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Section III - 3

Projectlve limits and Scott's construction

D.Scott's original motivation to consider continucus lattices
had much to do with the constructlon of continuous lattices L
which were naturally isomorphic to thelr own function spaces {Lr—>L]
(see I1I-2.5). Such continuous 1attices provide set theoretical
models for the LAMBDA calgulus of Church,Curry and Scott. Scott
constructed such continuous lattlces through suitable limit
‘constructions. In this section we analyze the particular properties
of projective limlts in the category of contlnuous lattices, and
we 1illuminate the general principle underlying Scott's construction.

" We begin by recalling the concepu of a projective limit. We are
quite aware that projective limits (in the special sense in which we
will use this word in a moment) are speclal cases of the more general
concept of a limit in a category. We prefer to define, for the presen
record, only the particular kind of limit we will be using in the

present section.

3.1.DEFINITION. 1) EXprugEEtix®] An inverse system (respectively,
direct system) in a category EF A is a family [LJ, &) 4 B jy ke J}
of objectis Lj indexe@ by a direqted set J, and of morphlsms

Sjk: Lk__—>Lj (respectively, gjk:Lj———>Lk) , one for each palr

J <k in J, such that the relatlons gijgjk = By hold for all

1 < J < k (respectively, Sjkgij‘gik in the case of a direct system).

_ " 2) A cone (respectively,co—cone) af an inverse (resp.
direct) system, 1s a collectlion (L,gj,jEJ) consisting of an object
and maps gj:Lr-——-->LJ (resp., gj’Lj_"—>L) such that the relatlions

gjkgk = 83 (resp, g E 5k = gﬁj) hold for Jj <k .
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3) A limit cone of an inverse systep is a cone (I, i{)J < J)
such that for any cone (L',gj ; J €J) over the gystem there 1is
> L such that gjg = gj for all J = J.

a unique A-morphism g:L'
A colimit cone 1s defined dually.

The object L of a limit cone is called a projective 1limit
of the system, written lim Lj’ and the maps gj are called the 1imit
maps,Dually, the object L of a colimit cone 1s called a direct
1imit of the systém, written colim LJ, and the gj are called the

colimit maps.

.4} A strict projective system if an inverse system in which all

maps gij are surjective (where we assume that we are in a concrete,
i.e. set-based cstegory), The projective limit of such a system
is called a strict projective limit. [§

We will work in such categories as INFT = INF n UPS of 1.9
and its dual category sup® (see Theorem 1.10), or as CL, EgExiand
its dual category QE?p . For mere convenience, we introduce the

following convention:§

3 2.NOTATION., If g: S—>T 1s a map in INF1 we write ‘& in place of &=
D(g). Thus 7 :INFT —_ (SUPO)OP_ is an eguivalence of

categories. (See 1.1 - 1.10)

We are readylfor the first result:

«# § €731 be an inverse system in INFT, ]
e o wWINEL
and let (L,gj; j €J) be a cone over this sytem [, Then the fcllowing

3.3 .THEOREM. Iet {Lj,g

statements are equivalent:

(1) (L,gJ ; J€J) 1is a limit cone of {Lj,gjk; j,k€J}. in INF¢

Fa

(2) (L,%,

3 3 € J)s a colimit co-cone of (f},é}k;j,kejl in UPS.

‘e

Remakk. It is important to notice that in condition (2} the universal
property for the colimit is satisfled for the category UPS which 1s
much larger than the category BzX SUPO which is dual fo INF'.

Proof (2} =>(1): Since all maps g5y and g, are in SUP® by 1.10




3y

e oy, T e o e By i
zing.
(1)=>(2):
Proof. We need an explicit description of the upper adjoint gi sl -1
of g, For this purpose We fix 1 and take an arbitrary jed Whlch
we also fix temporarily. For any k > 1,} we have a funCtiomonotonq_

gjkgik L1 >Lj We claim the family {gjkgik' k > 1,31 is’

e
in [Liﬂ_—>Lj]" Consider 1,} < k < k'. Then gjk;ﬁ By
: i A -~ WA
g (gjkgkk')(gkk'gil{(‘)) bt > gjkgik s Since Ekk'gkk' > 1 by
0-3.6. We let fj:Li-——>L be the directedrsup fj= sup[gjkﬁak:i,jgk]

J
and claim that for each J < i' we have fjﬂ’ gjj'fy: Indeed

Ejjtfjl(x) = gjj'(sup{gj'k.@ik 1§j' E k}) =

sup { gjj'gj'iglk(x): 1,j' <k} (since gy its Scott continuous
and the sup is directed)

= sup {gjggik(x) : 1,5 < k 1 (since gjj,gj.k = 83k and the
sup 1s directed) _ Ly
= f.(x) , as wWas asserted. Thus (Ea ,f.3J) is a cone over the

inverse system [Lk' Bgit 3 B i,} <k k' e J} in UPS. Now
(Lygys Eﬁ € i, <ke€ J) is a 1imit cone of this system
in INF1~ , since the set {k: 1, gk € J} is cofinal in J; but

then it is also a limit cone in UPS, since the forgetful functor

from INF1~ to UPS preserves 1imits. Hence there 1s a unigue

UPS—map gj'_' L,——>L with 'f:l = g8 for all j € J.

But now gigi = f; = sup {gikgik : 1<k} 2 1, since g. kgik>l

by 0-3.6; and fer all {&T ave haoe
'Fj’[x_)—
3,3181(") = A Sup {sjksiksi(m: 1,J < K}




sup {gjkgk(x): j < k} (sinca'gikgik < 1 by 0-3.6 and

1A

{k: 1,3} < k} is cofinal In {k:J < k} )

——

= sup {gy(x): § s kD = gy(x)
Since this relation holds for all limit maps gy and the limit
maps separate the points of the projective limit we conclude
glg; < 1. But the validity of the relatlons Y gu8) 2 21
and glgy < 1 implies .gj ='§1 by 0-3.6. Therefore we have shown

(1) s§§£ = Sup [gjggik : 1,J < k€ J} for all i, €Jd.
and this relation expresseé E& in terms of the orlginal data(and

the limit maps).
Now we prove the clalm on the colimit property. Let therefore
23 IIXE (S,dj; je-J) be.an co—cone unéer the direct system

{LJ, §3k; j,k e J}. We def;ne a function d:L—>S by

(2) d(x) = sup {& (SJ(X)) Jjedl
We first notice that h is in UPS since all the dJ and 8 are and
fLr-—>S] is closed under sups.
Now let 1 € I and x € L,. Then dgi(x)_ sup{d gjgi(x) : B jeJ}
(oy (2)) = sup;y {dj sup{ sjkgik(X)= 1,3 < k1) {(vy (1))
= sup djgjgglk(x) : §,k € J with 1,] < k} (since dj e UPS).

But j < k [fm®xex] implles d; = d ) : = 4.7

;; k [Xm@IEX] imp j kgjk’ and so djgjk = dkgjkgjk < dk’
since - o~ Fa

8183 S 1 by 0-3.6. Therefore djgjkgik < 4,8y = 945
whence dg;(x) < d,(x). But d ;(x)= sup {dkgkigik(x): i < k}

P
< sup{ 4 gjkgik(x)' 1,] < k} = dg, (x).Hence dg,{x) = 4 1 (%), and
since
d 1s the desired fill-in map for the colimit, It is clearly uniquel®

AELBTrTineE Thus we have shown that (L,gJ: jeJ) is a colimit cone

in UPS as was claimed.[]




From the proof of 3.3 we extract the following information which 1s
of independent interest:

3.4 COROLLARY. Under the circumstances of Theorem 3 3, the

colimit maps &;: L,—> L are determined by the formula:
(1) A sup (Za, iyt 1,3 < X 1n J)
. BBy = SUP By Byt T~ T T

If (S,dj; je J) is a co-cone under the direct system
[LJ,ng;‘j,k cJ} and d: S—> L the 111 -in map guaranteed by
the colimit porperty. then d is given by the formula

.(2) d = sup {djgj:_j cJ 1.

important
Furthermore, one has the*formula

A
(3) 5up gjg,j = 1L .

proof We proved (1) and (2) in the proof of 3.3 and (2) will
be an imméhdiate consequence of the followling slightly more
general result 0

3 5 COROLLARY. lLet (Lj,gjk; .k e 7} be an inverse system _.

with limit cone (L,gJ: 3&€J) in INF' . Let (L',gs : ] &J) be acc
over the system and let g:L'—> L be the canonical map of 3.13
Then the following statements are equivalent:

(1) g is injective.

(2) é\g = 1L|

(2) sup 8383 =1
Proof. (lk> (2) by 0_3-?-

AN
(2)=>(3): gup g3g3 = sup‘§§j33 7 {since gs = gjg)

=‘g(sup &.g' ) (since g € UPS) = Z{(sup 2 =% g

| EX ues g(sup g,z,8) = &(sup g,85)e
1 A

{since sup 1is palculated pointwise) = gg ( sdnce sup é}gj'= 1,

by 3-7.(2) wi =g
(2) with dj_ g8y, d = 1) =1, by (2).

A 3
%g =(sup glzj)e

(3) =>(2): = ;_‘_‘_“_«_———p-,’j (by 3.4.(2) with d,= @ and /%‘:\:= )
B “j;} 3 3 —

S Pty .
= ' . . sup 5jg48 = sup 3353 (since g3= gjg) =1, by £3). Q




Notethat In particular we have:

3.5.COROLLARY. For the limit maps gy

sup gjgj = 1. ]

of

a projective limit we have

S
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We not address the questlon when the map in Corollary 3.4 1s

surjective.

3.6.PROPOSITION. Under the condltions of 3.5 the following conditions

are equivalent:
(1) g 1s surjective.

(2) im gy S im 53 for all j.

Proof. (1)=>(2): im g} = gy&(L') = im gj if g is surjective,
(2})=(1): By (2), all setis 1 rt'ﬂY g&‘lgj(y) afe non-—
empty for any y € L. | ] If <k, then ue gi_lgk(y) implies

! —_ ] — —_ —
gr(u) = g, {y) and so gJ(u) = gjksi(u) = sjkgk(y) = gj(y). i.e.
u e gB_IgJ(y). Thus the family {g‘_lg (y) : 3 € J} 1s a filter basis
' and II-5.9 J J
in L'. By II-5.8,/these sets are closed in AL' , and L' is quasi-

compact by II-5.9. Hence there is an element x in the intersection of

the filter basis. Then gjg(x) = gB(x) = gj(y) for 2ll j € J, whence

g(x) = y.{] _
5
3.7.PROPOSITION. Under the conditions of 3.&. assume }hat all LJ are
also
continuous lattices. Then L 1is a continuous lattice. If all 83x are sur-

. liore generally, 1im =0 im ¢
1gc%ﬁ¥g,c§§g? all gj are surjective, too. W g Y 83 j<k
Proof. Since CL 1is closed under product and subalgebras (I-2.7), the
category CL 1s complete and L 1s apontinuous lattice. We now consider

the Lawson topologies on Lj and L, which are compact by II-5.10. All
maps &y and g4 are continuous by II- 5,8 . It is a well-known fact

that for an inverse system of compact spaces'and continuous maps one
has im = i
gy rﬁ)jgk im g x for all j. []




e now return for a moment to the general category theoretical
setting and recall what it means that a Tunctor preserves projective
limits:

.3,8. DEFINITION. Let A and E. be complete categories A functor
F: A—>B 1s sald to preserve propjective 1limits [resp., in the case
of concrete categories, strict projective 1imits] iff The following
condition is satisfled: i

Tet (L,Gj; j € J) be a limit cone of an lnverse system [resp a striect
projective system (2.1.4)] {Lj,gjk; i,k €J} in A, and let

( T, hs < J. ) be the limit cone of the image inverse system

(FLJ’ngk; j,k € J) in B. Let f: FL—> T be the natural map guarantee:
by 3.1 3 Then f is an isomorphism

In short: F(lim LJ) = lim FLj
Notice that *++* - the preservation of strict projective limits
is a weaker property than the preservation of projective 1imits (in

case we are dealing, as we alwavs are ' . ., with concrete categories).
. < r

For the purposes of the constpuction we are about to begin 1t 1s

convenient to have a special notation:

3.9, DEFINITION. A retro-functor of a category A is a pair (F,p)
: consisting of a self funector F:gf———>£ of A together with an eple
natural transformation p;: FL—>L. L
When dealing with concrete categories we will insist that p 1s

surjective.

3.10 CONSTREUCTION. 1et (F,p) be a retro-functor of a comp%ete cate-
gory g_and 1et FL Dbe the projective 1imit of the inverse system

FL < FoLe—s L S
Py Fpy, Frpy,

L<

T

let ﬁL: Fl—> T, be the limit map from the 1imit cone.

~ ~
Then F :&7———>& is a self functor of A and pL:FL —> L

is a natural transformation If A is a concrete category. I pre-
serves surjectives, and 1T the 1imit maps = 7~ 7. of any
strict prijective limit are surjectlve. then (F,p) 1s a retro-‘unctor,




-

i

Bbf&i.sjg . , there is a natural map f; :F(lim FUL) = FFL s1im F? I
- FL filling in the dlagram )
Fp F(Fp;) , . F(Fp) 0~
FL < e F(FL) < DF (F2L) <——..F(1lim F'L)=FFL
(17 ﬂ | [ ﬂ le
Fp F*p 3
P, L L ¥ Py,
We have two commuting squares
Fq -
FL <—PL FFL
(2)
PL Full L
L <—— FL
AL '
in particular,-ﬁi‘gj coequalizes f [T and 71 PR -
r -.-.-J

If F preserves projective limits, then TL:FFLw—->§L is
an isomorphism.

If F preserves surjective‘maps and strict projective limits, then

f. is an isomorphism. too.

L
Proof The assertions are straightforward from the definitions @

3 11 DEFINITION. If (F,p) is a retro-functor of A , we say that

(F,p) is the associated retro-functor. and we call fL:FFL——%> FL
the associated morphism .




We need a rather technical condition.

3.12.DEFINITION. We say that a self functor F:INF tanPi;ﬁn+?Qbegg

Scott con
is adapted prvided that there exists a natural/function
g [S—=>S]——> [FS >FS] 5 i rv 4 such that m (1) =
ikﬂb cLl '

el
for all g,h:S——>7 in INFT&we have (Fh)AFg = ns(hg). B

The relevance of this condition ;™J becomes apparent in the
followlng result:

| S

which preserves surjectivity of. f ﬂ—functions. Then F preserves
striet projective limits of continuous lattices.

3.13. PROPOSITION. Let F be an %Eapted self—-functor of f"d! CcL

Proof. Let {Lj,gjk; Jyk= J} be an inverse system of continuous lattices
wilth surjective maps gjk' Then the 1imit maps gj:.T.r--——--—>L‘j are sur-—
Jective by 3. 7.1 ] By hypothesis all Fg are surjective. Hence the
natural map f: FL—> 1lin FL_ is surJective by 3.6. |

On the other hand we calculate

sup(Fg-)A(Fg.) = Sup UL(Q SJ) = 1 (sup 8333) = my (1) (by 3-5)
= 1. Then T is injective by 3.4.[]

bl -
This allows us to conclude the following result:

3.14. THEOREM. Let (F,p) be a retro—functor of CL .i.: . . .y
and suppose that F is adapted and preserves surjectivity of CL-maps.
Then £he assoclated retrofunctor: (F p) exiets' and .. R R
- the associated map fL:FFL————>FL is an isomorphism.

Proof. Since p is surjective and F preserves surjectlivity, all maps

in the inverse system L< Fl< Fel< FoL....

5
Py, Fpr, Fopp,

are surjective.Hence FL is a strict projective 1limit and all 1imit maps,

in particular PL'FL___>L are surjective. By 3.13, the map fL is an

isomorphism. {J

Scott we _
Followln g)fassoclate with each complete lattice L the complete lattice




H(L) = [L—>L]{ see II-2.5). If g:S >T is in INF we define

a functlon H{g):H(S)~—>K(T) by H(g)(9p) = BPZ ; note that g0k

is indeed Scott continuous and s0 H(g) is well defined. .Clearly H(l)
=l and H(g)H(g') = H(gg"'), and so H 1is functorial. We now claim

that H(g) has a lower adjoint H(g)™ :H(TP—>H(S).Indeed if we

set H(g) " (y) =Bve ,then H(g)" H(g) (o) = Buvle < o and

H(g)H(a) (¥) = ghyal > ¢ by o-3. 6, which shows by 0-3.6 that H(g)™
is the desired adjoint. In particular, H(g) preserves arbitrary

infs by ¢-3.3. Finally, if ﬂ 1s Scott continuous, then so ig

H(g), since sups are caleculated pointwlse and g preserves directed =3

sups. We have

3 15.LEMMA., There is a retro-functor (Hyp) of INF1L “

o D such that H(L) = [L—>L] and H{g) = gogll ; also
If we let mg:[S—>ff] s) > [HS~—~—>HS] be defined by
ns(g)(m) = gpg , then Ty preserves directed sups and

(g)=min g(L)

(He) (Hg) = n5(Eg).

Moreover, H maps CL into itself and preserves the surjectivity of
morphisms.
Proof. If we define pr: :H(L)~—>L by pL(g) = nil p(L), then
Py, is a surjective INFT‘—morphism Eizﬂ whose lower adjoint assocliatez
with an element x € L[ the constant funetion L——>L with value x.
We have (Hg)™(Hg)(p) = 7Rgobe = ns(gg)(@), It is straightforward
to verify that Mg Preserves directed sups, XV If L is a continuous
lattice then so is H(L) = [L—>L] by II-2.8. In order to see that
jﬁreserves surjectivity, let g:S——>T7 be 2 ‘surjective INFﬁ—map.

°n take ¥ € H(T) and set ¢ = H(g) (). Then H(g)(o) =
s£Yge# = v since gh- 1 by 0-3.7.{]
3 16.NOTZATION. We call H the Scott functor. LI

By 3.4
7 We now retrieve Scott's original theorem:

3.17.THEORE .(For any contlilnuous lattice L) the retrofunctor{iéiéi::)

assoclated with the Scott functor exists - v - - andVthe

~ ES

assoclated map fL HHL———> HL ls an isomorphism. In ofher words,

i$ S is the continuous lattice HL , then there is a natural

isomorphism [S=—>S] ——> S. Each element m2 f of § may be




considered as a RErnciiom Scott continuous function $—>3 s0 that

for s € S the element f(s) 1is well-defined.d

Notice that Scott's theorem could be ® rephrased as saying, in
At i lere £0
short terms, zxm that every cont%nuoTi lattice 1is the quotient

of a continuous lattice which is 1somorph1c to its own function
space. '

Now we consider the functor Id: B CL ——>CL (see 1.18 and 1.19).
Then (Id, r} , r(I) = sup I is a retrofuncta with surjective r
by I-2.1. We define  mg:[S—>S] > 14 Sé-f>Id-S] by

ns(g)(l) = 45(1).Then nsfg) preserves directed sups and satisflies
A
ns(l) = 1. Moreover, by 1.18 and 1.19 we have (Id g)° (Id g)(I}

= |2(}s(I)) = J8&(I) (by 0-1.11) = ng(8s)(I). Furthermore,
the functor Id preserves surjectivity: Indeed if g 1s surjective,
then gZ = 1 by 0-3.87.and thus (Id g)(Id g)“(I) = Jeg(I) = ms(88) (1),
= mg(1) (1) |

Now we have the following theorem}kﬁu_aﬁf,

3.18. THEORFM. The retro—functor (Id,r) of CL has an associated

retro-functor (EE,; ) with a surjective CL -map r: d L —>L such that

the assoclated map f 2 1d WL—>T 15 1san isomorphism.

In orther words, if S is the continuous lattic id L s then there is
a natural isomorphism Id S —-> S. Each element I of S may be
considered as an ideal of S so that for s € S the mizxent relation
g & I 1s well defined.(

Notice that this theorem ceould be rephrased by saying,ikzt in

short terms, that every con%inuiﬁs latiice ig he quotient of an
arithmetic lattice which is isomorphic to its own ideal lattice.




The constructions in 3.17 and 3.18 appear to yleld rather blg
continuous lattices. We record, however, that in terms of welghts
the lncrease in size is not so exorbitant| in the case of Scott's

construction. The 1deal construction may be substantial, though.
3.19.PROPOSITION. Let L be a continuous lattice. then

(1) w(i(L)) = max(sg,w(L)"

(2} W(EE L) Exmaxtzigifidx < exﬁ$° card S , where exp X = X

for a cardinal x and exp&o X = sup exp™ x .
Proof. (1)} By II-8.13 we have # w(3) = wH(S) for any infinite
.continuvous lattice. Since ﬁ(S) is a subalgebra of a countable
product of continuous lattice of weight w(S), we conclude that
W(E(S)) = w({S) for any infinife contlinuous lattice S by II-8.1l4.
If S is finite, then wtﬁ(s)) =3,
(2) For every cbntinuous lattice S we have w(Id S) =
card (K{(Id S)) (by II-B.4) = card S.Now card Id S < exp card S
where exp X = 2¥ for a cardinal x. Thus W(Idn g) < expn_l card S

<& ‘
If we write exp © x = sup exp® x , we obtaln,as before,

— &,
w(Id L) = exp © card S. 4
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EXERCISES

5.14% EXBRCISE. An adapted functor F:INFff—w>-INFT preserves
injectivity of maps.
( Tet g:3—>T be Injective Then Zg = 1g by 0-3.7. Then

(FgY(Fg) = ﬂé(gg) =g(1l) = L.,and so Fg is injective by 0-% 7.)

2.1%. EXERCISE. An adapted functor F (as in 3.14 ) which preserves

the surjectivity of maps preserves images,l.e Flimg )} € im Fg

(In INFT every mép has a unique (up to isomorphism)} decomposition

f _
s—————> 7
f\%

im T

(see 0-2.9): Apply F and observe that FF is surjective, Ff 1is
injective, so that one may write. (Ff) =FFf , (Ff) = Ff and F(im f)

2,16 EXERCISE. Let F: CL——> CL be an adapted functor presering
the svrjectivity of maps and intersections of filtered famllies o~
subalgebras (i.e., projective limits with injective maps gjk)‘

The F preserves arbitrary projective limits

{ The injectivity of f:FL —> 1lim FLk follows as 1in 2.13. As to the

surjectivity. observe

Flmgg) = F(V g tmspd = (Vgge Flmag) = () pgdn ey

= im hj’ where hj:lim Lk —_ Lj ig the limit map Then 3.6 shows
that g is surjective).

This may be used to show that Scott's functor H in fact preserves
all projective limits in CL. By proving the surjectivity of the
> 1im HL, directly. one can show the stronger statement

map f:HL .

3.17 EXERCISE., The Scott functor H: INFT———>INFT preserves
projective limits,




EXERCISES

¥ Proposition 3 1? 1s per.ectly su”ficient for the proof of
the central theorem 14 But generalisations are possible
214 EXERCISE. Let F be an adapted sel” functor of INF' which
preserves surjectlvity of maps. and preserves intersections of
filtered subal%ebras Then F preserves arbiltrary projective
1imits in INF'.

(As '1h ".1" we bnly have to worry about the surjectivity of

the map f:FL. —> 1im FL

J

k




ctleces.

e

NOTES

The basie constructlon which we have formulated in =.1% in
a general way, was introduced by D.Scott in [ } for the construction
of the continuous lattleces obtalined in * 17, which are naturally
iéomorphic to thelr own self function space. This was a canonical
solution for the questhmm for a systematic way to construct set
theoretical models for the lambda caleulus of Church,Curry and Scott.
TR1S.SORSEEUELRES 518 F ©F SBQkhvaamoMETaELqnEnERa IEFRYesE GROVINOY
limits.the essence of theorem ~.2 although in the present generality and
in 1its precise formulation 1t had not been previously put down.
Theorem ~ 14 itself is new as is Theorem ~.19. Theorem ° 17 gives
a solution to a question raised by R.E.E¥ Hoffmannin [ ]{Continuous
posets and adjoint sequences. Semlgroup Forum to appear }. He
analy-ed precisely the question , when for a contlinuous lattice L
the map ryd Id L——>L allows a finite sequence f0=rL,rl ...,rp_
of morphisms [KEmEFERIAX¥EF such that r_ , is lower adjolnt to ry

(Example xymxf ry:l—>Id L, rl(x) = éx . see XIH I-2.1). XE=XzEER
FPinite chains of this sort exist if I is of the form IdnL . The

continuous lattices Id L give rise to infinite chains of lower
ad joints For details we refer to Hoffmann's articele.

At a later'point‘we hope to discuss at greater length the appli-
cations and the raminfications of the ldeas discussed in fthis section

Theorem 2 17 will appear in the Tulane Dissertation of J.Nino.




