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In the paper mentioned in the &eﬁe&enceé above, J.Dixmien discussed certain
aspects of the genenal Lopology of Locally quasi-compact spaces for the puwipose
of determining the purely topological nature of certain properties of Lne primitive
ideal spectrum of a C* -algebra. Cerntain conclusicns concern Berel sets (faom which
some exercises in the revision of the Compendium are diawn) and cthers peatain to
the issue of Baire category (fon which we now have betfen nesuffs, which also
will be included in the Compendium (see also SCS Hofmann 1-18 -78 and SCS Kedmel-
Bauer 2-9-78)).

We review ancther fopde which Dixmien discussed in his anticle. For reasons of
the spectral theory of C*-algebras Lt Ls dmportant to hnow the so-called Hausdorf-
points of a space: A point 8 a Hausdorgf point iff Lt can be sgparated oy disfoint
open sets from any nodint which 48 not in its closune. Dixmier uses for Lhis purpvse
a concept which will will reintroduce in the foum of "tied"elements in a Latlice.
These elements appear a bit antificial from a Lattice theonetical point cf view.
And indeed a closen inspection from the vantage point of continuous Lattices
reveals that §on all practical purpases Lin this context they can be replaced
by pseudopnimes. In fact we prove here the following version of Dixmien's nesuld:

Let X be a locally guasicompact To—space and consider it in the now standaird
manner as an order generating subspace of Spec L for a unigue continuous Heyting-
algebra L. Then the set of Hausdorff points in X is precisely the set of x in X

which are minimal pseudoprimes.

Fred Wathins |whose dissentation concerns the application of Lattice thecretical
methods to the problem of closed two -sided prime {deals in C*-afgebras -are they
primitive?-] Lectured on Dixmien's paper in the cunrent graduate student seminak.
In the cowtde of these Lectwres we also discovered that the Lawson ZLopology was
introduced by Fell as early as 1962 on O0(X) forn Locally quasicompact spaces X,

The notes which {oflow emenged §rom the discussions arcund the seminan.
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1) Notation. For any uppex set X in a lattice L let F(X)

the filter generated by X . 0

2)DEFINITION . Let L be a (complete) lattice. We say that an element X € L
is tied (lie in the sense of Dixmier) iff for any finite set E« L Lz )

we have inf E # 0. 0 The set of all tied elements will be called T(L)
Recall that an ultrafilter U in a lattice L is a maximal filter with 0 ¢ U.

3) LEMMA. In a (complete) lattice L, the following statements are equivalent

for an element x in L:

(1) =x e T(L)
(2) o4& ... o F(L \ ¥x)

(3) There is an uvltrafilter U such that U u 4x = L.
Proof. (1)<=> (2) is straJUhtforward
(2) => (3): By the axiom of choice (Zorn's Lenma), there is an ulta-
filter U containing FEEB It satisfies the reguirement.
(3) => (2): From (3) we have L \ ¢x ¢ U . Then F(L \¢x) ¢ U, and
so (2) follows.O

4)PROPOSITION . In any complete jattice L the set T(L) is closed in the

Lawscn topology.
Proof. Suppose that x & T(L) .Then there is a finite set E cL\ +x with

inf F = 0. Now L \tF c L\ T(L) and is m(L)— ‘hence A(L)—open)and contains x. _

We recall that the set of prime elements in a lattice is called PRIME L and
the set of pseudoprimes . . YPRIME L (Compendium II-3- 23) Further we
recall from the work of Hofmann and Lawson on IRREDUCIBILITY and the SPECTRAL
THEORY that for a continuous lattice L one has PRIME L CW?RIME L < < WPRIME L

= PRIME L , and that for distributive continuous lattices (but not for others’’

equallty holds between the last three. In the following we will refer to comple
lattices in general and concentrate on primes and pseudoprimes only. Closures

will always refer to the Lawson topology.




5) PROPOSITION . If L is a (complete) lattice, then YERIME L ST(L).
Proof. If p is a pSEud%rime, then there is a prime ideal P with p = sup P.
Since P is a prime ideal, L\ P is a filter containing any finite set Eh
the complement of +p..Hence inf E é-L \ P, and so inf £ # 0 for such E.
Hence p ¢ T(L). ' '

By Proposition 4 this says in particular that for any complete lattice we

have  PRIME L EKPPRIME‘t e T(L).

l6) PROPOSITION. Let L Be a (complete) distributive lattice. Then every
minimal element of T(L) is pseué%rime.

Proof. Let p be a minimal element in T(L).By 3.$'there is an ultrafilter U
with U u +gr = L. Since L is distributive, the complement L \ U 1is

a prime ideal (apply I-3.22 with I = (0) , F = U and use the maximalitydf

U). From L\ U< +p we obtain sup{L \ U) < p; . ~. the
element sup(L \ U) is pseudoprime,hence tied by Propositicn 5.Minimality/then
shows p = sup(L \ U}. O

Notice that minimal elements in T(L) exist on account of 4) if the graph
of < 1is ¢losed in the Lawson topology. (By 7.14 of Chapter II this means that
1, is GCL.)

The next result gives the final reason why one might consider the some-
what artifical notiom of tied elements; it also illustrates that in the case
of a distributive continuous lattice the concept is superfluous, since the

lattice. theoretically mere natural pseudoprimes serve the same purpose.

7) THECREM. Let L be a continuous lattice and X = Spec L the space of its
in X
primes p # T with the hull kernel topology. Let p be a prime. We consider

the following statements:

(1) p is minimal in T(L).

(2) pis a Hause orff pbint in X,i.e. for every qe X with p% TETthere are

. disjoint open meighborhocds of p and q in X,respectively.

(3 (YqexX)ptq =(du,vel) uv=20andu £ p and v £ q.

(4) The MA{L)-neighborhood filter of p on X agrees with the w(L)-neighbor-
hood filter of p on X.

(5) The inclusion map ¥ —e/ALL is continuous in p ,where AL denotes the
(6) p is minimal in RO L [ space L with the Lawson topology.

Then (1)< (2) &2 (3) =>(4) => (5) = (§) , and if L is

distributive, then all of these conditions are equivalent.




Proof.The equivalences (2)<=>(3) and (4)<= >(5) are straightforward reformu-
lations.

(1) => (3): Let p be minimal in T(L) and p $ q . Thén’pq-< P and®%pq ¢ T(L),
whence there is a finite set F in L\ ¢pq with inf F = 0. Set u = inf(F\ip )

and v = inf(Fn ¢p)}. Then uv = inf F = 0;secondly, u ¢ Ip,since p is prime,

and thirdly v ¢ {q, for otherwise Fn tpg = Fn 4p n 4g= 0.

(3) => (1): Assume (3) and suppose that (1) does not hold. Then there is
fn @ eordnuous lads

an a ¢T(L) with a <p. We now use the Tecth = . that X is ordex genexating
and find a q > a with p £ q.Then by (2) we find u,ve L with uv =0, ui‘ P,
v £ q. Then u £ aand v £ a.Since a is tied, uv = 0, and this is a contra-

diction.

(1) => (4) : Let U be a Scott neighborhood of p.We must find an x ¢ ¢p so that
X\ 4 < U. If no such x exists, then the sets Sx = (X\ 4x)n (L\ U) are non-
empty for all x in thg filter L\ ¢p. The collection of 3%%$E§.is then a filter-
basis on the Lawson quasicompact set L \ U and thus has a,cluster point 'y

in X n (L \ U).In particular y eT(L) by Pwopositions 5 and 4. By the mini-
mality of p in T(L) we obtain ye L \ ¢p . Now we use the hypothesis that

L is continuous and find a u << y with u ¢ p.Then the Scott-(hence Lawson-)

open neighborhooed #u of y does not meet X \ +u’hence does not meet Su’ and

this is a contradiction.

(4) =>(6) : Let a e PRIME L ‘with a <.p.Let U be any Scott -open neighborhood
pf p- By (4) we find an x ¢ L \ 4p with X \4+x c U.Hence ag L \ +x. Since

a ¢ X we have a = lim p, fpr a net pj of primes in X, and we may assume that
pje. L\ +x. But then even pjs X \tx ¢ U. Thus a ¢ U. But U was arbitrary;if
we now use. again the continuity of L, we can conclude that p < a. (GCL would

suffice at this point.) Thus we have a =p, 1i.e. P is minimal in PRIME L &

(6) =>-(l): Let p be minimal ir PRIME L. and let a < p be tied. If L is continu&é
then the graph of 3 is closed, and thus we may assume that a is minimal in T(L).
If L id distributive, then Proposition & q?Iies and shows that a is pseudoprime.
But in a continuous distributive lattice we have ~/PRIME L = PRIME L (according
to the SPECTRAL THEORY of Hofmann and Lawson)..Thus a ¢ PRIME L , and then by

the minimality of p we have a = p. [




Note that only the conclusion (1) =>(2) did not use continuity of L.
The simplest formulation of this result emerges in the case of continuous

distributive lattices,i.e. continuous Heyting algebras. We summarize:

8) COROLLARY. 1) Let L be a continuous Heyting algebra. Then
min T(L) = min YPRIME L

(where min A denotes the set of all minimal elements in A).

2) Let X be a lecally quasicompact To—space. Embed X as an
order generating subset of Spec L for a continuous Heyting algebra L.(This
is always possible after Hofmann and Lawson.) Then the set of Hausdorff points

of X is precisely the set X n min YPRIME L . [

9) COROLLARY. Let X be a locally quasicompact sober spacé. Then a point x
is a Hausdorff point iff its neighborhood filter is also its neighbofhood

filter relative to the patch topolegy.

In the centext of Corollary 8 one might be tempted to Believe that
minimal pseudoprimes in a continuocus Heyting algebra are always prime.
This is not the case as the following example shows which‘was provided by
John Isbell:

10) EXAMPLE.(J.Isbell). Let X be the T. space obtained on N W {a,b} by taking

as basic neighborhoods of a,resp. b ali sets containing a (resp.,b) and having
finite complement; all elements in W are isclated.

Now we take L = Q(X) and consider p = ™ ¢ L . Clearly p is not prime
(as the meet of the two elements X\{ a} =znd X\{ ®). But p is pseudoprime
since it is the sup of any woimal idealMof'subsets of N which is not only prime
in 2" but also in L: Tndeed if xy ¢ M with x £ p and y £ p, then
xy € M would imply that xy =+ : cannot be cofinite, while x tpand vy £ p
would imply that it is. A simple comsideration along sinvl ar lines shows that

no proper subst of N can be a pseudoprime in L,whence p is minimal. [J




