## SEMINAR ON CONTINUITY IN SEMILATTICES (SCS)

NAME(S) K.H.Hofmann and Jimmie D. Lawson

DATE M D Y

3 14 77

TOPIC Complement to "The spectral theory of distributive continuous lattices

REFERENCE

Hofmann-Lawson

SCS 2-8-77

Let us call a space X with  $O(X) \in \underline{CL}$  a  $\underline{CL}$ —space; this is a preliminary namenclature until agreement can be reached as to what these spaces ought to be called. So far we have :  $\Lambda$ . S. Ward: Quasi locally compact spaces; J. Isbell: Semilocally bounded spaces.

In essence, our two memos (op.cit and this one) are concerned with a characterisation of CL-paces. We recall a general fact (loc. cit (l.13):

FACT I: For every  $T_o$  space X there is a unique universal "primallisation" X:X-->X, where X is a primal(loc.cit.l.ll) space and X:X is a dense embedding inducing an isomorphism  $O(X)\cong O(X)$ 

"Universal" means that every map X--->Y into a primal space factors uniquely through  $\xi_X$ ; we did not emphasize this fact in SCS 2-8-77. Recall that X = Spec O(X).

We have the following result on Ci- spaces:

FACT II (op cit 1.16) For a  $T_0$  space X the following statements are equivalent:

- (1) X is a CL- space. (2) X is locally quasicompact.
- (3) X is my be identified with a subset of Spec L for a continuous distributive <u>CL</u>-object L so that XU{1} is order generating.

remained open:
The following question (& first occurrence known to us: A.S. Ward,
Proceedings of the Herceg Novi Topology conference in 1968): Is
each CL-space necessarily locally quasicompact?

West Germany:

TH Darmstadt (Gierz, Keimel)
U. Tübingen (Mislove, Visit.)

MIT (Isbell) 'Carnegie Wellon

England:

U. Oxford (Scott)

(Wyler) Queen's U.(Giles).

USA:

U. California, Riverside (Stralka)

LSU Baton Rouge (Lawson)-

Tulane U., New Orleans (Hofmann, Mislove)
U. Tennessee, Knoxville (Carruth, Crawley)

The answer is no as we now proceed to communicate. There is in fact a second countable CL-space in which every quasicompact subspace has empty interior. The lattice of its open ideals is the following: For Scott : [I-->I]; for Isbell  $\mathcal{F}_{\alpha_{\mathcal{O}}}(I,I)$ ; for Hofmann LC(I,I). This example will show that the classification theorem FACT 2 is pretty much the best possible.

Let now L = LC(I,I), I = [0,1], LC denotes the classically lower semicontinuous functions. For any  $(a,b) \in I \times [0,1]$  let  $p_{(a,b)} \in L$  be the lower semicontinuous function given by  $p_{(a,b)}(a)$ =b and = 1 otherwise. We note that L is distributive and that Spec L (loc.cit.1.2) =  $\{p_{(a,b)}: (a,b) \in I \times [0,1[\}] \}$  If we equip  $Y = [0,1] \times [0,1[$  with the topology consisting of all  $\{(x,y) \mid y < f(x)\}$ ,  $f \in LC(I,I)$ , then  $(a,b) \vdash --> p_{(a,b)}:Y---> Sepc L$ is a homeomorphism. Notice that Y is second countable.

We define  $X \subseteq Y$  as follows. The axiom of choice enables us to fixe a subset  $A \subseteq I$  with the following properties: (1) A is dense in I. (2) I/A is dense in I. (2) A is not Borel. U+PA. (We could have gotten A not Lebesgue measurable in I). We say  $(x,y) \in X$  iff y is rational for  $x \in A$  and irrational for  $x \in I \setminus A$ . If X' is the image of X in Spec L , then X'  $\cup \{1\}$  clearly order generates all of Spec'L and thus all of L. Hence X is a CL-space by FACT 2.

In order to show that each quasicompact subset of X has empty interior it suffices to show that every saturated quasicompact subset (loc.cit.1,19-1.20) has empty interior. Thus let Q be a saturated quasicompact subset of X. Saturation means that  $(a,b) \in Q$  implies {a}  $x[0,b] \subseteq Q$ . Since  $A \times \{0\}$  is a quasicompact subset (without interior) it is no loss of generality to assume that A x {0} = w

## from here on cut.

Lemma A.  $q(x) = \max \{y \mid (x,y) \in Q\}$  exists for all  $x \in A$  pr. Q. Proof. The collection  $Q \cap (\{x\} \times [\texttt{interp} \ s - \frac{1}{n}, s]), n=1,2,...,$  where  $s = \sup \{y \mid (x,y) \in Q\}$  is a filterbasis of closed subsets of the quasicompact space Q and thus has a non-empty intersection in Q. But the only point in this intersection is (x,s).

Define q:I-->I by q(x)=0 for  $x\notin pr_1Q$ , and asin Lemma A,otherwise. Lemma B. q:I-->I is upper semicontinuous.

limit Proof. Let  $x=\lim_n x_n$  in I and suppose that (x,y) is a \*\*INSTEM\* point of  $(x_n,q(x_n))$  in the standard topology of I x R. The topology of Q is coarser than the standard topology. Hence  $(x,y)=\lim_n (x,q(x_n))$  in Q. By the definition of the topology on Y, we the relation (Q in Q in Q in Q in the standard topology implies that for any cluster point (x,z) (in Y) of the sequence  $(x_n,q(x_n))$  we have Q in Q is a By the quasicompactness of Q, at least one of these cluster points is in Q. Thus Q is a Borel function, then Q is a Borel function.

Lemma C. If b:I——>I is a Borel function, then  $b^{-1}(\vec{Q})$  is a Borel subset of I ,where  $\vec{Q}$  denotes the/rationals. Clear, since  $\vec{Q}$  is Borel.  $\vec{\Pi}$ 

Now q is a Borel function since it is upper semicontinuous by  $\mathcal{B}$  above Lemma  $\mathfrak{B}$ .  $\operatorname{pr}_1$  Q  $\cap$  A is a Borel subset of A.

Proof. By the definition of A and X we have  $\operatorname{pr}_1 \mathbb{Q} \cap A = \operatorname{q}^{-1}(\mathbb{Q}^+) \cdot \mathbb{D}$  If  $\mathbb{Q}$  had a non-empty interior, then  $\operatorname{pr}_1 \mathbb{Q} \cap A$  would contain a non-empty open subset U, whence A  $\cap$  U would be a Borel set contrary to the selection of A.

QED.

## Flash:

Al Stralka has a characterisation of all <u>CL</u>-objects which are quotients of products of chains (at least ofthose which are first countable at the identity).