sup fdl(f(y)) = sup fﬂl(f(x)) iff
f(y) = £(x) (since f preserves all sups) 1ff y e fﬂl(f(x)). Thus, c-l(c(x)) = f-](f(x)),
and so k(x) = inf f—l(f(x)) = inf c-](c(x)). A similar argument shows that c(x) =
sup k-!(k(x)) for each x ¢ L. It then follows that ¢ and k are related as indicated,
and so the maps kec i k(L) » k(L) and c+k : e(L) + c(L) are both the identity map,

_whence k(L) and c(L) are lattice isomorphig. Lastly, we have already noted that |
c = j-f, and it then follows that } : £(I.) + ¢(L) is one—tone and onto. Since j also

preserves the order, j is a complete lattice isomorphism.

Remark: One of the things that emefges from the above Proposition is that kernel
operators arise from inf-preserving homomorphisms on the completae lattice L, and
closure operators arise from sup-preserving homomorphisms on the lattice L. This
then makes it clear why kernel operators are of more interest for continuous lattices
than closure operators, if it were not already clear.

We note additionally that the hypothesis that c preserve all infs in part
cne of the Proposition is necessary. Indeed, we let L = I be the unit interval,
and define ¢ : L + L by ¢{0) = 0, and c(x) = | if x # 0. Then ¢ is a closure oper-
ator on L which preserves finite infs, but ¢ does not preserve all infg. I guess an
interesting questioﬁ at this point would be to try and classify those closure opera-

tors which preserve finite infs; I have not looked at this.
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Proposition 17. Let L be a continuous lattice, and ¢ : L + L a closure operator on
L. The following are equivalent:

I. (L) is a continuous lattice and ¢ : L » c(L) is a Eéjsurﬁorphism
which preserves all infs and all sups.

2. The map k¥ : L - L given by k(x) = inf c-l(c(x)) is a continuous ker-
nel operator on L which preserves all sups, c{(L) and k(L) are lattice isomorphic
under the restrictions and corestrictions of ¢ and k to k(L) and c(L), and c(x) =
sup kql(k(x)) for each x e L.

3. c preserves all infs.

Dually, if k : L - L is a kernel operator on L, then the following are
equivalent:

a. k(L) is a continuous lattice and k : L - k(L) is a CL-surmorphism
which preserves all sups and infs. ' '

b. The map ¢ : L -+ L given by c{(x) = sup k—](k(x)) is a closure operator
on L which preserves all infs, c(L) and k(L) are lattice isomorphic under the re-
strictions and corestrictions of ¢ and k to k(L) and ¢ (L), and k{x) = inf c*](c(x)).

c. k preserves all sups.

Finally, if L' is any eompletelattice and f : L + L' a complete lattice
homomorphiém, then the map ¢ : L + L given by c(x) = sup f-](f(x)) is a ciosure
operator on L which preserves all infé, the map k : L » L given by k(x) = inf fnl(f(x))
is a continuous kernel operator on L which preserves all sups, the operators k and
¢ are related as above, and the continuous lattices ¢(L), k(L), and f(L)rare all

isomorphic.

Proof. After Proposition 16, we really don't have that much to prove. Indeed, the
equivalence of 1 and 3 follows from Proposition 9 and the definition of‘a Eﬁjmorphism,
and that of 1 and 2 follows from the equivalence of I an&‘Z in Propesition 16. The
equivalence of a thru c can also be got at in this fashion. The final remark also
follows from the final remark in Proposition 16. (We note that a kernel operator

which preserves all sups is automatically comtinuous.)

Remark: The point of this proposition is that closure operators on continuous lattices
which preserve all infs arise naturally from complete lattice surmorphisms in the
category CL, and likewise for kernel operators which preserve all sups. Alsc note
that the hypotheses on £ and L' in the final remark are equivalent to assuming that
f(L) is a continuous lattice and f : L - £(L) is a complete lattice surmorphism in
cL.

Finally, one wight wonder about the question of a kernel operator preserving

the way-below relation, which would seem to be dual to a closure operator preserving



Proposition I7. Let L be a continuous lattice, and ¢ : L + L a closure operator on
L. The following are equivalent:

1. c(L) is a continuous lattice-and ¢ : L~ c(L) is a Eéfsurﬁorphism
which preserves all infs and zll sups.

2. The map k : L + L given by k(x) = inf c—}(c(x)) is a continuous ker-
nel operator on L which preserves all sups, c(L) and k(L) are lattice isomorphic
under the restrictions and corestrictions of ¢ and k to k(L) and c(L), and c(x) =
sup k_l(k(x)) for each x ¢ L.

3. ¢ preserves all iunfs.

Dually, if k : L - L is a kernel operator on L, then the following are
equivalent:

a. k(L) is a continuous lattice and k : L +.k(L) is a CL-surmorphism
which preserves all sups and infs. ‘

b. The map ¢ : L - L given by c(x) = sup k_I(k(x)) is a closure operator
on L which preserves all infs, c(L) and k(L) are lattice isomorphic under the re-
strictions and corestrictions of c and k to k(L) and c(L), and k(x) = inf c_](c(x)).

c. k preserves all sups.

Finally, if L' is any eompletelattice and £ : L + L' a complete lattice
homomorphiém, then the map ¢ : L + L given by c(x) = sup f-l(f(x)) is a ciosure
operator on L which preserves all infé, the map k : L » L given by k(x) = inf f"I(f(x))
is a continuous kernel operator on L which preserves all sups, the operators k and
c are related as above, and the continuous lattices c(L), k(L), and £(L) are all

isomorphic.

Proof., After Proposition 16, we really don't have that much to prove. Indeed, the
equivalence of 1 and 3 follows from Proposition 9 and the definition of a ClL-morphism,
and that 0f 1 and 2 follows from the equivalence of | and 2 in Proposition 16. The
equivalence of a thru c can also be got at in.this fashion. The final remark also
follows from the final remark in Proposition 16. (We note that a kernel operator

which preserves all sups is automatically continuous.)

Remark: The point.of this proposition is that closure operators on continuous lattices
which preserve all infs arise naturally from complete lattice surmorphisms in the
category CL, and likewise for kernel operators which preserve all sups. Also note
that the hypotheses on f and L' in the final remark are equivalent to assuming that
f(L) is a continuous lattice and f.: L - £(L} is.a complete lattice surmorphism in
cL. |

Finally, one wight wonder about the question of a kernel operator preserving

the way-below relation, which would seem to be dual to a closure operator preserving



all infs. If cone considers the kernel operator k : 12 - Iz given by k(x,y) =0
if max {x,y} < I, and k(x,y) = (x,y)} otherwise, then it is readily apparent that k
preserves the way-below relation and also finite sups. However k(Iz)'is not a

continuous lattice.

Proposition }8. Let L be a continuous lattice. Then the family cl(L) of all closure

operators on L forms a continuous lattice in the pointwise operations.

Proof. We know that any product of continuous lattices is another such; and so L
is a continuous lattice. We éhow that c¢l(L) is closed in LL under all infs and up-
directed sups; Proposition 7 then gives the desired result.
: Let € € cl(L) and let s = inf C in LL. If x ¢ L, then x < c(x) for each
¢ & C implies that x < s{x), Moreover, sz(x) = inf inf c(c'tx)) < inf cz(x) = 5{x)
mmm c C . T ¢
s each ¢ ¢ C is idempotent. On-the-other-hand, if c,e' e Cj-thens—<<c'(x) implies

¢ (%) -<c ("R A so TR ST —<eteln)) . Thus—stx)y=—inf-clo—<—infinf o(c’ (x))
‘ : C c C

‘= sELx), and so we conclude that sz(x) = s(x). Thus 8 £ e¢l(l), and cl(L) is closed
under all infs. Again let C & cl(L), and this time assume that C is up-directed

and that s = sup C. Then x < c(x) for all c € C implies that x < s(x). Méreover,
sz(x) = sup sup c(e'(x)) > sup cz(x) = s(x). Conversely, if c, c' ¢ C, then there I?

C C . (O
M .
is some c¢" € C with ¢, ¢’ < c¢". Hence c(c'(x)) < ¢"(e"(x)) < s(x), so sz(x) < s(x). i?

Thus s £ c¢l(L) once again, and so c¢l{lL) is closed in irk;;&er up-directed sups:
Remarks: First, I should acnowledge that Dana Scott showed me a slick proof that
cl(L) is a continuous lattice when we were in Oberwohlfach, and although I have for—
gotten the exact method, undoubtedly it is reflected here {this could even be the
same proof). _ _

Secondly, we could view the abowve proof ag using closure operators to show
that the family of closure operato?s on a continuous lattice forms a continuous
lattice, for the operator C : LL - LL given by C(f) = inf { cecl(L) : £ <c} is
a closure operator on LL with image ¢l(L), and, according to Proposition 9, to
show that cl(L) is a CL-subobject of LL‘is equivalent to showing that the natural
injection of ¢l(L} into LL preserves all infs and all up-directed sups, which we have
dene. Note that, according to Proposition 10, this is also equivalent to showing.
that £ « g in LL implies C(f) « C(g) in cl(L), but this would mean calculating the
way-below relation on ¢l(L), which I have studiously avoided (!).

Finally, welcan give an explicit descripticn of the operator C on LL: Namely,
For each £ e LY, it is easily (?) verified that C(£)(x) = inf (tx NE(L)). -

Finally, it has just occured to me that, beginning with Proposition 16, I



forgotten to show that various operators which I asserted were closure and/or
kernel operators are actually monotone., This holds in each case; it was just an

. ovérsight that I'm too lazy to correct at this late moment.. I should.have pointed
this out earlier for those of you who afe reading the proofs, but if I had had

the foresigt to do that, I wouldn't have overlooked the error in the first place,

would I?



