SEMINAR ON CONTINUITY IN SEMILATTICES (SCS)

NAME(S)	Heiko Ba	Bauer	DATE	M	D	Y
			. 4	ļ	15	.78
TOPIC	antichains and equational compactness					
REFERENCE S	1 G. Gierz, J. Lawson ; generalized continous					
•	la	ttices SCS 2.9.77				
2	G. Wenzel equational compactness in universal					
	algebraș,	Manuskripte Universit	ät Manı	nheim	1	
3	D. Kelly; a note on equationally compact algebras					
•	algebra universalis vol. 2 1972					

The most exciting question in the theory of equational compactness is the problem of Mycielski:

"Are the equationally compact algebras in \underline{K} the retracts of compact algebras in \underline{K} "

For us , K is the class of lattices.

David Kelly has proved, that a complete meet and supcontinous lattice without infinite antichains is equationally compact. But nothing was known about the topology of these lattices. Fortunately, the theory of gCLs applies.

West Germany:

TH Darmstadt (Gierz, Keimel)

U. Tübingen (Mislove, Visit.)

England:

U. Oxford (Scott)

USA:

U. California, Riverside (Stralka)

LSU Baton Rouge (Lawson)

Tulane U., New Orleans (Hofmann, Mislove)
U. Tennessee, Knoxville (Carruth, Crawley)

In the following, let L be a complete lattice without infinite antichain.

1. Lemma Each Scott-open set $U \subseteq L$ is of the form $U = L \setminus (\downarrow x_1 \cup \downarrow x_2 \cup \dots \cup \downarrow x_n)$

 $\frac{2.\text{corollary}}{\text{the interval1-topology}}$: In L , the Bi-Scott-topology coincides with

Now, I want to prove, that meet-continuity implies $L \in CL$ There should be a direct proof, but I did not yet succeed to find it.

3. Lemma Let $(y_j)_{j \in J}$ be an upward directed net, $\sqrt{\{y_j \mid j \in J\}} = y$ $\{x_1, x_2, \dots, x_n\}$ a maximal antichain in L, such that $x_1, \dots, x_m < y$ $x_m + 1, \dots, x_n \not \leq y$

Then there is $j \in J$ and $i \in \{1, ..., m\}$ such that $y_j \geqslant x_i$

proof: case 1: There is some $i \in \{1, ..., n\}$ and some $j \in J$ such that $y_j \gg x_i$. $y \gg y_j \gg x_i$ implies $i \in \{1, ..., m\}$ case 2: $y_j \gg x_i$ for all $j \in J$ and all $i \in \{1, ..., n\}$ Define: $F_j := \{i \in \{1, ..., n\} \mid x_i \gg y_j\}$ (i) $F_j \neq \emptyset$ for all $j \in J$

(i) $F_j \neq \emptyset$ for all $j \in J$ $\begin{cases} x_1, \dots, x_n \end{cases} \text{ is a maximal antichain. so } y_j \text{ is comparable with some } x_i \text{ . According to the hypothesis} \end{cases}$ $y_j \gg x_i \text{ does not hold. So } x_i \gg y_j \text{ is valid and } F_i \neq \emptyset$

(ii) $j \ge k$ implies $F_j \subseteq F_k$ So, it is shown: $\bigwedge \{F_j \mid j \in J\} \neq \emptyset$ Now, let $i \in \bigcap \{F_j \mid j \in J\}$ Then $x_i \ge y_j$ holds for all $j \in J$ But this implies: $y = \sup \{y_j \mid j \in J\} \le x_i$ 4.LEMMA Let L be meet-continous, yeL, $\{x_1, \dots x_n\}$ a maximal antichain, satisfying : $x_1, \dots x_m < y$

Then $\{x_1, \dots x_m\} \ll y$ is valid. (see [1] 1.1)

proof: Let $\sup \{w_j \mid j \in J\} \geqslant y$ for an upward directed net. Define $y_j := y \wedge w_j$ and apply Lemma 3 to $(y_j)_{j \in J}$

5.THEOREM A complete meet-continous lattice without in - finite antichain is a continous lattice

proof: According to [1] 2.6; 13 I will try to prove (*)

(**) If $p \not = q$, then there is a finite set F satisfying $F \not < q$ and $F \not = q$

case 1: $q \not \downarrow p$ and there is $x \not \downarrow q$

proof : Let $\{x_1, \dots x_n\}$ be a maximal antichain ,such that $x_1 = x$, $x_n = q$. Lemma 4 proves (X) , if one chooses F $F := \{x_1, \dots x_m\}$

case $2: q \not \nmid p$ and x < p implies x < q

claim: p is compact and so $F := \{p\}$ satisfies (x)

proof: Let $(y_j)_{j\in J}$ be an upward directed net , such that $\sup\{y_j\mid j\in J\}\geq p$. We show, that there is some $j\in J$, such that $y_j\geqslant p$. Set $x_j:=p\land y_j$ and we get $\sup\{x_j\mid j\in J\}=p$ Suppose, $x_j< p$ holds for each $j\in J$. The "case 2 condition" implies $x_j< p\land q$ for all $j\in J$, which contradicts $\sup\{x_j\mid j\in J\}=p$. so there is some $j\in J$, such that $x_j\geqslant p$ and especially $y_j\geqslant p$.

case 3 : p > q is a prime quotient.

proof: Let $\{x_1,\ldots,x_n\}$ be a maximal antichain in L, such that $x_1=q$, $x_1,\ldots,x_m < p$, $x_{m+1},\ldots,x_n \notin p$. our lemma 4 ensures us $\{x_1,\ldots,x_m\}<< p$. We will show now, that $\{p,x_2,\ldots,x_m\}$ satisfies (X). It is enough, to prove the following claim.

claim : If $p \gg X$, $q \in X$ and p/q is prime, then $p \gg (X \setminus \{q\}) \cup \{p\}$

proof: Suppose , $\sqrt{\{y_j \mid j \in J\}} \gg p$. It is enough, to show: If $y_j \geqslant q$ holds for any $j \in J$, then there is some $k \in J$, such that $y_k \gg p$. As sup $\{y_j \mid j \in J\} \gg p$, there is some $k \in J$ satisfying $y_k \gg q$ and this implies $y_k \gg p$, because p/q is prime.

case 4: There is some $x \in L$, satisfying q < x < p

proof: Let X be a maximal antichain satisfying $x \in X$. Again, lemma 4 proves the validity of (X)

COROLLARY A meet and sup-continous complete lattice without infinite antichain is a bicontinous lattice.

but this proof is more complicated.

EQUATIONAL COMPACTNESS

<u>Definition</u> An algebra A is called eqationnally compact, if each system of equations has a solution in A, provided each finite subsystem has a solution.

Together with some familiar facts of the theory of equational compactness, the following theorem is just proved.

The results, which are needed, are:

"A compact algebra is equationally compact."

proof: The solutions of the finite subsystems are a filter base and converge to the solution of the whole system.

"A retract B of an equational compact algebra A is e.c. ""

proof: Solve the equations in A and apply the retraction.

Grätzer, Lakser: "An equationally compact lattice is complete, meet and sup-continous."

THEOREM: For a lattice L, not containing any infinite antichain, the following conditions are aquivalent:

- L is equationally compact a)
- b) L is complete, meetcontinous and supcontinous
- c) L is a bicontinous lattice
- d) L is a compact lattice
- e) L is a retract of a compact lattice

THE IDEAL LATTICE

Proposition: Let H be a supsemilattice and I(H) the ideal-lattice of H . The intervall-topology of I(H) is T2 if and only if for each $p \in H$, there is no infinite set $X_n \subseteq H$, satisfying (1) and (2)

- $x \in X_p \text{ implies } x \not p$ $x, y \in X_p$, $x \not = y \text{ implies } x \lor y \geqslant p$

corollary If the supsemilattice H does not contain any infinite antichain, then the intervall-topology of I(H)is T2.

remark: In [1], 6.4, G. Gierz and J. Lawson have proved, that the intervall-topology of I(H) is T2 iff for each $p \in H$, the set spec(p) of all maximal ideals not containing p is finite.

proof of the proposition : " \Longrightarrow " Let X_D be an infinite set, satisfying the conditions (1) and (2). For each $x \in X_n$ there is a maximal ideal, such that $x \in I_x$ but $p \notin I_x$. If $x \neq y \in X_p$ then $I_x \neq I_y$, because $y \in I_x$ implies $p \in I_x$ So, spec(p) is infinite, which contradicts the remark.

" \subseteq " Suppose, the intervall-topology of I(H) is not T2. According to the remark, there is some peH, such that the set spec(p) of maximal ideals not containing p is infinite.

Let $S_1 = \{I_n^1 \mid n \in \mathbb{N}\}$ be a countable subset of spec(p)

Now, we want to construct an infinite set X_{D} satisfying (1) and (2), which will contradict our hypothesis. As $I_1^1 = I_2^1$ are maximal with respect to $p \notin I$, there is some $x_1 \in I_1^1$ such that $x_1 \notin I_2^1$ and so, there is some $x_2 \in I_2^1$ such that $x_1 \lor x_2 \geqslant p$. Set $X_2^1 := \{x_1, x_2\}$ and X_2^1 satisfies (1) and (2). Suppose, X_n^1 is defined, such that (1) and (2) is valid and look at I_{n+1}^1 . Either I_{n+1}^1 contains some $x \in X_n^1$, then define $X_{n+1}^1 := X_n^1$, or I_{n+1}^1 does not contain any $x \in X_n^1$. Then there is some $x_{n+1} \in I_{n+1}$, such that $x_{n+1} \lor x \geqslant p$ for all $x \in X_n^1$. So $X_{n+1}^1 := X_n^1 \lor \{x_{n+1}\}$ will satisfy (1) and (2) Define: $X_n^1 := \bigcup \{X_n^1 \mid n \in \mathbb{N}\}$ According to our hypothesis, X^1 satisfies (1) and (2) and is finite . X^1 has the additional property : For each $I \in S_1$ there is some $x \in X^1$, such that $x \in I$. So there is some $x \in X^1$ such that $S_2 = \{I \in S_1 \mid x^1 \in I\}$ is infinite. Define $X_1^2 := X^1 \setminus \{x^1\}$, (which will satisfy (1) and (2)) and asume $S_2 = \{I_n^2 \mid n \in \mathbb{N}\}$. If you apply the same construction to S_2, S_3, \ldots you will get an ascending chain $x^1 \subsetneq x^2 \subsetneq x^3 \subsetneq \dots$ such that each X_n satisfies the conditions (1) and (2). $/\{X^n \mid n \in \mathbb{N}\}$ now is infinite and still satisfies (1) and (2), which is

the wanted contradiction .