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For a Hausdo:ff space X, Day and Kelle} were the first to notice
that the topology O(X) is a continuous lattice.if;and only if X is
locally compact. The question of.when O0(X) is a continuous lattice
for more general spaces has heen succéssfully attacked in (1), and that
study has produced the spectral theory for distributive continuous
lattices alluded to in the title. A concommitant question is:the foi-
lowing: For a topological $pace X, if 0(X) is a compact emilattice,
_then must O(X) be a continuous lattice? A partial answer was presgntéd
in (2), where it was shown that the answer is yes for Hausdorff spaces
ﬁhich are embeddable in first countable compacta. The pﬁrpose of this
memo is to show that the answer remains true for‘all Hausdorff spaces}
"{Te., if X is a Hausdorff space and 0(X) is a compact semilattice, then
0(X) is a continuous lattice, and, consequently, X is locally compact.

We begin with the following lemma, which is also of independent
interest:
l1.Lemma. Let S be 4 compact semilattice, and let {xi} be a net in S.
Let x = 1im Xy exist in X, and let y = lim X; = sup inf x.. Then
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Y.s X, and'there'is an.order arc connecting x and y.
Proof. For any index i, inf x. < X for every k > i, and so inf x. ¢
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lim X; = X. Thus sup inf x, s x, and so y s X.
i j=zi

Recall that any compact Hausdorff space is a uniform‘spéce and
that the neighborhoods of the diagonal form a base fof the uniform
structure. Also, for a compact monoid, the open A-ideals form a base
for the uniform structure, where a A-ideal is a subset p of the product
space with V-Aa u AU < U,

Let y be any open A-ideal of S, and choose an open subset V of §
with X ¢ Vand VxV < y. Since y = lim X3 and y(y) is an open set
containing y, there is some index i1 with inf x. ¢ ﬁ(y) for i 2 il;

jzi :
lim x; implies there is some index i, with xj e V for

similarly x

j 21, If i is any index greater than i, and i,, then inf x; e Uly),
jzi
which is an open set, and this implies there is some finite subset of
. _ : n
the indices greater than i, say j,,-..,j. with inf x. ¢ U(y). Note
that x, € V also holds for each k = 1;;.Q,n, and so (X,x. ),(X. ,X.
Ik ' 3171 32
. (X ,X. ) € U, Since U is a a-ideal, we conclude that (x,xx. .),
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(xx. ,xX. X )yen., (XX, ...X. ,XX. ...X. ) € U. Hence this forms a
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totally ordered U-chain from x to xx. ...X. , and since (x, ...X. ,Y)} € i
1 In ' S| In

and y $ X, we can extend this to a totally ordered ¥U-chain from x to y.
Now, for each open A-ideal U of S, we have a finite totally ordered
U-chain from x to. y; moreover, if V « UV, then the V-chain is also a U-
chain. Thus, if we direct this family of finite totally ordered chains
by the natural direction (incluéion) on the open A-ideals, then they"
must cluster to some limit set C in the space of closed subsets of S.
Since each chain is totally ordered, so is C, and clearly x and y are in
C. Finally, since the finite chains are residually U-connected (i.e.,

are residually a U-chain) for each U, we conclude that C, their limit




is connected. This clearly is the order-arc we are seeking.

Z.Lemma. Let X be a topological space, and suppose that d(X) is a
compact semilattice. The map f : X + O(X) by f(x) = XA {X} is then

an open mapping onto its image in O(X). Moreover, if {xi} is.any

net in X, then lim f(xia = X\ g{E;*T_TETT.

Proof. Fix an open subset U of X. Then 4U = {V ¢ 0(X) : U cV} is a
closed subset of 0(X), and so its compiement OX)\+U = {V e O(X) : U ¢V}

is an open subset of O(X). Now, £(U) = {£(x) : x ¢ U} = {£(x) : U £ £(x)

f(X) n (O(X)\+U) is open in £(X), and so f is open onto its image.
Suppose thét {x;} is any net in X. Then lim f(xi) = sup inf f(x )
' i je=i.

u (_n )(\{xj'})'° =y X\{xj : JéiF = X\ 2 {xj: jz1i}, as claimed. 0O
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3.Theorem. For a Hausdorff space X, O0(X) is a compact semilattice if and
only if 0(X) is a continuous lattice, and this holds pfecisely when X is
locally compact. |
Proof. As we remarked at the beginning, it is well known that 0(X) is
a continuous lattice if and+only if X is locally compact for Hausdorff
spaces. Moreover any continuous lattice is a compact semilattice in the
g£4topblogy. Thus we only need to show that X is locally compact .if 0(X)
is a compact semilattice and X is.HausdorIf. -

Let £ : X + O(X) by £(x) = X\{xF = X\ {x} , since X is Hausdorff.
Consider £(X) in O(X). If V ¢ £(X),then there is a net {x;} in X with
V = lim f(xi). There are two possibilities:

1. {xi} has no cluster points in X. Then 0 Ixj: j2il= p, and so
i

lim f(xi) = X. Since lim f(xi) £ 1lim f(xi) = V, we conclude that V = X.
2. Suppose that {xi} has a cluster point x in X. Then there is a subnet

{xk} with x = lim_xk, and so {x} = x mzk}, and so V is an open subse
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of X containing X\{x}. Lemma 1 then implies that there is aﬁ order-
arc in 0(X) from V to X\{x} , which clearly implies V = X\{x} , since
the latter is a co-atom of O(X).

We draw two cénclusions from the above discussion. First,

TX) = £(X) v {X}. Second. we see from the_latter portion of the
argument that, for a net {xi} in X with l1lim X = X in X, then 1lim f(xi) =
fx); i.e., £ is'continuous._ Lemma 2 implies that f-is open onto f£(X),
and £ is clearly one-to-one since X is Hausdorff. 'Finally,_since f(X)
is open in'its closure, £(X) is locally compact in the relative'topblogy,
and so X is also_locaily compact, being homeomorphic to £(X). 0O

| It is clear that the full strength of the Hausdorff hypothesis is
utilized in this proof; without it, one cannot conclude in part 2 of
the proof of the Theorem that V = X\{x} if the net {xi} has.a cluster
point in X. Thué the préof that £ is continuous i$ lacking without X
Hausdorff. The general question, if O0(X) is a compact semilattice must
it be a continuous lattice, is thus open for géneral spaces.

Now, for any topolbgy{O(X), the.sets X\{xT -are primes in O(X}, and
so the question referred to above is related to the following question:

If S is a compact semilattice such that the primes order-generate
(i.e., every element is the infimum of the primes above it), must S be’
a continuous lattice?

Clearly an affirmative answer to this question would also settle
the question about O(X) in the affirmative; we show that in fact the ques
tions are equivalent:

Theorem. The following are equivalent:
a. Each compact semilattice in which‘the primes order-generate
is a continuous lattice.
b. Each topology 0(X) which is a compact semilattice is 2 continuot

lattice.




Prbof. We have already noted that a implies b. 'Converseiy, suppose

b holds, and let S be a compact sgmilattice:in which thé primes order-
generate. Let P be the set of primes of S, other than 1. We topologize
P with the hull-kernel topology; i.e., a base for the closed subsets

of P are the sets of the form P n +x, where x ranges over S. As is
shown in (1), it then follows that each closed subset of P in this
topology is of the form P n 4x, some x ¢ S. Thus, the open sets of

P are of the form P\+x, as x ranges oVer S. Thus the map £ : § +» O(P)’
by f£(x) = P\tx ié an algebraic isomorphiém of S onfo O(P). Since S is

a compact semilattice, it follows that O(P) is also. According to b,

Q(P) must be a continuous lattice. Thus S is a continuous lattice. O




