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The most exciting question in the theory of equatlonal compact-
ness is the problem of Mycielski ' ,

'"Are the equatlonally compact algebras in K the retracts of
,compacf algebras in K " '

For us , K is the class of lattices.

David Kelly has proved, that a complete meet and supcontinous
“lattice Without infinite antichains is equationally compact,.
But nothing was known about the topology of these lattices.
¥yrtunately, the thebryrof gCLs applies.
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In the following, let L be a complete lattice without
infinite antichain.

1. Lemma  Each Scott-open set UGL is of the form

U = L (x,Uyx,V e )

‘proof : Let U be a Scott~open set and MCL be the set
of all maximal elements of LNU . As U is Scott-open,
LNU = '+M . M is anantichain, because each element
of M 1is maximal in L\U .Therefore, M = {x1,x2 e xﬁ}
and U = LN ¢M = L\\(¥X1LJ€X2U---RJQXH) .

2.corollary : In L , the Bi—Scott—topologY coincides with

the intervall-topology.

Now,I want to prove, that meet-contin uity implies L€ CL
There should be a dlrect pProof, but I dld not yet succeed
to find it.

3.Lemma Let (y. )JGJ be asupward directed net\\j%y | JGJ}
{X{oXy ons Xn} a maximal antichain in L , such that
Xqsew X

Y.+1»' X :i y

Then there is © jeJ and ié{1,..Jﬁ such that Y7 X

proof : case 1 :There is some ié& {1,.. n} and some jed
such that y.;,» i - y';-,yJ} i implies i&{1 . m}
case 2 : y'jkx for all jeJ and all ie {1,. }
Define : - {ie{1,. .,n} | X; 7 j.}
(1) F k 52! for all jeJ
{x1,...,xn} is a maximal antichain. so y; 1is com-
parable with some X - According to. the hypothesis . .

y')’xi does not hold. So xi;.y is valid and Fj + F{

j
(11) izk implies FCF

So, it is shown /ﬁ\{F | JGJ} # ¢

Now, let i€ (F\{ FJ | JEJ} - Then xfz.yj holds for all j&J

But this 1mp11_es : Yy = sup {yj | jeJ]‘ L Xy é



3/

4.LEMMA Let L be meet-continous, yel, {xT,.. X} a maximal
antichain, satisfying : XpseooX LY
xmf}‘ '.X

4
Then {x1,...xm} £ y is valid, n( see [1] 1.1 )

proof: Let sup {Wj | j&J})y ~for anupward directed net.

Define s 1= . PP
Y; y AW and apply Lemma 3 to (YJ)JGJ

5.THEQOREM A complete meet-continous lattice without in -

finite antichain is a continous lattice

proof : According to ['f] 2.6 13 1 will try to prove (1

o If p{q », then there is a finite set F satisfving
Fp and  Fdg

case 1 : q'ng and there is x<p , x%q

proof :: Let {x1,...xn} be a maximal antichain ,such that
X =X, x =q. Lemma 4 proves ¢ , if one chooses ¥
F := {x1,...xm}

case .2 : q%p and x«p implies x<q
claim : p is compact and so F := {p} satisfies (0

proof : Let (yj)jeJ be an upward directed net , such that
sup {:yj | j€J} = p . We show, that there is some jéJ , such
that YjZP - Set X5 = p/\yj and we get sup{le jeJV = p
Suppose, xj< p holds for each jeJ .The 'case Z condition "
implies X5& pAq for all je&J , which contradicts

sup {xj [ jeJ} =p . so there is some j€J , such that X;7 P
and especially yj?,p,

case 3 : p>q is a prime quotient.

proof : Let (x1,....,xn} be a maximal antichain in L, such
that x; = q , XqyeeosX &P s xm+1,...,xn¢p .

our lemma 4 ensures us [x],...,xnb £ p. We will show now,
that {p,xz,...,xm]) satisfies ) . It is enouph, to ~prove
the  folfowing  claim.



claim : If p)»X , q€X and p/q is prime, then p>» (X\{@)v{R

proof : Suppose \v;%y jEJ}zap . It is enouph, to show :
If yJ q holds for any jeJ , then there is some keJ , such
that Y P. As  sup {yj | j€3} > 2 p, there is some k&J satis-
fying y > q and this implies Y7 P » because p/q 1is prime

case 4 : There is some xeL , satisfying Q<L XL P

proof : Let X be a maximal antichain satisfying xeX .
Again , lemma 4 proves the validity of (5¢)

COROLLARY A meet and sup-continous ¢omplete lattice without

infinite antichain is a bicontinous lattice.

to avoid the thegry of. gCLs 1f

remark : It is pogsible,
one proves /A¥
\f TVJ, X£(4)

iel el i iel

but thrs proof is more complicated.

EQUATIONAL COMPACTNESS

Definition An algebra A is called eqationnally compact,

if each system of equations has a solution in A , provided
each finite subsystem has a solution.

Together with some familiar facts of the theory of equational
compactness, the following theorem 1is Just praoved .

The results, which are needed, are

" A compact algebra is equationally compact. "

proof : The solutions of the finite subsystems are a filter
base and converge to the solution of the whole system.
".A retract B of an equational compact algebra x4 is e.c. ""
proof : Solve the equations in A and apply the retraction.
Grdtzer,lakser : " An equationally compact lattice is complete,

meet and sup-continous. "



THEOREM : For a lattice L , not containing any infinite

antichain, the following conditions are aquivalent

a) L is equationally compact |
b) L is complete, meetcontinous a;_@_.supcoritinous
c) L is a bicontinous lattice

d) L is a compact lattice A

e) L is a retract of a compact lattice

—_———— ——— . L

THE IDEAL LATTICE

Proposition : Let H be a sup?emilattice and I(H) the
ideal-lattice of H . The intervall-topology of I(H) is T2
if and only if for each peH, there is no infinite set
S(IJC_Z_H » satisfying (1) and (2)

(1) Xxe& Xp implies ,x*p

{2) X, yeX_ , X {= y implies XVP 2P

P

corollafz If the supsemilattice H does not contain any
infinite antichain, then the intervall-topology of I(H)
is T2 . . |

remark : In [41, 6.4 , G. Gierz and J, Lawson have
proved, that the intervall-topology of I(H) is T2 iff._
for each peH , the set spec{p) of all maximal ideals
not containing p is finite

- proof of the proposition : "' Let Xp be an infinite

set, satisfying the conditions (1) and (2) . For each xeX
there 1s a maximal ideal, such that xe& Ix but péf. Ix . If
x%yeXp then Ix f= Iy » because yé.Ix implies pE:I}c

So, spec(p) 1is infinite , which contradicts the remark.

' Suppose, the intervall-topology of I(H) 1is not T2
According to the remark, there is some peH , such that the set
spec(p) of maximal ideals not containing p is infinite.

Let S1 = {:1111 [ nc.{N} be a countable subset of spec(p)



Now, we want to construct an infinite set Xp satisfying
(1) and (2) , which will contradict our hypothesis.

As I} = I; are maximal with respect to péf[, there is
some x1e-I

} such that XT¢ I; and so, there is some x,€& I;
such t?at X;v X5 7 P,
Set XZ

Suppose, X

1= {x1,xzk and X; satisfies (1) and (2) .
T 'is defined , such that (1) and (2) is valid
and look at I1

.Either 11 contains some xéEX1 , then
1 n+l . n

n+1
; Y 1 - . 1
define Xn+1 1= Xn , ntil does not contain any x& X

" Then there is some X041 &I

n+1.25uch that x ,vXxXzp for
all xeX. . So X! . :=x!

- 1 n+l i N {x wil% satisfy’(1) and (2)
Define : X' o= JUX, t nen}

According to our hypothesis, X satisfies (1) and (2) and is

finite . X1 has the additional property : For each IE-S1

or I

n+1}

there is some xe€ )(1 , such that xe I . 50_ there is some x1ex1

such that
S3 = (IE-S1 |'x1e-1} is infinite. Define
X2 = x)\{x'} ,(which will satisfy (1) and (2) ) and
Y '

~asume S, = ‘{In | neN} .
If you apply the same construction to 82,5
you will get an ascending chain

1 2 3~ L

X' §F X g-xg ....... |
such that each X satisfies the conditions (1} and (2)

| jfynn }

X, := ({x ne N o

now is infinite and still satifies (1) and (2) , which is

the wanted contradiction .



