NAMES: Oswald Wyler

DATE:

April 18, 1977

TOPIC:

Dedekind complete posets and Scott topologies

REFERENCES:

- [1] Gierz, Hofmann et al., On complete lattices L for which O(L) is continuous. SCS memo, 4/8/77.
- [2] B.J. Day and G.M. Kelly, On topological quotient maps. Proc. Camb. Phil. Soc. 67 (1970), 553 558.

England: D. Scott (Oxford U.)

West Germany: G. Gierz, K. Keimel (TH Darmstadt)

Canada: R. Giles, H. Kummer (Queen's U.)

USA: A. Stralka (U of Cal. at Riverside)

J.D. Lawson (LSU)

K.H. Hofmann, M. Mislove (Tulane U.)

- J. Isbell (MIT)
- O. Wyler (Carnegie-Mellon U.)
 - H. Carruth (U. of Tennessee, Knoxville)

/ Bei Gievz-Hofman stelet Z= Lieupnister - Rome 2

For T_0 spaces X, Y, Z, Proposition 1.1 of [1] says in effect: if a map $f: X \times Y \longrightarrow Z$ is separately continuous and Y quasilocally compact, then f is jointly continuous. This is well known to be false if X = Y = Z = [0,1], the unit interval. Prop. 1.1 was used in [1] to prove Corollaries 1.2 and 1.3. Both corollaries are valid. Corollary 1.2 says that if the functors $- \times Y_1$ and $- \times Y_2$ on T_0 spaces have right adjoints, then their composite (up to natural equivalence) $- \times (Y_1 \times Y_2)$ has a right adjoint. This is of course true. Corollary 1.3 in [1] is important for [1] and probably also otherwise; thus a rescue effort is in order. This effort led to a study of the basic properties of Scott topologies which I present here.

It seemed reasonable to study Scott topologies in the maximal feasible generality; this led to the consideration of a category of upper Dedekind complete posets, with maps preserving suprema of updirected sets as morphisms. We denote this category

by \underline{D} . Scott topologies define a full and faithful functor from \underline{D} to \underline{T} spaces. We denote this functor, with an appropriate codomain restriction, by S.

As pointed out by the Grothendieck school in SGA 4-1 (Lecture Notes in Math. 269), and used by D. Scott in LNM 274 for the creation of Scott topologies, every T_0 space X has an induced poset structure, with $x \le y$ in X iff, equivalently, every open neighborhood of x in X is also a neighborhood of y, or $x \in \overline{\{y\}}$, the closure of $\{y\}$. We shall call X a d-space if X with this order is upper Dedekind complete, and the topology of X is coarser than the induced Scott topology.

Every sober space turns out to be a d-space. Not every d-space is sober, for every $\mathbf{T_1}$ space is a d-space. If X is a $\mathbf{T_1}$ space, then the induced order on X is discrete, hence Dedekind complete, with the discrete topology as Scott topology. d-spaces define an epireflective full subcategory of $\mathbf{T_0}$ spaces; we skip the proof of this result as irrelevant for our present purpose. Warning: reflections for d-spaces are not surjective; they are strict embeddings.

We do not know whether an object of \underline{D} with the Scott topology is always a sober space. It is always a d-space; the order induced by the Scott topology is the given order. Aus der Not eine Tugend machend, we substitute d-spaces for sober spaces in the present study. The category \underline{D} is cartesian closed; it is also embedded into d-spaces as a full coreflective subcategory. Combining the last two statements, we re-establish Cor. 1.3 of [1].

1. Dedekind complete posets

- <u>l.l.</u> We call a poset S (upper) <u>Dedekind complete</u> if every updirected subset of S has a supremum in S. A morphism of Dedekind complete posets S, T is a mapping $f: S \longrightarrow T$ which preserves order, and suprema of updirected subsets. With composition of mappings as composition of morphisms, Dedekind complete posets and their morphisms form a category which we denote by \underline{D} . By a mathematician's habitual lazyness, an object of \underline{D} will be called a d-set in this memo.
- 1.2. A sup semilattice S is a d-set iff S is complete, but there are many d-sets which are not complete lattices. In fact, every discrete poset is a d-set; the only updirected subsets of a discrete poset are singletons. This includes the

empty poset: an updirected subset, having upper bounds of all finite subsets, cannot be empty. One verifies easily that discrete posets are free d-sets; they define a left adjoint of the forgetful functor from \underline{D} to sets.

The category \underline{D} has products (and in fact limits of all small diagrams), and the forgetful functor from \underline{D} to posets preserves these products. Thus the product poset of a family of d-sets is the product of this family in \underline{D} .

1.3. THEOREM. The category D is cartesian closed.

<u>Proof.</u> We denote by D[S,T], for d-sets S and T, the set of all morphism $f:S\longrightarrow T$ in \underline{D} , ordered point-wise. If $F\subset D[S,T]$ is updirected, then every set F(x) of points f(x) of T, with $f\in F$, is updirected, for $x\in X$. We put $(\sup F)(x)=\sup F(x)$; this clearly is the desired supremum of F if it is a morphism of \underline{D} . For $\varphi\subset S$ updirected, we have

$$(\sup F)(\sup \phi) = \sup_{f \in F} f(\sup \phi) = \sup_{f \in F} \sup_{x \in \phi} f(x)$$

= $\sup_{x \in \phi} \sup_{f \in F} f(x) = \sup_{x \in \phi} \sup_{x \in \phi} f(x)$.

Thus D[S,T] is indeed a d-set, with pointwise suprema.

Now let $f^*: R \longrightarrow D[S,T]$ correspond to $f: R \times S \longrightarrow T$ by $f^*(x)(y) = f(x,y)$, for d-sets R, S, T and $(x,y) \in R \times S$. If $f \in \underline{D}$ and $\psi \subset T$ is updirected, then $\{x\} \times \psi$ is updirected in $R \times S$ for $x \in R$, with supremum $(x, \sup \psi)$, and $f^*(x)(\sup \psi) = f(x, \sup \psi) = \sup f(x,\psi) = \sup f^*(x)(\psi)$. Thus each $f^*(x)$ is in \underline{D} . A similar computation shows that f^* preserves suprema of updirected sets.

Conversely, let $f^*: \mathbb{R} \longrightarrow \mathbb{D}[S,T]$ in \underline{D} , and let Φ be updirected in $\mathbb{R} \times S$, with projections $\phi \subset \mathbb{R}$ and $\psi \subset S$. Then $f: \mathbb{R} \times S \longrightarrow T$ clearly preserves order, and $\sup f(\Phi) \leq f(\sup \phi, \sup \psi) = f(\sup \Phi)$ follows. We have

$$f(\sup \varphi) = f(\sup \varphi, \sup \psi) = f^*(\sup \varphi)(\sup \psi)$$

$$= (\sup_{x \in \varphi} f^*(x))(\sup \psi) = \sup_{y \in \psi} \sup_{x \in \varphi} f^*(x)(y) .$$

If $x \in \varphi$ and $y \in \psi$, then $(x,y') \in \varphi$ and $(x',y) \in \varphi$, for suitable $x' \in \mathbb{R}$ and $y' \in S$. These points have a common upper bound (x'',y'') in φ , with $x \notin x''$ and $y \notin y''$, and with $f^*(x)(y) \notin f(x'',y'')$. Now $f(\sup \varphi) \in \sup f(\varphi)$ follows; thus f is a morphism of \underline{D} and 1.3 is proved.

2. d-spaces

2.1. We recall that every T_0 space X has an induced order, with the following statements equivalent for x, y in X. (a) $x \le y$. (b) $x \in \overline{\{y\}}$, the closure of $\{y\}$. (c) Every neighborhood of x in X is also a neighborhood of y. This order is discrete iff X is a T_1 space.

From now on, every T_0 space will be provided with the induced order. We note that every open set is increasing, and that $\{x\} = \int x$ for $x \in X$.

2.2. We recall that a closed set F in a T_0 space X is called <u>irreducible</u> in X if F is not empty, and not the set union of two proper closed subsets. One sees easily that a closed set F in X is irreducible in X iff the open sets $V \subseteq X$ such that $V \cap F \neq \emptyset$ form a filter in the lattice of open sets of X.

If $x \in X$, then $\overline{\{x\}} = \downarrow x$ is irreducible. We say that x is a generic point of an irreducible closed set F if $F = \downarrow x$.

If $\phi \subset X$ with irreducible closure $\overline{\phi}$, then $x \in X$ is a generic point of $\overline{\phi}$ iff $x \in V \iff \phi \cap V \neq \emptyset$ for every open set $V \subset X$. It follows that $x = \sup \phi$ in the induced order of X.

2.3. LEMMA. If $\varphi \subset X$ is undirected for the induced order of a T_0 space X, then $\overline{\varphi}$ is irreducible in X.

<u>Proof.</u> If V is open in X, then $V \cap \overline{\phi} \neq \emptyset \iff V \cap \phi \neq \emptyset$. If V meets ϕ in y, and an open set U meets ϕ in x, then x and y have a common upper bound z in ϕ , with $z \in U \cap V$. Thus the open sets meeting $\overline{\phi}$ form a filter, and $\overline{\phi}$ is irreducible.

 $\underline{2.4}$. DEFINITION. We say that a T_o space X is a d-space if $\overline{\phi}$ has a generic point for every $\phi \subset X$ which is updirected in the induced order of X.

We recall that a T space X is called <u>sober</u> (primal has also been used) if every irreducible closed set in X has a generic point. Thus every sober space is a d-space.

If X is a T_1 space, then an updirected subset is a singleton $\{x\}$, with generic point x. Thus every T_1 -space is a d-space.

We denote by $TOP_{\mathbf{d}}$ the category of d-spaces and their continuous maps.

^{*)} The filters thus obtained are the completely prime filters of open sets.

2.5. PROPOSITION. Induced orders define a functor I: $TOP_d \longrightarrow D$ which preserves underlying sets and mappings.

<u>Proof.</u> If X is a d-space and $\varphi \subset X$ updirected, then φ has a supremum in the induced order, by Def. 2.4 and 2.2. Thus X with the induced order is a d-set which we denote by I X.

If $f: X \longrightarrow Y$ is a map of d-spaces and $\varphi \subset X$ is updirected with supremum x, then we show that f(x) is a generic point of $\overline{f(\varphi)}$. It follows that $f(x) = \sup f(\varphi)$; thus $f: I X \longrightarrow I Y$ in \underline{D} . Indeed, if $V \subset X$ is open, then

 $f(x) \in V \iff x \in f^{-1}(V) \iff f^{-1}(V) \cap \phi \neq \emptyset \iff V \cap f(\phi) \neq \emptyset ;$ this verifies our claim, by 2.2.

 $\underline{2.6}$. As noted in the introduction, d-spaces form a reflective full subcategory of T_0 spaces, with strict embeddings as reflections. We shall not prove this here; all we need is a much more modest result.

PROPOSITION. The product of two d-spaces is a d-space.

<u>Proof.</u> Let X and Y be d-spaces, and let $\Phi \subset X \times Y$ be updirected, with projections Φ and Ψ . Then Φ and Ψ have generic points $\Psi = \sup_{x \in X} \Phi$ and $\Psi = \sup_{x \in X} \Phi$ and $\Psi = \sup_{x \in X} \Phi$. Let W be a neighborhood of $(u,v) = \sup_{x \in X} \Phi$, with $\Psi = \sup_{x \in X} \Phi$ for open neighborhoods $\Psi = \sup_{x \in X} \Phi$ and $\Psi = \sup_{x \in X} \Phi$, in points $\Psi = \sup_{x \in X} \Phi$. As in the proof of 1.3, there is (x'',y'') in $\Phi = \sup_{x \in X} \Phi$, and hence $(x'',y'') \in U \times V \subset W$. Thus every neighborhood of (u,v) meets Φ , and (u,v) is generic point of Φ .

Scott topologies

3.1. We define the Scott topology of a d-set L in the usual way. U C L is Scott-open iff U is increasing, and $\sup \varphi \in U \implies U \cap \varphi \neq \emptyset$ for every updirected subset φ of L. In particular, a discrete ordered set has a discrete Scott topology. If $2 = \{0,1\}$ with $0 \le 1$, then 2 with the Scott topology is the Sierpiński space. If L is a d-set, then we denote by S L the topological space obtained by providing L with the Scott topology.

3.2. PROPOSITION. If L is a d-set, then S L is a d-space, with induced order I S L = L .

<u>Proof.</u> Sets L \downarrow x are Scott-open; it follows that SL is a T_o space, with x \not y in the induced order if x \not y in L. On the other hand, x \leq y for the induced order of SL if x \leq y in L; thus ISL = L. By the definition of the Scott topology and 2.2, sup φ is generic point of φ for $\varphi \subset L$ updirected; thus SL is a d-space.

Our next result is thoroughly predictable.

3.3. PROPOSITION. Scott topologies define a functor S: D \longrightarrow TOP_d which preserves underlying sets and mappings.

<u>Proof.</u> We must only show that $f: SL \longrightarrow SM$ in TOP for $f: L \longrightarrow M$ in \underline{D} . If V is Scott-open in M, then $f^{-1}(V)$ obviously is increasing in L. If $\phi \subset L$ is updirected and $\sup \phi \in f^{-1}(V)$, then $f(\sup \phi) = \sup f(\phi)$ is in V. But then $f(\phi) \wedge V \neq \emptyset$, and this says $\phi \wedge f^{-1}(V) \neq \emptyset$. Thus $f^{-1}(V)$ is Scott-open in L, and $f: SL \longrightarrow SM$ is continuous.

3.4. THEOREM. The Scott topology functor $S:\underline{D}\longrightarrow TOP_d$ is a left adjoint right inverse of the functor $I:TOP_d\longrightarrow \underline{D}$.

<u>Proof.</u> If L is a d-set and X a d-space, then we show that $f: S \to X$ in TOP_d , for a mapping f of the underlying sets, iff $f: L \to I X$ in D. As both functors preserve underlying mappings, this provides a natural bijection.

If $f:L\longrightarrow I$ X and V is open in X, then V is increasing in I X, and thus $f^{-1}(V)$ increasing in L. If $\phi\subset L$ is updirected and $f(\sup \phi)=\sup f(\phi)$ in V, then $f(\phi)\cap V\neq \emptyset$ in the d-space X; thus $\phi\cap f^{-1}(V)\neq \emptyset$. Now $f^{-1}(V)$ is Scott-open, and $f:SL\longrightarrow X$ follows.

If $f: SL \longrightarrow X$ and $x \le y$ in L, then $x \in f^{-1}(V) \Longrightarrow y \in f^{-1}(V)$ for V open in X, and $f(x) \le f(y)$ in IX follows. If now $\varphi \subset L$ is updirected, and $f(\sup \varphi) \in V$ for V open in X, then $\sup \varphi \in f^{-1}(V)$, and $\varphi \cap f^{-1}(V) \not= \emptyset$ lows for the Scott-open set $f^{-1}(V)$. Now $f(\varphi) \cap V \ne \emptyset$. Thus $f(\sup \varphi)$ is the generic point $\sup f(\varphi)$ of $f(\varphi)$, and $f: L \longrightarrow IX$ in \underline{D} .

The unit_L \longrightarrow I S L of the adjunction corresponds to id SL by the adjunction described above. By 3.2, this is the identity map id L in \underline{D} ; thus S is a right inverse, as well as a left adjoint, of I.

3.5. REMARKS. Since the unit of the adjunction S \longrightarrow T is an isomorphism, the functor S is full and faithful. This is well known for the restrictions of S which have been studied by D. Scott and other authors.

The functor S embeds \underline{D} into TOP_d as a full subcategory of d-spaces with Scott topologies. Since S has a right adjoint I, this is a coreflective subcategory of TOP_d , with coreflections $id_X: SIX \longrightarrow X$. We note in particular that the topology of a d-space X is coarser than the Scott topology of the d-set IX.

It is of course possible to define a "well below" relation for d-sets, and continuous d-sets. I have not studied these concepts.

4. An application

 $\underline{4.1}$. If Y is a topological space and O(Y) the complete lattice of open sets of Y, then the Scott topology of O(Y) is the Ω -topology of Day and Kelly [2]. As shown in [2], this is the finest topology of O(Y) with the property that for every topological space X and every open set $U \subset X \times Y$, putting $y \in f_U(x) \iff (x,y) \in U$, for $(x,y) \in X \times Y$, defines a continuous map $f_U : X \longrightarrow O(Y)$. Conversely, every continuous map $f : X \longrightarrow O(Y)$ is of the form $f = f_U$, for an open set $U \subset X \times Y$, if the map id O(Y) is of this form, i.e. if the set

$$E_{Y} = \{(V,y) \in O(Y) \times Y \mid y \in V\}$$

is open in $SO(Y) \times Y$. In this situation, $f = f_U$ for $U = (f \times id_Y)^{-1}(E_Y)$. Spaces with this property have been called Ω -compact in [2], and quasilocally compact by A.S. Ward and other authors.

It is well known that a topological space Y is quasilocally compact if and only if O(Y) is a continuous lattice.

For a d-set L , the characteristic functions of the Scott-open subsets of L are the maps $f: S \to S = 2$, and hence the elements $f: L \to 2$ of the d-set D[L,2]. This bijection between open sets and their characteristic functions clearly is an isomorphism of the complete lattices D[L,2] and $O(S \to L)$.

We now obtain a slight generalization of Corollary 1.3 in [1].

4.2. PROPOSITION. If L is a d-set for which O(S L) is a continuous lattice, then $S K \times S L = S (K \times L)$ for every d-set K.

<u>Proof.</u> We note that $S(K \times L) = SI(SK \times SL)$ is the coreflection of $SK \times SL$; thus $S(K \times L)$ has a finer topology than $SK \times SL$, and more open sets.

On the other hand, a Scott-open subset U of K×L is given by its characteristic function $h_U: K\times L \longrightarrow 2$ which is a morphism of d-sets, by the remark made above. By our Thm. 1.3, this corresponds to a morphism $g_U: K \longrightarrow D[L,2]$ in D, and composing this with the isomorphism between D[L,2] and O(S,L), we obtain a morphism $f_U: K \longrightarrow O(S,L)$ of d-sets. It is easily verified that f_U is given by $y \in f_U(x) \iff (x,y) \in U$, for $(x,y) \in K \times L$.

Now if O(S L) is a continuous lattice, then the map $f_U: SK \longrightarrow SO(SL)$ corresponds to an open subset U of $SK \times SL$. Thus $SK \times SL$ and $S(K \times L)$ have the same open sets; this proves 4.2.