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The spectral theory of lattices serves the purpose of re-
presenting a lattice L as a lattice of open sets of a topological
space X. The spectral theory of rings and algebras practically
reduces to this situatlon in view of the fact that for the most

‘part one considers the lattice of ring {or algebra%ideals and

then develops the spectral theory of that lattice.(The occaslonal
complications due to the fact that ideal products are not inter-
sections have been dealt with e.g. in THE RED BO6M ROOX. )

On the other hand, the question has now been raissd repeatedly
in the seminar and in the literature, what topological conseguences
®r would follow for a space X from the lattice theoretical assumpt-
lon that the lattice O{X) of open sets was continuous. We have
Ishell's observation that for Hausdorff X the local compactness of 2
is necessary and sufficient. SCS Keimel-Mislove 12-15-76 adresses
itself further to this question,but reaches no conclusion in the
absence of separation. We will show here that O(X) is a continuous
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lattice 1ff X 1s locally quasicompact -provided that every irreducibl
(closed) subset of X is a singleton closure . More generally, we
will show that the eategory of locally guasicompact T _-spaces in whic
all irreducible sets have a dense point with continuols maps
as morphisms is . dual to the category of distributive continuous
lattices together with BEimorphlisms which are lattice morphisms, and
2P - ¢rF-morphisms. g

Qur main device is to use the hitherto somewhat neglected
topology on a CL-object L which 1s gmaeated by the sets I(x)zL‘\TX
The l.u.b. of This topology and the Scott topology 1s the CL-topolog
It induces on the set of primes preclisely the hull-kernel topology.
S0 it emerges that two T _ -topologies are of relevance on a continucus
lattice. Untll oppositioﬁ from Oxford hits these shores we will call
the one Just infroduced the zmkk anti-Scott-topology.

Der WOrté sind genug gewechselt,last uns nun
endlich Taten sehen! JWvG, F-1.

1. The basies.

1.1.NOTATION., Let L be a contlinuous lattice. We record the following
topologies: (1)} The Scott topology, generated by all #x ={ycL:

x <{ ¥} s x €L ;3 (ii1) The anti-Scott topology, generated by all
I{(x) =LN1x, x QL ; and fhe (1i1) the CL~-topOlegy which 1s the
common refinement of the Scott and anti-Scott topelogy. All of these

topologies are TO and quasicompact, the last is Tg(and compact ).

1.2. DEFINITICN. Let L be a continuous'lattice. We let Spec L
be the space PRIME L ~N {1} with the topﬁlogy induced from the
ahti -Scott topoi;gy and call this space the spectrum of L (or
the prime spectrum, if confusion should ever arise). We notice that
Spec L ﬁay be empty; i1f L 1is distributive, then PRIME L = IRR L
order generates L (Hofmann,Lawson: Irreducibility) and Spec L
ig sufficiently large.
If X CL we write h(X) = }X n Spec L (and abbreviate
.h({x}) by h(x)}}. Similarly we set o (X) =(Spec L) \ h{X) =
(spec L) \ X, &(({x}) = 6(x). We call h(X) the hull of X.
The topology of Spec L is generated by the ¢(x),x € L and is called

the hull-kernel topology. []




1.3.LEMMA . a) (Y (h{x): x € X}

h{sup X) for all X C L.

b} J (h{x): x € X}

¢cloged X C L.

h(X) = h{inf X) for all

¢} Every hull-kernel closed set of Speec L 1s of the
form h(x) for some x @ L.
Proof. a) Is stralghtforward.
b} is immediate from THE LEMMA by Giersz and.KEimel ("a lemma
on primes" brings us all good times; see also Irreducibiiity 1.5)..
¢) The family {h{x): x€ L} is closed under arbitrary
.E%§E§x by a} and under finlite unioﬁs by b). It therefore is the

set of closed sets of a topology, which i1s the hull-kernel topology. [}

1.4.PROPOSITION, For any contlnuous lattice L, the function

x> O(x) : L——> 0(Spec L)
is a surjective lattice homomorphism preserving arbitrary sups.
IxFxizxdigfeth The following statements are equivalent:

(1) L is distributive, {(2) 6:I-—>0(Spec L) 1s an isomorphism.
Proof. The first assertion follow&-from Lemma 1.3, If L is
distributive,then Spec L U {1} is order generating, whence
X = inf nix). Thﬁs means that O is injective. Conversely, (2)
says that € is injective and hence that PRIME L is order generating

which implies (1).[]

This propesition gives a representation of all continuous distribu-
tive lattice in the form O(X). We have to understand the properties oi

the spaces whiech opcur in this fashion.

1.5.1EMMA. If F C L is an open filter, then L\F = J 61FU=4(SpecZD\
Proof, Since ¥ is a filter, o(F) =(Speec L)N\F by 1.2. If x <p

< (Spec L) \ F, then evidently x ¢ F,i.e. x € L \ F. Conversely,
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1f x @ L\F ,then there 1s a p & Spec L with x <pand §p ¢F
(Irreducibility 1.4), so x « ‘],((Spec LYNF) (]

1.6;£§ﬂﬂg. A set Q C Spec L ME{## is quasicompact 1ff iQ CL

1s compact in the CL-topology{ or, equivalently, in the Secott topolc
.Proof. A famlly ( &(a): A C L} of open sets in Spec L is a cover of
@irf QU (S(a)r aca) = S(sup &) 1ff QN n(sup 4) = &

iff sup A § ¢Q » Thus @ has the Heine-Borel property iff for each
set A C L with sup A § JQ there 1s a finite subset F C A with

sup F ¢ ¢Q. This means precisely that I J2 1s open in the Scott
topology. But upper sets are open in the Scoit topology iff they are

open in the CL-topology.[] -

1.7. LEMMA., If F C L 1s an open filter, then 6(F) =(Spec L)\F
18 quasicompact in Spee L.

Proof.This is immediate from 1.5 and 1.6.]

1.8, DEFINITION. A topological space X is called locally quasicompac

1ff every point has arbitrarily small quasicompact nelghborhoods.[]

a

Note that in'the absence of separation the existence of one quasi-
compact nelghborhood is not sufficient to gﬁarantee.local quasicompac

ness.

1.9. ILEMMA. Let X be a Immally topological space.
(a) If U,V € 0(X) and Q is quasicompact with U C & CV , then

U<V in 0(X).

(b} If E§X$ is locally quasicompact, then 0(X) 1s a continuous latti

Day and Kelly]
Proog. ?; : Straightforward verification.

(b) : Immediate from the definition of continuous lattice,1.8,
and (a) above.[]
If 0(X) is a continuous lattice, then ¥ is called semi-Llocally bound:

by Isbell (MC-lattices) and quasi-locally compact by A.J.Jard
and 3 —compact by by B.J. Day and G.M.xelly. [A.S.Ward in "Topology a1
its applicatlions,Blegrade 1969, p.352]




1,10. LEMMA . ILet mmgE! a << b in L. Then there is a quasicompact
set @ C Spec L such that 6(a) € Q C o(b). Specifically,

if F 1s any open filter of L with b & F C ta , then Q =6(F) will dc

Proof. There is indeed at least one open filter F with E/C F g’fh
(since a << b means b € int ’]‘a.) and thus F = {U for any open
semilattice neighborhood U of b in Ta will do). The relafion

o{a) € (F) Ce(b) 1is then clear, and 6(F) is quasicompact

by 1.7.0 PR "

I ' .
1.§.DEFINITION, A space X is called primal (Isbell) iff 1t is ‘I‘o
and every closed irreducible set has a dense point .{Here a closed
set 1s called irreducible if is not the union of two proper non-

empty closed subsets.)[]

Any infinite set with the cofinite topology is a non-primal Tl-

space.Hausdorff spaces are primal.

1.12 .THEOREM . Let L be a continuous lattice. Then
{i) Spec L is a 1oca1iy guasicompact To space.ln particular,

0{Spec L) 1s a continuous latflce.

{(i1) If L 1s di-stributive, then Spec L is primal.

(iii) The function &: L > O(Spec L)} is a surjective %op_
morphism. In particular, there is a CL -embedding
- @ O(Spec L)——> L given by

T(U)=sup { x € L} &(x) c U} =sup{x < L] n(x)uu= Spec L}.
proof. (i) Since the anti-Scott topology 1is T, 80O is the hull-
kernel topology on Spec L. In order to show that Spec L is locally
gquasicompact, let p € 6 (x) for some X < L. B8 Plck a y << x su that

p & 1y; this 1s possible since p § h(x) = Tx n Spee L . Then

p & o(y), and by Lemma 1.10 there is a quasicompact @ with




s{y) €Q < s(x). -By 1.9.b, BEE® O(Spec L) is [HE® a continuous
lattice.

(11) If L 1s distributive, then ¢ :L —>H&mam 0(Spee L) is an

: non-empty

isomorphism by l.4. Let A be a/closed irreducible set in Spec L.
Then A = h(a) for some a & L by 1.3.c. The set [EA 6 (a)<Bpec LN\h(a)
is prime in O{Spec L) by irreducibility of A. Thus a is prime in L.
Since A + § , then a = inf A + 1, whence a G Spec L. But then

A = h(a) = {a}” in Spee L. Thus Spec L is primal.

{1i3i) The function & is a surjective lattice morphism preserving
arbitrary sups by 1.4. If x <<y in L, then <{x) < G(y)l by

1.9.2 and 1.10. Thus ¢ < CLOp . The remainder 1is clear from

ATLAS duality.[]

This thecrem allows us to represent every distributive éontinuous
lattice in the form O(X) for some locally quasicompact primal space
X. This generalizes the repreéentétion theorem of Gierz and Keimel
("A Lemma on primes"). It also shows us how to find a canonical
distributive subobject in any continuous lattice. (Cf. "Irfdueibility",
Chapter 3) .
We now luspect ;Ee other directlon: Starting from a space X,when
do we recognize that O(X) is a continuous lattice? |
Firstly, for every topological space X , O(X) is a compiete Bouwerian
lattice. We let Spee O{X) be the space of 1ts primes in the hull-
kernel topology which is the set mXxaii [(5(U):ﬁ'c 0{X)] , where
6(U)= { p< Spec O(X): U ¢ P}.(For further information see e.g. THE

RED BOCK, but be careful in comggring notation.)

1.13. LEMMA. " Let X be a ImEaxd topological space and define the functis
f : X——=> 38pec 0(X) by g(x) = X\\Jx}'. Then %, has the following




properties:

(1) For all U @ O(X) we have (a) . g'(U) e (Ul 1mg and

-1
() U = ¢ {s(U)).
(11) 6 :0(X) ——> 0(Spec 0(X)) 1is a lattice isomorphism with
inverse V |j——> g"l(v).
(iii) % is continuous and open onteo 1lts image, amal Sﬁ-ec 00() o

a ' privecl Space -
(iv) £ 1s injective 1ff g is an embedding 1ff X 1s T_.

(v) éis bijective iff g is a homeomorphism iff X is primal.

An open set
Proof. (i)(ah P < Spec O(X) is in 6(U) iff U ¢ P shemece XN\ (x}™

U
is in &(U) A im'g iff\/;{g(:[x}'m 1ff (x}'nU+ @ 1iff x<T
ief X\{x)” < £(v).

(b) Anelement x{fd <X is in g—l(G(U)) iff £(x) <5(U.

17f VB ¢ x\({x}- iff x &< U.

{i1) 1s a consequence of (i) (b) and the fact that & is
surjective.
T'L.L‘PH#M/.‘
{111): follows from (1) (b) and (a) , resépetively, aud o gecow of
Argtn 5 ag i Hw forOSE B, LD (),
(iv) and (v) are immediate from the definitions in view of (231).

1.14 . DEFINITION. If J:X-——>Y. is an embedding of topelogical spaces
then we call j strict if Ul—— j_l(U): 0(Y)——>0(X) is an

lsomorphism of lattices.
Notiece that for To-spaces X the map g is a strict embedding by 1.13.

1.15. IEMMA. Iet L be a contlinuous lattlce and X C Spec L. Then

the following statements are equivalent:




(1) The inclusion X—> Spec L 18 a strict embedding (relative
to the hull kernel topology on X)
(2) X u {1} is order generating in L .
Remark. In "Ireeducibllity” 2.2 one finds for alternative equivalent

conditions for condltion (2).

Proof. Condition (1) means that for all mywm& s,t & L the relation

&(s)n X = &{t)~ X implies s=t. This is equivalent to
(r) For all s,t € L , the relation fs~nXx = ftNn X implies
5 = %. -

Since fs AX = 1t A X 1is equivalent %o Tsr\(X ufil)= fto (Xuf1})

we note that "Irreducibility" 2.2 shows that (1!') and (2) are equivalen:

These concepts are particulalry easlly applied to the case of
algebrale lattices . For this purpose let L be an algebraic lattice
(L <2) and let X C Spec L be a strictly embedded subspace. By
1.15 and "Irreducibility” 2.5 , this lmplies Irr L CX U {1}. We
then confirm parallels to 1.5,1.6 and 1.10 as follows:

14§B.biS.LEMMA . If FC L is an open closed filter, then LN\F =

_‘L(x_\ F). o

Proof. We need only wonfirm LN F C ¢(X\\F): Let s € L \ F; then by
"Irreducibility 1.4 there 1s a p @ Irr L with s < p and p § F. Since
rr L € X U{l} ,we have p © X.| :

For 4 € L let us write O,(a) = & X\ fa = s(a)n X.

1.6.bis. LEMMA. A set @ C X is hull-kernel quasicompact iff JQ is
closed in L (relative to the CL-topology).
Prcof. The proof of lemma 1.6 applies with 'SX in place of & .[]

1.10.bis. JEMMA, ILet a << b in I/ Then there is a quasicompact open
get Q such that Gk(a) cQcC <5X(b). Specifically, if F is an open-
closed filter of L with b € F Cta , then Q = Ok(F) will do.

Proof.Mimic the proof ofl.10 wilith 6k in place of & and with an open
closed filter in place of an open filter.{]




bls.
1.12./THEOREM. Let L be an algebraic lattice. Then

(1 bis)¥EE every strictly embedded subspace X C Spec L 1s a T, -space with
a basls of quasicompact open sets. In particular, 0(X) is an

algebrale lattice.

[FEEEEE

Proof. The proof of 1.12 (1) adapts with the aid of Lemma 1.10.bis.{]

We now summarize:

1.15,THEOREM, TFor a T,-space X the following statements are equiva-
lent: )
(1) O(X) is a continuous lattice.
(2) [resp. (2')] X allows a stric%eg%%edding into a 1ocally'
quasicompéct [primai] space. |

{3) ‘There is a continuou; distributive lattice L suéhithat X hay
be considered as a subspace of Spec L 1n such a fashion that
X 0{1] is order generating in L.
Furthermore, the followlng statements are egquivalent:
(I} O(X) is an algebraic lattice.
{11) gégg has a basis of quaslcompact open sets,

(III) X 2llows a strict dense embedding into a primal space with
a basis of quasicompact open sets.

(IV) There is-a distributive algebraic lattice L such that X may
be considersd as a‘subspace of Spec L with Irr L~ ({1]CX.
Proof. (3)=>(2'): By 1.12, Spec L is a locally gmasicompact primal EE
space. Thus (3) implies (21) by 1.15 . (21)=>(2) is trivial. (2)=>(1)
follows from 1.9.b and L1.14. (1)=>(3)} : Let L = 0(X). Then gkxaa>Spec :
is a strict embedding by .1.13 and 1.14%. Then é(x) U {1} is order -

Zenerating Zn L by 1.15.

(1) <=>{II) is immediate from the definitions, and in view of 1.15,
Theorem 1.12 bis does (IV)=>(I)}. Next (II)=>{(III): Consider the

mmel L e




strict embedding %:X———> Spec (O(X)) into a primal space by
1.13, Then O(X) =0{Spec(0(X))) by 1.13 1i . Thus Spec O{X) has
a basis of quasicompact open sets since O(Spec O(X)) is algebralc.
(iII) => (IV): (III) =>(2') <=> (3) and since L = O(X) we know
that L is algebraic; then the conclusion Irr L\ {1) C X follows

from "Irreducibility" 2.5.[

1.17 THEOREM . let X be a primal space. Then thex following conditlons

are equivalent:

(1) o(X) is continuous lattice. (2)‘X is locally quasilcompact.

Morecver, 1if these conditions are satisfied, then U << V¥V in ¢{X)
iff there is a quasicompact Bx¢< Q CXXwithUCQCV.
Remark. If X has a basis of gquasicompact sets, then U £V 1ff there

is a quasicompact Q with U cQRCV, as is immediately verified.
Proof. {2) => (1): 1.19.v.

(1} = (2): By L.14.(v) , %:X———> Spec O(X) is a homeomorphism.
By 1.12, Spec O(X) is locally quasicompact.
If UCQ CV for a quasicompact Q; then al;ays U< V {cf.1.9.a}.
Conversely,lgg U << V.We recall that we may identify X with Spec L
for some continuous distributive lattice I as soon as X is primal
and locally quasicompact. In that case, Lemma 1.10 yields the required
Q. “""5“1

1.18. CORCLLARY (Isbell). For a Hausdorff space X the lattlce O{X) is

continuous 1ff X is locally compact.[]

Theorem 1.16 characterizes T,-spaces X for which O(X) 1s compact
provided one understands the concept of strict dense subspaces of
locally quasicompact primal spaces or, alternatively, order geﬁerating

subsets of PRIME L for continusousdistributive lattlces I.

As far as primal spaces are concerned, they are in biljective corre-

spendence with distributive continucus lattices by 1.12 and 1.17.




We malke the Tellowing observation which ties in with the
duality theery presented by Lawson in SCS-memo 1-L4--77.

1.22.PROPOSITION. Let L be a contimous lattice. The function

& H{OF ,N) ——> Q&f,u) , 6(F) = Spec L. \ F from the &% n-
semilattice of open filters of L into the st U —semilattice of
quasicomﬁact saturated sets 1s a surjective semilattlce morphism
and 1s in fact an lsomorphism if I, is distributive.

Remark. (@& ,n) 1s the dual of L in the sense of Lawson (SCS memo
1-brmy,

Proof. It is clear-that ¢ is a semilattice homomorphism, and by
1.21 it is surjective. If L is distributive, whence PRIME L is orde:
generating, and so different open filters have different hulls hence

. different ¢ —images. []

He turn to a purely topological concent.

1.23. DEFINITION . Let X be a topological space and 1 and element
with 1 ¢ X. The patch topology on X U [1} is the topology generatea
by 0(X) ard the collection of all (X \ @) U {1} where

@ 1s a quasicompact szturated subset of X.0
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1,19.NOTATION . lLet X be a topologlcal space. For x,y €@ X we write

x {yiff vy @ [x} . This is a transitive relatlon and a partial order
ifr X is'To . The set ¢Y is called the saturation of Y C X , and

Y is saturated 1ff &Y = Y.0

Note. If L @ CL , then the partial order induced by that of L on Spec L
agrees with the one given on Spec L by 1.19,

The following observations should be clear:

1.20 REMARK . All open sets of a space are saturated. The saturatidn of
a set Y is the intersection of all open sets containing Y; The set Y

is saturated iff Y is an intersection of open sets. The saturation of

a quasicompact set is quasicompact. A space is locally quasicompact

iff every point has arbitrarily small saturated gquasicompact neighborhoo

1.21. LEMMA. Let I, be a continuous lattice, and @ C Spec‘L. Consider the
following conditions:

(1) 9 is closed in L (relative to the CL~topology)-

{(2) Q@ is guasicompact in 3pec L.

(3) Q is gquasicompact saturated in Spec L.

{4) There is an open filter F in L such that ¢ = Spec L \ F.

Then {1)=>(2) <=(3)<=>(&4). If PRIME L is closed and & is saturated in
Spee L , then (1) —(4) are eguimlent.

Proof. (l)=>(2): If @ is closed in L then so is IQ = ¢Q since L 1s a
compact topological éemilattice. Thus @ 1& guasicompact in Spec L by 1.6.
{F)=>12) is +rivial, «(&)=>(3) follows from l.7. Hx&=3 (3)=>(L): By

R s = .4

-t
£ow RIS L)y s

peg , Whence W=

n
™

- v

imtersection of cren sefs 1n 3
Spec L N S where F = {x e L| ¥ N & = #} . Since ¢ ¢ PRIME L, then
¥ is 2 filter. Now let x & F. Then [ &(¥): y<<x} 1is an opsn cover of
Q. Since q is Quasicompact by (3), there is a y << x with 4 n Ty = 3.
Thus for each x € F there 1s a y << x with {ye F, and thus ¥ 1s open.
Finally suppose that ¢ is saturated_(whence (2)<=>{3)) and that PRIME L
is closed. Suppose (2}. Then ¢Q is closed in L by 1.6. Thus § < éQn(PRﬁE
= @ n PRINE L , and the last intersection is { since @ is saturated in

Spec L. f]
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.2
YF&h1EvMA If L is a continuous lattice, then the patch topology on

Spec L U {1} 1is coarser than or equal to the topology of PRIME L

(induced from the CL-topology)}.It is always Hausdorff.

Proof. The "new'"closed sets in the pateh topology are of the form

Q = ¢Q11 Spec L with ¢Q closed in the CL-topology, whence the first
assertion., Now suppose P + g in Spec L U [1l}. Suppose that p ¢ |q.
Then take a point x << q iIn L such thzt p ¢ |x and an open filter
F C4x with q G F. Then 6 (F) = Spec E L \, F is a saturated
guasicompact set xmnxiinxngxp not containing q. Then 6’(x} and

h(F) are disjoint neighborhoods of p,respectively g in the patech

topology.[]

1.24L,E§E§& . The patch topology on Sﬁec LU {1] 4= compéct iff

Bx PRIME L is closed in L.

Proof. Suppose Spec L  U(1} is compacty/¥FIf/#¥% is the patch topology
By 1.2%4this topology agrees with fthat of PRIME L which 1s,therefore,
compact. So PRIME L is closed in L. If PRIME I is closed,then a saturat
set @ C Spec L is hull-kernel quasicompact iff it is e¢lesed in CL by
1.21. The "new" closed sets in the pateh topology are simply the
intersections with PRIME ; of all closed lower sets.But these together
with the intersecfion with PRIME L of all closed upper sets generate

the Imduxedximprimgyz closed sets of ﬁhe.gg-topology on PRIME L.

1.25. THEOREM. Let I be a distributive continucus lattice and

X = 8ped I .[Note that X 1s a locally quasicompact primal space and that
every such space occurs preclsely in this fashion.] Then the

followling statements are equivalent:

({0)) PFor all x,a,b @ L, the relations x << a,b imply x << ab.

£(1) PRIME L is closed in L.
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(2) The collection of saturated quasicompact sets in X is closed
under (finite) intersections.

{3) The pateh topology on X U{l} 1s compact.

Proof, ((0)) = >(1) : SCS mem Hofmann,Wyler.

(1) => (2): By 1.21 a xxﬁ saturated set Q@ C X 1s quasicompact
iff Q is closed in L in the gg-topology. 4 finite collection of CL-
cleosed sets has a CL -closed intersection {and the intersection of
any collection of saturated sets is saturated). o

(2) = > ((0)): ILet x << a,b. Then mf . G6(x) << ¢ (a), &(b)
by 1.12.iii. By 1.17 there are quasicompact saturated subsets P,Q
in Spezx ¥ with 6(x) CP C g{a) and g(x) €Q C ofb). By
(2) PN Q is quasicompact, and 6{(x) C P Q <€ og{a)s o(b) = oiab).
Then x << ab by 1.17 and 1.12 .

(1) <=> (3) : Lemma 1.24.[]

1.26. ZUSATZ. Under the hypotheses of 1.25, the .conditions ((0})-(3)

are alsc egquivalent to the following
(4) For every prime ideal I C L we have sup I & PRIME L.

Proof. See SCS KBimeleMislove 9-30-76 and 5CS m=Em Hofmann - Wyler.[]

1.27. ZUSATY. If L is an arithmetic lattice (i.e. an algebraic lattice
such that K{L) is a sublattice), and if ¥ = Spec L, then the equivalent
conditions ((0)) - (4) in 1.25 and 1.26 are satisfied.

Proof. SCS Hofmann-Wyler.[]

distributive
1.28.C0ROLLARY. ILet V (Verband) be an arbitrary/lattice and L = PV

[ cluction ¢ i Vidas o Ruallest clecortest’)
the lattice of all lattice 1 ealﬁ. Lett X = Spec I = set of all prime
ideals of V with the hull kernel topology. Then conditions ((0))-(%)

in 1.25% and 1.26 are satisfied.
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Proof. We know that L is an algebraic lattice with ¥xe X{L)} = [vV:ivaV}
u [OL}.Hence L i1s arithmetic., BY THE YELLOW BOOK we know that L is
distfibutive iff K(L)} 1s distributive. Hence I is distributive, and
1.27 applies.]

THE
REMARK. In comparing THE RED BOOK with what is done here one should

notice that ¥ THE RED BOOK calls Spec V what we here would have

to call Spec PV. THE RED BOCK uses prime ideals (equivalently,

characters) as basic ingredient,.we use prime elements. The transition

between the tﬂg.is ¥ guaranteed by ﬁhe functor P on which ATLAS says

a lot.. ' a ‘ |
The patch topology mx 1ls extensively uéed inrthe spectral theory of

commutative rings.(Hochster,G%%thendieck.)

1.29. PROPOSITION. (Gierz-Keimel) ZILet L be a distributive continuous

lattlce in which the equivalent conditibns of Theorem 1.25 aresatisfied.

Then L is isomorphic to the lattice of open saturated sets in the

patch topology of SEpx Spec L U {1]. ‘

Proof, By Theorem 1.25 and Lemma 1.23 the pateh topology on Speec L U{1l}
and PRIME L is Ci-closed

is the CL-topology on PRIME I/ Then th& hull-kernel clcsed sets of

PRIME L are preciséiy the CL-closed upper sets of PRIME L,i.e. the

sets O(x) ,x €. and Spezx PRIME L are precisely the patch -open

lower sets. The assertion then follows from 1.4.[
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2. The duality betwsen distributive
continuous lattices and locally guasi-
compact primal spaces

We complement the considerations of Secticn 1 by taking the
morphlisms inte account. The present observatlions are somewhat in
the spirit of the RED BOCOK.

We need some notation whith pinpoints our morphisms.

@.1.DEFINITION. Let CL{a,V) the category of all continuous
lattices and lattice morphisms preserving arbitrary sups. Let
CTop be the catégory of all topological spaces X such that 0{X)
is a continuous lattice and all continuous maps. A

2.2. LOMLA . Let £ L ——> S be in CL(A M), and let g:S—>L
be its left adjoint. Then g(Spec S) C Spec L, and the restriction
and corestrictlion of g defines a continuous function

Spec f: Speec § ———> Spec T.

Proof. Since g preserves infs, g(l) = g(inf @) = inf g{d)

If pe PRINE S, then §\ lp is a filter, so AL L \ f_l(drp)

= f_l(S \ &p) is a filté§%Q%%‘%§P¥ﬁ%%§g%%len%%%§§ g g is a
left adjoint, we have g{p) = max f_l(¢p) (see ATIAS),whence

1s(p) = f;l{¢p). Thus L \ [z(s) is a fllter, whence g(s) is prime.

Thus z(Spec 3) C .Spec L. rurthermore, for mm& x € L we observe
~i
z T{h{xz}) = {p & 3pec 3| a(p) > %] ={p & 3pec S| b > (=)}

= n(f{x)} , singe ¢ isg lert adjoint to f. Thus g is hull-ksrnel

continudus.@%i@ﬁ 0

Recall that a map between topological spaces is proper if the invers
images of quasicompact sets are guasicompact.

We will say.that a map is decent , if the inverse images of

saturated quasicompact sets depequasicompact.
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Z.3. LEELA. If, under the circumstances of Lemma 2.2. the map
f is in addition a g;op—morphism, then Spec(f) : Spec 5§ —-=> S5pec L
is decent.
Proof. Let Q be a satirated quasicompact set in Spec L. Then
Q = Spec L \ F for some open filter ¥ in L by l.21. Then
(Spec £y7MQ) = g-l(Spec L\ F) N Speec S = Spec S \_gul(F).
Since £ = QQOP, then g € CL ard so g"l(F) is an open filter. By 1.7,
we know then that{Spec f)'l(Q) is quasicompact.[]

2.4, LEMMA If f: X—=>Y is in CTop , then Q) :0(Y)——=> O{X)
given by 0(f) (V) = £ 1(V) is in CL( A,V ).

Proof. Clear.

2.5. LEMGA. If in addition to the hypotheses of 2.4, the spaces
X and Y are primal and f iz decent, then O(f) is 1n QLOP.

Proof. Let U << V in O(¥}. Then thers is a saturated quasicompact
set @ with Uc @ € V (1.17 and 1.20). Then o(f) (U) c f‘l(Q) cO(f) (V) -
and f‘l(Q) is quasicompact since f is decent. Then off){U)<< O(f)(V)l
by 1.17.3F

 We now add to the umpteen adjunctlon theorems in the RED BOOK

another one:

2.6, PROPOSITION , The asslignments .Spec : CL(A ,\/) —> CTop
and 'Q: CTop ———> CL( A ,V ) are contravariant functors which are
adjoint on the right (i.e. Spec: CL{4 W) —=> ¢Top®P 1s left
2djdint to J: ZTop —> CL{ & , V)). The adjunctions are

- . . . 3

T L > O(3psc 1) and £.: X > Zpzc J(4h). The
- Fis =

{12

ad junction 6i is‘an isomoréhism iff L ig disiributive.and The
adjunction EX is @ homeomorphism iff ¥ is primal locally guasicompac-
The functor O o Spec : CL( A ,\/) ——> CGL{ A ,\/) igs an(Xed epi-
reflector onto the full subcategory of distributive continuous
lattices, and the functor Spec o J: LTop —> CTop 1s an eﬁi—
reflector é@nto the full subcategory of primal locally guasi-

compact Sspaces.
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contravariant
Proof. Spec and J clearly are/functors. The adjunction follows

from THE FIrTH ADJUNCTION THEORFM 4.3 of the RED BOCK (p.39)

and may also be verified directly. The assertions on the ETEETT
ad junctions come from 1.4 and e 1.13 in conjunction with l.17.
The remainder is standard general nonsense.[]

2.7. THEQREW. The cztegorm CLyigr(a s V) of distrivutive
continuous lattices with lattice homomor phisms preserving arbitrary
sups and the category LQcP of looaliy guasicompact primal spaces
and continuous maps are dual under Spec and 0. FEZ Under this

£ Lhasst(a o V) nocr®P

duality, the subcategorgem
corresponds to the subcategory LQCPi eo of locally quasicompact

primal spaces and decent continuous maps.

: is contalned in
This Theorem @Eﬁﬁﬁﬂ?tfl-f/the FIRST DUALITY THEOREW &4.17 on p.48

of the RFD BOOK. It &dds ancther case +o the SECIND DUALITY

THFORFIW 5.4 on p.50 of the RED BOOK » and this case generalizes

the duality between C. = Z and the oa‘tegory‘K2 ( = full subcategor;

2
of L{CP of spaces having a basis of quasicompact open sets).

See also Propesition 1.4 on p.75 of the 4 YELLOW BOOK.




