SEMINAR ON CONTINUITY IN SEMILATTICES (SCS)

NAMES:  Oswald Wyler ‘ DATE:
April 18, 1977

TOPIC: - Dedekind complete posets and Scott topologies

[1] cierz, Hofmann et al., On complete lattices L for which O(L) dis

REFERENCES: . continuous. SCS mema, 4/8/77. :
[2] B.J. Day and G.M, Kelly, On topological quotient maps. Proc, Camb,
Fhil. See. 67 (2970), 553 - 558. |

_England: b. Scott (Okford u.) o
'_West Germany: G. Gierz, K. Keimel (TH:Darmstadt)
Canada: R. Giles, H. Kummer (Queen's u.)
USA: A. Stralka (U of Cal. at Riverside)

J.D. Lawson fLSU) | )
K.H. Hofmann, M. Mislove (Tulane U.)
J. Isbell (MIT) | |
. 0. Wyler (Carnegie~Meilon U.)
H. Carruth (U. of Tennessee,-Knoxville)

o Bl Qs ot ATl E Ln‘»—»vpﬂ-««.\)’-“u — 2
For 'I'0 spaces ‘X , Y , 2, Proposition 1.1 of [1] seys in effect: if a map
£ Kjﬁ,Y-—f%?Z“’is separately continuous and ¥ quasilocally compact, then f is
Jointly dontinuous. This is well known to be false if X =Y = Z = [0,1] , the unit
interval., Prop. 1.1 was used in [l] to prove Corollaries 1.2 and 1.3. Both corollaries
~are valid., Corollary 1.2 says that if the functors - x;Yl and - >(Y2 on To spaces
~ have right adjoints, then their composite (up to natural equivalence) - ><(Yl>< Yé)
has a right adjoint. This is of course true. Corollary 1.3 in [l] is important for
[l] and probably also otherwise; thus a rescue effort is in order, This effort led
to a study of the basic préperties of-Scottktopologies which I present here. _
It seemed reasonable to study Scott topologies in the maximal feasible genetality;
this led to the consideration of a‘cétegory of upper Dedekind complete posets, with

maps preserving suprema of updirected sets as morphisms.. We denote this category



by..g . Scott topologies define a full and faithful functor from D to 'I‘o Bpaces.
We denote this functor, with an appropriate codomain restriction, by S .

4s pointed out by the Grothendieck school in SGA 4-1 (Lecture Notes in Math,
:269), and used by D. Scott in LMM 274 for the creation of Scdtt topologies, every .To
space X has an induced poset structure, with x&£L y in X iff, equivalently, every
open neighborhocd of x in X. is also a neighborhood of Yy , or xe'{y—} , the
closure of {y} . We shall call X a d-space if X with this order is upper Dede-
kind complete, and the topology of X d4s coarser than the induced Scoft topology.

Every sober space turns out to be a d-space. Not every d4space is sober, for
every T1 space is a d-space. If X is a Tl space, then the induced order on X
is discrete, hence Dedekind complete, with the discrete topology as Scott topolozy. .
‘d—spacés define an épireflective full sﬁbcategory of To spaces; we skip thelproof of

this result as irrelevant for our present purpose. Warning: reflections for d-spaces :

+

are not surjéctive; _fhey‘are strict embeddings. _ _
We do not kmow whether an object of D with the Scott fopology is always a sober
space, It is always a d-space; the order induced by the Scott topology is the given
order. Aus der Not eine Tugend machend, we substitute d~-apaces for sober spaces in
the present study. The category I is cartesian closed; it is also embedded into
d-spaces as a full coreflective §ubcategory; Combining the last two statements,

we re-establish Cor. 1.3 of [1].

1. Dedekind complete posets

1.1, We cell a poset S (upper) Dedekind complete if evaery updirected subset

of S has a supremum in S , A morphism of Dedekind complete posets S , T is a
mepping f : 5 ~>T which preserves order, and suprema of updirected subsets. With
composition of mappings as composition of morphismz, Dedekind compiete posets and their
morphisms form a category which we denote by D . By a mathematician's habitual lazy-

ness, an object of D will be called a d-set in this memo.

1.2, A sup gsemilattice S is a d-set iff . § is complete, but there are many
d-sets which are not complete lattices. In fact, every discrete poset is a d-set;
the only updirected subsets of a discrete poset are singletons. This includes the



empty poset: an updirected subset, having upper bounds of all finite subsets, cennot
be empty. One verifies easily that discrete posets- are free d-sets; they define a
left adjoint of the forgetful functor from D to sets.

The category D has products {and in fact limits of all small diagrams), and the
forgetful_' functor from D to posets preserves these products. Thus the product poset

of a family of d-sets is the product of this family in n.

1.3, THEOREM, The category D jis cartesian closed,

Proof. Ve denote by .D[S,T} , for d-sets' S and T , the set of all morphism
f:S8-——>T dn B, ordered point-wise. If P C D[S,I']‘ is updirected, then every
set F{(x) of points f{x) of T, with f&F , is updirected, for x&X .

We put (sup F)(x) = sup Mx) ; this E:learly is the desired suprem&;_n of F if it is
~a morphism of B . For ¢ & S upﬂirected, we have '

(sup F)(supef) = sup f(supq?) = SI.'T.p‘ sup ‘fr(x)
f i .

&F fEF  x&@
= sup sup £{x) = sup (sup F}{x) . -
xcP f&er x eqa' .

"Thus D[S,T] is indeed a d-set, with pointwise suprema. 7 , :

Now let f* : R—>D[S,T] correspond to £ : RXS—>T by £+(x)(y) = £{x,y) ,
for d-sets R, S, T and (x,y) ERXS. If fED and ¥ C T is updirected,
then 1ix} xy is updirected in RX S for x &R, with supremun (x, sup w) , and
f*(_x)(supt}z) = f(x, lsupc{/) = sup £{x,4) = sup =+(x)(¢} . Thus each *(x) is in D .
A similar computation shows th;t f¥*¥ preserves suprema Sf updirected sets.

Conversely, let f£* : R —>D[S,7] 4in D, and let & be updirected in RX S ,
with projections cPCR and ll/C‘.S .« Then f : RX § —=>T clearly preserves
order, and sup f((P) £ f(sup @ supy) = f(supd) follows. Ve have ‘

f(sup Cb) = f(supq), supq/) = f*(supcp)(éuptf))
= (s;ip f*(x))(sup qx) = sup sup £*(x)(y) .
XEQP ' vy zed

It x¢@ and yey; then (ry')e® and (x',y)e @ , for suitable x' &R
and y' &S . These points have a common upper bound (x",y") in b, with x £x"
and y£y" , andwith £*(x)(y) < £(x",y") . Nov f{sup)< sup £{d) follows;
thus f is a morphism of D and 1.3 is proved. ‘ '



2._d-spaces

2:1. We recall that evex.-y‘ To space X has an induced order, with the following
statements equivalent for x , ¥y in X. (a) xgy. (v) xe&{y}, the closure
of {yl . (e) Every neighborhood of x in X is also a neighborhood of y . This
order is discrete iff X is a '1‘1 space. '

From now on, every 'I‘0 space will be provided with the induced order. We note

that every open set is increasing, emd that {x} = Jx for x&X .

2.2, .‘.rf_e recall that a closed set F in a T space X is called irreducible in ~
X if F‘__-_:-.is':"..-not empty, and not the set union of two proper closed subsets.. .One sees :
eagily that a _c}.-osed set P in X is irreducible in X 4iff the open sets V < X
such that VA P # @ form a filter in the lattice of operi sets of X . ) ‘

If x& X, then {x_} Jx is 1rreduc:1ble. We say that x is a generic point
of an irreducible closed set F if F= Jx. _

If ¢ < X with irreducible closure ?:-,‘5' ‘then x £X is a generic point of

iff z€V <= PN V#£8 for every open set V<Z X . It follows that x = sup P

in the induced order of X .

2.3, LEMMA, If (?C X - is_updirected for the induced order of a T Space X
then ?:7 is irreducible in L. ‘

- Proof. If V is open-in’" X ,- then V ﬂfﬁréﬁ = Vf)qp-;éﬁf If V meets
cf) in y , and an open set U meets cP in x, then x and y have a common

LA

upper bound z in C{’ y Wwith z£UnY. Thus the open sets meeting c? form a
filter, and $ is irreducible. '

2.4, DEFINITION, We say that a .'I‘o space .X is a d-spage if c';_;— has & generic
point for every q;C. X which is updirecied in the induced order of X .
We recall that a TE) space X is called sober (primal has also been used) if.. -

every irreducible closed set in X has a generic point. Thus every sober space is .
a d—space. -

1

If X is a T space, then an updlrected subset is a s;mgleton -S_x} with
generic point x . Thus every Tl-space is a d-space. '

We denote by TOPd the category of d-spaces and their continuous maps.

*) The filters thus obtained are the completely prime filters of open sets.




2.9. PROPOSITION, Induced orders define a functor I : TOPd'——> D which pre~
serves underlying sets and meppings. ' : : '

froof. If X is a d-space and ?CX updirected, then P has a supremum in
the induced order, by Def. 2.4 and 2.2. Thus X with the induced order is a d-set
which we denote by I X . ' | ‘

If f:X—Y isa map of d—spaces and o X is updirected with
supremum X , +then we show that f(rx) is a generic point of ?(?)_'. It follows that
fx) = sup f(f;) 3 thus £ : IX—»IY in D. Indeed, if V¢ X is open, then

tReV &= &) <= fl(V)f'HF £ f o= Vr\f(cp) i g

this ver:.fles our claim, by 2. 2.

2.6, As noted in the introduction, d-spaces form a reflective full subcategory

of To spaces, with strict embeddings as reflections. We shall not prove this here;

all we need iz a much more modest result.

PROPOSITIOH. The product of two d-spaces is a d-snuce,

) Proof. Let "X and Y be d-spaces, and let P XX pe updlrected with
proje_étibns @ and y . Then cP and Y’ have generic points W = sup® and

v = supy in X and Y . Let W be a neighborhoed of (u v) = sup(b with

U XV W for open nelghborhoods U of u and V of v . Then U meets ? R
and V meets Y-, in points x and ¥ . 4s in the proof of 1.3, there is (x",y")
~in d) with (x,y) £ (x",y") s and hence (x",y") EUX V CW .. Thus every neigh-
borhoed of (u,v) meets Cb s and (u,v) isf‘generic point ofﬁ)‘ .

2. Scott topologies

3.1. We define the Scott topologv of & G-set L 'in the usual way. U . L is
‘Scott-open iff U is increasing, and sup P eV = U m(? £@ for ‘every updirected
subset of L In particular, a discrete ordered set has a discrete Scott topo-
logy. If 2 ={0,1} with 01, then 2 with the Scott topology is the Sier-
piﬁsl;i space. If 'L is a d-set, then we denote by S L the topological space
obtained by providing L with the Scott topology. '



3.2. . PROPOSITION, _Ij‘_ L is a d-set, then S L is a d-space, with induced
order ISL=1L, : '

Proof, Sets L\l x are Scott-open; it follows that SL is & T space, with
x4y in the induced order if x &Ly in 1L, Ui";;the other hand, x <y for the.
induced order of SL if x<£y din L ; thus ISL =1L . By the definition of the
Scott topology and 2.2, supcP' is:éeneric point of (f for ci> < L updirected; thus
8L is a d-space. '

Our next result is thoroughly predictable.

3:3. FROPOSITION, Scott topologies define a functor S5 : D ‘-~——->.TOPd' which pre~
sexrves underlying sets and msppings. h

Proof. Ve must only show that £ : SL—> SM 4n TOP for £ :L-—» M 4n D .
If V is Scott-open in M, then £ “(V) obviously is increasing in L . If P L
is updiraéted and sup @ € fql(V) , then f(sup (P) = sup f(q:) is in ¥V ., 3But then
f((P) NV #8, and this says p N V) A6 . Thus fnl(V) is Scott-open in L ,
and f : SL —> SM is continuous, - '

3.4. THEOREM. The Seott towology functor S : D —>T0P, is a Jeft sdjoint
right inverse of the functor I : TOPd —>D.

Proof. If L:is a-d-set:and -X a d-space, then we show that £ : § L —w X
in TOPd .
As Both functors preserve undexrlying mappings, this provides a natural bijection,

for a mapping f of the underlying sets, iff f : L —>» I X in D.
_ If £f:L-—-~>IX and V is openin X, ‘then V is iz}'fireasing in IX, and £
thus f'l.(v) increasing in L, If ¢ 'L is updirected and f(sup?&) = sup f(p) - )

in' V., then f(p) AV #§ in the d-space X ; thus qm,f'l(v) £ Now £HV)
is Scott-open, and :f : 8 L —> X follows. ‘ : '

If f:SL—>X and x<y in L, then x &£ V) == ye& £ V) for -
V openin X, and f(x)< £(y) in I X follows. If now @ < L is updirected,
and  f{sup ce‘).é Vo for V opexi in X, then supp€ f_l(V) , and’ q;nf_l(V) fol-
lowrs for the Scott-open set f—l(V) . Now f(a?) AV EFJ. Thus £(sup (P) is the
generic point sup f(q;) of ﬂ@ » and £ : L —IX in D. ‘

The unit L —3I S L of the adjunction corresponds to id SL by the adjunc-
tion deacribed above. By 3.2, this is the idéntity map idL in D ; thus S is a

right inverse, as well as a left adjoint, of I .




3.3. REMARKS. Since the unit of the adjunction 5 — T is an isomorphism, the
functor 5 d4is full and faithful. This is well known for the restrictions of S which
have been studied by D. Scott and other authors. .

The functor S embeds D into ’.l.‘OP{1 as g full subcategory of d-spaces with
Scott topologies. Since S§ has a right adjoint I, thisisa coreflective subcate-
gory of TOP, , w:.th coreflections J.dx :SIX—X ., We note in particular that
the topology of a d-space X is coarser than the Scott topology of the d-set I X .

It is of course possible to define a: well ‘below" relation for d-sets, and con-

timuous d-sets. I have not studied these concepts.

4, An_ agnlicat:_t_g_g

4.1. If Y dis a topological space and O(Y) the complete lattice of open sets
“of Y , then the Scott topology of O(Y) is the §)-topology of Day and Kelly [2].
As shown in [2], this is the finest topology of - O(I) with the property that for
every topological space X and evéry open set U S XIXY, putting .y = fU(x)
Loy (x,y) €U, for (x,y)& XX Y, defines a continuous map : X —%O(Y)
Conversely, every contirmous map f : X —-;)-O(Y) is of the form f = fU sy for an
open set U C X XY, if the map id o(Y) is of this form, i.e. if the: set

fvyeoy) xy }y ev}

is open in SO{Y)® Y . In this situatmn, f=4£ for U=(£x idy ) l(EY) Spaces
with this property have been called .Q.—compact in [2], and quasilocally compact by
4.5, Ward and other authors.

Tt is well known that ] 'topologlcal space T is quas:.locally compact if and only
if 0(Y) is & continuous lattice. _

For a d-set L , the characteristic functions of the Scott-open subsets of L
are the maps £ : S L -—iLS 2 , and hence the elements £ : L —22 of the d-set
D[L,2] . This bijection between open sets and their characteristic functions clearly
is an isomcrphism of the complete latticés D[L,2] and 0O(S L) .

We now obtain a slight generalization of Corollary 1.3 in [1].



.2. FROFOSITION. If L is a -d-set for which O(S L) is a continuous lattice,
then SKX SL = S {KxL) for every d-gset K .,

[-P-

Eroof. Ve note that S{X¥ X L) = SI{SKX SL) is the coreflection of SK X SL ;
thus S{K X L) has a finer topology than SX X SL ,. and more open sets.,

On the other hand, a Scott-open subset U of KX L is given by its character-
istic function hU : K XL —> 2 which is a morphism of d-sets, by the remark made
above. By our Thm. 1.3, this corresponds to a morphisn g; : K —> p{L,2] 4in D,
and -composing this with the isomorphism between D{L,2] and 0(S L) , we obtain a
morphism f t K -_9-0(5 L) of d-sets. It is easily ver1f1ed that fU is g:wen by
y &f; (x) &= (x,y) &V, for (xy)(_ KXL. _ _

Now if 0{S L) is a continuous latt:Lce, then the map £y ¢ SK —>50(SL) cor-
responds to an open subset U of SKx SL . Thus SKX SL and S(Kx L} nave the

same open sets; this proves 4.2,



