NAME
 Karl H. Hofmann
 DATE
 M
 D
 Y

 1
 18
 78

TOPIC Locally quasicompact sober spaces are Baire spaces

REFERENCES Lawmann I (K.H. Hofmann and J.D. Lawson , Irreducibility, Semigroup F. 13(76/77

Lawmann II (" " " , The spectral theory of continuous lattices, on the referee's table

LEMMA 1. Let L be a continuous lattice and V a Scott-open subset such that for some sequence $a_0 > a_1 > a_2 > \dots$ one has

(HYP) $Va_n \subseteq V$ for n = 0,1,...

Then for all $v \in V$ there is an open filter $U \subseteq V$ such that $va_n \in U$, $n \in U$,

Proof. Let $v \in V$ be given and set $b_0 = 1$. Suppose that we found elements b_k , $k=0,\ldots,n$ such that

- (i) $vb_k \in V$ for k = 0, ..., n,
- (ii) $b_k \ll va_{k-1}b_{k-1}$ for k=1,...,n.

(For n=0 ,nothing is assumed in lieu of (ii)). We construct b_{n+1} :

By (i) we have $vb_n \in V$, hence by (HYP) we have (1) $va_nb_n \in V$. Let D denote the directed set va_nb_n . Then (2) $va_nb_n = va_nb_n$ since L is continuous. In particular, L is meet-continuous, and thus $va_nb_n = va_nb_n \in V$ by (2) and (1). As V is Scott-open, $va_nb_n \in V$ i.e. there is a $va_nb_n \in V$ with (3) $va_nb_n \in V$ and $va_nb_n \in V$ and $va_nb_n \in V$.

- (4) $b_{n+1} \ll va_n b_n$. Then (3) and (4) make (i) and (ii) valid with n+1 in place of n. By induction we thus have (i) and (ii) for all k=0,1,... (resp.,k=1,2,...). Then (ii) implies $b_{n+1} \ll va_n b_n \leq b_n$, hence
- (5) $b_{n+1} \ll b_n$ for all n. By (i) we note $b_k \ge vb_k \in V$, whence
- (6) $b_n \in V$ for all n. By (ii) we note $va_n \ge va_n b_n \ge b_n \in V$, whence
- (7) $va_n \in \uparrow b_{n+1}$ for all n. Now set $U = \bigcup_{n=0}^{\infty} \uparrow b_n$. Then U is a filte as an ascending union of filters.By (5) it is an open filter, and by (6) $U \subseteq V$. But (7) shows $va_n \in U$ for all n. [

Ser bn = vaan; bn EV mach (HYP)

Wahle c, EV, c, << b;

Darm c, a az EV mach (HYP)

Wahle cz EV, cz << c, Aa,

usus

LEMMA 2. Let L be a continuous lattice and A \subseteq L a countable set such that a \in A, x \neq 0 implies xa \neq 0. Then IRR L \subseteq \uparrow xA implies x = 0. Proof. Fix x \neq 0 and write A = $\{x_0, x_1, \dots\}$ and set $a_n = x_0 \dots x_n$. Then $xa_n \neq 0$ for all n (by induction). Apply Lemma 1 with V = L\{0\forall n}, v = x, and find an open filter U such that $0 \notin U$, $xa_n \in U$ for all n Now let p be a maximal element in L\U. By Lawmann I, p \in IRR L. BUT $p \in L \setminus U \subseteq L \setminus U \cap X_n \subseteq L \setminus X_n \subseteq L \cup X_n \subseteq L \setminus X_n \subseteq L \cup X_n \subseteq L$

LEMMA 3. Let L be a continuous lattice and $A \subseteq L$. Then the following are equivalent: (1) $\uparrow A \cap Spec L$ is nowhere dense in Spec L.

- (2) Spec L⊈ †x∪†A for all x with Spec L⊈ ↑x.
- (3) Spec $L \not = \uparrow \hat{x} A$ for all x with Spec $L \not = \uparrow x$.

equivalent. [

If L is also distributive and $A = \{a\}$, then these are also equivalent to (4) $0 \neq xa$, for all $x \neq 0$.

Proof. Write X= Spec L. Then $\uparrow A \cap X$ is nowhere dense in X iff every non-empty open set in X meets the complement $X \setminus A$, and since the closed sets of X are precisely the sets $\uparrow x \cap X$, this is equivalent to saying that for all x with $X \setminus \uparrow x \neq \emptyset$ we have $\emptyset \neq (X \setminus \uparrow x) \cap (X \setminus \uparrow A) = X \setminus (\uparrow x \cup \uparrow A)$, which shows the equivalence of (1) and (2). But $p \in X \setminus (\uparrow x \cup \uparrow A)$ iff $x \not = \emptyset$ and $a \not = \emptyset$ for all $a \in A$ iff $x \not = \emptyset$ for all $a \in A$, since p is prime, and this means that $p \in X \setminus \uparrow x A$. Thus (2) and (3) are equivalent. If L is distributive, then Spec L $\not = \uparrow x$ iff $x \not = \emptyset$ by Lawmann I, and Spec L $\not = \uparrow x$ iff $x \not = \emptyset$

RECALL. A topological space X is a Baire space iff for all closed () subsets $Y \neq \emptyset$ of X and each sequence Y_1, Y_2 of subspaces which are (closed and) nowhere dense in Y, we have $\bigcup Y_n \neq Y$.

THEOREM 4. Every locally quasicompact sober space is a Baire space. Proof. Let X be locally quasicompact sober. By Lawmann II we may assum X = Spec L for a continuous Heyting algebra L. Each closed subset of X is of the form $\int_{X}^{\infty} \int_{X}^{\infty} \int_{$