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If X is a topological space, then the space of open subsets of X, 0(X), is
a complete lattice. This memo is intended to give some results about when O0(X) is
a continuous lattice or a compact semilattice. These results are not all new, and
they are not exhaustive; however, we hope they will shed some light on the problem,
and eyentually lead to a solution of it. |

If we denote by 2X the compiete‘algebraic lattice of "all subsets dflx, then
there is a natural kernel operator k : ZX -+ ZX with image 0(X), namely, k(A) = int 4,
the interior of the set A, The following lemma showé that the now well-known lemma
in.reference 1"is of virtually no use in determining when O(X) is a continuocus lattice.

X

space, and défine -k : 27 -+ 2X

Lemma |. Let X be a T by k{(A) = int A, If k pre-

. I
serves sups of up-directed sets, then X is discrete.

Proof. X = sup { F : F €X is finite} , and this is an up-directed sup. 'Hence, if
k preserves up-directed sups, we have X = sup { k(F) : F @X'is finite} . Thus, if

x € X, then there is some FC X finite with x e k(F), and k(F) is a finite open set.

Since X is T], points are closed, and so it follows that each point of k(F) is open.
‘Therefore {x} is open, and so'X is discrete.

As a result of thié lemma, we see that whether or not 0(X) is a continuous lattice
must be determined independently of the lattice ZX; thus the way-below relation on
0(X) must be determined.

Definition 2. Let L be a complete lattice, For x,y € L, we write x « y if and only
 if for each up-directed set A CL with y < sup A, there is some a € A with x £ a.

We write x <<y if and only if, for each up-directed subset A of L with y < sup 4,

there is some a £ A with x < a.

West Germany: 'TH Darmstadt (Gierz, Keimel)

| ' U. Tibingen (Mislove, Visit.)
England: U, Oxford (Scott)

USA: ' U. California, Riverside (Stralka)

LSU Baton Rouge (Lawson)
Tulane U., New Orleans (Hofmann, Mislove)
U. Tennessee, Knoxville (Carruth, Crawley)

+: This memo stems from ‘conversations held in Darmstadt in September; thanks to Av H



2.

Definition 3. Let X be a topological space, U <V open subsets of X. We say U is

relatively compact in V if each open cover of V admits a finite subcover of U.

Clearly U is relatively compact in V if aund only if U « V in 0(X).

Pfopoeition 4. Let X Be a Hausdorff space, and let A, B be open subsets of X.
The following are equivalent; '

‘1. A<« B in 0(X).

2. A C B and & is compact.
Proof. Suppose that A < B in 0(X), and let x ¢ X\\B Then X Hausdorff implies that
the family of closed nelghborhoods of x is downwards directed and has intersection
{x} , and so_ the family {B\\N : N is a closed neighborhood of x} 1s an up-directed’’
family in 0(X) whose sup is B. A « 3B then implies that there is some closed neigh-
borhood N with A © B\\N. It follows that A ¢ B. Since A<<<B implies A « B,
we have A <<<B implies that A & B. Second, assume that A <<<B, and let {O } be an
open cover of A. Then, the family {0 v E\\A} is an open cover of B, and since
A <<<B, it follows that A < O.LJ B\\A for some i, if we assume that the'O. are up-
directed, which is p0331ble by taking finite unions of the O s if necessary Then,
the firgt part of the proof shows that A C:O H thlS then demonstzates the compactness
of A, Fence we have shown that I lmplles 2. '

Conversely, it is clear from the definitions that E: C.B and A compact imply
A is relatively dome;ct in B, and so A <« B. 1Hence; if {Qi} is any eﬁ4direated family
of open subsets of X with B < sup Oi’ then A CUOi, and so there is some i with A C

Oi. But, the comment just made then implies that A <« Oi’ and so A <<<B.

Corallary 5.(Isbell) TFor a Hausdorff space X, the following are equivalent:
I. 0(X) is a continuous lattice, .

2. X is locally compact.

Proof. Suppose that O0(X) is a continuous_lattice, and let x ¢ X. ©Since X = sup {A :
A« X} , there is some A ¢ O(X) with x ¢ A< X. Then, there is some B ¢ Q(X) with
A« B « X, and i£ follows that A <<<X. This shows that A is compact by the Propo-~
sition, and so we have the desired compact mneighborhood of x.

Conversely, suppose that X is locally compact, and let A be an open-subset
of X. Then, the lo¢al compactness and Hausdorff properties imply that A is the union
of- compact neighborhoodsof each of the points in A, and the interior of such a eeigh-
borhood is then way-below A by the Proposition. Hence each open set of X is the sup

" of the open subsets way-below it, and so 0(X) is a continuous lattice.



Example 6. Let D be the closed unit disk in the plane, and let D have the usual
topology. Let D' be the open unit disk. We define a new topology, k, on D as
follows: A subset U of D is k-open if and only if, for each x g U, thHere is an
open subset V of D in the usual topology on D such that x ¢ V and V (AD’ cCUAnD',
The effect of this is to give D' the usual topology, but the boundary of D is now
discrete.in the k-topology. We claim that_D' is relatively compact in D in the k-
topology: TIndeed, let {Oi} be a family of k-open sets which covers D. For each i,
if x ¢ 0.("\D', we let 0 % = Oi; if x g 0. \\D', then we let 0 x (O MDYy V »Where
X "g- V is an open subset of D in the usual topology such that V M D' CIO M D'
(such 4 V ex1sts by the definition of the k-topology) Now, since the famlly {O }
covers, 1t follows that the family {O X} covers D, and it is clear that each set
0. is open in D in the usual topologya Hence, since D is compact in the usual

i,x

topology, there 15 a flnlte subfamily {Oj %
"]

i3 =1,...,0} which also covers D.

Now, D' =D' M (U0, )=V MNo, )>cUo. , since 0, _ = (0.AD)IUV and
JrX, Js¥. J JsX. J X.
j T | j i
Vx m D' Q;Oj for each j. This shows that the family OI""’On forms a finite cover
] . _ . ,
of D', and so we have our claim.. It then follows that D' .« D in the k-topology.
The point of the example is to show that U « V does not imply U compact
even for Hausdorff spaces. The following result gives a characterization of U « V

for regular T, spaces.

1
Proposition 7. Let X be a fegular T1 space, and‘let-Y be an open dense subset of X.
The following are then equivalent:

l. Y « X in 0(X). .

2. Let 0'(X) be the family of all open sets U of X which satisfy: For
each x g- X, if there is some V ¢ 0(X) with x ¢ V and V AY € UNY, then x ¢ U. Then

0'(X) is a basis for a compact Hausdorff topologyon X.

Note: The motlvatlon for the topology 0 (X) glven in part 2 stems from the idea of
Tecovering the orlglnal topology on the unit disk D from the topology described in

Example 5.

Proof. Suppose that | holds. It 15 routine to show that 0'(X) is a basis for a
topolegy on X; moreover, if x,y ¢ X with x # y, then there are disjoint open sets

U and V containing x and ys,respectively. Now, let U' = {z ¢ X : WNYzaUuNY for
some opennset W in X‘with z £ W}, and let V' = {z e X : WA Y.E;Vc”EY for some open
set W €X with z e W} . Then U' and V' are open in the new topology on X (they are

infact members of 0'(X)), and since U and V are disjoint, we have that U' and V' are



disjoint. Moreover, clearly UC U' and V SV', so U' and V' are the disjéint
open subsets in the new topology which we seek. Notice that & variant of this
argument also shows that the new topology is regdlar, since the original topology
is regular.

We now show that the new tepology is compact. Let {Ai} be a descending
family of closed sets in the new topology, which, for brevity sake, we shall call the
k-topology. Fix an index i, and let x ¢ X. If x ¢ Ai’ then since the k~topology
is regular (as we noted above), there is a closed neighborhood C(i,x) of Ai which

doesn't contain x. If x ¢ A then we let €(i,x) = X. For a finite subset F of X,

we let C(1,F) = (’\ C(i, x), which we note is a closed neighborhood of A ‘We claim
xeF

" the family {YNC(,F) : i eI and FCQ X is finite} has the finite intersection
property. Indeed, suppose thet_C(il,Fl),...,C(in,Fn) are given. Then, F = FIU R Fn
is a finite subset of X, and since the family {Ai} is descending, there is some Aj '

z .

with Aj‘E_Ai for k = i,...,n. Then C(j,F) is.a closed neighborhood of Aj’ as is

k
C(ik,Fk) for each k = 1,...,n, sinpe AjE; Ai‘ for each k = 1,...,n. Hence, since Y
. k :
is dense in X, it follows that Y'f\C(J,F)f\ ) C(1 ,F ) # @, and this establishes
T k<u

the claim. Slnce Y is relatlvely compact in X in the original tOpology, it follows
that {\ {C(i,F) : i e I, F C X finite} # @ since each of these sets has non-empty
interior. Now, ‘it is clear that M A €S MNc(i,rF); conversely, if x ¢ A for some i,
then since C(i,{x} ) is a closed nelghborhood of A1 not containing x, it follows that
x ¢ {\\C(I,F) Thus M\ A f\C(l F), and since the right side is mon—-empty, so also
is the left. We have therefore shown that each descending family of closed subsets
of X in the k-topology has a non—empty intersection, and so we conclude that X is
compact in the k—-topology. This finishes the proof that 1 implies 2. _
Conversely, suppose that 2 holds, and let {0.} be an open cover of X in the
original tOpOlOPy For each index 1, let 0 '={z ¢ X : there is an open set V owith.
z ¢ V and V Ny C:0 ™Y} , and note that O "'£ 0'(X) and O C:() ' for each 1. Hence,
the family Oi' covers X, and since these sets are in 0'(X) whlch generates a. compact

topology, it follows that there ig a finite subfamily © ,...,O ' which cover X. HNow,

1
.Y“f\(UO LD u ¥ Nno." C- U 0.% by the definition of O '. Hence, for the
jzn . jzn - j<n i
cover Oi of X, we have found a finite:subcover {Oj:.j.in} ﬁhich covers Y, -and this
shows that | holds. ' '

This completes the proof of the Proposition.



The reason that this characterizes the way-below relation in 0(X) for
regular Ti spaces X 1s as follows: If U'C;V.are open sets, and if q « V, then
we claim U <« U in O(U): Indeed, if {Oi} is an open cover of ﬁ; then each Oi can
be written as Oi(ﬂ‘ﬁ, where Oi is open in X. Hence the family {Oi}L){V\\ﬁ} ig

_an open cover of V, and since U « V, there is.a finite subcover of U. Clearly
this gives rise to a finite subcover of U from the {O }- Conversely, suppose
that U « U in 0(U). Then, for any open subset V of X with U &V, it is easily
seen that U « V in OCX). Thus, our Proposition does indeed characterize the
way~below relation on 0(X) for X regular and T].

We now consider the question of whether 0(D) is a compact semialttice,
where D is the unlt dlsk with the topology described in Example 5. Since D is
net locally compact in thlS topology, it is clear from Corollary 4 that O(D) is
not a continuous lattice, The following deflnltlon and lemma ave taken from

reference 2: >

Definition 8. Let L.be a complete lattice, and A C.L any subset. We define
N {sup B : BC A and B is up-directed} '. '

Lemma 9, (Lawson). Let S be a compact semilattice and I a semilattice ideal of S.

Then, the closuré of I satisfies T = I .

Example -10. We show in this example that O(D) is not a compact semilattice, where

D is the unit disk ﬁith the topology described in Examole'S. Let E ={D'"w { (1,00} ,
' and give E the relative topology from D.  Then E is open in D, and so O(E) is an

ideal of Q(D)_which is closed‘under up-directéd supsv The lemma then implies that

0(E) is a compact semilattice if O(D) is,and we show that this is not the case.

Let‘xo = (1,0), and let {xn}ﬁ>l“be a sequence in D' with no convergent oub*

sequence io E(e.g., take {xn}.to be a sequence which converges to (0,1) in D in
the usual topology). Define‘_An = E\\{xm}m>n’ and note that the family {A } 1s an

increasing set of open subsets of E whose union is all of E. Thus O(A )

family of open subsets of A 0? is an ideal of O(E), and the famlly {O(A )} is

an 1ncreas1ng family of 1deals in O(E). Now, let {y } be a sequence in D\E which

converges to xo, and, for each n, choose a sequence {y } in E which converges

to Yo in the Egﬁéixtopology on D. We define B _ n‘\\{y :p>m}, and note

that, for each n, the famlly {Bn”m} 15 an increa31ng family of openssets in E
] . .

i whose union is An; thus O(Bn m) is.an ideal of O(E), and the family of these

. _a: A - B e L.
is up-directed. We let I —‘LJ O(Bg,m)’ and note that E = EJ An = Eril Bn;m ,
n,m ’
‘ o



We claim that E ¢ I+: Indeed, suppose that {Oi} is an udeirected subset of I
and that X, € L}Oi. Then, we can assume that xo £ Oi for each i. Fix i; since

{yn} converges to X s and since {yn m} converges to y for each n, it follows that
s .

there are r,s with Yp q E Oi for p > r and q > s, It then follows that 0i CB

’ n,
implies n < r and m < s, and so this also holds for each j > i 51nce the O; are
up—dlrected Hence, 'kJOj c L){Bn N rand m < s} C Ar, and so UOi # E.

>

This establishes our claim.
o \ .
Now, we repeat the above construction as follows: We choose yet another

sequence {zn}C.D\\Erwhich converges to X_ and which is disjoint from {yn} , and
for each n, we choose a sequence {zn m} in E which converges to z in the usual

H

topology of D. ©Wew, for n,m in IN, we define Cn,m,p = Bn,;\\{zn+m,r :r >pl,

and note that Cn m,p is open on E for each triple n,m,p, and that the union of
» 3 - .
the C for fixed n,m is Bn o This time we let J = \ ] o(c o ), and note

n,m,p ) o,m,p
n,im,p

. . ' ’ : ) . +++
: th t J d - N = = = N

a is an ideal of O(E) ow, E \_) An \\‘) gn,m k&,) Cn,m,p e J
.n N : n,m,p ,

+ . ) . '

We show that E ¢ I, Suppose that {Oi} is an up-directed subset of J" and that
X € k)O.; then, as before we can assume x_ 1is in each 0,. We show that 0. CB
o i’ 7 .o i i n,m

for some n,m depending on i; our previous remarks will then show that E # L)O

since this is an up~directed family. Now, for a fixed i, Oi € gt , and so

there is an up-directed family {0 } in J with 0 =\ Qi i Again, we can assume

that X, € 0., . for each is f1x1ng one j, since O, i3 is open, there are r,s in IN
with z €0, . for p>rand g > s. It follows that 0. . CC for some n,m,p

P:9q 1,] - e - ‘ 1,] n,m,p
impfies n+m < r and p < s, so that 0l CLB o and n+m < r. Since the 0l . are
. . l n, ?
up-directed,it follows that Oi X C Cﬁ m,p 1mp11es n+m < r and p < s for k > j, and
9 3 3

so 0. . C B with n+m < r for k > j. We conclude that 0, =\JO., . & \_J B

i,k n,m — - 1 1, n+m<r n,m

- Br L, 28 is clear from the definitions. Thus each 0i is a subset of some
s .

Bn,m’ and so they form an up-directed subset of I. Since E ¢ I%, it follows that
\JO, # E. Therefore E ¢ J' . o |
Now, J is an ideal in the semilattice O(E} with J++‘# 3, But, Lemma 8
shows that thehclosurgfcf/;ach ideal I is I++, and clearly closed ideals are
cloééd under the formation of up-directed sups (since these are then limits in
the topology). Hence O(E) cannot be a compact semilattice, since J is an ideal
with J++-npt'closed under up-directed sups, and so also not closed in any semi-

lattice topology. -
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. . ‘
We close this memo with an observation on a result of Lawson's.which appears

in the proof of Theorem 13 of reference 2. ' '

Definition 11. Let L be a complete lattice. For X,y ¢ L we define x « vy if

and only if for each subset A of L with.y < sup A, there is some countable subset

{an} of A with x < sup a. )

Lemma 12. For a compact semilattice § and-an x ¢ §, we have x =

sup {y € S : y«cx}.

ﬁroof.(Lawson(Z)). For any compact neighborhood W of x in S, choose recursively

a family Wn of compact neighborhoods of x with WnZC:tﬂr_ for each n. Let U be

the intersection of the family Wn. Tﬁen, it is readily ;een that U ig a compact
subsemilattice.of S containing x. We let u = inf U, and claim that u <. X
Indeed, suppose that A is a subset of 8§ with x < sup A. Then, § is a compact
semilattice, and so X = sup xA. Hence, since sup A = sup { sup F : F CA finite} ,
and the right side is an up~direcfed sup, the right sidé is also a limit. Hence,
.for each n ¢ IN, there is some finite subset F C A with sup xF eW . Now, the
‘set C = kJFn is a countable szset of A{.andléup an.s Wn for each n implies that
sup {sup an tn g IN} = lim {sup an :n ¢ IN} eU, and so u = inf U < sup xC.
Since sup xC <sup C, it follows that u <.sup C, and we have established our claim.
Now, we have shown that, for each compact neighborhood Wgof x, there is some

u g Wywith u <, x (that u e Wyfollows from the fact that V C,V2 for each subset

V of §, so that the family W is towered). It then follows that x =sup {y e § :

R X}, and so the lemma is proved.

We note in closing the following propertiés of the Example 9: O(E) is
a lowef continuous complete lattice (since éups are just unions and finite ~
infima just {ntersections), and O(E) satisfies the property that each U ¢ O(E)
is the sup of the V ¢ O(E) with V «, U in O(E): this foldws‘from the fact that
E is a countable union of compact subsets, as is also each open subset of E.
Finally, note that the proof that O(E) is not a compact semilattice can be used to
show the folldwing:

TTe——

Pfoposition 13. Let X be a Hausdorff Epace which is embeddable in compact first
countable (or, in particular, compact metrisable) space. Then the following are .
equivalent: - -

l. 0(X) is a compact semilattice

2. 0(X) is a continuous lattice.

3. X is locally compact.



