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Fog-a complete lattié;iQ(L) will denote the Scott fopology.
The property " 0O(L) < g&f is an apparently important lattice theoretical
préperty for which we don't have a name vet. By Theorgm i.6 below it
means that L with its Scott.éopology is a loca11§?§§;;act (sovber) space-
(in view of -what was‘doﬁe in 2-8-77). Theorem 1.6 also says that O{L) will
always satiéfy?condition ({0)) and thus have a CL-closed,hence compact T,
spectrum Spee O(L) which,moreover, is order anti-isomorphic to L itself.
This will he utilized in order to show that for meet continuous complete
lattices L we have L © ¢S iff O(L) € CL, and L & CL iff both O(L) € CL

and 8% O(L) has enough coprimes.



W .
L2 are continuous for all (x',y') € X x ¥,

1. Some facts in general topclogy

1.1 PROPOSITION. et X and Y be (TO) spaces and T a topology
on X xY suchf that .

(X'JY):_

pri: X Xp ¥ —> X and Sig1? T—> X xp ¥, slx(y)

(x) = (x,¥)

M

pre: X XT ¥ _ Y and Sgyt’ X — X XT Y , s2y

if 0(Y) is a continuous lattice (i.e. Y is a CL-space [quasi locally
compact]) then T is the product topology.
Proof. 1) For each f < Top(X, m# 0(Y)) ,where O(Y) carries

the Scott topology, we define a function wuff3 a(f): X xY _ 2

by
for y & f(x)
We claim that a{f) is continuous.

f9r ¥ ¢ f(x) relative %o the product topology.
Suppose now that a(f)(x,y) € 1. Since O(Y¥) € CL, there is a V € 0(Y)

o

a(f) = (

w . )
with v & V € << f(x). Since now f(x) & 'V g€ , and since f is
continuous and ?% open in O(Y), there is an open neighborhood U of x
A
such that f£(U) ST V. If we now take (u,v) €U x V , then v €V C £(u

whence a(f)(u,v) € = 1. Thus

(1) a(f): X x ¥ ——> 2 1is continuous when X x Y has the
product topology, i.e. a(f) € Top(X x ¥ ,2).
Thus a: Top(X,0(Y))—> Top(X x Y,2) is a well-definad

function.
ii) Let us take F € Top(Xm xTY,e) ; define Db(F):X-> ¥
by b(F)(x)(y) = F(x,y}. Now F(x,y) = {F o Slx) v}. Since 514
is continuous, b(F)(x) € Top(¥,2). Since the function xF—>b(F)(x)(y)
equals F O Say and Soy is continuous, b(F): X——> Top(¥,2) is

continuous if we consider on Top(Y,2) the topology of pointwise

convergence (2 having the Scoit topology). Thus




 (2) b(F) € Top(X,Top(Y,2) and

> Top(X,Top(Y,2)) is a well-

b: Top(X X Y,2)
defined function.

angd
iii) Since pry m pr, are continuous, the identity X xTY—> XxVY
is continuous. Thus Top(X x ¥, 2) is a subset of Top(X XTT,E).

The funetion f|j—> f'l(l): Top(Y,2) —> O(Y) is a homeomorphism

(relative to the Scott topologies), inducing and isomorphism
Top(X, Top(Y,2)) ——> Top(X,0(Y)). One verifies straightforwardly

that the following diagram commutes

-

Top(X x Y,2) = > Top(X %, ¥ ,2)
b
id
‘r
at Top(X,Top(Y,2))
P
'\P
Top{X x Y,Z)Q < » Top(X,0(Y))

al(f)(x,y) = £(x)(v¥).

This shows that Top(X x Y)2) = Top(X %, ¥,2) , i.e.

o{X x ¥) = O(X X Y) = T;D

1.2.COROLLARY¥. The product of {wo CL = -spaces 1s a CL-space.
Proof. We proved in 1.1 that O(X x Y) = Top(X,0(Y)) if 0O(Y)< CL.
By Isbell's Theorem on function spaces ,0(X) & CL dimplies that

Top(X,0(Y)) g:@i CL if O(L) € CL. [}




1.3 COROLLARY. If K,L are complete lattices and O(L) & CL

w

(i.e. L is a CL-space in the Scott topology) then the Scott

topology on L x K 1is the product of the Scott topologies.

Proof. Apply the proposition 1.1 with f£kz T being the Scott topolegy

on K x L ; the hypotheses of 1.1 are fulfilled.f]

>

1.4.COROLLARY. If L is a complete lattice with O(L) € CL , then
v :-L X L——> L is jointly continuous,
Proof. The binary sup operation clearly preserves arbitrary sups,

hence is Scott continuous.The assertion then follows from 1.3.[]

. (MISLOVE) : ,
1.5.80R0EEARYx LEMMAY ILet L be a complete lattice such that

v ¢: LX L —>01L 18 continuous. Then

(1) For two quasicompact Scott saturated sets Q, and Q, the

intersection an Q2 is gquasicompact .

(2) U« O(L) is prime iff U =L or U = L\ 4x for

- x =max L\ U).

Proof. (1) Saturation relative to the Scott topology means belng
upwards clesed.Then er\QE = le Qe; thus the assertion follows
fro, the continuity of v .

(2) Clearly all L\\¢i_are prime. Now suppose that U+ L is
prime.We must show that x = max (L~TU) exists.Since L \.U is Scott
closed this is the case if L U is a lattice ideal,l.e. is up-directed
If that were not the case, then we would find a,b § U witha v b & U.
By the cdntinuity of v we then had open neighborhoods A and B of a,b
respectively such that An B =Av B C U, and since a & LA, & B

would
and thus A,B & U, this/contradicts the primeness of U [




We have proved the Tfollowing Theorem
p _

11.6. THEOREM. ILet L be a complete lattice such that O(L) is

a continuous lattice. Then Spec O(L) is closed in O(L) is the

CL ~topology (hence i1s compact Hausdorff in this topology) and

the function x|——> L \\Jx: L ———> Spec O(L) i1s an order-
anti-iscmorphism.

Proof. The first assertion follows from Mislovet Iemma 1.5,part 1,
{(which applies because of 1.4) and = from Theorem 1.25 of

Hofmann-and Lawson SCS 248—77.

. The fact that the function L > Spee O(L) given

1g well defined and bijective
by X}-~> L \_ix /again follows from Mislove's Lemma (part (2))

in view of 1.4, IiximxExidemtdyxkizjezsivex

Remark. Under the hypotheses of 1.6 we have induced a compact

Hausdorff topclogy on L xkikz which has a closed graph.

Warning: One should not mix up the map in Theorem 1.6 with the
lattice isomorphism x}—~——§ BN fx: L —— Spemmédss O(Spec L)
introduced and discussed for conﬁinuous L in SC8-2-8-77 ,see loc.cit

1.k,
Proposition 1.1 appears to be similar 17 ﬁot equivalent to
theorem 2.10 in Isbell's "Meet continuous lattices” and some of the

developments in his "Function spaces and adjoints".

We would like to see examples satisfying the hypotheses of 1.6

such that Spec 0(L) is not sup-closed in O(L).



U

The following proposition gilves additional information on the

links between L and O(L).

1.7.PROPOSITION. Let L be a zxmrzzkz complete lattice. Then
the following statements are equivalent:

(1) L is meet continuous.

(2} o0o(L) 4is Join continuous.
(3j o(L) is join Brouwerien.
(

4) The lattice E(L) of Scott closed sets is mmz meet continuous.

Proof. Since O(L) is distributive and complete (2)<=>(3), and (2)<=>(
is clear. (4)}=>(1): The function XF——>¢X: L~——>‘C(L) is an embedding
preserving infs and up directed sups. (1)=>(4%)}: We observe that

for any pair of lower sets ﬁxExixxx&xkxxxxmiﬁkxka@@mmmmm A and B
with A CB we have A = AB CAB (since inf is a Scott continuous
operation in meet continuous lattices) % (A(!B);. If we now

have zxxup any family =f 'Bj of closed lower sets , then B = Uij

is a lower set, and if "A=KE is a closed lower set with A C B,

then we have from the preceding femark AC (&~ B) =

(& a UyB;)7 = (Us(8n Bs))T = supy (A n By), which shows in fact

J
that 2£%£%3 C(L) is (meet) Brouwerien. []




2. More on the spectrum of distributive continuous lattices.

2.1.PROPOSITION. Iet L be a complete lattice.Then the following
statements are equivalent:
(1) Speec I is closed under arbltrary sups and down directed
infs. |

(2) Spec L is closed under arbitrary sups.

(3) The inclusion map i: Spec L - > L has a left adjoint

s L—> Spec L, @(x) = supg... 1 {}xnSpec L).

(4) For each x € L there is a unique 1argesf prime p + 1 such

that p < x.
further £Rkzk in case every element is inf of primes
Remark. Note that 82) implies that O = sup § & Spec L.Note/that (4)

implies that L \{1} has a maximum,l.e. that 1 is "attached”.
Proof. Since down directed infs of primes are primes, (1) <=> (2).
(2) <=>(3) is a consequence of the theory of Galois connecticns,
see e.g. ATLAS 1.7-1.8.

Clearly (3)=>(4%) with p =7(x). Conversely, (%) shows that

max (ix N Spec Lj"exists yielding the desired left adjoint

Spec L
for the inclusion map.[]

One could call the function w the prime picker . When followed by

the inclusion, the prime pickeris a kernel operator on L with image

Spec L.

2.2. LEMMA. (LAWSON). Iet L € CL. TheaxshsxfwiImxing If L is join
Brouwerien , then L is a topological lattice [relahioe Yo foo &gﬂﬂoh @“1@%)
Preocof. Suppose X = 1im xj and y = lim NIV Then

sup inf X4V ¥y = Sup (inf xj) v{ inf yk)
Jk (5k)2(5tkt) - itk 5>t K>k !

-



[since L is join Brouwerien] = (sup inf xj) v(sup inf Yk)
SRS L Kt KDK!

=({1im xj) v(1lim yk) [ since L € CL] =x v ¥.

Since this argument applies to every subnet of Xj sTESP. ¥y

we have shown X vy =lim 'xj v ¥y, since we operate in a Ck-

object.

5.3.IEMMA (LAWSON). ILet L be a compact semilattice. For a subset

X let I(X) = {y] ¥y = inf X' for some X'C X} and p(x) = {y¥|

¥ = sup %lfor some up-directed X g_X}; Then DIDI(X) is the smallest
closed subsemilattice containing X.

For a proof one has to sharpen the argument given by Lawscn in

"Tntrinsic Topologies... " for thelplus-plus business in Theorem 13

and Corollary 14. -

join Brouwerien
2.4, PROPOSITION. Iet L be a continucus/lattice satisfying the

equlvalent éonditions of 2.1. Then in the induced Lawson topology,
Spec L is a compact topglogical sup-semllattice.

Proof. By 21 .1 , Spec L is closed under arbitrary sups and down-
directed infs. By 2.2, L is a compact topological sup-semilattice

and s0 by 2.3 , Spec L is a closed subsemilattice of the sup—semilaftic

L.[

2.5. NOTATICN. Under the hypotheses of 2.4. we denote the compact
topological sup-semilattice on Spac L with the compact HelUgsdorff

topology induced by the Lawson topology SpecOp L.




P
2.6. REMARK. et L,L' be lattices g: L—>L!' left adjoint to

B:I—>L'., ¥ Consider

F
(1) m preserves primes.

(2) g is a lattice morphism.
Then (2) =>§1) , and if every element is an inf of primes in L,
then both conditions are equivalent.
. Proof. let a,b € L' and p € Sp& PRIME L. Then F(p) > ab
is equivalent to p > R(ab}.
if (2) then p > R{ab) = R(a)R(b) implies p > R(a) or p > R(b),
and thus F(p) > a or F(b) > b. Thus F(b) is prime,i.e. ()
If (%) , then F(p) is a prime and F(p) > ab implies F(p) > a or
F(p) > o i.e. p < TR(a)UTR(b), and since p is prime this is
equivalent to p <€ TR(a)R(b). Thus 'pG‘TR(ab) and pgﬁﬂ(a)R(b)
are equivalent properties, and if every_element in L 1§ the

inf of primes, R(ab) = R{a)R(b) folllows.[]

2.7.DEFINITION. Let H be the category whose objects are
complete lattices L saﬁisfying the fcllOwing conditions:

(i) Lecy . (ii) L is joln Brouwerien (i.e. distributive and
join continuous).

(i11) L satisfies the equivalent conditions of 2.1.

The morphisms of H are functions f:L——>L! satisfying the followilng

conditions:

(1) £<¢cL . (xx 2) f is a lattice morphisg.

(3) f preserves primes.

By Lemma 2.6, condition (3) is equivalent to the following

(3t) The right adjoint r:L'—->L is a lattice

morpnism,




and by ATLAS (1) can be rephrased as follows:

(1') £ has a right adjoint r which respects the «£ relation.

2.8.PROPOSITION. There is a well defined functor SpecOp:ﬂ——€> Cs

which associates with an H-morphism f:I—>L' the restriction and
corestriction f|Spee L: Spec™® L — Spec®®P Lt

Proof: Clear.

2.9. EROPRSITILXx NOTATION. If L is a complete lattice then
o(L) and O(L) will both denote the lattice of Scott opne sets , and

if f:L

SLT 1s a Scott continuous function, then o(f):0(L1)=>0(L)
is given by O(f){(U) = f'l(U) , and 6(f):6(L)————>6(L') is its
left adjoint.]] '

N f

2.10 IEMMA. Let X S = g§ . Then 0{S) € E , and UKV in 0(S) iff Ocv.
proof. If S € CS , then S 1s meet continuous, and so O(S) is

join Brouwerien by 1.7. ‘ Since S is compaﬁt Hausdorff, the lattice

of all open sets of S is continubus, and O(S) is a complete sublattice
thereof,. hence is gontinuous,'and U << V is tantamount to UV

in 0(S) since this equivalence holds in the lattice of all open

sets of S. Now Theorem 1.6 applies and shows that condition 2.1.1

is satisfied by O(L).




2.11.1ZMMA. Tet £: S —>S! be in CS. Then O(f) is a

lattice morphism respecting the relation << , and its x left adjoint
0(£) is given by O(£)(U) = '\ $f(8\\U)-and preserves finite sups.
Proof. Clearly O(f) is always a lattice morphism pfeserving arbitrary
sups.If U <<V in 0(S') , then T CV by 2.10 and so O(f)(U) = f'l(U)"
C f”l(ﬁ) - f—l(V) = O(f)(V), thus O(f) respects the < relation.

In order to identify the left adjoint of O(f) we take an arrbitrary
v « o(s') Vand U & 0(S) and note that O(£){V) = f'l(v) CU iff
£7HV) o (SNTU) =B iff V. £(S\U) = J§ 1ff Vo JF(S\U) =@ ( since
V is an upper set} iff Vv C St \\éf(sx\ U)X-gggs indeed Sxf)(u)=
S“\:Jf(S‘\U). If A,B are closed semilattice ideals, then Jf(AB)
=SF(AB) = SF(A)f(B) = S£(A)Sf(B) = |£(a)[£(B), and thus B(£) will

preserve Tinite sups.[]
Now 2,10 and 2.11 yield

2.12.PROPOSITION. There is a well-defined functor
pEEf®  0:08 —>H  with B(£)(U) = '\ [£(s\ V) for £i5—>8'

in cS.0

2.13. IEMMA. If S &¢C¢S and L &H , then we have two

isomorphisms x|——> 8\ [x: 8 —> spec® 0o(s) in ¢S

and xpb—-> sSpec®® L\ Tx : L——= 0(Spec®? L).in H.

Procf. The first assertion follows from & Theorem 1.6, and the
second from Hofmann-Lawson SCS 2-8-77 ,14 and Xezms the followling
Lemma |

2.14.LEMMA. For L € H , the hull kernel topology on Spec L is the

Scott topology of Spec °P .,




Proof 5723 The hull kernel open sets (Spec I_)\ tx are

clearly Scott open.Now let U be Scott open in SpecOp L. Then

U is an mE open upper set in Specop I g and A =(§pec L)\ U is

a closed lower set in SpecOp L.Thus A is compact in the CL -topology

of L. Let x = inf A. We claim that A = fxnSpec h: Iet p € fx A Spec 1
Se x A‘Sf\ccA 5A|

then THE LEMMA implies p € fA~ Spec L = A.,The other inclusion is

trivial. Now U =(Spec L)\ Tx and thus U is a hull-kernel open set.[]

We are now ready for the prineipal theorem.

2.15 .MAIN THECOREM. The categories CS and H are equivalent
under the pair of inverse functors

SpecOp: H——>C3 and O: g§!————>§.

The proof follows from the previgows discussion. It certainly

serves a useful purpcse to isolated what this meams for the objects:

2,16.THEOREM. Iet L be a complete lattice and £ - c{L) . Then

(I) L is meet continuous iff Sf is Join Brouwerien,and
(II) L carries a(unique )compact Hausdorff topology making it into

a compact topological semilattice iff éﬁ is join Brouwerien and

continuous.




12,
3 . Characterisation of continuous lattices through O{L).

3.1. PROPOSITION. Let X be a topological space and write ﬁ LV
inX iff x €U implieé ¥y €Y for all U € 0(X) (i.e. ifx & {y]}7).
Then U € O(X) is coprime (i.e. Jjoin irreducible) iff U is down
directed relative to < .

Proof. If U is not down directed, then for some u,v & U one has
o Jv nU=4g1.e. {(Up Ju) U(¥ A Jv) BEii = U ; thus U is not
Join irredUciblé. If U is not join irreduclble, then there are two

proper open subsets V and Wof U with U=V U W, We pick v &VN W

and w € W\ V and notice ngﬁ W o= (vl W
w}'n Vv =g so (Ux]v) U (U« éw)

*v A éw nU =@ and U is not down directed.

B and

Jwn v U ,i.e.

We say that a lattice has enough coprimes 1ff every element is a

sup of coprimes.
3.2.COROLLARY. Let L be a complete lattice and O(L) the Scott

topology. Then O(L) has enough coprimes iff the Scott topology has

a basis of open filfers.

3.3. ILEMMA (MISLOVE). Iet L be a complete lattice. Then we have
(1}=>(2)=>(3) , where

(1) 2%E3 O(L) has enough copfimes.

(2)

2 N Uu: xcuveo(n) =Tk
(3} I is meet continuous.
Remarlk.

We will see that (3) does not imply (1). We do not know whether

(1) and (2) are equivalent. |

Proof. (1) means that O(L) has a basis of open filters by 3.2. Since
L \.$X < O(L) for all x € L we have (1)=>(2). We now assume that

E(SFitin @ Ol st A CEONIRLLAL frorm,
(3) faila ssf=srmw—=et (2): If not (2) then there must be an up-direct:




there would be an open filter W and a v € V with ¢ € W $ v ; since
q is a cluster point of V, then V 1is cofinally in W which cannot be
the case if v & W for some v € V. Thus q < inf W V , whence inf V&|g
ClQ € U. We now have shown that ¥y ¢ | sup( inf V: V an open filter

with x € ¥V} and this is certainly < sup gx . Thus x = sup g x.0

' 52;, COROLLARY. TFor any compazklete lattice L, the following conditions

are equivalent: _
(@ I) L is algebraic

(TI) (1) O(L) nas enough coprimes
(i1) O(L) is algebraic.
Proof. We observe the following easily proved facts:

Pact 1: If a union Ulu"'UUn of open filters 1is guasicompact and U1

is not contained in the union UEU -»+.UU,, then U, = Tkl for some
k& K(L).
If U has no minimal
_ Prggf.U=U1\\(U2U...UUn) is down directed and quasicompact. Xixix
:lement, then it is) '
covered by the sets L\lu, u € U. Hence U C L\ Ju for some u= U,

which is patently false.Thus U C Tklwith ky= min U. Then U; = Tkl

since U; is a filter. Clearly k; © K(L).

Fact 2. If p ky,...,k, € K(L) and U < O(L) is maixmal w.r.t.

17
not containing Tk1U...UTkn, then U = L‘\?km for some m € {1,....,n&@ }.
The proof of (I)=>(II) is clear. Conversely, if (IT) holds, then
by (i) and Fact 1 , every quasicompact open set is of the form
fklu...ufkn with k_ € K(L). Then by Fact 2 , the complete irreducibles
of O(L) are precisely the LN\ [k with k € K(L). Since Irr 0(L) is order
generating, every L\ |x is an in%gggégﬁ\ik, whence X = sup(&x*\K(LH.D



Let us summarize the results of 1.6,2.16 and 3.4 in the following

statement:

3.6.THECREM, Let L be a complete lattice such that O(L) 1s a continuou
lattice. Then
(o) Spec O(L) is closed and #nkx order anti-isomorphic to L.

(B) L<cs iff O(L) is Join continuous.
- O({L
(c) LecL iff ﬁémémmmm@mmn has enough coprimes.

ofL
Note that this shows that meet continuity is weaker than

the existence of enough coprimes in O(L) (see 3.3.).




